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Abstract

Topics in Axions, Supergravity, and the String Swampland

by

Jacob Michael Leedom

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Mary K. Gaillard, Chair

This dissertation is comprised of three parts, with each part focusing on topics in axions and
dark matter, anomaly cancellation in supergravity theories, and the implications of the string
swampland to cosmology, respectively. In Part I, we consider axions in particle extensions of
the Standard Model and models of dark matter. We present a class of models where super-
symmetry and the Peccei–Quinn symmetry are simultaneously broken and the messengers
that mediate the effects of these symmetry breakings to the Standard Model are identical.
We also describe a production scenario for QCD axion dark matter where the Peccei-Quinn
phase transition occurs at a temperature far below the symmetry breaking scale. The pro-
duced axions tend to be warm. For a certain range of the decay constant, the effect of the
predicted warmness on structure formation can be confirmed by future observations of 21 cm
lines. Additionally, a portion of parameter space requires a mixing between the Peccei-Quinn
symmetry breaking field and the Standard Model Higgs and thereby predicts an observable
rate of rare Kaon decays. We also consider the late universe cosmology of ultralight axion
dark matter models, and show that requiring the axion to have a matter-power spectrum
that matches that of cold dark matter constrains the magnitude of the axion couplings to the
visible sector. Comparing these limits to current and future experimental efforts, we find that
many searches require axions with an abnormally large coupling to Standard Model fields,
independently of how the axion was populated in the early Universe. We survey mecha-
nisms that can alleviate the bounds, namely, the introduction of large charges, various forms
of kinetic mixing, a clockwork structure, and imposing a discrete symmetry. We provide
an explicit model for each case and explore their phenomenology and viability to produce
detectable ultralight axion dark matter. In Part II, we use Pauli–Villars regularization to
evaluate the conformal and chiral anomalies in the effective field theories from Z3 and Z7

compactifications of the heterotic string without Wilson lines and a Z3 compactification of
the heterotic string with two Wilson lines and an anomalous U(1). We show that parameters
for Pauli–Villars chiral multiplets can be chosen in such a way that the anomaly is universal
in the sense that its coefficient depends only on a single holomorphic function of the three
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diagonal moduli. It is therefore possible to cancel the anomaly by a generalization of the
four-dimensional Green–Schwarz mechanism. In particular, we are able to reproduce the re-
sults of a string calculation of the four-dimensional chiral anomaly for these models. In Part
III, we discuss the relations between swampland conjectures and observational constraints
on both inflation and dark energy. Using the requirement |∇V | ≥ cV , with c as a universal
constant whose value can be derived from inflation, there may be no observable distinction
between constant and nonconstant models of dark energy. However, the latest modification
of the above conjecture, which utilizes the second derivative of the potential, opens up the
opportunity for observations to determine if the dark energy equation of state deviates from
that of a cosmological constant. We also comment on the observability of tensor fluctuations
despite the conjecture that field excursions are smaller than the Planck scale.
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Chapter 1

Introduction

The current state of particle physics is one of great uncertainty, but also excitement and
opportunity. From observations of the cosmos, we know that the incredibly successful Stan-
dard Model of particle physics accounts for only 4.9% of the energy density of the Universe,
with the remainder being made of dark matter and dark energy. Most features of both
phenomena remain essentially unknown. Furthermore, there are a number open questions
about the consistency and properties of the Standard Model. Several of these include the
hierarchy problem, the Strong CP problem, and the quantum nature of gravity. These defi-
ciencies provide incentive for innovation and discovery, but not all of the above gaps can be
addressed in the same manner. For example, dark matter appears to require an extension
to the particle content of the Standard Model. On the other hand, the complex nature of
quantum gravity indicates that new, profound ideas are needed to bring our understanding
of gravity to the level of the other fundamental forces. Thus progress towards a fundamental
theory of interactions and matter depends on the interplay of experimental input, construc-
tion of new models, and advancement of our mathematical understanding of these models.
This dissertation is broken into three parts, with each part describing progress made along
various combinations of the above three core approaches.

In Part I, we will consider particle extensions of the Standard Model and their impli-
cations for particle and dark matter experiments. The primary focus will be on the class
of hypothetical particles known as axions. Chapter 2 describes work on unifying models of
supersymmetry and QCD axions. In chapter 3, we will will explore production methods for
the QCD axion such that it is a viable candidate for dark matter. Both chapters are based on
work done with Keisuke Harigaya [225, 226]. Chapter 5 will instead focus on constraints and
models of ultralight axion-like particle (ALP) dark matter and is based on work completed
with Jeff Dror [156].

In Part II, we will explore mathematical features of toy fundamental particle models.
Chapters 5 and 6 will describe the process by which quantum anomalies are cancelled by
the Green-Schwarz mechanism in supergravity models derived from various orbifold com-
pactifications of the E8×E8 Heterotic string. Both chapters are based on work completed in
collaboration with Mary K. Gaillard [185, 186].
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Finally, Part III describes work that is a synthesis of theory, model building, and ex-
perimental prospects. The single chapter of the section discusses the application of the
string swampland to the development of inflationary models and the potential observablility
of quintessence models of dark energy. This singular chapter is based on work done with
Chien-I Chiang and Hitoshi Murayama [110].
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Part I

Axions in Particle Physics and
Cosmology
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Overview of Part I

In Part I, we consider the construction of models that ameliorate some of the deficiencies
of the Standard Model mentioned above. We also describe the experimental prospects and
signatures of these models. The primary issues we consider solving here are the Strong
CP problem and the puzzle of dark matter. A viable method to address both problems is
the introduction of the QCD axion into the Standard Model. The QCD axion is a viable
candidate for dark matter and elegantly solves the Strong CP problem via the Peccei-Quinn
mechanism [356]. Chapters 2 and 3 will be dedicated to particle and dark matter models of
the QCD axion.

There are more general models where dark matter consists of axion-like particles. These
particles have couplings to the Standard Model that resemble those of the QCD axion but
they do not solve the Strong CP problem. While these models are less economical than the
QCD axion, they are a distinct and viable alternative. Furthermore, axion-like particles are
theoretically motivated as they appear to be generic features of string theory constructions.
Chapter 4 will discuss constraints on theories of ultralight axion-light particles and methods
to construct non-trivial models that partially evade these constraints.
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Chapter 2

Unified Models of the QCD Axion
and Supersymmetry Breaking

2.1 Introduction

One of the most serious problems of the standard model, the so-called strong CP problem [8,
264, 94], is elegantly solved by the Peccei-Quinn (PQ) mechanism [356]. Another problem,
the hierarchy problem, is considerably relaxed by low energy supersymmetry (SUSY) [301,
403, 417, 278]. The precise gauge coupling unification at a high energy scale also motivates
low energy SUSY [161, 29, 200].

There are several hints for a potential connection between these two physical ideas. First,
models of SUSY breaking often involve spontaneous breaking of global symmetry. In fact,
it is one of the sufficient conditions for SUSY breaking [18]. It would be illuminating to
identify this global symmetry with the PQ symmetry.

Second, if the PQ symmetry breaking field resides in the SUSY breaking sector, the super
partners of the axion, namely the saxion and the axino, may obtain large masses [99, 100,
239, 227]. Such a model is free from the cosmological problems associated with light saxions
and axinos (see [280] and references therein).

Finally, one realization of the PQ mechanism, the KSVZ model [289, 383], has the fol-
lowing superpotential,

W = ZQQ̄, (2.1)

where Z is a PQ charged field with a non-zero vacuum expectation value (VEV), and Q and
Q̄ are PQ and standard model gauge (especially SU(3)c) charged fields. If the chiral field Z
also obtains a non-zero F term VEV, the SUSY breaking is mediated to super partners of
standard model particles via the gauge interaction. This is nothing but the gauge mediation
of SUSY breaking [153, 149, 151, 28, 343] with messenger fields Q and Q̄.

Motivated by these hints, we propose a model where SUSY and the PQ symmetry are si-
multaneously broken, and the messenger fields that mediate SUSY breaking and the anomaly
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of the PQ symmetry are in fact the same. The model provides a unification for the physics
of SUSY breaking and the PQ mechanism.

2.2 Unification of SUSY and PQ symmetry breaking

Simultaneous SUSY and PQ symmetry breaking in a single sector

We introduce chiral fields M+ and M−, whose U(1)PQ charges are +1 and −1, respectively.
The PQ symmetry is broken by introducing a chiral field X and a superpotential coupling,

W ⊃ κX(M+M− − v2), (2.2)

where κ and v are constants. SUSY is broken by lifting the flat direction M+M− = v2. To
achieve this, we introduce chiral fields Z+ and Z−, and couple them to M± via mass terms.
The superpotential of this minimal model is then given by

W = κX(M+M− − v2) + λ′rvZ+M− +
λ′

r
vZ−M+, (2.3)

where λ′ and r are constants. By phase rotations of chiral fields, we take all constants in
Eq. (2.3) to be real.

The simultaneous breaking of the PQ symmetry and SUSY via the superpotential in
Eq. (2.3) is discussed in [99, 100]. As is shown in section 2.3, this model is the low energy
effective theory of a dynamical SUSY breaking model with a deformed moduli constraint
(the IYIT model) [263, 259], and is studied by [227, 168] in the context of the heavy scalar
scenario [199, 414, 253, 213, 255]. Direct coupling between the SUSY and the PQ breaking
sectors is also analysed in [239] using an effective field theory, while [48, 40, 170] connect the
two sectors indirectly via quantum corrections involving messengers.

For λ′ < κ, the VEVs of the fields are given by

〈M+〉 = rv

√
1− λ′2

κ2
, 〈M−〉 =

v

r

√
1− λ′2

κ2
,

〈Z+〉 = 〈Z−〉 ≡ z, 〈X〉 = − λ′z

κ
√

1− λ′2/κ2
, (2.4)

up to a U(1)PQ rotation. The PQ symmetry is broken by the VEVs of the charged fields
M± and Z±, where z is undetermined at tree level. If λ′ > κ, the VEVs of M± and Z±
vanish, and the PQ symmetry is not broken. Thus we will adopt the above hierarchy and
also assume that λ′ � κ for simplicity. SUSY is predominantly broken by the F terms of
Z±,

FZ± = −λ′v2. (2.5)
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Mass spectrum

The chiral field X and a linear combination of M± obtain a large mass κv. We may integrate
them out and parametrize M± as

M+ → rv × exp(− A

v
√
r2 + 1/r2

),

M− →
v

r
× exp(

A

v
√
r2 + 1/r2

), (2.6)

where A is a chiral field. The effective superpotential of Z± and A is then given by

Weff = λf 2Z+exp(
A√
2f

) + λf 2Z−exp(− A√
2f

), (2.7)

where f ≡ v
√

(r2 + 1/r2)/2 and λ ≡ 2λ′/(r2 + 1/r2). We note that most of the following
discussion relies only on this effective superpotential, and not on the UV completion in
Eq. (2.3).

Let us first calculate the masses of scalar components of Z± and A. We decompose scalar
components as

Z± →
(
z +
±ρH + ρL

2

)
exp

(
i
±θH + θL

2z

)
,

A→s+ iφ√
2
. (2.8)

Expanding the scalar potential, we obtain the mass terms,

Vmass =
1

2
λ2f 2

(
θH +

z

f
φ

)2

+
1

2
λ2f 2

(
ρH +

z

f
s

)2

+ λ2f 2s2. (2.9)

The mass eigenstates and eigenvalues are given by

a =
φ− εθH√

1 + ε2
, b =

θH + εφ√
1 + ε2

, ε ≡ z

f(
σ+

σ−

)
=

(
cosα −sinα
sinα cosα

)(
s
ρH

)
,

tanα =
2ε

1 + ε2 +
√

1 + 6ε2 + ε4
,

ma =0, mb = λf
√

1 + ε2,

m2
σ± =

1

2
λ2f 2

[
3 + ε2 ±

√
1 + 6ε2 + ε4

]
. (2.10)
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Scalar fields ρL and θL are massless at tree level but obtain masses through quantum cor-
rections, as we will see later. The remaining massless field, a, is the axion.

Next we consider the masses of the fermionic components of Z± and A. The quadratic
terms of δZ± ≡ Z± − z and A in the superpotential in Eq. (2.3) are

Weff,quad =
1

2
λzA2 + λfA

1√
2

(δZ+ − δZ−). (2.11)

The mass eigenstates ψ± and eigenvalues are(
ψ+

ψ−

)
=

(
cosβ −sinβ
sinβ cosβ

)(
ψA
ψZH

)
, tanβ =

√
ε2 + 4− ε

2
,

mψ± =
1

2
λf ×

[√
ε2 + 4± ε

]
, (2.12)

where ψA and ψZH
are the fermionic components of A and ZH ≡ (Z+−Z−)/

√
2, respectively.

The fermionic component of ZL ≡ (Z++Z−)/
√

2 is the goldstino and is eaten by the gravitino
via the super Higgs mechanism.

The expressions for the mass eigenstates are simplified in the limit ε � 1 or ε � 1. In
the limit ε� 1, where the PQ symmetry is dominantly broken by the VEVs of M±, we have

a = φ, b = θH , σ+ = s, σ− = ρH , (2.13)

mb = λf, mσ+ =
√

2λf, mσ− = λf, (2.14)

ψ± =
1√
2

(ψA ∓ ψZH
) , (2.15)

mψ± = λf. (2.16)

In the limit ε � 1, where the PQ symmetry is dominantly broken by the VEVs 〈Z±〉, we
obtain

a = −θH , b = φ, σ+ = s, σ− = ρH , (2.17)

mb = λz, mσ+ = λz, mσ− =

√
2λf 2

z
, (2.18)

ψ+ = ψA, ψ− = ψZH
, (2.19)

mψ+ = λz, mψ− =
λf 2

z
, (2.20)

where the masses of σ− = ρH and ψ− = ψZH
are suppressed by the large Majorana masses

λz of σ+ = s and ψ+ = ψA.

Sgoldstino potential in the minimal model

As we have seen, the directions ρL and θL, which correspond to the sgoldstino components,
are massless at tree level. Accordingly, z is undetermined at tree level. Here we discuss the
stabilization of the sgoldstino in the mimimal model given by Eq. (2.3).
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Quantum corrections generate a potential for the scalar component of ZL ≡ (Z+ + Z−) /
√

2,

∆V±(ZL) =
λ4f 4

512π2

[
8(1 + ε2)2ln(1 + ε2)

+2(3 + ε2 +
√

1 + 6ε2 + ε4)2ln
3 + ε2 +

√
1 + 6ε2 + ε4

2

+2(3 + ε2 −
√

1 + 6ε2 + ε4)2ln
3 + ε2 −

√
1 + 6ε2 + ε4

2

−(ε−
√

4 + ε2)4ln
(ε−
√

4 + ε2)2

4

−(ε+
√

4 + ε2)4ln
(ε+
√

4 + ε2)2

4

]
'

{
λ4f2

32π2 (2ln2− 1)|ZL|2 : |ZL| . f
λ4f4

16π2 ln |ZL|
f

: |ZL| & f,
(2.21)

where ε = |Z+|/f .
The supergravity effect induces a tadpole term for ZL,

V (ZL) = ∆V±(ZL) + (−2
√

2λf 2m3/2ZL + h.c.), (2.22)

where m3/2 is the gravitino mass. We take m3/2 to be real by a U(1)R rotation. The
gravitino mass is related with the magnitude of the SUSY breaking by the (almost) vanishing
cosmological constant condition

√
3m3/2 = |FZL

|/MPl =
√

2λ
f 2

MPl

. (2.23)

The tadpole term induces the VEV of ZL and the messenger scale [291]. Assuming
| 〈ZL〉 | . f , we obtain

〈ZL〉 =
64
√

2π2

2ln2− 1

m3/2

λ3
=

128π2

√
3(2ln2− 1)λ2

f 2

MPl

. (2.24)

For small λ, the formula (2.24) yields | 〈ZL〉 | > f . In such a parameter region, the potential
of ZL given by the quantum correction is logarithmic, and cannot stabilize ZL against the
tadpole term. Instead ZL is stabilized around 〈ZL〉 ∼MPl by the supergravity effect. Later,
we couple Z± to the messenger field. If 〈ZL〉 is as large as MPl, the gauge mediated soft
masses of supersymmetric standard model (SSM) particles are smaller than the gravitino
mass. Thus, in the following, we concentrate on the parameter region where 〈ZL〉 � MPl.
Then in the minimal model, 〈ZL〉 is at the most O(f).
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Simultaneous mediation of SUSY breaking and the anomaly of
the PQ symmetry

The simplest possibility of the mediation is to introduce a pair of standard SU(3)c charged
chiral fields Q and Q̄ with the coupling,

W = yZ+QQ̄. (2.25)

The precise gauge coupling unification is maintained if Q and Q̄ are complete multiplets of
the SU(5) GUT gauge group. Soft masses generated by loop corrections from the KSVZ
axion sector is discussed in [13, 342, 223], while the PQ breaking field is not the dominant
source of the SUSY breaking. Soft masses from the F term of the axion multiplet are
analyzed in [56] using an effective field theory.

The mass terms of the scalar component of the messenger field are given by

Vmass =
(
Q∗ Q̄

)(y2 〈Z+〉2 yF ∗Z+

yFZ+ y2 〈Z+〉2
)(

Q
Q̄∗

)
. (2.26)

To avoid tachyonic masses for the messenger fields, we require that

y >
|FZ+|
〈Z+〉2

=
2λf 2

〈ZL〉2
. (2.27)

On the other hand, the quantum correction from the messenger loop generates a potential
term for the SUSY breaking field,

∆Vmes '
NQy

2

32π2
F 2
ZL

ln
|ZL|2

µ2
, (2.28)

where NQ is the multiplicity of the messenger field. By requiring that this potential does
not destabilize the SUSY breaking vacuum, we obtain

NQy
2λ2f 4

8π2| 〈ZL〉 |2
<

∂2∆V

∂| 〈ZL〉 |2
≡ 2m2

Z . (2.29)

The bounds on y in Eqs. (2.27) and (2.29) are compatible if

NQ <
4π2 〈ZL〉6

λ4f 8
m2
Z . (2.30)

In Fig. 2.1, we show the upper bound on NQ as a function of ZL. Here we have evaluated mZ

using ∆V± in Eq. (2.21). It is evident that the upper bound is too severe and is inconsistent
with NQ

>∼ 3, which leads us to extend the model to stabilize the sgoldstino.
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Figure 2.1: Upper bound on the multiplicity of the messenger NQ for the minimal model.

Stabilization of the sgoldstino in extended models:
model-independent analysis

By coupling the sgoldstino to other chiral multiplets, quantum corrections from these mul-
tiplets give additional contributions to the mass of the sgoldstino. Here we assume that
a positive squared mass m2

Z is generated from a quantum correction. (For setups which
generate a negative squared mass, see [256, 384, 258, 201, 164, 134].) Even in this generic
situation, we show that there is a lower bound on the axion decay constant and the gravitino
mass.

The VEV of ZL is given by

〈ZL〉 =
4√
3

λ2f 4

MPlm2
Z

, (2.31)

and the gauge mediated gluino mass is given by

mg̃ =
α3

4π

FZL

ZL
=
α3

4π

√
6

4

m2
ZMPl

λf 2
. (2.32)
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For given λ, f , and mg̃, m
2
Z is fixed,

m2
Z =

8π

α3

√
2

3

mg̃λf
2

MPl

. (2.33)

There are two bounds that must be considered. One is Eq. (2.30),

NQ <
α5

3

8
√

6π3

λ3f 6

m5
g̃MPl

. (2.34)

Another is

m2
Z >

1

2
| ∂

2∆V±
∂| 〈ZL〉 |2

|. (2.35)

Otherwise we need fine-tuning between ∆V± and additional contributions to obtain a required
value of m2

Z . In Fig. 2.2, we show the constraints on (λ, f) as well as the contours of the
axion decay constant fa,

fa =
√

2 (M2
+ +M2

− + Z2
+ + Z2

−), (2.36)

and the gravitino mass m3/2. Here we assume that the messenger is in the 5 representation of
the SU(5) GUT group, so NQ = 5. For the most part, the axion decay constant is dominated
by the VEVs of M± in the left half of the parameter space and the VEVs of Z± in the right
half. The blue shaded region is excluded as the messenger field becomes tachyonic. The
region below a black dashed line calls for fine-tuning. We obtain lower bounds from them,

fa & 1.7× 109
( mg̃

3TeV

)2/3

GeV, (2.37)

m3/2 & 0.2×
( mg̃

3TeV

)5/3

MeV. (2.38)

A final issue to consider in this general approach is the tunneling rate per unit volume
between the false and true vacua, Γ/V = Ae−B [127]. Using the result from [244, 159], we
can estimate the bounce action with

B = 8π

(
〈ZL〉

(
√

2λf 2)1/2

)4

For the valid parameter space, B > 109, and so we expect our SUSY breaking vacuum to
take much longer than the age of the Universe to decay.
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Figure 2.2: The model-independent bounds on (λ, f) and the contours of the axion decay
constant fa and the gravitino mass m3/2. The blue shaded region is excluded as the messenger
field is tachyonic. The region below the black dashed line requires fine-tuning.

Cosmology

We now address several cosmological topics that may affect the parameter space of our
model.

Our model contains a SUSY preserving vacuum where the messengers obtain nonzero
VEVs, so we must ensure that the SUSY breaking vacuum is selected during cosmological
evolution. Following the discussion in [178], in the early Universe we assume that the SSM
particles are in thermal equilibrium and therefore the sgoldstino field potential obtains finite
temperature corrections from the messenger fields. We also take the sgoldstino field to be
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stabilized at the origin initially due to a positive Hubble-induced mass. The messenger
masses become tachyonic about 〈ZL〉 = 0 as the universe cools, which in turn causes them
to develop VEVs. To reach the SUSY-breaking vacuum, the sgoldstino field must obtain a
sufficiently large VEV before this occurs. Since this condition references the masses of the
messengers only about the origin, the model independent analysis performed in [178] should
be applicable, and we obtain

y√
2
<

(
33/4

15

2g2 + g′2

2

)2/5(
m3/2

MPL

)1/5

. (2.39)

Combining this with Eq. (2.35) and Eq. (2.27), we obtain

fa & 2.6× 1010
( mg̃

3TeV

)2/3

GeV, (2.40)

m3/2 & 1.6×
( mg̃

3TeV

)5/3

MeV. (2.41)

Hence vacuum selection raises the lower bounds by a factor O(10).
Another potential concern is that the sgoldstino, which may be produced in the early

universe by thermal or nonthermal processes, might affect Big Bang Nucleosynthesis (BBN).
The relevant decay modes of the sgoldstino are ZL → aa and ZL → gg with decay rates

ΓZL→aa =
m3
Z

128π

(
〈ZL〉

2f 2 + 〈ZL〉2

)2

, (2.42)

ΓZL→gg =
α2

3

128π3

m3
z

z2
, (2.43)

respectively. Looking to the parameter space in Fig. 2.2, the former decay dominates in most
of the area where 〈Z±〉 controls the axion decay constant, while the latter decay dominates
for a majority of the remaining allowed parameter space. Sgoldstino decay into gravitinos
dominates in the upper right portion of the parameter space but the gravitino is heavy in
this region and so it is not favored. In both of the relevant regions, the decay time is short
enough that the sgoldstino does not affect BBN.

It should also be noted that the super partners of the axion obtain large masses. This is
a merit of the setup described above [99, 100, 239, 227]. In general, the super partners of the
axion obtain only small masses, typically smaller than the masses of SSM particles. Since
they couple to SSM particles very weakly while being light, they cause various cosmological
problems (see [280] and references therein). These problems are particularly serious in gauge
mediation, where the SUSY breaking scale is small and the super partners of the axion are
light. In our setup, since the axion multiplet resides in the SUSY breaking sector, the super
partners of the axion can be much heavier than SSM particles and do not cause cosmological
problems.

The only light particle that could affect cosmology is the gravitino due to either de-
manding a low reheating temperature [285, 162, 331] or overclosing the Universe [350,
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411]. The latter issue could be resolved by diluting the gravitino abundance through large
entropy production. Possible example mechanisms include using the sgoldstino [216, 178,
254], saxion [288, 317, 279, 120], messenger fields [175] or hidden sector fields [256]. Note
that the sgoldstino and saxion masses are determined by the parameters of our model and
the condition for successful entropy dilution could pin down the viable parameter space. For
example, entropy dilution via sgoldstino is possible for a gravitino mass of O(1 GeV) [178].
We leave the discussion about the saxion for future work.

Alignment of CP phases

An interesting feature of our model is that the phases of the gravitino mass and the gaugino
masses are aligned with each other. This is because the phase of the VEV of 〈Z±〉, which
generates the messenger scale, is aligned with the gravitino mass in a phase convention where
the F term of the SUSY breaking field ZL is real. Thus, the CP phase of the Bµ term (in
a convention where the µ term is real) due to the supergravity effect [334] is absent in our
model. This feature would be advantageous if one requires that SUSY particles are light
(e.g. to explain the experimental anomaly of the muon anomalous magnetic moment [67,
212, 142] by SUSY particles [313, 109, 332]) while the gravitino mass is large (e.g. to be
consistent with a large reheating temperature.)

2.3 Example of an extended model:low energy theory

of the IYIT model

Effective theory of the IYIT model

Let us consider a vector-like SUSY breaking sector based on SU(2) hidden strong gauge
dynamics [263, 259]. We introduce four chiral fields which are in the fundamental represen-
tation of SU(2), qi (i = 1-4), and six singlet chiral fields, Z+, Z−, Z0,a (a = 1-4). We assume
U(1)PQ charges shown in Table 2.1, and consider the following superpotential,

W =λ+Z+q1q2 + λ−Z−q3q4 (2.44)

+ Z0,a

(
λ13
a q1q3 + λ14

a q1q4 + λ23
a q2q3 + λ24

a q2q4

)
,

where the λ’s are constants, and summation over a is assumed. The genericity of the super-
potential can be guaranteed by symmetries. One concrete example of U(1)R and Z4 charges
is shown in Table 2.1.

Below the dynamical scale of the hidden SU(2), Λ, the theory is described by meson
fields Mij ' qiqj/ηΛ with the deformed moduli constraints, PfMij = Λ2/η2 [381]. Here and
hereafter, we assume the naive dimensional analysis to count factors of η ∼ 4π [315, 126].
The deformed moduli constraint may be expressed by introducing a Lagrange multiplier field
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Table 2.1: Charge assignment of chiral fields

q1 q2 q3 q4 Z+ Z− Z0,a QQ̄
U(1)R 0 0 0 0 2 2 2 0
U(1)PQ −1/2 −1/2 +1/2 +1/2 1 −1 0 −1
Z4 1 1 1 1 2 2 2 2

X,

Weff = κX

(
M12M34 +M13M24 +M14M23 −

Λ2

η2

)
. (2.45)

The tree-level superpotential in Eq. (2.44) becomes

Wtree =λ+
Λ

η
Z+M12 + λ−

Λ

η
Z−M34 (2.46)

+
Λ

η
Z0,a

(
λ13
a M13 + λ14

a M14 + λ23
a M23 + λ24

a M24

)
.

We define

M− ≡M12, M+ ≡M34, (2.47)

M0,1 ≡
1√
2

(M13 + iM24) ,M0,2 ≡
1√
2

(M13 − iM24) ,

M0,3 ≡
1√
2

(M14 + iM23) ,M0,4 ≡
1√
2

(M14 − iM23) .

Then the effective superpotential in Eq. (2.45) is given by

Weff = κX

(
M+M− +

1

2
M2

0,a −
Λ2

η2

)
. (2.48)

By SU(4) rotations of M0,a and Z0,a, the total superpotential can be simplified as

W =κX

(
M+M− +

1

2
cabM0,aM0,b −

Λ2

η2

)
(2.49)

+ λ+
Λ

η
Z+M− + λ−

Λ

η
Z−M+ + λ0,a

Λ

η
Z0,aM0,a

with cab as a unitary matrix. We will work with only one pair of neutral fields (Z0,M0), which
corresponds to the generic case that there exists a mild hierarchy in the neutral coupling
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constants so that the effect of only one neutral field dominates. Therefore, after a redefinition
of constants, we have the effective superpotential

W =κX(M+M− +
c

2
M2

0 − v2)

+ λ′rvZ+M− + λ′
1

r
Z−M+ + λ′0vZ0M0. (2.50)

The coupling constant κ originates from strong dynamics and is expected to be large. The
absolute value of the coupling constant c is at maximum unity. To maximize the quantum
correction, we assume |c| = 1 in the following. We also assume that λ′0v

2 > λf 2, since
otherwise M0 obtains a VEV instead of M±. The vacuum is then given by

〈M+〉 = rv, 〈M−〉 =
1

r
v, 〈Z+〉 = 〈Z−〉 = z,

〈M0〉 = 〈Z0〉 = 0. (2.51)

Stabilization of the sgoldstino by neutral fields in the IYIT model

To estimate the quantum correction from Z0 and M0, we use the parametrization [106]

M+ → r
√
v2 −M2

0/2,M− →
1

r

√
v2 −M2

0/2. (2.52)

Here we have neglected the dependence on A, which is irrelevant for the quantum correction
from Z0 and M0 to ZL. The effective superpotential of ZL and Z0, M0 is given by

Weff 'λf 2(Z+ + Z−)

√
1− M2

0

2v2
+ λ′0vZ0M0

'
√

2λf 2ZL −
√

2

4
R2λZLM

2
0 + λ0fZ0M0,

R ≡f
v
> 1, λ0 ≡

1

R
λ′0. (2.53)
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The quantum correction to the potential of ZL from Z0 and M0 is given by

∆V0 =
λ4R4f 4

64π2
f(
λR2z

λ0f
)
(
1 +O

(
(λR/λ0)4)) (2.54)

'

 λ4R8f2

96π2

(
λ
λ0

)2

|ZL|2 : λR2|ZL| . λ0f
λ4R4f4

16π2 lnλR
2|ZL|
λ0f

: λR2|ZL| & λ0f,

f(x) =(4 + x2)−2
[
32 + 20x2 + 3x4

+
(

16− 4
√

1 + 4/x2 + 8x2 + x4 − 6x
√

4 + x2

−x3
√

4 + x2
)

ln

(
1 +

x2

2
− x
√

1 + x2/4

)
+
(

16 + 4
√

1 + 4/x2 + 8x2 + x4 + 6x
√

4 + x2

+x3
√

4 + x2
)

ln

(
1 +

x2

2
+ x
√

1 + x2/4

)]
.

In this model, m2
Z is given by

m2
Z =

λ4R8f 2

96π2

(
λ

λ0

)2

+
1

2

∂2∆V±
∂| 〈ZL〉 |2

. (2.55)

Parameter window of the IYIT model

Let us now discuss constraints on the parameter space. The constraint from the stability of
the vacuum, λ′0v

2 > λf 2, is

λR < λ0. (2.56)

Constants λ′r, λ′/r and λ′0 are dimensionless coupling constants in the IYIT model, and are
at the most O(1). This gives upper bounds on λ0 and R,

λR3 < 1, (2.57)

λ0R < 1. (2.58)

Finally, the potential of ZL becomes logarithmic for λR2ZL > λ0f , and cannot stabilize the
sgoldstino against the tadpole term, so

λR <

√
4π√
2α3

mg̃

f
λ

1/2
0 . (2.59)
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By combining the bounds in Eqs. (2.56-2.59), we obtain upper bounds on R4/λ0,

R4

λ0

<


λ−2 Eqs. (2.56), (2.57)
λ−8/3h2 Eqs. (2.57), (2.59)
λ−10/3h10/3 Eqs. (2.58), (2.59)

, h ≡

√
4π√
2α3

mg̃

f
(2.60)

These give upper bounds on m2
Z .

In Fig. 2.3, we show the constraints on (λ, f). The meaning of the blue shaded region
and the black dashed line are the same as in Fig. 2.2. In the green shaded region, the bound
on m2

Z from Eqs. (2.55) and (2.60) is inconsistent with the required value of m2
Z shown in

Eq. (2.33). We obtain the bounds on the axion decay constant fa and the gravitino mass
m3/2

109 GeV . fa . 1012 GeV, (2.61)

0.1 MeV . m3/2 . 10 MeV, (2.62)

for a gluino mass O(TeV). It is interesting that the allowed range of fa is consistent with
the axion dark matter scenario [363, 11, 152, 143].

2.4 Conclusion

In this chapter, we have presented a model that tackles several outstanding issues in the
Standard Model and its supersymmetric extension.

We have examined a minimal hidden sector that consists of a superpotential with a
U(1) symmetry, which we identify with the PQ symmetry, and messenger quarks that carry
SU(3)c charges.

Supersymmetry and this PQ symmetry are spontaneously broken while lowest order
supergravity effects create the messenger scale. Quantum effects generate a potential for
the sgoldstino and force constraints on model parameters to ensure the stability of the
SUSY-breaking vacuum. These constraints proved to be too stringent and required that
we supplement the minimal model with extra matter fields. We have shown that classes of
models that share features with ours, such as a quantum mechanically induced sgoldstino
mass and a minimal messenger sector, automatically obtain lower bounds on the axion decay
constant and gravitino mass. This fact encouraged us to supplement our minimal model in
the hopes that such attractive features could be preserved and expanded upon in a stable
extended model.

An IYIT model with SU(2) gauge dynamics is a natural candidate for such an extended
model since the minimal model is easily embedded in the U(1) charged subsector of this larger
model. Combining the inequalities from vacuum stability and IYIT coupling constants, upper
bounds for the sgoldstino mass were derived. The resulting window in parameter space was
found to restrict the gravitino mass to lie between 0.1 MeV . m3/2 . 10 MeV and the axion
decay constant to 109 GeV . fa . 1012 GeV, which is the suitable range for invisible axion
dark matter.
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Figure 2.3: The bounds on (λ, f) for the IYIT model and the contours of the axion decay
constant fa and the gravitino mass m3/2. The blue shaded region is excluded as the messenger
field is tachyonic. The region below the black dashed line requires fine-tuning. There is no
consistent parameter (λ0, R) to yield the green shaded region.
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Chapter 3

QCD Axion Dark Matter from a Late
Time Phase Transition

3.1 Introduction

The CP violation in QCD [8], expressed by the so-called θ parameter, is extremely small -
θ < 10−10 [53]. The smallness of the CP violation is elegantly explained by the Peccei-Quinn
(PQ) mechanism [356, 355]. One introduces a spontaneously broken global symmetry which
is explicitly broken by the QCD anomaly, and predicts a pseudo-Nambu-Goldstone boson
called an axion [409, 416]. For a large enough symmetry breaking scale, the axion is stable
and a dark matter candidate [363, 11, 152].

Two production mechanisms of axion dark matter in the early universe are widely rec-
ognized. One is the misalignment mechanism [363, 11, 152], where the displacement of the
axion field from the vacuum turns into oscillations which behave as dark matter. Another is
the emission of axions from the string-domain wall network produced after the spontaneous
breaking of the PQ symmetry [143, 281, 292, 89]. Both mechanisms require that the axion
decay constant fa is large - fa & 1011 GeV. (The estimation of the abundance in the latter
mechanism assumes a scaling law of topological defects. See [203, 283, 323] for a possible
violation as well as [240] for results that contradict this violation.)

In this chapter, we point out a new production mechanism for axion dark matter under the
assumption that the phase transition temperature of the PQ symmetry breaking is far below
the symmetry breaking scale. We find that axions are abundantly produced via parametric
resonance arising from oscillations of the symmetry breaking field [397, 296, 388, 297] after
the phase transition. Since the phase transition temperature is low, the produced axions
are not thermalized and remain as dark matter. The axions produced from the late time
phase transition can explain the observed dark matter abundance even if the decay constant
is much smaller than 1011 GeV.

Low phase transition temperatures are natural in supersymmetric theories. This is be-
cause the radial direction of the PQ symmetry breaking field, commonly called the saxion,
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is the scalar partner of the nearly-massless axion. The mass of the saxion is given by a
supersymmetry breaking soft mass and is much smaller than the PQ symmetry breaking
scale. This small mass in turn yields a relatively low phase transition temperature.

In contrast to the two conventional mechanisms, the produced axions are initially rel-
ativistic and red-shift sufficiently to be dark matter. In some of the parameter space, the
axions are still warm enough to affect structure formation by an observable amount.

There are intensive ongoing and future experimental efforts to search for the axion with a
small decay constant, such as IAXO [406, 42], TASTE [31], Orpheus [376], MADMAX [93],
ARIADNE [46, 195], and many others [389, 44, 57, 303]. Astrophysical observations and the
above searches for the QCD axion could probe the dynamics of the PQ phase transition.

3.2 Late Time PQ Phase Transition

The Model

We consider a coupling of the PQ symmetry breaking field P to new PQ charged fermions
ψ and ψ̄,

L = yPψψ̄ + h.c.. (3.1)

The new fermions may be identified with the hidden quarks of the KSVZ model [289, 383].
This coupling gives a thermal potential to P ,

VT = V (P ) + Vth(P, T ), (3.2)

where V is the vacuum potential of P . In a typical second-order phase transition, the thermal
potential can be expanded about |P |/T � 1 to get the thermal mass and higher corrections:

Vth(P, T ) = y2T 2|P |2 + · · · . (3.3)

The critical temperature Tc is then defined as the temperature at which the curvature of the
potential about the origin vanishes. If the vacuum potential has the form V = −m2|P |2+· · · ,

Tc =
m

y
, (3.4)

We define a late time phase transition as a phase transition that satisfies m � fa so that
Tc � fa.

While a late time phase transition may seem fine-tuned, the above hierarchy is typically
encountered in supersymmetric theories where PQ symmetry breaking scales much larger
than the mass m are naturally obtained through the stabilization of P by a higher dimen-
sional interaction [339],

V =

(
2n−2m2

s

n(n− 1)f 2n−2
a

)
|P |2n − m2

s

2n− 2
|P |2 +

m2
sf

2
a

4n
(3.5)
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with n > 2, or through the renormalization group running of the soft mass of P [337],

V =
m2
s

2
|P |2

(
ln

2|P |2

f 2
a

− 1

)
+

1

4
m2
sf

2
a . (3.6)

The parameters of these potentials have been chosen such that the saxion mass around the
vacuum is ms (∼ m), the vacuum expectation value of |P | is fa/

√
2, and the vacuum energy

at the minimum of the potential vanishes.

The phase transition and thermal inflation

A late time phase transition does not proceed via a first- or second-order phase transition.
Since ms � fa, the high temprature expansion is insufficient at Tc and one must follow the
evolution of the total thermal potential as the temperature decreases. At high temperatures,
T 4 � m2

sf
2
a , the origin is an absolute minimum. For T 4 < m2

sf
2
a , on the other hand, the

minimum at the origin is a local, metastable minimum until Tc. The scalar field P is trapped
at the origin by the dip formed by the thermal correction. This is schematically displayed
in Fig. 3.1. One might assume that the phase transition is then first order and proceeds
via bubble nucleation. However, the numerical results of [242] find that a slightly different
process occurs. Before the quantum tunneling rate becomes effective enough for bubble
percolation, thermal fluctuations of P are large enough to cause the phase transition. For
a weak Yukawa coupling, y . 0.1, this is found to occur for a temperature within a sub
percent of Tc [242].

For both of the potentials above, the PQ symmetry breaking field at the origin has a
potential energy density V (0) ∝ m2

sf
2
a . This is larger than the radiation energy density at

Tc, ρrad = π2

30
g∗T

4
c , if

y &
√
ms

fa
, (3.7)

which we assume in the following. The case with smaller y can be analyzed in a similar
manner. Since the potential energy dominates, a period of so-called thermal inflation [420,
318] occurs with a Hubble scale HPT ∝ msfa

MPl
before the phase transition.

Axions from inhomogeneity

Just after the phase transition, the configuration of the PQ symmetry breaking field is
inhomogeneous. Under a normal second-order phase transition, the correlation length of
the configuration is determined by the Kibble-Zurek mechanism [287, 421]. However, our
scenario differs from this mechanism. As discussed above, [242] finds that the phase transition
occurs by thermal fluctuations at a temperature T > Tc. In order to estimate the correlation
length of the inhomogeneous configuration, we assume the weak coupling scenario of [242]
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Figure 3.1: The solid black line is the vacuum potential of P as given in Eq. (3.5) with
n = 3. The solid red line is the thermal correction to the vacuum potential that has been
exaggerated to emphasize the structure. The blue line is the sum of the vacuum potential
and exaggerated thermal potential.

so that the phase transition occurs at Ts = αTc, where 0 < α − 1 < 10−2. The correlation
length of the scalar field P at Ts is

ξs =
1

ms

(
|Ts − Tc|

Tc

)−1/2

= m−1
s |1− α|−1/2 (3.8)

Since the field is correlated on the length scale ξs, we can draw an analogy with the Kibble-
Zurek mechanism and expect typically one cosmic string per correlation length volume, ξ3

s ,
with energy density f 2

a/ξ
2
s . The gradient energy density of the inhomogeneity is f 2

a/ξ
2
s .

Typically one cosmic string per correlation length volume, ξ3
s , exists with energy density

f 2
a/ξ

2
s .

The inhomogeneous configuration is quickly homogenized until the correlation length
becomes as large as the horizon size. The gradient and string energy should be emitted
as axions with typical wavelength ξs. The number density of axions produced from the
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inhomogeneity is then

ninh
a ∼

f 2
a

ξs
= msf

2
a |1− α|1/2. (3.9)

The potential energy density m2
sf

2
a is converted into the oscillation energy of the saxion,

which subsequently red-shifts in proportion to the inverse cube of the scale factor of the
universe. We thus normalize the number density of axions by the energy density of the
saxion oscillation, na/ρs, which does not change under red-shifting. For axions coming from
the inhomogeneity,

ninh
a

ρs
=

1

ms

|1− α|1/2. (3.10)

As we will see in the next section, however, axions produced from the inhomogeneity are
subdominant.

3.3 Axions from parametric resonance

Axion Production

The axion population produced by cosmic strings is supplemented and surpassed by a second
production mechanism - parametric resonance [397, 296, 388, 297]. After the phase transi-
tion, the saxion oscillates with an amplitude on the order of fa and induces a time-dependent
dispersion relation in the equation of motion for axion modes. In certain momentum bands,
the axion mode solutions feature instabilties that grow exponentially in time. These modes
then yield the axion population produced by the non-perturbative process of parametric
resonance.

The production rate of axions via parametric resonance is as large as the frequency of
the oscillations ∼ ms, since that is the only energy scale appearing in the equation of motion
of axions. This is explicitly shown in Appendix A, where we display that the rate of axion
production is ms times an O(1) constant (Fig. A.1). By comparing this axion production
rate with the Hubble rate ∼ ms(fa/MPl)� ms, we see that the parametric resonance process
is very efficient.

Parametric resonance preferentially creates axions with momenta ka ∼ ms/2 and con-
tinues until the newly produced axion energy density is roughly equal to the initial saxion
energy density, which is just the potential energy at the origin V (0) ∝ m2

sf
2
a . We label this

second contribution to the axion density as nPR
a , so that

nPR
a

ρs
' m2

sf
2
a

ms

1

m2
sf

2
a

=
1

ms

. (3.11)

For saxion oscillations with an amplitude of the order of fa, saxion fluctuations are also pro-
duced by parametric resonance and obtain a number density similar to the one in Eq. (3.11).
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Comparing Eqs. (3.10) and (3.11), we see that the parametric resonance axions are the
dominant contribution to the axion population. In what follows, we only take into account
the parametric resonance axions. With this, one finds that the axion number density nor-
malized by the entropy density s is

Ya =
na
s

=
na
ρs

ρs
s
' TRH

ms

, (3.12)

where TRH is the reheat temperature by the dissipation of the saxion oscillation and fluctu-
ations after the thermal inflation. To obtain the axion dark matter abundance

Y DM
a =

1

ma

ρDM
s

= 70

(
fa

109 GeV

)
, (3.13)

the reheat temperature TRH must be above

TDM ' 0.7 GeV
( ms

10 MeV

)( fa
109 GeV

)
. (3.14)

If TRH is higher than this value, axions are overproduced, but the introduction of extra
entropy production from heavy fields can generate the correct abundance. Obtaining this
reheat temperature is discussed below.

Validity of Parametric Resonance Scenario

One might be concerned that the inhomogeneity caused by the phase transition could ruin
the parametric resonance process, which requires coherent oscillations. We do not anticipate
that this is the case since the wavelengths in the resonance band are ∼ 1/ms, which is much
shorter than the length scale on which the PQ symmetry breaking field is correlated, ξs.
Hence the oscillations are effectively coherent for the modes in the resonance band.

The above scenario could also be affected if energy from the saxion oscillations is drained
into Standard Model fields. This is only a concern if the rate of energy loss to Standard
Model fields is comparable to ms, the rate of axion production from parametric resonance.
The saxion coupling to gluons gives a thermalization rate [338, 82]

Γgluon

ms

=

(
A
α2

3T
3

f 2
a

)
1

ms

. Aα2
3

√
ms

fa
� 1, (3.15)

where A is an O(10−3) constant and we used an inequality T 4 . m2
sf

2
a . Thus the energy

loss to the Standard Model through gluons is negligible during parametric resonance. Non-
perturbative production of gluons is ineffective due to the loop-suppressed coupling between
gluons and saxions. The thermal mass of the gluon further reduces the effectiveness of
non-perturbative production.
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In the sequel, we consider a saxion-Higgs mixing that provides a second avenue for en-
ergy loss to Standard Model fields. The ratio of the thermalization rate from the coupling
λS2H†H [338] to ms is

ΓHiggs

ms

=

(
λ2f 2

a

T

)
1

ms

.
10−8m4

H

f
1/2
a m

3/2
s v2

EW

, (3.16)

where mH = 125 GeV and vEW = 246 GeV. We have used the experimental upper bound
θ . 10−4 [62] on the mixing angle θ ∼ λfavEW

m2
H

. The last quantity in Eq. (3.16) is much

smaller than unity in the viable space discussed below and we conclude that this process is
also ineffective. Higgs particles can be produced by parametric resonance, but the produced
Higgses are immediately dissipated by decays or scatterings with the thermal bath, and so
the Bose-enhancement necessary for efficient parametric resonance is absent. From these
results we see that our scenario of parametric resonance is not spoiled by interactions with
the Standard Model.

3.4 Model Constraints

Axion Warmness

The axions are produced relativistically and may behave as warm dark matter. To be
concrete, we consider a specific model with the PQ potential in Eqs. (3.5) or (3.6). The
expressions in the following depend on the potential, but a similar analysis can be performed
for more general potentials.

To estimate the warmness, we first note that the ratio between the axion momentum, ka,
and the cube root of the axion number density, n

1/3
a , is constant throughout the evolution

of the universe,

ka

n
1/3
a

=
(n

2

) 1
3

(
ms

fa

) 2
3

, (3.17)

where n is an integer larger than 2 in Eq. (3.5) or 1 for the potential in Eq. (3.6). Here
it is assumed that half of the potential energy of the saxion is transferred into axions with
momenta ka = ms/2. Using the observed dark matter abundance to fix na relative to the
entropy density s, we obtain

va ' 6× 10−4n1/3

(
fa

109 GeV

) 2
3 ( ms

GeV

) 2
3

(
T

eV

)
(3.18)

for the velocity of the axions at temperature T . We have assumed T � MeV to express the
entropy density in terms of T . In Fig. 3.2, we show contours of the axion velocity at T = 1
eV for n = 3.
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The constraint on the warmness of dark matter is frequently estimated for a model
where dark matter consists of a massive Weyl fermion with mass mWDM that decouples
while relativistic and is later diluted. In such a model, the typical velocity of dark matter,
vWDM, at temperature T is given by

vWDM =
kWDM

mWDM

' 10−4

(
T

1 eV

)(
3.3 keV

mWDM

) 4
3

. (3.19)

This result, combined with the warm dark matter mass bound, mWDM > 3.3 keV [404],
yields the generic velocity bound of v < 10−4 at T = 1 eV. This warmness bound imposes
the following constraint on the saxion mass

ms
<
∼ 30 MeV

(
3

n

) 1
2
(

109 GeV

fa

)
. (3.20)

The green shaded region in Fig. 3.2 is disfavored by this constraint. Future observations of
21cm lines can probe mWDM < 10-20 keV [391], which corresponds to va

>∼ 10−5 at T = 1 eV,
as indicated by the arrow in Fig. 3.2. For convenience, we provide the correspondence
between the mass of this fermionic dark matter and the parameters of our model,

mWDM ↔
0.8 keV

n1/4

(
109 GeV

fa

) 1
2
(

GeV

ms

) 1
2

. (3.21)

Stellar Cooling

In addition to the warmness bound, we consider constraints from the cooling of red giant
(RG) and horizontal branch (HB) stars [366, 207, 208] by the emission of saxions. We follow
the analysis performed in [222, 294]. For RG and HB stars, one must demand that the
energy transport by new particles with effective nucleon couplings not exceed 10 erg g−1s−1.
These constraints are displayed as the blue region in Fig. 3.2 labeled as “RG & HB”.

SN1987A and Neff

The orange shaded and dashed excluded parameter regions in Fig. 3.2 labeled “SN1987A or
Neff” arise from the SN1987A constraint of [261], as well as the constraint on the effective
number of relativistic degrees of freedom Neff [19]. For SN1987A, the energy loss should
not exceed 1019 erg g−1s−1. This leads to the boundary of the orange shaded region as well
as the orange dashed curve. If one takes the SN1987A constraint on energy loss directly,
the region below the orange dashed curve would be excluded. However, if one assumes
a coupling between the saxion and Standard Model Higgs of the form λS2H†H, then the
saxion enters the so-called trapping regime and the SN1987A constraint does not apply and
the region below the dashed orange curve is permitted. To be in the traping regime, the
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Figure 3.2: Constraints on the saxion mass ms and the axion decay constant fa.

saxion-Higgs mixing angle θ ∼ λfavEW

m2
H

must be larger than ∼ 10−4.5 [62]. The orange shaded

region remains constrained since the mixing keeps the saxion in thermal equilibrium with
electrons even after neutrinos decouple in the early universe. Hence the depletion of the
saxion energy heats up photons, resulting in Neff < 3. Assuming that neutrinos suddenly
decouple at T ' 2 MeV, we determine a lower bound on the saxion mass of ms

>∼ 4 MeV.
The purple shaded region is the bound related to axions arising from SN1987A [163, 367,
398, 325, 368]. We also note that there is at least an order of magnitude uncertainty in
the SN1987A constraints [219, 220, 374, 107, 97, 55]. This could lead to a larger parameter
space. The saxion-Higgs mixing results in rare decays of Kaons. As shown in [62], the large
mixing in the trapping regime can be probed by NA62 and KLEVER experiments [131, 30].
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Saxion Thermalization

The saxion should be thermalized at or above the temperature TDM in Eq. (3.14). We
consider the case where the PQ symmetry breaking field P couples to a pair of new fermions
f and f̄ via the Yukawa coupling

L =
µ

fa
Pff̄ , (3.22)

where µ is the mass of the fermion. For T > µ, the saxion thermalizes with a rate '
0.1Tµ2/f 2

a [58, 338], leading to a reheating temperature

TRH ' 100 GeV
( µ

100 GeV

)2
(

109 GeV

fa

)2

. (3.23)

If the fermion is charged under the Standard Model gauge group, the mass µ must be above
100 GeV. However, This reheating temperature is larger than the lower bound given in
Eq. (3.14) above, and more than enough axion dark matter is produced. TRH = TDM can
be obtained through thermalization from coupling the saxion with Standard Model particles
or with particles that are neutral under the Standard Model gauge group. Note that too
much dark radiation is produced if the new fermions introduced in Eq. (3.22) have masses
below O(10) MeV. If the fermion mass µ required to produce the dark matter abundance is
below O(10) MeV, one must fix the fermion mass to be larger than this scale and introduce
additional entropy production to dilute the overproduced axions.

Axion Thermalization

Axions produced in our model are never thermalized. The thermalization rate of an axion
is suppressed by the decay constant and the momentum of the axion [335],

Γa = b
k2
a

f 2
a

T, (3.24)

where b is a constant which depends on the axion coupling. If the axion couples to gluons,
b is loop-suppressed and is as small as 10−5. If instead the axion couples to a light fermion
in the thermal bath, b may be as large as O(1). During the matter dominated era by the

saxion oscillation, ka/ρ
1/3
s remains constant. The momentum of axions is then given by

ka '
(
msρs
f 2
a

) 1
3

. (3.25)

The energy density of the thermal bath never exceeds that of the saxion. Hence the ther-
malization rate is bounded from above,

Γa < b
m

2/3
s ρ

11/12
s

f
10/3
a

. (3.26)
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The ratio between the thermalization rate and the Hubble expansion rate is

Γa
H

< b
m

2/3
s ρ

5/12
s MPl

f
10/3
a

< b
m

3/2
s MPl

f
5/2
a

(3.27)

where the last inequality is saturated right after the phase transition. In the region of
parameter space that produces sufficiently cold axion dark matter, the axions are never
thermalized. One can see that the late-time phase transition is crucial. If the mass ms is
as large as fa, the thermalization is effective. After the saxion decays and the radiation
dominated era begins, the thermalization rate decreases faster than the Hubble expansion
rate and the thermalization of the axions never becomes efficient.

3.5 Conclusion

We have investigated a production mechanism for QCD axion dark matter associated with
PQ symmetry breaking at a low temperature. We find that axions are primarily produced
by parametric resonance via oscillations of the PQ symmetry breaking field. The low phase
transition temperature fits naturally in supersymmetric theories.

The axions produced by this mechanism tend to be warm. The prediction on axion
warmness is shown in Fig. 3.2 and constrains the allowed parameter space. Future observa-
tions of 21cm lines will probe the parameter space further. Discovery of the QCD axion in
laboratories and the determination of dark matter warmness by astrophysical observations
will suggest that axion dark matter was produced by parametric resonance.

Fig. 3.2 is one of the primary results of this chapter and contains information beyond the
warmness constraint. As outlined above, one also has bounds from energy loss in RG and
HB stars and supernovae by saxion emission, as well as axion emission in the supernovae
case. We note that our parameter space easily allows for rather low values of the axion
decay constant, particularly if strong saxion-Higgs coupling occurs to trap saxions inside
the supernova core, or if the traditional SN1987A bound is loosened. The region with large
saxion-Higgs mixing can be probed by observations of rare Kaon decays.

There are several uncertainties in our estimation of the warmness. First, we have assumed
that half of the energy density of the saxion oscillation is transferred into axions. In reality the
transferred fraction will not be exactly half. Second, we have assumed that the momentum as
well as the number density of the axions decrease only by the cosmic expansion. However, the
momentum/number density can slowly increase/decrease by axion self interactions, see [327]
for a related discussion. These two effects will change the prediction on axion velocity by an
O(1-10) factor. Whether or not the whole parameter space can be probed depends on these
uncertainties, which can be fixed by numerical computation.

We list other known mechanisms to produce axion dark matter for fa � 1011 GeV: 1)ax-
ion emission from long-lived topological defects which collapse via explicit PQ symmetry
breaking [281, 241, 243, 371, 224], 2)parametric resonant production of axions from oscilla-
tions of the saxion with a large initial field value [123], 3)a misalignment angle fine-tuned
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to be close to π [399, 316, 392], 4)dynamical mechanisms that set the misalignment angle
close to π [121, 394], 5)the misalignment mechanism with non-standard cosmology [405],
and 6)delayed oscillations of the axion field because of a non-zero kinetic energy of the axion
field [124, 122]. Among them, 2) can also produce warm axions, but the produced axions
are much colder than our mechanism for a given (ms, fa). We also note that the large field
value assumed in [123] requires that the potential be flat for large field values and is therefore
incompatible with the potential in Eq. (3.5).

Our axion production mechanism involves a PQ symmetry breaking field that is initially
trapped at the origin. We may consider a generic situation where a PQ symmetry breaking
field is trapped at some other point in field space and later begins to oscillate with a large
amplitude. One example is a model with the superpotential

W = λX(PP̄ − V 2
PQ), (3.28)

where P and P̄ are PQ symmetry breaking fields and X is a chiral multiplet that fixes them
on the moduli space PP̄ = V 2

PQ. The moduli space is lifted by additional superpotential
terms that spontaneously break supersymmetry [99, 100, 225], or by the soft masses of P
and P̄ . Ref. [333] investigates the trapping of the PQ symmetry breaking fields on the
moduli space by a thermal potential and finds that oscillations occur in some region of the
parameter space. Axions should then be produced via parametric resonance in this setup as
well.
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Chapter 4

Cosmological Tension of Ultralight
Axion Dark Matter and its Solutions

4.1 Introduction

Axions with masses well below the electroweak scale are simple dark matter candidates [363,
11, 152] with novel experimental signatures [357, 286, 248], a potential solution to the appar-
ent incompatibility of cold dark matter with small scale structure [247, 158], and a common
prediction of string theory [47, 214]. Axions can arise as pseudo-Goldstone bosons of a
spontaneously broken global symmetry or as zero modes of antisymmetric tensor fields after
compactification of extra dimensions. In either case, their parametrically suppressed mass
can result in a length scale comparable to the size of dwarf galaxies, the so-called fuzzy dark
matter regime. Dark matter with a macroscopic Compton wavelength allows for novel detec-
tion opportunities and many on-going and future experimental efforts search for ultralight
axion relics with masses around this limit. Purely gravitational searches look for erasure
of structure on small scales as a consequence of the axion’s sizable wavelength, limiting the
axion mass, ma & O(10−21eV) [295, 260, 344, 305, 372, 378, 341]1. If axion dark matter
has sizable non-gravitational coupling to the visible sector, there are additional detection
strategies dependent on the nature of the coupling.

Axion couplings to the Standard Model fields are intimately related to the shape of
the axion potential. For a given axion decay constant, fa, axion couplings to matter are
suppressed by ∼ 1/fa while the ratio of the axion mass to its quartic coupling is typically at
least on the order of ∼ fa. Such non-quadratic contributions to the axion potential play an
important role in cosmology and the interplay between the axion’s couplings and potential
is the focus of this work.

Measurements of the matter-power spectrum [197, 19, 12] find that the cosmic energy
density of dark matter redshifts as ∝ R−3, where R is the scale factor, until well before

1Searches for oscillations in the local stress-energy tensor detectable with pulsar timing arrays [286] set
slightly weaker bounds [361, 277].



CHAPTER 4. COSMOLOGICAL TENSION OF ULTRALIGHT AXION DARK
MATTER AND ITS SOLUTIONS 34

recombination. Such a scaling is satisfied for an oscillating scalar field if (and only if) the
scalar potential is solely composed of a mass term, 1

2
m2
aa

2. This potential is typically only a
good approximation if the field amplitude is sufficiently small and may not hold for ultralight
axions in the early universe. Deviation from a simple quadratic term results in a perturbation
spectrum that is no longer scale-invariant, constraining the axion potential. This in turn
places a powerful bound on conventional ultralight axion dark matter candidates due to the
relationship between fa and the axion-matter couplings.

While this point is implicitly acknowledged in some of the axion literature, its significance
is not widely emphasized, and its implications for current and future searches is missing al-
together. In this work, we provide the constraints from the matter-power spectrum and
thereby motivate a natural region of mass and coupling values wherein the axion can con-
stitute dark matter without any additional model building. Circumventing the cosmological
bounds requires breaking the parametric relationships between the axion potential and cou-
plings. There are few techniques that can successfully accomplish this task. We consider the
possibility of large charges, kinetic mixing, a clockwork structure, and discrete symmetries in
the context of ultralight dark matter. These models typically predict additional light states
in the spectrum and we survey their phenomenology.

In section 4.2 we review features of axion models, with particular emphasis on the coupling
of axions to visible matter and the axion potential. In section 4.3 we study the impact of
ultralight axion dark matter on the matter-power spectrum and derive the associated bound.
In section 4.4 we examine the axion detection prospects of various experiments in light of
the bounds. In section 4.5 we study the robustness of the constraints by exploring ways to
disrupt the relationship between axion-matter couplings and the axion potential. Finally,
we conclude in section 4.6.

4.2 Axion Mass and Coupling

The axion decay constant, fa, relates the terms of the axion potential to its couplings with
Standard Model fields. The potential arises from non-perturbative contributions of gauge or
string theories and explicitly breaks the continuous shift symmetry of the axion. We use the
standard parametrization of the potential, which is a simple cosine of the form

V (a) ' µ4 cos
a

fa
, (4.1)

where µ is a scale associated with the explicit breaking of the global symmetry. If the
potential arises from a composite sector (as in the case of the QCD axion), the explicit
breaking scale corresponds to the maximum scale at which states must show up in the
spectrum. The full axion potential is expected to be more complicated than the simple
cosine above, but we can consider (4.1) to be the first term in a Fourier decomposition of the
potential. An important feature of 4.1 is the existence of terms beyond the mass term and
that the coefficients of these higher order terms are not arbitrary. The size of the quartic
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determines the point at which the quadratic approximation breaks down and has significance
for axion cosmology.

Axions may also couple to Standard Model fields, with the leading operators obeying the
axion shift symmetry. In this work we focus on two types of operators for axion dark matter,
the prospective photon and nucleon couplings,2

L ⊃ Caγα

8πfa
aF F̃ +

CaN
fa

∂µaN̄γ
µγ5N , (4.2)

where here and throughout we suppress the Lorentz indices on the gauge interactions, FF̃ ≡
FµνF̃

µν and F̃ µν ≡ 1
2
εµναβFαβ. The parameters Caγ and CaN represent combinations of

couplings in the UV theory and are O(1) for generic axions. Demanding that the theory
be invariant under axion discrete shift transformations requires the coefficient Caγ to be an
integer 3 and hence cannot represent a large ratio of scales without additional model building.
There may also be contributions to the above couplings from the IR if the axion mixes with
dark sector particles, similar to the QCD axion-meson mixing, but such contributions will
be unimportant for our considerations. The relationship between the axion potential and its
coupling to matter is made manifest in (4.1) and (4.2). To make contact with other studies,
we define

gaγ ≡
Caγα

2πfa
, gaN ≡

CaN
fa

. (4.3)

In principle it is possible that the particle searched for by dark matter experiments is
not a true axion, in the sense that it is not shift symmetric, but a light pseudoscalar with a
potential,

La =
1

2
m2
aa

2 . (4.4)

In this case the corresponding coefficients in-front of the terms in (4.2) do not correspond
to any symmetry breaking scale, but are instead completely free parameters associated with
the scale of integrating out heavy fields. This would prevent us from using the arguments of
section 4.3 to restrict the dark matter parameter space. While such models seem viable, they
are highly fine-tuned and do not exhibit the desirable features of axion models. One way
to see the tuning is to consider the additional terms in the effective theory that arise when
integrating out the heavy fields that lead to the couplings in (4.2). For example, in addition
to the aF F̃ term, the low energy theory of a simple pseudoscalar will include terms such
as a2FF , a3FF̃ , etc. These terms will always be generated as they are no longer forbidden
by any symmetry, and lead to corrections to the scalar potential which destabilize the light

2Other couplings of ultralight axions with matter are the gluon operator, aGµνG̃
µν , the electron operator,

∂αaēγ
αe, and the muon operator, ∂αaµ̄γ

αµ. The gluon operator requires tuning to be sizable around the
fuzzy dark matter regime and has other constraints [246, 359, 299], the electron coupling can be probed
using torsion pendulums [204], and the muon operator has other strong constraints making it difficult to see
experimentally [205, 266].

3If there is additional axion coupling in the phase of the mass matrix of some new fermions, Caγ only
needs to sum to an integer with the coefficient of the coupling, see e.g., [173]
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scalar. Thus any simple pseudoscalar becomes unnatural and the motivation to consider
such a particle as dark matter is rendered null. Therefore, we take the position that the
target particles of experimental searches are indeed ultralight axions with a full trigonometric
potential, and we now examine the cosmological limitations of such dark matter candidates.

4.3 Axion Matter-Power Spectrum

A scalar field evolving in a purely quadratic potential has a scale-invariant matter-power
spectrum, matching that of ΛCDM. However, if the potential contains higher order terms,
the scalar equation of motion will possess non-linear terms which impact the growth of
perturbations, with positive (negative) contributions wiping out (enhancing) small scale
structure. For an axion with field amplitude a0(z) at redshift z the condition for the axion
fluid to behave like cold dark matter is a0(z)/fa � 1. The cosmic microwave background
is the most sensitive probe of the matter-power spectrum, measuring deviations at a part
per thousand, and sets a bound around recombination on any additional energy density
fluctuations, δρ/ρ . 10−3, corresponding to, a0(zrec)

2/f 2
a . 10−3. It is important to note

that this bound does not rely on the specific production mechanism and must be satisfied
for any light axion making up the entirety of dark matter.

This constraint was studied quantitatively for misaligned axions in a trigonometric po-
tential in [362] (see also [146] for related discussions). The authors considered an axion with
the potential in (4.1) and a field value frozen by Hubble friction until zc, the redshift at
which the axion mass is comparable to the Hubble rate and oscillations begin. The matter-
power spectrum then constrains the fraction of dark matter made up by axions as a function
of zc. The authors of [362] find that in order for the axion to constitute all of dark mat-
ter, zc must be & 9 × 104. This can be translated onto a constraint on fa by noting that
the axion field amplitude is fixed today by the measured dark matter energy density with,
ρDM(z) = 1

2
m2
aa0(z)2. Since the amplitude redshifts as a0(z) ∝ (1+z)3/2, requiring the axion

to oscillate before it exceeds its field range, a0(zc) . fa, requires,

fa &

√
2ρDM(z0)

m2
a

(1 + zc)
3/2 , (4.5)

or fa & 1.2× 1013 GeV

(
10−20eV

ma

)
. (4.6)

The rough expressions motivated above, a0(zrec)
2/f 2

a . 10−3, gives a similar result. Note
that while [362] assumed a misalignment mechanism, it is more general, and will apply
(approximately) to any axion dark matter production mechanism as suggested by the rough
estimate.

The constraint proposed in this work utilizes the matter-power spectrum and is distinct
from the work of [39], which presented a bound assuming the misalignment mechanism. The
limit in [39] is derived by noting that the maximum energy stored in the axion potential
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is ∼ µ4 and, assuming a simple cosmology from the start of oscillations to recombination,
demanding that this be less than the dark matter energy density at zc: ρDM(zc) . µ4. This
restricts, µ4 . eV4(zc/zeq)3, or equivalently,

fa & 1017 GeV

(
10−21 eV

ma

)1/4

(misalignment) . (4.7)

The authors of [39] also consider temperature-dependent axion masses which relax the mis-
alignment constraint. While both types of bounds in [39] are more stringent than the matter-
power spectrum bound, they are also less robust since they rely on misalignment and on
having a simple cosmology from zc to recombination.

The bound on fa can be translated into a bound on the coupling to photons and nucleons
using the relations in (4.2) for given values of Caγ and CaN . The results are displayed in
Figs. 4.1 and 4.2 in black for several values of the coefficients. Since generic axions models
predict Caγ, CaN that are at most O(1), this is a powerful bound on the ultralight axion
parameter space. Additional model building beyond the minimal scenario is required to
access regions with larger coupling. For comparison, we include the regions constrained
assuming misalignment as wavy gray lines for different values of Caγ and CaN .

The constraints we derive here assumed the axion field makes up dark matter until prior
to recombination. An alternative scenario is the case where an axion is only produced at late
times, such as through the decay of a heavier state. While an intriguing possibility, decay of
heavy states will produce relativistic axions which will in turn modify the equation of state
of the universe. Thus evading the matter-power spectrum bound by tweaking cosmology at
late times is a formidable task.

4.4 Comparison with experiments

We now consider the prospects of ultralight axion dark matter searches in light of the matter-
power spectrum restriction derived above, starting with a summary of current experimental
constraints. Firstly, the Lyman-α-flux power spectra sets a bound on the axion mass, inde-
pendent of the size of non-linear terms in the potential. These measurements are sensitive to
sharp features in the matter-power spectrum on small scales, which would be present if the
axion has a mass comparable to the size of dwarf galaxies, and set a bound on the axion mass
of ma & 10−21 eV [295, 260, 344, 305]. A mass bound of similar magnitude can be deter-
mined by utilizing constraints on the subhalo mass function from gravitational lensing and
stellar streams [378, 341]. Recently the Lyman-α bound was re-analyzed and strengthened
to ma & 2 × 10−20 eV[372]. Since the precise restriction on the axion mass varies between
these studies, and so we include both the weakest and strongest bounds in the plots below.
In addition, there are astrophysical bounds on axions that are independent of their energy
density. Axions released during supernova (SN) 1987A would have produced a flux of axions
that could convert as they passed through the galactic magnetic fields [87, 209, 354] and the
non-observation of this conversion sets the strongest bounds on low mass axions coupled to
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photons. For axion-nucleon coupling, the strongest dark matter-independent bounds arise
from forbidding excess cooling of SN-1987A [108] and neutron stars [380, 217, 73]. There
are also the bounds arising from black hole superradiance [45, 43], but these are relevant for
larger masses or smaller couplings than we consider.

There are a large number of searches looking for axion dark matter that rely on its
relic abundance. Efforts to discover a photon coupling include looking for deviations in
the polarization spectrum of the cosmic microwave background [221] (with updated bounds
in [167]), searching for the axion’s influence on the polarization of light from astrophysical
sources [262, 176, 308, 95], and terrestrial experiments [345, 395, 72].4 Searches for an axion-
nucleon coupling focused on the ultralight regime include axion-wind spin precision [14],
using nuclear magnetic resonance [402, 88, 419, 190, 79], and using proton storage rings [205].
Several spin precession experimental setups are considered in [204]. 5

The photon bounds are compiled in Fig. 4.1 and nucleon bounds in Fig. 4.2. The matter-
power spectrum bound derived in section 4.3 is displayed in both figures. We use solid
(dashed) lines to denote current (prospective) bounds. We conclude that many experimental
proposals in this ultralight regime are inconsistent with a generic axion dark matter and
require Caγ � 1 or CaN � 1. Reaching the large couplings considered in various experiments
is an issue of additional model building, and is the focus of the next section.

4.5 Enhanced Axion Couplings

We have presented stringent bounds on axions arising from the relationship between their
field range, fa, and their coupling to photons or nucleons. However, there exist model-
building techniques that can relax this relationship, which have often been discussed in the
context of axion inflation. These methods may also be applied to ultralight axion dark
matter and have distinct low energy phenomenology as a consequence of the lightness of the
axion and the requirement of matching the observed matter-power spectrum. In this section
we review these mechanisms, provide explicit realizations of such models, and study their
phenomenology. We focus on the photon coupling, but similar models can be built for the
nucleon coupling.

Large Charges

One way to enhance the axion coupling to visible matter is to introduce fermions with large
charges or a large number of fermions (see e.g., [23, 20] for a discussion in the context of
inflation). This strategy is limited by the requirement of perturbativity of electromagnetism
and the presence of light fermions charged under electromagnetism.

4We used the “realistic” projections of [345].
5We selected the most stringent bounds from [204, 205, 72] and continued these bounds to lower ULA

mass values than what the original works consider.
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Figure 4.1: Ultralight axion dark matter mass vs. photon-coupling parameter space. Re-
quiring the ultralight axion to exhibit a matter-power spectrum consistent with ΛCDM sets
the bound shown in black for serveral values of Caγ. The region below the Caγ = 1 line
permits natural axions without any additional model building (see text). The solid purple
and dotted purple lines display the weakest and strongest bounds, respectively, arising from
purely gravitational considerations [380, 217, 108, 73].The lack of axion-to-photon conver-
sion of axions produced during supernova-1987A [354] gives the bound in green. Additional
bounds from current (solid) and proposed searches (dashed) are from active galactic nu-
clei [262](red), protoplanetary disk polarimetry [176] (light blue), CMB birefringence [167]
(brown), pulsars [308, 95] (orange), optical rings [345] (dark blue), and heterodyne super-
conductors [72] (olive). The misalignment bounds for Caγ = 102, 104 are displayed by the
wavy contours (grey).

To be explicit, consider a KSVZ-like model [289, 383] where a complex scalar Φ (whose
phase will be identified with the axion), has Yukawa couplings with a set of Weyl fermions
with an electromagnetic charge Qf . Integrating out the fermions leads to an axion-photon
coupling,

L ⊃
αQ2

fNf

8πfa
aF F̃ . (4.8)

The presence of charged fermions renormalizes the electric charge as computed through
corrections to the photon gauge kinetic term. Perturbativity requires that NfQ

2
fα/4π . 1.
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Figure 4.2: Ultralight axion dark matter mass vs. nucleon-coupling parameter space. Re-
quiring the ultralight axion to exhibit a matter-power spectrum consistent with ΛCDM sets
the bound shown in black for serveral values of CaN . The region below the CaN = 1 line
permits natural axions without any additional model building (see text). The solid pur-
ple and dotted purple lines display the weakest and strongest bounds, respectively, arising
from purely gravitational considerations [380, 217, 108, 73]. Supernova-1987A & neutron
star cooling [380, 217, 108, 73] bounds are shown in green and the bound from old comag-
netometer data is shown in red [79]. Additional bounds for nucleon couplings are shown
from projections of the CASPEr-Zulf experiment [419, 190] (dark blue), atom interferome-
try (brown) [204], atomic magnetometers (light blue) [204], and storage rings [205] (pink).
The misalignment bounds for CaN = 102, 104 are displayed by the wavy contours (grey).

Since Caγ = NfQ
2
f , the perturbativity constraint sets a bound Caγ . 4π/α. We conclude

that large charges can at most enhance the axion-photon coupling by O(103).6

6Here we have taken the Peccei-Quinn charges of the fermions to be O(1). If one chooses larger Peccei-
Quinn charges such that the fermion mass only arises through higher dimensional operators, then the photon
coupling can be slightly amplified. However, requiring a hierarchy between fa and the cutoff strongly
constrains this possibility [23].
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Kinetic Mixing

Kinetic mixing of multiple axion fields can raise the axion coupling to visible matter by
(potentially) allowing an axion with a large field range to inherent couplings of an axion
with a smaller field range (see [51, 52, 386, 238, 115, 385, 21, 23, 20] for discussions in other
contexts). As a simple example consider two axions a1 and a2, where a1 obtains a potential
while the lighter axion, a2 (which is massless here), couples to photons:

L ⊃ 1

2
∂µa1∂

µa1 +
1

2
∂µa2∂

µa2 + ε ∂µa1∂a2

+ µ4 cos
a1

F1

+
α

8πF2

a2FµνF̃
µν . (4.9)

The kinetic term can be diagonalized by the shift a2 → a2−εa1, which induces an a1-photon
coupling,

L ⊃ −εF1

F2

α

8πF1

a1FµνF̃
µν . (4.10)

Taking a1 to be the axion dark matter candidate, we conclude that kinetic mixing gives
Caγ = εF1/F2. If ε is held fixed and the decay constants have a large hierarchy (F1 � F2),
then a1 will have Caγ � 1.

While this appears to be a simple solution, it is not possible to have Caγ & 1 within most
field theories. This is a consequence of axions arising as Goldstone bosons of a extended
scalar sector and hence the axion kinetic mixing is not a free parameter but must be gen-
erated. There are two possible sources for ε: renormalization group flow (“IR”) and higher
dimensional operators (“UV”) contributions. To see the suppression from IR contributions,
consider a theory of two axions with a fermion, χ,

L ⊃ ∂µa1

F1

χ̄γµγ5χ+
∂µa2

F2

χ̄γµγ5χ . (4.11)

The induced kinetic mixing of the axion is quadratically divergent and goes as ,

ε ∼ Λ2

(4π)2F1F2

, (4.12)

where Λ represents the cutoff scale. Since Λ . F1,2 (otherwise the effective theory is incon-
sistent), the kinetic mixing is bounded by ε . F2/4πF1 and will result in Caγ . 1.

Alternatively, it is possible to induce an axion kinetic mixing through higher dimensional
operators (see e.g., [51, 238]). Taking a1 and a2 to be the phases of complex scalar fields Φ1

and Φ2, there can be an operator,

L ⊃ 1

2M2
Φ†1
↔
∂Φ1 Φ†2

↔
∂Φ2 , (4.13)

where Φ†
↔
∂Φ ≡ Φ†∂Φ − (∂Φ†)Φ. Once the scalar fields take on their vacuum values, the

axions get a mixing term with ε = F1F2/M
2. This is again suppressed since consistency of

the effective theory requires M & F1,2 and cannot result in Caγ & 1.
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While these examples show that kinetic mixing is not typically sizable for field theory
axions, it is has been suggested that certain string constructions allow for sizable mixing
coefficients [23]. While we are not aware of a concrete string construction where this is true,
this may be a way to achieve Caγ & 1.

Interestingly, for ultralight axion dark matter, kinetic mixing has additional phenomeno-
logical implications. In order for the Lagrangian in (4.9) to result in a photon coupling for
a1 that is not suppressed by a ratio of axion masses, a2 must be lighter than a1. Since the
a2 photon coupling is not suppressed by factors of ε, it may be more detectable than a1 and
drastically influence direct constraints, such as from supernova axion cooling or conversion.
This would need to be studied with care for a particular realization of a value of ε.

In addition to axion-mixing, kinetic mixing of abelian gauge fields can boost the axion-
photon coupling, as considered in [135]. In this case the coupling may be enhanced if the
axion-photon coupling inherits the dark photon gauge coupling. To see this explicitly, we
consider an axion coupled to a dark U(1) gauge field, A′, which kinetically mixes with the
electromagnetism,

L ⊃ α′

8πFa
aF ′F̃ ′ − 1

4
FF − 1

4
F ′F ′ − ε

4
FF ′, (4.14)

where α′ is the dark gauge coupling. If A′ has a mass below the photon plasma mass, then
a basis rotation can be performed to diagonalize the kinetic terms through A → A − εA′.
This transformation leaves the dark photon approximately massless and gives the axion a
coupling to photons as

L ⊃ ε2α′

8πFa
aF F̃ , (4.15)

such that Caγ = ε2α′/α. Direct constraints on dark photons permit ε ∼ 1 (see [328, 96,
189] for the bounds on ultralight dark photons) while α′ can be ∼ 1. Taken together, gauge
kinetic mixing permits an amplification factor Caγ ∼ O(102) .

So far we have considered the cases of axion-axion and vector-vector mixing. It is also
possible for axions to mix with a vector if the axions transform under the gauge symmetry,
as is the case for Stückelberg axions (see, e.g., [385, 386] for discussions in the context of
inflationary model building, as well as [173, 114]). As a simple model, we consider the case
of two Stückelberg axions that have gauge interactions with a dark U(1) gauge field, A′, and
nearly identical interactions with electromagnetism and a dark confining gauge sector:

L ⊃ 1

2

(
∂µa1 − q1F1A

′
µ

)2

+
1

2

(
∂µa2 − q2F2A

′
µ

)2

+
βαs
8π

(
a1

F1

+
a2

F2

)
GG̃+

α

8π

(
a1

F1

+
a2

F2

)
FF̃ . (4.16)

Gauge invariance requires q2 = −q1 ≡ −q.7 We perform a field redefinition,

7This Lagrangian is invariant under the U(1) gauge transformation a1 → a1 + q1F1α, a2 → a2 + q2F2α,
and Aµ → Aµ + ∂µα if q1 + q2 = 0. The Lagrangian we consider is a simplified version of the setups in [385,
386, 173], but the conclusions are unchanged in the more general scenarios.
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a = −F̄
(
a1

F1

+
a2

F2

)
b = F̄

(
a1

F2

− a2

F1

)
, (4.17)

so that the physical axion interactions are,

L ⊃ − β

8πF̄
aGG̃− 1

8πF̄
aF F̃ , (4.18)

and F̄ = F1F2/(F
2
1 +F 2

2 )1/2. The axion b remains charged and provides a mass for the dark
gauge boson. The surviving axion, a, is neutral under the dark U(1) and is the dark matter
candidate. Since F̄ is smaller than F1 and F2, a is more strongly coupled to photons than
either of the original axions [173]. Nevertheless, this does not result in Caγ & 1. This is
because the decay constant of the surviving axion, F̄ , appears in the anomalous coupling
to both the non-abelian and electromagnetic gauge sectors and so the canonical relationship
between axion potential and matter coupling is maintained. We conclude that axion-vector
mixing cannot be used to evade the cosmological bounds on ultralight dark matter axions.

Clockwork

Clockwork models provide a means to disturb the canonical relationship between the axion
potential and photon coupling by introducing a large number of axions, each interacting with
both its own confining gauge sector and its “neighbor”. After a rotation to the axion mass
basis, the lightest axion’s potential can be exponentially suppressed without introducing an
exponential number of fields. This light axion can be understood as the Goldstone boson of
a global symmetry between scalar fields in a UV completion (see, e.g., [113, 166, 133, 23, 20,
321] for discussions in different contexts).

As an explicit model, we consider a set of N axions, ai, with couplings to N SU(ni) gauge
sectors with field strengths Gi, and a photon coupling only for aN :

L ⊃
N−1∑
i=1

αs,i+1

8π

(
βiai
Fi

+
ai+1

Fi+1

)
G(i+1)G̃(i+1)

+
αs,1

8πF1

a1G1G̃1 +
α

8πFN
aNFF̃ . (4.19)

The βi factors are integers greater than or equal to unity and we have omitted a bare θ term.
Upon confinement, the gauge sectors give rise to the potential for the axions,

V (ai) '
N−1∑
i=1

µ4
i+1 cos

(
βiai
Fi

+
ai+1

Fi+1

)
+ µ4

1 cos
a1

F1

, (4.20)
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where the µi are the confinement scales and represent the maximum possible masses for the
dark composite states. To get an enhanced photon coupling, we require

µ1 � µ2, µ3, ... (4.21)

and we take the Fi’s to be comparable to each other. In this case, up to O(µ1/µi) corrections,
integrating out the heavy axions corresponds to iteratively introducing the substitution:

βiai
Fi

+
ai+1

Fi+1

' 0 ∀i = 1, 2, ... . (4.22)

This transformation produces the effective Lagrangian

L ' µ4
1 cos

aN
FN
∏

i βi
+

α

8πFN
aNFF̃ . (4.23)

The aN -potential is exponentially suppressed by
∏

i βi while the photon coupling remains
unchanged, resulting in an axion potential exponentially flatter than the naive estimate.
Redefining the axion decay constant as in (4.1) gives,

Caγ =
∏
i

βi , (4.24)

thereby boosting the photon coupling relative to a generic axion.
We now consider the phenomenological implications of clockworked axions as dark mat-

ter. Firstly, in addition to the light axion, there exist N −1 axions with masses proportional
to µi≥2 (the only bound on these is from unitarity, requiring µi . Fi[20]). These would be
populated in the early universe if the new non-abelian gauge groups confine after reheating
(from their own misalignment mechanisms) or if they are thermalized. Assuming the confine-
ment scales µi≥2 are comparable, the energy density of the heaviest axion would dominate.
However, the photon couplings of the N − 1 heavy axions are suppressed by products of βi
relative to the coupling of the lightest axion, and so they cannot be the target particles of
the above experimental searches. Furthermore, if the lightest clockwork axion is to be dark
matter and the experimental target, the heavier axions must decay into into Standard Model
particles (if the axions decayed into lighter axions, they would produce excess dark radiation
in conflict with measurements of ∆Neff). This mandates the need for substantial couplings
of the heavy axions to the Standard Model and may lead to observable effects in terrestrial
experiments.

In addition to the heavy axions, the clockwork model predicts the existence of a non-
abelian gauge sector with composite states well below the electroweak scale and masses below
µ1. Demanding that FN < Mpl results in a confinement scale of ∼ 10 keV

∏
i βi for ultralight

axion dark matter with a mass O(10−20) eV. Depending on the type of interactions this light
gauge sector has with the Standard Model, it may be possible to observe these in terrestrial
experiments.
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From the low energy perspective, the clockwork model we have described appears to
permit arbitrarily large Caγ values. However, there may be limitations on this enhancement
factor if one attempts to embed the model into a string construction. In heterotic string
models, the 4 dimensional gauge groups descend from the rank 16 gauge groups E8 × E8

or SO(32). Demanding that the Standard Model’s rank 4 gauge group be present in the
low energy theory restricts the rank of the dark sector to be ≤ 12 and so N could be
severely limited [249]8. We leave an extensive study of string compactification restrictions
on clockwork models to future work.

Discrete Symmetry

Finally, axion couplings to visible matter can be augmented by introducing multiple non-
abelian gauge sectors related by a discrete symmetry [245]. When the axion potential con-
tributions from the confinement of each gauge sector are summed together, one finds the
potential may be exponentially suppressed compared to the naive expectation.

As an example, we consider a theory with a single axion, a, that couples to N confining
gauge sectors with field strengths, G(n), and impose a discrete symmetry under which,

a→ a+ 2πFa/N

G(n) → G(n+1) . (4.25)

The symmetry forces all the non-abelian gauge sectors to share a common gauge coupling
and fermion content. Including an axion-photon coupling, the Lagrangian consistent with
the symmetry has,

L ⊃ βαs
8π

N∑
n=1

(
a

Fa
+

2πn

N

)
G(n)G̃(n) +

α

8πFa
aF F̃ . (4.26)

In contrast to clockwork, the integer β serves no essential purpose here and can be taken to
be unity.

Each of the N gauge sectors contribute to the axion potential after they confine. If we
were to use the leading contribution to the axion potential from (4.1) for each sector, the total
axion potential would vanish. Therefore we must include corrections associated with higher
modes in the Fourier expansion of the potential, which depend on the light fermion content
of the theory. For a sector with two fermions with masses m1 and m2 below the composite
scale, chiral perturbation theory yields the leading order potential (see, e.g., [210]),

V (a) = −µ4

N−1∑
n=0

√
1− z sin2

(
a

2Fa
+
πn

N

)
(4.27)

8We assume a generic Calabi-Yau compactification manifold.
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with z = 4m1m2/(m1 + m2)2. After the sum in (4.27) is carried out, one finds the axion
mass is exponentially suppressed if there is a small hierarchy between the light quark masses.
Taking m2 > m1 the axion mass dependence on N is, approximately,

ma ∼
(
m1

m2

)N/2
µ2

Fa
. (4.28)

Canonically normalizing the decay constant, we get Caγ ∼ (m2/m1)N/2, breaking the relation
between the axion mass and photon coupling for N � 1.

While discrete symmetries produce axions with Caγ � 1, they do not evade the bounds
from the matter-power spectrum. This is a consequence of the axion potential from (4.27)
giving unusually large higher order axion terms. Unlike clockwork, which keeps the axion
potential of the form in (4.1) and simply extends the field range, discrete symmetries break
this relationship entirely. To see this behavior, we expand (4.27) about one of its minima,
giving the potential,

V (a) =
C2

2

µ4

F 2
a

a2 − C4

4!

µ4

F 4
a

a4 + · · · ,

=
1

2
m2
aa

2 − 1

4!
λa4 + · · · , (4.29)

where the Ci’s are constants that arise from the sum in (4.27). The coefficient C2 determines
the exponential suppression of the axion mass and C4 fulfills a similar role for the quartic. It is
convenient to recast the mass suppression factor into an axion-photon coupling enhancement
factor via fa ≡ Fa/

√
C2 such that ma = µ2/fa, λ = C4µ

4/C2f
4
a , and Caγ =

√
C2.

The key observation is that the dependence on N is different for the two constants C2 and
C4, as displayed in Fig. 4.3. For large N , C4 decreases more slowly than C2 with increasing
N . The approximate condition presented above for the axion to behave sufficiently like cold
dark matter is,

λa4
0

m2
aa

2

∣∣∣∣
eq

∼ λeV4

m4
a

=
C4

C2

eV4

m2
a

C2
aγ

f 2
a

. 10−3 . (4.30)

The factor eV4C2
aγ/m

2
af

2
a is restricted to be greater than unity to get a large enhancement

in the photon coupling. From Fig. 4.3, we see that C4/C2 will also be greater than unity
and the bound cannot be satisfied. We conclude that this variety of model cannot be used
to boost the axion-photon coupling for ultralight axion dark matter.

4.6 Conclusion

In this work, we considered the experimental prospects of detecting ultralight axion dark
matter through its couplings to the visible sector, focusing on photon and nucleon inter-
actions. We presented a stringent bound on axions by requiring that their matter-power
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Figure 4.3: The coefficients of the axion potential arising from a discrete symmetry normal-
ized to their expected values. We see the exponential drop in C4 and C2, however their ratio
grows with N . Thus discrete symmetries strengthen the matter-spectrum bounds instead of
weakening them (see text).

spectrum match that of ΛCDM and concluded that generic axions are constrained to have
couplings significantly smaller than is often assumed. This bound makes use of the rela-
tionship between axion-matter couplings and the axion potential and is independent of the
dark matter production mechanism. This discussion displays the tension between experi-
mental projections and cosmological bounds and has not been widely emphasized in previous
literature.

Given the up and coming experimental program, the need to understand the landscape
of ultralight axion dark matter models with detectable couplings is clear. As such, we
studied various strategies to boost axion couplings that were introduced previously in the
literature and applied them to ultralight axion dark matter. In particular, we considered
models with large charges, diverse forms of kinetic mixing, a clockwork mechanism, and a
discrete symmetry. We examined the extent to which axion couplings can be boosted in
each mechanism, if at all, and explored their distinct predictions and phenomenology. In
brief, O(102−103) coupling enhancements are possible by introducing large charges or vector
kinetic mixing. Significantly larger enhancements are possible with clockwork models if one
takes an agnostic view towards UV completions, but arbitrarily large amplifications may be
stymied in string embeddings. Inversely, axion-axion kinetic mixing can only be effective if
some string construction allows one to bypass the field theory arguments presented above.
Finally, discrete symmetries and axion-photon kinetic mixing are ineffective in raising the
axion coupling to visible matter. If a discovery of ultralight axion dark matter is made by a
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search in the near future, it would be a clear sign of new dynamics with possible implications
for other low energy terrestrial experiments.

There are several phenomena not discussed above that may place further restrictions
on ultralight axion models. First of all, if a symmetry is restored in the early universe,
topological defects such as domain walls and cosmic strings could form. Axion emission
from cosmic strings would contribute to the energy density of axions present today and
any stable domain walls may dominate the energy density and thereby drastically alter the
cosmology. This may further constrain variants of axions models, such as clockwork axions,
whose UV completions could have multiple restored symmetries. Additionally, if an axion
symmetry is restored, axions may form miniclusters [298] which would contribute to dark
matter small scale structure. These may be observed using probes such as microlensing [165],
pulsar timing [157, 369], and 21cm cosmology [272]. We leave the consideration of these issues
for future work.

We considered ultralight axion dark matter, but the mechanisms discussed here may be
applied in other contexts where large axion couplings to the visible sector are desirable.
Some examples include inflation (where most of these mechanisms first arose, see text for
references), looking for parametric resonance during axion minicluster mergers [235, 234],
monodromy axions [265, 68], vector dark matter production [25, 125], and addressing the H0

tension [202, 413]. Lastly, while we focused primarily on the axion-photon and axion-nucleon
couplings, similar bounds can be constructed for axion-electron couplings and, potentially,
ultralight neutrino-philic scalars [71] (whose potential likely also needs to arise from breaking
of a shift symmetry to be protected against quantum corrections from gravity). We leave a
study of such scalars to future work.
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Part II

Anomalies in Supergravity Models
From String Theory
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Overview of Part II

Part II will be a departure from the concrete considerations of Part I. Rather than viable
extensions of the Standard Model, here we will consider toy models to develop theoretical
understanding necessary for more realistic constructions in the future.

In particular, we will describe features of quantum field theories that serve as low energy
descriptions of string compactifications. An important consistency requirement on a quan-
tum theory is the absence or cancellation of quantum anomalies. In the Standard Model,
there are potential anomalies that arise from triangle diagrams with the various gauge inter-
actions appearing on each vertex. These anomalies turn out to be zero due to the particle
content of the Standard Model and so the theory is safe from inconsistency. However, in the
case where anomalies are not identically zero, it is possible to cancel them via the Green-
Schwarz mechanism [311, 38, 154, 145, 310, 188, 37, 36, 198, 312]. One can understand this
procedure as cancelling the anomalous variation of the quantum corrected Lagrangian under
a classical symmetry by imposing a transformation on a particular field in the model. In
Chapters 5 and 6, we describe how modular anomalies of supergravity models are canceled
in a consistent manner using this mechanism. These modular anomalies differ from the
usual gauge and gravity anomalies and include the Kahler moduli that are generic in string
compactifications. We describe these anomalies in more detail below.
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Chapter 5

Anomaly cancellation in effective
supergravity theories from the
Heterotic String: two simple examples

5.1 Introduction

On-shell Pauli-Villars regularization of the one-loop divergences of supergravity theories was
used to determine the anomaly structure of supergravity in [92, 91]. Pauli-Villars regula-
tor fields allow for the cancellation of all quadratic and logarithmic divergences [182, 181,
179, 180], as well as most linear divergences [92, 91]. If all linear divergences were can-
celed, the theory would be anomaly free, with noninvariance of the action arising only from
Pauli-Villars masses. However there are linear divergences associated with nonrenormal-
izable gravitino/gaugino interactions that cannot be canceled by PV fields. The resulting
chiral anomaly forms a supermultiplet with the corresponding conformal anomaly, provided
the ultraviolet cut-off has the appropriate field dependence, in which case uncanceled total
derivative terms, such as Gauss-Bonnet, do not drop out from the effective action. The
resulting anomaly term that is quadratic in the field strength associated with the space-time
curvature, as well as the term quadratic in the Yang-Mills field strength, was shown in [92,
91] to be canceled by the four-dimensional version of the Green-Schwarz mechanism in Z3

and Z7 compactifications, in agreement with earlier results [311, 38, 154, 145, 310, 188,
37, 36, 198, 312]. However, the terms in the anomaly that are quadratic and cubic in the
parameters of the anomalous transformation are prescription dependent [379, 92, 91]. The
choice of PV fields with noninvariant masses used in [92, 91] did not achieve full anomaly
cancellation.

Every contribution to the chiral anomaly has a conformal anomaly counterpart, with
which it combines to form an “F-term” anomaly. In addition there are “D-term” anomalies
associated with logarithmic divergences that have no chiral partner. In a generic super-
gravity theory, these include terms [92, 91] that are nonlinear in the holomorphic functions
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F i(T i) of the three diagonal Kähler moduli T i that characterize modular (or T-duality)
transformations:

T ′i =
ai − ibiT i

iciT i + di
, aibi − cidi = 1, ai, bi, ci, di ∈ Z,

Φ′a = e−
∑

i q
a
i F

i(T i)Φa, F i(T i) = ln(iciT
i + di), (5.1)

where Φa is any chiral supermultiplet other than a diagonal Kähler modulus, and qai are its
modular weights. Only terms in the anomaly that are linear in F =

∑
i F

i can be canceled
by the Green-Schwarz term.

In addition, in generic supergravity there are anomalous terms that involve the dilaton
superfield S in the chiral supermultiplet formulation–or L in the linear multiplet formula-
tion [74, 16] for the dilaton. Specifically, one expects [174, 311] a term quadratic in the
Kähler field strength

Xµν =
(
DµziDν z̄m̄ −DνziDµz̄m̄

)
Kim̄ − iF a

µν(Taz
i)Ki, (5.2)

where zi = Zi| is the scalar component of a generic chiral superfield Zi, F a
µν is the gauge

field strength, Ta is a gauge group generator, and K(Z, Z̄) is the Kähler potential. The
term quadratic in Xµν was actually found to vanish in [92, 91], but there remained terms
linear in Xµν as well as terms involving the Kähler potential in the nonlinear F i terms
mentioned above. Anomaly cancellation by a Green-Schwarz mechanism, to be outlined in
the next section, requires that the operators appearing in the anomaly also appear in the
real superfield Ω of the (modified) linearity condition for the superfield L:(
D̄2 − 8R

)
(L+ Ω) =

(
D2 − 8R̄

)
(L+ Ω) = 0, D2 = DαDα, D̄2 = Dα̇Dα̇ = (D2)†,

(5.3)
where Dα is a spinorial derivative and R = R̄† is the auxiliary field of the supergravity
multiplet whose vev determines the gravitino mass: 〈R|〉 = 1

2
m3/2. The action written in

terms of L is related to the action written in terms of S by a superfield duality transformation;
the standard derivation of the duality transformation requires that Ω be independent of S. It
was shown in appendix E of the first reference in [92, 91] that the the duality transformation
still goes through with a slight modification if this is not the case. On the other hand it
might perhaps be reasonable to impose

∂Ω

∂S
= 0, (5.4)

which is in fact the case for the chiral anomaly found in the string calculation of [379]. We
show that it is possible to eliminate all terms that depend on the full Kähler potential K,
as well as all terms nonlinear in F , and to reproduce the result given in [379]. However, as
discussed in Appendix B, there may be a residual S-dependent contribution of the part of
the “D-term” anomaly that arises from uncancelled logarithmic divergences.
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In the following section we outline the four-dimensional Green-Schwarz mechanism. In
Section 3 we briefly recall the results of [92, 91] and the differences obtained with the present
approach. In Sections 4 and 5 we introduce the relevant set of PV fields, outline the con-
ditions for cancellation of ultraviolet divergences and present our results for Z3 and Z7

orbifolds. We summarize our results in Section 6. Some details are relegated to Appendices.

5.2 The 4-d Green-Schwarz mechanism

The four dimensional version of the Green-Schwarz (GS) mechanism was originally formu-
lated [311, 38, 154, 145, 310, 188, 37, 36, 198, 312] as a means of canceling the anomaly term
quadratic in Yang-Mills fields, using the chiral formulation for the dilaton. The classical
Lagrangian for the Yang-Mills field strength reads

LYM = −√g s
8

∑
a

(
F a
µν − iF̃ a

µν

)
F µν
a + h.c., s = S| . (5.1)

Under the anomalous modular transformation (5.1) the quantum corrected Lagrangian varies
according to

∆LYM = −
√
g

64π2

∑
a,i

F i

[
Ca +

∑
b

(
2qbi − 1

)
Cb
a

](
F a
µν − iF̃ a

µν

)
F µν
a + h.c., (5.2)

where Ca is the quadratic Casimir in the adjoint representation of the gauge group factor Ga
and Cb

a is the Casimir for the representation of the chiral supermultiplet Φb. In Z3 and Z7

orbifolds one has the universality condition:

Ca +
∑
b

(
2qbi − 1

)
Cb
a = 8π2b ∀ i, a, (5.3)

with b = 30/8π2 in the absence of Wilson lines. The dilaton is classically invariant under
the modular transformation (5.1). However if we impose the transformation property:

∆s = −bF = −b
∑
i

F i(ti), ti = T i
∣∣ , (5.4)

the variation of the classical Lagrangian (5.1) cancels (5.2).
Now consider the superspace Lagrangian1

L =

∫
d4θE

(
S + S̄

)
Ω = −1

8

∫
d4θ

E

R

(
D̄2 − 8R

)
(SΩ)+h.c. = −1

8

∫
d4θ

E

R
SΦ+h.c., (5.5)

where E is the superdeterminant of the supervielbein, Ω is the real superfield appearing in
(5.3), Φ is its chiral projection: (

D̄2 − 8R
)

Ω = Φ, (5.6)

1We use the Kähler superspace formulation of supergravity [74, 16].
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and we used superspace integration by parts [74, 16]. When Φ is replaced by the Yang-Mills
superfield strength bilinear Wα

aW
a
α , (5.5) is just the Yang-Mills Lagrangian that includes the

term in (5.1). If, under the modular transformation (5.1) the quantum Lagrangian varies
according to

∆Lanom = b

∫
d4θ
[
F (T ) + F̄ (T̄ )

]
Ω = − b

8

∫
d4θ

E

R
F (T )Φ + h.c., (5.7)

the full Lagrangian is invariant provided

∆S = −bF (T ). (5.8)

However the classical Kähler potential for the dilaton is no longer invariant and must be
modified:

kclass(S, S̄) = − ln(S + S̄)→ k(S, S̄) = − ln(S + S̄ + VGS), (5.9)

where VGS is a real function of the chiral supermultiplets that transforms under (5.1) as

∆VGS = b
(
F + F̄

)
. (5.10)

A simple solution consistent with string calculation results [311, 38, 154, 145, 310, 188, 37,
36, 198, 312] is

VGS = bg(T, T̄ ), (5.11)

where
g(T, T̄ ) =

∑
i

gi(T i, T̄ i), gi = − ln(T i + T̄ i) (5.12)

is the Kähler potential for the moduli. The modification (5.9) is the 4d GS term in the chiral
formulation.

The 4d GS mechanism is in fact more simply formulated in the linear multiplet formalism
for the dilaton. The linear superfield L remains invariant, its Kähler potential is unchanged,
and one simply adds a term to the Lagrangian. Using (5.3) and (5.6):

LGS = −
∫
d4θELVGS,

∆LGS = −b
∫
d4θELF + h.c. =

b

8

∫
d4θ

E

R
F
(
D̄2 − 8R

)
L+ h.c.

=
b

8

∫
d4θ

E

R
FΦ + h.c. = −∆Lanom (5.13)

5.3 The anomaly in Supergravity

As mentioned in the introduction, the quadratic and logarthmic divergences of supergravity
can be cancelled [182, 181, 179, 180] by a suitable set of Pauli-Villars (PV) supermultiplets.
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It is straightforward to see [92, 91], by an examination of the quadratic divergences, that not
all of these fields can have large PV masses that are invariant under nonlinear transformations
on the fields that effect a Kähler transformation, such as the modular transformations (5.1),
as we will illustrate with an example below.

It was shown in [92, 91] that modular noninvariant masses can be restricted to a subset
of PV chiral supermultiplets ΦC with diagonal Kähler metric:

K(ΦC , Φ̄C) = fC(Z, Z̄)|ΦC |2. (5.1)

In particular, those PV fields that have superpotential couplings to light fields and contribute
to the renormalization of the Kähler potential can be chosen to have invariant PV masses.
The fields in (5.1) acquire masses through superpotential terms:

W (ΦC ,Φ′C) = µCΦCΦ′C , (5.2)

with µC constant (in the absence of threshold corrections, as for the cases considered here).
We can define a superfield2

M2
C = exp(K − fC − f ′C) = exp(K − 2f̄C), f̄C =

1

2
(fC + f ′C), (5.3)

whose lowest component m2
C = M2

C | is the ΦC ,Φ′C squared mass. Then the anomalous part
of the one-loop corrected supergravity Lagrangian takes the form [92, 91]

Lanom = L0 + L1 + Lr =

∫
d4θE (L0 + L1 + Lr) , (5.4)

L0 =
1

8π2

[
Trη lnM2Ω0 +K (ΩGB + ΩD)

]
, Lr = − 1

192π2
Trη

∫
d lnMΩr, (5.5)

where η = ±1 is the PV signature,

Ω0 = −ΩGB + ΩYM −
1

12
Gβ̇αG

αβ̇ +
1

3
RR̄− 1

48

(
D2R + D̄2R̄

)
, (5.6)

Ωr = − ∂

∂ lnM

[
1

4

(
D2 lnMDβ̇ lnMDβ̇ lnM+ h.c.

)
− 2Gαβ̇D

α lnMDβ̇ lnM

+

(
lnM

{
1

8
D̄2D2 lnM+Dα(RDα lnM)

}
+ h.c.

)
+

1

2
Dα lnMDα lnMDβ̇ lnMDβ̇ lnM

−(lnM)2

(
1

4
DαLα + lnMDαXα

)]
, (5.7)

2The constants µC in (5.2) drop out of the variation ∆Lanom of the effective action (5.4), and we ignore
them throughout.
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with

Xα = −1

8
(D̄2 − 8R)DαK, Lα = (D̄2 − 8R)Dα lnM, (5.8)

Gβ̇α is an auxiliary superfield of the gravity supermultiplet, and ΩD represents the “D-term”
anomaly (see Appendix B) that, together with a contribution to the Gauss-Bonnet term
ΩGB:

ΩGB = −8ΩW −
4

3
ΩX −Gβ̇αG

αβ̇ + 4RR̄, (5.9)

arises from uncanceled total derivatives with logarithmically divergent coefficients as dis-
cussed in the introduction. Supersymmetry of these terms requires a field-dependent cut-off:

Λ = µ0e
K/4. (5.10)

The constant µ0 drops out of the effective action (5.4).
The Chern-Simons superfields ΩW , ΩX and ΩYM are defined by their chiral projections:

(D̄2 − 8R)ΩW = WαβγWαβγ, (D̄2 − 8R)ΩX = XαXα, (D̄2 − 8R)ΩYM = Wα
aW

a
α .

(5.11)
where Wαβγ is the superfield strength for space-time curvature.
L1 is defined by its variation:

∆L1 =
1

8π2

1

192
Trη∆ lnM2Ω′L =

1

8π2

1

192
TrηHΩ′L + h.c., (5.12)

where under (5.1) lnM2 transforms as

∆ lnM2 = H + H̄, (5.13)

with H holomorphic. Defining

(D̄2 − 8R)Ωf = fαfα, (D̄2 − 8R)Ωf̄ = f̄αf̄α, (D̄2 − 8R)Ωf̄X = f̄αXα,

fα = −1

8
(D̄2 − 8R)Dαf, f̄α = −1

8
(D̄2 − 8R)Dαf̄ , (5.14)

we have

Ω′L = 192Ωf − 128Ωf̄ − 64Ωf̄X ,

∆L1 =
1

8π2
TrηH

(
Ωf −

2

3
Ωf̄ −

1

3
Ωf̄X

)
+ h.c. (5.15)

The general form of fC is taken to be

ln fC = αCK(Z, Z̄) + βCg(T, T̄ ) + δCk(S, S̄) +
∑
n

qCn g
n(T n, T̄ n),

ln f̄C = ᾱCK + β̄Cg + δ̄Ck +
∑
n

q̄Cn g
n,

HC =
(
1− 2γ̄C

)
F (T )− 2

∑
q̄Cn F

n(T n), γ̄C = ᾱC + β̄C . (5.16)



CHAPTER 5. ANOMALY CANCELLATION IN EFFECTIVE SUPERGRAVITY
THEORIES FROM THE HETEROTIC STRING: TWO SIMPLE EXAMPLES 57

The traces in ∆Lanom can be evaluated using only PV fields with noninvariant masses or
using the full set of PV fields, since those with invariant masses, HC = 0, drop out. The
contribution ∆L0 to the anomaly is linear in the parameters αC , βC , qCn ; as a consequence
the traces are completely determined by the sum rules [182, 181, 179, 180]

N ′ =
∑
C

ηC = −N − 29, N ′G =
∑
γ

ηVγ = −12−NG,∑
C

ηC ln fC = −10K −
∑
q

qpng
n, (5.17)

that are required to assure the cancellation of all quadratic and logarithmic divergences. In
(5.17) the index C denotes any chiral PV field, the index γ runs over the Abelian gauge PV
superfields that are needed to cancel some gravitational and dilaton-gauge couplings, and the
sum over p includes all the light chiral multiplet modular weights with qSn = 0, qT

i

n = 2δin.
N and NG are the total number of chiral and gauge supermultiplets, respectively, in the
light sector. All PV fields with noninvariant masses have δ = 0, and most3 with δ 6= 0 have
α = β = qn = 0. For the purposes of the present analysis we can ignore the latter.

To see that not all the PV chiral multiplets can have invariant masses, there is a quadrat-
ically divergent contribution from the light sector given by

LQ 3 −
√
g

Λ2

64π2
(3 +NG −N)DαXα

∣∣∣∣ , (5.18)

where Xα is defined in (5.8). The Pauli-Villars contribution to the operator in (5.18) is

LPV
Q 3 −

√
g

Λ2

64π2
(N ′G −N ′ − 2α)DαXα

∣∣∣∣ , (5.19)

where α =
∑
ηCαC . The PV chiral multiplets include a subset θa with N ′θ = N ′G which form

massive vector supermultiplets with the PV Abelian gauge supermultiplets; these cancel in
(5.19). The remainder get superpotential masses as in (5.2). The pair ΦC ,Φ′C will have an
invariant mass if ln f̄C = ᾱC = 1

2
, in which case the total contribution of the pair to (5.19)

vanishes identically. Therefore chiral fields with noninvariant masses are needed to cancel
(5.18).

In contrast to L0, the contributions to the anomaly from L1 and Lr are nonlinear in the
parameters α, β, q, and depend on the details of the PV sector. In [92, 91] the PV sector
was constructed in such a way that

fC = f ′C = f̄C (5.20)

3There is a set of chiral multiplets in the adjoint representation of the gauge group that has ln f = K−k;
these get modular invariant masses though their coupling in the superpotential to a second set with ln f = k.
These cancel renormalizable gauge interactions and gauge-gravity interactions, respectively. Together with
a third set, that has f = 1 and contributes to the anomaly, they cancel the Yang-Mills contribution to the
beta-function.
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for the PV fields with noninvariant masses. In this case (5.15) reduces to

(Ω′L)[1] = 64
(
Ωf̄ − Ωf̄X

)
= ΩL − 16ΩX , (D̄2 − 8R)ΩL = LαLα, (5.21)

and, for example,

TrηHΩf̄ =
∑
C

ηC

[(
1− 2γ̄C

)
F − 2

∑
n

q̄Cn F
n

]
×(

ᾱCXα + β̄Cgα +
∑
m

q̄Cmg
α
m

)(
ᾱCXα + β̄Cgα +

∑
l

q̄Cl g
l
α

)
. (5.22)

The Pauli-Villars modular weights qCn are related to the modular weights qpn of the light
fields by the conditions for the cancellation of UV divergences. In the Z3 and Z7 orbifolds
considered below, the latter satisfy sum rules of the form:∑

p

qpn = A1,
∑
p

qpnq
p
m = A2 +B2δmn. (5.23)

The first sum rule in (5.23) assures the university of the anomaly proportional to Ω0−ΩYM.
However, in the PV sector used in [92, 91] the second equality led to a nonuniversal term:

TrηHΩf̄ 3 −4
∑
p,m,n

qpnq
p
mF

ngαm
(
ᾱCXα + β̄Cgα

)
= −4 (A2Fg

α +B2F
ngαn)

(
ᾱCXα + β̄Cgα

)
. (5.24)

The sum rule cubic in the modular weights is more complicated, but in general leads to
additional nonuniversal terms. These can be avoided by imposing q̄Cn = 0 for fields with
noninvariant masses, but if (5.20) is imposed we get

TrηHΩ′L = F (aXαXα + bXαgα + cgαgα) , (5.25)

which does not include the term proportional to

F
∑
n

gαng
n
α (5.26)

found in the string calculation4 of [379].
In the following we relax the assumption (5.20), impose q̄Cn = 0, but with qC = −q′C 6= 0.

This still assures a universal anomaly, but allows more freedom in determining its coefficient;
in particular, we are able to reproduce the term (5.26).

4In fact the four-form εµνρσgnµνg
n
ρσ with gnµν = (∂µt

n∂ν t̄
n̄)gntn t̄n̄ − (µ↔ ν), that appears in the chiral part

of (5.26), vanishes identically. We find it curious that the authors of [379] neglected to comment on this fact.
However the associated conformal anomaly is nontrivial.
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5.4 Cancellation of UV divergences

The full set of PV fields needed to regulate light field couplings is described in Section 3
of [92, 91]. Among those, here we are primarily concerned with the set ŻP = ŻI , ŻA, with

negative signature, ηŻ = −1, that regulates most of the couplings, including all renormaliz-
able couplings, of the light chiral supermultiplets Zp = T i,Φa. Covariance of the ŻP Kähler
metric requires that these fields transform under (5.1) like dZp:

Ż ′I = e−2F i

ŻI , Ż ′A = e−F
a

(
ŻA −

∑
j

F a
j ΦaŻJ

)
, F a =

∑
i

F i(T i) (5.1)

Invariance of the full PV Kähler potential for the ŻP and covariance of their superpotential
under (5.1):

K(Ż ′) = K(Ż), W (Ż ′) = e−F (T )W (Ż), (5.2)

can be made manifest if we supplement [92, 91] these fields with three additional PV fields
ŻN , N = 1, 2, 3, with Kähler potential

K(ŻN) =
∑
i=n

∣∣∣ŻN + ȧχn(T i)Żi
∣∣∣2 , χn(T ′i) = e2Fn (

χn(T i) + F n
i

)
, (5.3)

and that transform under (5.1) according to

Ż ′N = ŻN − ȧF n
i (T i)ŻI , (5.4)

where ȧ is a nonzero constant.5

We wish to give these PV fields modular invariant masses. The simplest way to do this
is to introduce fields ẎP , ẎN with the same signature, opposite gauge charges and the inverse
Kähler metric. However this would have the effect of canceling the Ż contributions that are
linear in the generalized field strength

Gµν = [Dµ, Dν ], (5.5)

and doubling the quadratic Ż contributions. Instead we introduce fields ẎP , ẎN with with
gauge charges

(Ta)Ẏ = −(T Ta )Ż = −(T Ta )Z , (5.6)

and Kähler potential

K(Ẏ ) = eĠ

(∑
A

e−g
a |ẎA|2 +

∑
I

e−2gi|ẎI − ȧχn(T i)ẎN |2 + |ẎN |2
)
,

ga =
∑
n

qang
n, Ġ = α̇K + β̇g, α̇ + β̇ = 1. (5.7)

5Depending on the choice of the functions χn(T i), one might need to introduce [92, 91] several copies of

the sets ŻP,Nλ , with constraints on the parameters ȧλ in such a way that no new divergences are introduced

by the fields ŻN .
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(5.7) is modular invariant, and the PV mass superpotential

W (Ż, Ẏ ) = µ̇
(
ŻA − ȧ−1qanΦaŻN

)
ẎA +

∑
i=n

µ̇n

(
ŻI ẎI + ŻN ẎN

)
, (5.8)

is covariant, provided under (5.1)

Ẏ ′A = e−F+Fa

ẎA, Ẏ ′I = e−F+2F i
(
ẎI + ȧF n

i ẎN

)
, Ẏ ′N = e−F ẎN . (5.9)

It remains to cancel the divergences introduced by the fields Ẏ . This was achieved in [92,
91] by an additional set of chiral PV fields, collectively called Ψ, with diagonal metric (5.1),
superpotential (5.2), with prefactors (5.16) satisfying (5.20) and αΨ = δΨ = 0. In addition
α̇ = 0 in (5.7) was assumed. Here we use a different set of fields, for which we assume only
δC = 0, as well as allowing α̇ 6= 0. For this reason we also include in the present analysis the
set of fields φC with prefactors

ln fφ
C

= αCK (5.10)

that regulate certain gravity supermultiplet loops. These must be included together with
the PV fields introduced below in implementing the sum rules (5.17). We take the following
set:

ΦP : ln fΦP

=
∑
n

qPn g
n = αΦK + βΦg − ln fΦ′P , αΦ + βΦ = 1,

ψPn : ln fPn = αPψK + βPψ g + qPψ g
n, αPψ + βPψ = γPψ , q̄Pψ = 0,

T P : ln fPT = αPTK + βPT g, αPT + βPT = γPT . (5.11)

The pairs ΦP ,Φ′P have modular invariant masses and do not contribute to the anomaly, but
they play an important role in canceling certain divergences. In the case of Z7 orbifolds we
take them to be charged under the two U(1)’s of that theory. They have no other gauge
charges, the ψPn are taken to be gauge neutral, and the T P have a priori arbitrary gauge
charges. For those in real representations of the gauge group one can take T P = T ′P . In
Appendix B we display a simple solution to the constraints with some T ’s in the fundamental
and antifundamental representation of the non-Abelian gauge group factors, some with U(1)
charges in the Z7 case, and some gauge singlets.

The quadratic and logarithmic divergences we are concerned with here involve the su-
perfield strengths −i(Ta)W a

α , Xα and

ΓCDα = −1

8
(D̄2 − 8R)DαZiΓCDi, (5.12)

associated with the Yang-Mills, Kähler and reparameterization connections, respectively.
Since the theories considered here have no gauge anomalies, cancellation of quadratic diver-
gences requires

TrηΓα = 0, (5.13)
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and cancellation of logarithmic divergences requires

TrηΓαΓβ = TrηΓαT
a = Trη(T a)2 = 0, (5.14)

where η = +1 for light fields. Cancellation of all contributions linear and quadratic in
Xα is assured by the conditions in (5.17) together with (B.5) of Appendix B. The Yang-
Mills contribution to the term quadratic in Wα is canceled by chiral fields in the adjoint
(see footnote on page 57) that we need not consider here. Finally, cancellation of linear
divergences requires cancellation of the imaginary part of

TrηXχ = TrηφG · G̃, G̃µν =
1

2
εµνρσGρσ, (5.15)

where Gµν is the field strength associated with the fermion connection;6 for left-handed
fermions:

Gµν = −ΓCDµν + iF a
µν(Ta)

C
D +

1

2
Xµνδ

C
D, (5.16)

and for a generic PV superfield ΦC with diagonal metric, its fermion component χC trans-
forms under (5.1) as

χ′C = eφ
C

χC , φC =

(
1

2
− αC − βC

)
F −

∑
i

F i(T i)qCi . (5.17)

The full set of conditions is extensive, and we evaluate them in Appendix B. In this
section we simply outline how to obtain a universal anomaly using PV regularization. For
this purpose we focus on terms contributing to UV divergences that could potentially spoil
universality. An important feature in our results is the fact that the expression

εµνρσgiµνg
i
ρσ = 0, (5.18)

vanishes identically, and the expressions

X ij = εµνρσImF igiµνg
j 6=i
ρσ = 4εµνρσImF i∂µg

i
ν∂ρg

j
σ = 4∂ρ

(
εµνρσImF i∂µg

i
νg

j
σ

)
,

X i =
1

2
εµνρσImF igiµνXρσ = 4i∂ρ

(
εµνρσImF i∂µg

i
νΓσ
)
,

X ia = εµνρσImF igiµνF
a
ρσ = 4∂ρ

(
εµνρσImF i∂µg

i
νA

a
σ

)
, (5.19)

are total derivatives, where Aaµ is an Abelian gauge field,

giµ = −∂µt
i − ∂µt̄ı̄

ti + t̄ı̄
, giµν = ∂µg

i
ν − ∂νgiµ, Γµ =

i

4

(
DµziKi −Dµz̄m̄Km̄

)
, (5.20)

and Xµν = 2i (∂µΓν − ∂νΓµ) is defined in (5.2).

6Here we neglect the spin connection which is considered in Appendix B.
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If, for example, we replaced gn(T n, T̄ n̄) everywhere by the Kähler potential for the nth
untwisted sector, a possibility considered in [92, 91], the above would not hold, and we would
be unable to obtain a universal anomaly coefficient. Specifically, we would be not be able
to cancel the terms cubic in qpn that appear in X Ẏ

χ , suggesting that the present construction
is the only viable possibility. This agrees with the results of [379], where it was found that
the untwisted Kähler moduli are the only chiral supermultiplets that appear in the chiral
anomaly (see however footnote page 58).

Reparameterization curvature terms

The functions χn(T i) in (5.3) and (5.7) do not contribute to the quantities in (5.12) and
(5.16) (see footnote page 59), and, using (5.23), one obtains

Trη̇ΓẎα = −
[
(N + 2)β̇ − A1

]
gα,

Trη̇ΓẎαΓẎβ = −2α̇
[
β̇(N + 2)− A1

]
Xαgβ −

[
β̇2(N + 2)− β̇A1 + A2

]
gβgα

−B2

∑
n

gnαg
n
β . (5.21)

In addition we have

X Ẏ
χ =

1

2
(N + 2)FĠ · ˜̇G− F

∑
p,n

qpnĠ · g̃n +
1

2
F
∑
p,m,n

qpmq
p
ng

m · g̃n

−
∑
p,n

qpnF
nĠ · ˜̇G+ 2

∑
p,n,m

qpmq
p
nF

mĠ · g̃n −
∑
p,l,m,n

qal q
a
mq

a
nF

lgm · g̃n, (5.22)

In addition to the sum rules listed in (5.23), we have∑
p

qpi q
p
j q
p
k = A3 +B3δijδik + C3

[
δij
(
δ1
i δ

2
k + δ2

i δ
3
k + δ3

i δ
1
k

)
+ cyclic(ijk)

]
+D3

[
δij
(
δ2
i δ

1
k + δ3

i δ
2
k + δ1

i δ
3
k

)
+ cyclic(ijk)

]
, (5.23)

with C3 = D3 for Z3, C3 6= D3 for Z7. Then using (5.18) and (5.19), (5.22) reduces to

X Ẏ
χ =

1

2
(N + 2)FĠ · ˜̇G− A1FĠ · g̃ +

1

2
A2Fg · g̃ − A1FĠ · ˜̇G

+2A2FĠ · g̃ − A3Fg · g̃ + total derivative. (5.24)

Since q̄Φ = q̄ψ = 0, terms cubic in these modular weights do not contribute to XΦ
χ , X

ψ
χ .

Further, since
qPnm qPnl = (qPψ )2δnmδ

n
l , (5.25)



CHAPTER 5. ANOMALY CANCELLATION IN EFFECTIVE SUPERGRAVITY
THEORIES FROM THE HETEROTIC STRING: TWO SIMPLE EXAMPLES 63

there are no contributions to Xψ
χ quadratic in ψ modular weights, and since qPψ is independent

of n, Xψ
χ depends only on F, gµν and Xµν . Then imposing∑

P

ηP qPn = a1,
∑
P

ηP qPn q
P
m = a2 + b2δmn, (5.26)

XΦ
χ can also be made to depend only on F, gµν and Xµν . The terms linear in the Φ and ψ

modular weights drop out of (TrηΓα)Φ,ψ, and one obtains7

(TrηΓαΓβ)Φ =
∑
P

ηPΦG
Φ
αG

Φ
β − a1

(
GΦ
αgβ + gαG

Φ
β

)
+ 2a2gαgβ + 2b2

∑
n

gnαg
n
β ,

GΦ = αΦK + βΦg,

(TrηΓαΓβ)ψ =
∑
P

ηPψ
[
3GP

αG
P
β + qPψ

(
GP
αgβ + gαG

P
β

)]
+Bψ

∑
n

gnαg
n
β ,

GP = αPK + βPg, Bψ =
∑
P

ηPψ (qPψ )2. (5.27)

To cancel the last term in (5.21) we require

2b2 +Bψ = B2. (5.28)

The Ẏ and Φ fields do not contribute to the anomaly, and the coefficient of the term (5.26)
is determined by Bψ. The remaining terms in (5.21) and (5.22) can be cancelled by a
combination of the full set of PV fields in (5.10) and (5.11), as shown in Appendix B.

Yang-Mills field strengths

The gauge charges8 and modular weights in Z3 and Z7 orbifold compactifications without
Wilson lines are given in [379] and Appendix D.5 of [92, 91]. The universality of the anomaly
term quadratic in Yang-Mills fields strengths is guaranteed by the universality condition
(5.3), as illustrated in Appendix B. Since gauge transformations commute with modular
transformations, a set of chiral multiplets Φb that transform according to a nontrivial ir-
reducible representation R of a non-Abelian gauge group factor Ga have the same modular
weights qRn such that ∑

b∈R

qbn(Ta)
b
b = qRn (TrTa)R = 0. (5.29)

Therefore terms linear in Yang-Mills field strengths occur only for Abelian gauge group
factors. There are none in Z3, but two in Z7, which we refer to as U(1)a, a = 1, 2, with

7In (5.26) and for Φ in (5.27), the sum is over P only, while for ψ,
∑
P ≡

∑
P +

∑
P ′ , since P and P ′

are interchangeable in the latter, but not in the former.
8We use the standard charge normalization such that (5.3) is satisfied with Cba = (TrT 2

a )R(b), where

R(b) is the gauge group representation of the chiral supermultiplet Φb; this differs by a factor
√

2 from the
normalization used in [379].
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charges Qa. These are anomaly free; their traces vanish when taken over the full spectrum
of chiral multiplets. Defining

Qan =
∑
b

qbnQ
b
a, Qanm =

∑
b

qbnq
b
mQ

b
a, (5.30)

we have for Z7:

Q1n =
1

2
(8, 2,−10), Q2n =

1

2
√

3
(12,−18, 6), n = (1, 2, 3),

Q1nm =
1

2
(5,−4,−1), Q2nm =

1

2
√

3
(−3,−6, 9),

nm = (12, 23, 31). (5.31)

These satisfy ∑
n

Qan = 0, Qanm = −1

2
|εnml|Qal. (5.32)

We wish to cancel the Ẏ -loop contribution to logarithmic divergences

(TrηgnαTa)Ẏ = −
∑
b

qbnQ
b
ag
n
α = −Qang

n
α, (5.33)

and, dropping terms proportional to the last expression in (5.19), Ẏ contributions to linear
divergences:

X Ẏ
χ 3

∑
b

F̃ a
µνQ

b
a

[
gnµνqbn

(
F − 2qbmF

m
)

+ 2qbnF
n

{(
α̇− 1

2

)
Xµν + β̇gµν

}]
= F̃ a

µνF
1

{(
Qa2g

2µν +Qa3g
3µν
)

+ 2Qa1

[(
α̇− 1

2

)
Xµν + β̇

(
g2µν + g3µν

)]
−2
(
Qa12g

2µν +Qa13g
3µν
)}

+ cyclic (1,2,3) + total derivative. (5.34)

Using (5.32), (5.34) becomes

X Ẏ
χ 3 F̃ a

µνF
1

{(
Qa2g

2µν +Qa3g
3µν
)

+ 2Qa1

[(
α̇− 1

2

)
Xµν + β̇

(
g2µν + g3µν

)]
+
(
Qa3g

2µν +Qa2g
3µν
)}

+ cyclic (1,2,3) + total derivative

= F̃ a
µνF

1
[(
Qa2 +Qa3 + 2β̇Qa1

) (
g2µν + g3µν

)
+Qa1 (2α̇− 1)Xµν

]
+cyclic (1,2,3) + total derivative. (5.35)

Now we assign U(1)a charges QP
a and −QP

a to ΦP and Φ′P , respectively. This gives a
contribution to logarithmic divergences

2
∑
P

ηP qPnQ
P
a g

n
α ≡ QΦ

ang
n
α. (5.36)



CHAPTER 5. ANOMALY CANCELLATION IN EFFECTIVE SUPERGRAVITY
THEORIES FROM THE HETEROTIC STRING: TWO SIMPLE EXAMPLES 65

Cancellation of (5.33) requires
QΦ
an = Qan, (5.37)

The Φ contribution to linear divergences is

XΦ
χ 3 −2

∑
P

ηPQP
a q

P
n F̃

a
µνF

n
[
(αΦ − 1)Xµν + βΦgµν

]
= −QΦ

a1F̃
a
µνF

1
[
(αΦ − 1)Xµν + βΦ

(
g2µν + g3µν

)]
+cyclic (1,2,3) + total derivative. (5.38)

To cancel the Xµν term we require

α̇ =
1

2
αΦ, β̇ = 1− 1

2
αΦ =

1

2
βΦ +

1

2
. (5.39)

Then

X Ẏ
χ 3 F̃ a

µνF
1
{[
Qa2 +Qa3 +

(
βΦ + 1

)
Qa1

] (
g2µν + g3µν

)
+Qa1

(
αΦ − 1

)
Xµν

}
+cyclic (1,2,3) + total derivative

= F̃ a
µνF

1Qa1

[
βΦ
(
g2µν + g3µν

)
+
(
αΦ − 1

)
Xµν

]
+cyclic (1,2,3) + total derivative = −XΦ

χ , (5.40)

up to a total derivative.
Note that this is a highly nontrivial result. In addition to the importance of the properties

in (5.19), the relations (5.32), that are specific to the Z7 orbifold we are considering, are
crucial to the cancellations in this section. Since the Φ have modular invariant masses, the
ψ’s have no gauge charges, and the T ’s have n-independent prefactors fT , no terms linear
in the gauge field strengths appear in the anomaly.

Finally we remark that a pair of PV fields ΦC ,Φ′C with superpotential coupling (5.2)
contributes an amount (

φC + φ′C
)
CC
a = ∆M2CC

a (5.41)

to the coefficient of F a · F̃a in (5.15). This vanishes for pairs with invariant masses, and
its form assures that the anomaly arising from PV masses in the regulated theory matches
the anomaly due to linear divergences in the unregulated theory. In particular it makes no
difference whether or not we assign non-Abelian gauge charges to the ΦP , and their U(1)a
charges have no affect on the term in the anomaly quadratic in the U(1)a field strengths.

5.5 The anomaly in Z3 and Z7 orbifolds

In Appendix B we show that is possible to cancel all the ultraviolet divergences from the
Ẏ fields with a simple choice of the set (5.11) such that the fields with noninvariant masses
have the properties

Trη(lnM)n>1 = ∆Trη(lnM)n>1 = Trη(∆ lnM)(f̄α)n>0 = 0, (5.1)
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and the anomaly due to the variation of (5.4) reduces to

δLanom = b

∫
d4θEFΩ,

Ω = ΩYM −
1

24
ΩGB −

bspin

48b

(
4Gβ̇αG

αβ̇ − 16RR̄ +D2R + D̄2R̄
)

+
1

30
(Ωf + ΩD) ,(5.2)

where (see Appendix B)

8π2bspin = 8π2b+ 1 = 31, Ω̃f = Trη∆ lnM2Ωf . (5.3)

The results for the Gauss-Bonnet and Yang-Mills terms are well-established [311, 38, 154,
145, 310, 188, 37, 36, 198, 312] and result from the universality conditions (5.3) and (B.7),
as illustrated in the appendices. The only other term in (5.2) that contains a chiral anomaly
is Ωf , which, using the set (5.11) of PV fields, is a priori a product of the chiral superfields
Xα, gα and gnα. We show in Appendix B we may choose the PV parameters such that

(D̄2 − 8R)Ω̃f = 30
∑
n

gαng
n
α, (5.4)

in agreement with the string callculation of [379].
The anomaly is canceled provided the Lagrangian for the dilaton S, S̄ is specified by the

coupling (5.5) and the Kähler potential (5.9), or, equivalently, the linear supfield L satisfies
(5.3) and the GS term (5.13) is added to the Lagrangian.

5.6 Conclusion

We have shown that a suitable choice of Pauli-Villars regulator fields allows for a full can-
cellation of the chiral and conformal anomalies associated, respecively, with the linear and
logarithmic divergences in the effective supergravity theories from Z3 and Z7 compactifica-
tion of the weakly coupled heterotic a string without Wilson lines. In particlar we were able
to reproduce the form of the chiral anomaly found in a string theory calculation [379] for
these two models.

In a future study we will extend our analysis to an example of Z3 orbifold compactification
with Wilson lines and an anomalous U(1).
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Chapter 6

Anomaly cancellation in effective
supergravity from the heterotic string
with an anomalous U(1)

6.1 Introduction

Starting with the determination of the full anomaly structure of Pauli-Villars (PV) regular-
ized supergravity [92], we recently showed [185] that an appropriate choice of PV regulator
fields allows for cancellation of all the T-duality (hereafter referred to as “modular”) anoma-
lies by the four-dimensional version of the Green-Schwarz term in Z3 and Z7 compactifica-
tions of the heterotic string without Wilson lines. We further matched our results to a string
calculation [379] of the chiral anomaly in those theories. Here we extend our results to a
specific Z3 compactification [252, 171] (hereafter referred to as FIQS) with two Wilson lines
and therefore an anomalous U(1), hereafter referred to as U(1)X . In the following section
we briefly describe the orbifold model we are studying. In Section 3 we outline the four-
dimensional Green-Schwarz mechanism and the structure of the anomaly when an anomalous
U(1) is present. In Section 4 we discuss some aspects of the cancellation of ultra-violet (UV)
divergences and anomaly matching that are specific to the case with an anomalous U(1),
as well as some simplifications with respect to the Z7 case studied in [185]. We summarize
our results in Section 5. The full set of conditions for cancellation of UV divergences and
anomaly matching are given in Appendix C, a sample solution to these constraints is pre-
sented in Appendix C, and the full spectrum for the FIQS model is displayed in Appendix C.
The determination of the correct Pauli-Villars (PV) masses can have implications for soft
supersymmetry breaking terms [187, 75, 320].
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6.2 The FIQS Model

Here we will give a brief review of the orbifold model we will consider for the rest of the
chapter. The FIQS model [252, 171] is a Z3 orbifold compactification of the 10d E8 ⊗ E8

heterotic string compactified to T 6 with two Wilson lines and a nonstandard embedding for
the shift vector. The embeddings of the shift vector and Wilson lines are given by

V =
1

3
(1, 1, 1, 1, 2, 0, 0, 0)(2, 0, 0, 0, 0, 0, 0, 0)′ (6.1)

a1 =
1

3
(0, 0, 0, 0, 0, 0, 0, 2)(0, 1, 1, 0, 0, 0, 0, 0)′ (6.2)

a3 =
1

3
(1, 1, 1, 2, 1, 0, 0, 1, 1)(1, 1, 0, 0, 0, 0, 0, 0)′ (6.3)

Where the prime indicates that the last 8 elements of the above vectors correspond to
the second factor of E8. With these specifications, the massless spectrum of the FIQS
model can be worked out following the standard recipes [250, 251]. The 4D gauge group is
SU(3)⊗ SU(2)⊗ SO(10)⊗ U(1)8. The generators of the eight U(1) factors can be written
as linear combinations of the E8 ⊗ E8 Cartan subalgebra generators HI as

Qa =
16∑
I=1

qIaH
I (6.4)

The constants qIa are determined by requiring that qa · qb = 0 and qa · αbj = 0, where the
αbj are the sixteen dimensional simple root vectors of the nonabelian gauge group factors.
Thus the index b corresponds to SU(3), SU(2), or SO(10) and j runs over the rank of each
group. One choice of qa’s is [101]:

~q1 = 6(1, 1, 1, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)′ (6.5)

~q2 = 6(0, 0, 0, 1,−1, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)′ (6.6)

~q3 = 6(0, 0, 0, 0, 0, 1, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)′ (6.7)

~q4 = 6(0, 0, 0, 0, 0, 0, 1, 0)(0, 0, 0, 0, 0, 0, 0, 0)′ (6.8)

~q5 = 6(0, 0, 0, 0, 0, 0, 0, 1)(0, 0, 0, 0, 0, 0, 0, 0)′ (6.9)

~q6 = 6(0, 0, 0, 0, 0, 0, 0, 0)(1, 0, 0, 0, 0, 0, 0, 0)′ (6.10)

~q7 = 6(0, 0, 0, 0, 0, 0, 0, 0)(0, 1, 0, 0, 0, 0, 0, 0)′ (6.11)

~q8 = 6(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 1, 0, 0, 0, 0, 0)′ (6.12)

To get the charges of the matter fields, one normalizes the U(1)a generators as

Qa →
1√

2 |qa|
Qa, (6.13)
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where the
√

2 is inserted to adhere to the standard phenomenological normalization. For
this choice, one finds that the traces Q6, Q7, and Q8 are all nonzero. One can perform a
re-definition of the generators so that only one factor of U(1) has a nonzero trace. In [252,
171], the following re-definition was made:

q
(FIQS)
6 = q6 + q7 (6.14)

q
(FIQS)
7 = q7 + q8 (6.15)

qX = q6 − q7 + q8 (6.16)

While Tr
[
Q

(FIQS)
6

]
= Tr

[
Q

(FIQS)
7

]
= 0 in this basis, one also has Tr

[
Q

(FIQS)
6 Q

(FIQS)
7 QX

]
6=

0 which is rather undesirable. Therefore, we will use a different choice such that the above
mixed anomaly does not appear. In particular, we define

q
(N)
6 = q6 − q8 = q

(FIQS)
6 − q(FIQS)

7 (6.17)

q
(N)
7 = q6 + 2q7 + q8 = q

(FIQS)
6 + q

(FIQS)
7 (6.18)

In what follows, we will simply drop the superscript N and use these as the definition of the
U(1)6 and U(1)7 generators. As a final note, the charges defined above are generally not
orthogonal to one another, i.e. Tr [QaQb] 6= 0 for some a 6= b. It is possible to define a new
set of charges that are mostly orthogonal to one another, but we will not need to do so for
our purposes.

We close this section with some relations among the gauge charges qpa and modular weights
qpn of the chiral superfields Φp of the model. These will be useful in the analysis that follows.
These include the universality conditions

8π2b = Ca +
∑
p

(2qpi − 1)Cp
a =

1

24

(
2
∑
p

qpn −N +NG − 21

)
∀ i, a,

−2π2δX =
1

24
TrTX =

1

3
TrT 3

X = Tr(T 2
aTX) ∀ a 6= X. (6.19)

Here Ca is the quadratic Casimir in the adjoint representation of the gauge group factor Ga
and Cp

a is the Casimir for the representation of the chiral supermultiplet Φp, Ta is a generator
of Ga, and N,NG are the number of chiral and gauge supermultiplets respectively, with, in
the FIQS model,

N = 415, NG = 64, 8π2b = 6, −4π2δX = 3
√

6. (6.20)

In addition we will use the sum rules∑
p

qpn = A1,
∑
p

qpmq
p
n = A2 +B2δmn,∑

p

qlqpmq
p
n = A3 +B3 (δlm + δmn + δnl) + C3δlmδmn,∑

b

qbaq
b
n = Q1a,

∑
b

qbaq
b
mq

b
n = Q2a + P2aδmn, (6.21)
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with, in particular,
B2 = 42, P2X = 5

√
6. (6.22)

6.3 Anomalies and anomaly cancellation with an

anomalous U(1)

The effective supergravity theory from generic orbifold compactifications with Wilson lines
is anomalous under both U(1)X and T-duality:

T ′i =
ai − ibiT i

iciT i + di
, aibi − cidi = 1, ai, bi, ci, di ∈ Z, i = 1, 2, 3,

Φ′a = e−
∑

i q
a
i F

i(T i)Φa, F i(T i) = ln(iciT
i + di), (6.1)

where Φa is any chiral supermultiplet other than a diagonal Kähler modulus T i, and qai are
its modular weights.

We are working in the covariant superspace formalism of ref. [74, 16] in which the chiral
multiplets Zp = T i, S,Φa, with S the dilaton superfield, are covariantly chiral:

Dβ̇Zp = 0, (6.2)

with DA, A = a, α a fully covariant superspace derivative. In particular, under a U(1) gauge
transformation

Z ′p = gq
p
aZp, Z̄ ′p = g−q

p
aZ̄p, A′aA = AaA − g−1DAg, (6.3)

where g is a hermetian superfield, and AA is the gauge potential in superspace. Gauge
invariance assures that holomorphy of the superfield is maintained under (6.3). If gauge
invariance is unbroken, the gauge potential AA does not appear explicitly in the superspace
Lagrangian. Instead the usual Yang-Mills superfield strength Wα is obtained as a compo-
nent of the two-form superfield strength FAB. One can still introduce [74, 16] a superfield
superpotential Va such that

Wα = −1

8
(D̄2 − 8R)DαVa, V ′a = Va + Λa + Λ̄a, (6.4)

but Va never appears in the Lagrangian and the chiral superfield Λa is independent of g in
(6.3).

However in the presence of an anomalous U(1), gauge invariance is broken. It is easy to
see that the UV divergences cannot be regulated by PV fields that all have U(1)X invariant
masses. There is a quadratically divergent term proportional to DXTrTX , where DX is
the auxiliary field of the U(1)X supermultiplet, which must be cancelled by the analogous
term from the PV sector. Invariant masses require the coupling of PV fields with equal and
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opposite charges that do not contribute to (TrTX)PV . Noninvariant masses arise from the
superpotential for PV fields ΦC :

W (ΦC ,Φ′C) = µCΦCΦ′C , (6.5)

with µC constant (in the absence of threshold corrections, as for the cases considered here).
If QC

X +Q′CX 6= 0, holomorphy of (6.5) is not respected under (6.3) for a = X. For this reason
we do not include the U(1)X connection in the covariant derivative (6.2). Instead of (6.3)
we require

Φ′C = e−Q
C
XΛΦC , Φ̄′C = e−Q

C
X Λ̄Φ̄C (6.6)

under a U(1)X transformation, and the Kähler potential depends on U(1)X-charged fields
through the invariant operators Φ̄eQXVXΦ.

It was shown in [92] that modular noninvariant masses can be restricted to a subset of
PV chiral supermultiplets ΦC with diagonal Kähler metric:

K(ΦC , Φ̄C) = exp[fC(Z, Z̄)]|ΦC |2. (6.7)

and superpotential (6.5).
As in [185], we define a superfield

M2
C =M2

C′ = exp(K − fC − f ′C) = exp(K − 2f̄C), f̄C =
1

2
(fC + f ′C), (6.8)

whose lowest component m2
C = M2

C | is the ΦC ,Φ′C squared mass. Then the anomalous part
of the one-loop corrected supergravity Lagrangian takes the form [92]

Lanom = L0 + L1 + Lr =

∫
d4θE (L0 + L1 + Lr) ≡

∫
d4θEΩ, (6.9)

where E is the superdeterminant of the supervielbein, and

L0 =
1

8π2

[
Trη lnM2Ω0 +K (ΩGB + ΩD)

]
, (6.10)

with η = ±1 the PV signature. The operators in (6.10) are given explicitly in [92, 185],
except that now

Ω0 = Ω0
YM + Ω′0, (6.11)

where Ω′0 contains the Gauss-Bonnet Chern-Simons superfield and operators composed of
auxiliary superfields of the gravity supermultiplet, and

Ω0
YM =

∑
a6=X

Ωa
YM = ΩYM − ΩX

YM, (6.12)

is the Yang-Mills Chern-Simons superfield without the U(1)X term, and and Ωa
YM is defined

by its chiral projection:
(D̄2 − 8R)Ωa

YM = Wα
aW

a
α . (6.13)
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Ωr is composed of terms linear and higher order in lnM, and ΩD represents a “D-term”
anomaly [92, 185] that, together with a contribution to the Gauss-Bonnet term ΩGB, arises
from uncanceled total derivatives with logarithmically divergent coefficients, requiring the
introduction of a field-dependent cut-off:

∂µΛ =
1

4
∂µK. (6.14)

L1 is defined by its variation:

∆L1 =
1

8π2

1

192
Trη∆ lnM2Ω′L =

1

8π2

1

192
TrηHΩ′L + h.c., (6.15)

where under (6.1) and (6.6) lnM2 transforms as

∆ lnM2 = H + H̄, (6.16)

with H holomorphic. Defining

(D̄2 − 8R)Ωf = fαfα, (D̄2 − 8R)Ωf̄ = f̄αf̄α, (D̄2 − 8R)Ωf̄X = f̄αXα,

fα = −1

8
(D̄2 − 8R)Dαf, f̄α = −1

8
(D̄2 − 8R)Dαf̄ , (6.17)

we have

Ω′L = 192Ωf − 128Ωf̄ − 64Ωf̄X ,

∆L1 =
1

8π2
TrηH

(
Ωf −

2

3
Ωf̄ −

1

3
Ωf̄X

)
+ h.c. (6.18)

In the presence of an anomalous U(1)X the form of fC is taken to be

fC = αCK(Z, Z̄) + βCg(T, T̄ ) + δCk(S, S̄) +
∑
n

qCn g
n(T n, T̄ n) +QC

XVX ,

f̄C = ᾱCK + β̄Cg + δ̄Ck +
∑
n

q̄Cn g
n + Q̄C

XVX ,

HC =
(
1− 2γ̄C

)
F (T )− 2

∑
q̄Cn F

n(T n)− 2Q̄C
XΛ, γ̄C = ᾱC + β̄C , (6.19)

where k is the dilaton kähler potential, and g is defined in (6.31) below. The traces in
∆Lanom can be evaluated using only PV fields with noninvariant masses or using the full set
of PV fields, since those with invariant masses, HC = 0, drop out. The contribution ∆L0

to the anomaly is linear in the parameters αC , βC , qCn , Q
C
X , and the trace of the coefficient of

Ω′0 is completely determined by the sum rules [182]

N ′ =
∑
C

ηC = −N − 29, N ′G =
∑
γ

ηVγ = −12−NG,∑
C

ηCfC = −10K −
∑
p

qpng
n −

∑
a

qaXVX , (6.20)
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that are required to assure the cancellation of quadratic and logarithmic divergences. In
(6.20) the index C denotes any chiral PV field, the index γ runs over the Abelian gauge PV
superfields that are needed to cancel some gravitational and dilaton-gauge couplings, and
the sum over p includes all the light chiral multiplet modular weights with qSn = 0, qT

i

n = 2δin.
All PV fields with noninvariant masses have δ = 0, and most1 with δ 6= 0 have α = β = qn =
0 = QC

X . For the purposes of the present analysis we can largely ignore the latter. Similarly,
the cancellation of linear divergences that give rise to the chiral anomaly proportional to

ImTrφG · G̃ 3 Im
1

2

∑
a6=X

{
F (t)Ca −

∑
p

[
F (t)− 2

∑
n

qpnF
n(tn)− 2qpXλ

]
(T pa )2

}
F a · F̃a

(6.21)
fixes the coefficient of Ω0

YM . Here Gµν 3 −iTaF a
µν is the field strength associated with the

fermion connection, ti = T i|, λ = Λ| are the lowest components of the chiral supermultiplets
T i,Λ, and a left-handed fermion f transforms as

f → eφf (6.22)

under modular and U(1)X transformations; φ = − i
2
ImF for gauginos, and

φ =
i

2
ImF −

∑
n

qpnF
n(tn)− qpXλ (6.23)

for chiral fermions χp. The compensating PV contribution

Im
(

TrηφG · G̃
)
PV
3 Im

∑
C

ηC
(
φC + φ′C

)
(TCa )2FaF̃

a = −ImTrφG · G̃ (6.24)

that cancels (6.21) determines the anomaly coefficient of Ω0
YM , since for each pair ΦC ,Φ′C

the sum of fermion phases φC + φ′C = HC is just the holomorphic part of the variation
(6.16), (6.19) of the PV mass term ∆ lnM2

C .
In the chiral formulation for the dilaton, the anomaly is cancelled by the variation of the

superspace Lagrangian

L =

∫
d4θE

(
S + S̄

)
Ω. (6.25)

where Ω is the real superfield introduced in (6.9). The quantum Lagrangian varies according
to

∆Lanom =

∫
d4θ

{
b
[
F (T ) + F̄ (T̄ )

]
− δX

2

(
Λ + Λ̄

)}
Ω, (6.26)

1There is a set of chiral multiplets in the adjoint representation of the gauge group that has f = K − k;
these get modular invariant masses though their coupling in the superpotential to a second set with f = k.
These cancel renormalizable gauge interactions and gauge-gravity interactions, respectively. Together with
a third set, that has f = 0 and contributes to the anomaly, they cancel the Yang-Mills contribution to the
beta-function.
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so the full Lagrangian is invariant provided

∆S = −bF (T ) +
δX
2

Λ, F =
∑
i

F i. (6.27)

However the classical Kähler potential for the dilaton is no longer invariant and must be
modified:

kclass(S, S̄) = − ln(S + S̄)→ k(S, S̄) = − ln(S + S̄ + VGS), (6.28)

where VGS is a real function of VX and of the chiral supermultiplets; it transforms under
(6.1) and (6.4), (6.6) as

∆VGS = b
(
F + F̄

)
− δX

2

(
Λ + Λ̄

)
. (6.29)

A simple solution consistent with string calculation results [38, 50, 150] is

VGS = bg(T, T̄ )− δX
2
VX , (6.30)

where
g(T, T̄ ) =

∑
i

gi(T i, T̄ i), gi = − ln(T i + T̄ i) (6.31)

is the Kähler potential for the moduli. The modification (6.28) is the 4d Green-Schwarz
(GS) term in the chiral formulation. As discussed in [185], the 4d GS mechanism is more
simply formulated in the linear multiplet formalism [74, 16]for the dilaton. In this case the
linear dilaton superfield L remains invariant, its Kähler potential is unchanged, and instead
one adds a term to the Lagrangian:

LGS = −
∫
d4θELVGS, ∆LGS = −∆Lanom (6.32)

Only terms in the anomaly that are linear in the combination H̃, where

H̃ = bF (T )− δX
2

Λ, (6.33)

can be canceled by the Green-Schwarz term. The values of b and δX are fixed by the
conditions (6.20), (6.24) for the cancellation of divergences, together with the universality
conditions (6.19), that hold for all Z3 and Z7 orbifold compactifications.

In contrast to L0, the contributions to the anomaly from L1 and Lr are nonlinear in the
parameters α, β, qn, QX , and depend on the details of the PV sector. In particular Lr has
no terms linear in lnM and must vanish. To insure that the anomaly coefficient depends
on the T-moduli only through F (T ) we impose [185]

q̄Cn = 0 (6.34)

for (almost2) all PV fields with noninvariant masses.
2The exception is for some PV fields, introduced in Appendix C, needed to cancel divergences from light

fields with Abelian gauge charges.
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6.4 The anomaly and cancellation of UV divergences

in the FIQS model

The full set of conditions for cancellation of the divergences and for obtaining an anomaly
linear in H̃, Eq. (6.33), that matches the string result [379] is given in the Appendix C.
In this section we outline some features of the case of Z3 with an anomalous U(1)X . We
will be primarily concerned with the contribution of ∆L1, Eq. (6.18), to the anomaly.
This expression is nonlinear in the parameters qCn , Q

C
X of the PV fields, and therefore model

dependent, as noted above. This was illustrated in [185] where it was shown that cancellation
of the modular anomaly requires (6.34). However, the contribution cubic in QC

X is model
independent. It is given by

∆L1(Q3
X) = −2(Λ + Λ̄)

24π2
TrηQ̄X

(
3Q2

X − 2Q̄2
X

)
ΩX
YM = −2(Λ + Λ̄)

24π2
TrηQ3

XΩX
YM , (6.1)

where the sum is over all PV fields, and we used the definition (3.6), (6.19) of Q̄X and the
fact that ∑

C

ηC(QC
X)p(Q′CX )p

′
=
∑
C

ηC(QC
X)p

′
(Q′CX )p, (6.2)

for any powers p, p′. Cancellation of the term in TrφG · G̃ that is cubic in Q3
X requires

− 2(Λ + Λ̄)

24π2
Tr
(
ηQ3

X

)
ΩX
YM =

2(Λ + Λ̄)

24π2
Tr
(
q3
X

)
ΩX
YM = −δX

2
(Λ + Λ̄)ΩX

YM , (6.3)

from (6.19), so the anomaly (6.1) is consistent with the requirement for anomaly cancellation.
In contrast, anomaly terms quadratic in Q2

X are model dependent. For example, in [92] it
was assumed that f̄C = fC for all PV fields with noninvariant masses, giving a contribution

∆L1(FQ2
X) =

F + F̄

24π2
Trη (1− 2γ̄)

(
3Q2

X − 2Q̄2
X

)
ΩX
YM (6.4)

=
F + F̄

24π2
Trη (1− 2γ̄)Q2

XΩX
YM =

F + F̄

24π2
Trq2

XΩX
YM =

b

3
(F + F̄ )ΩX

YM ,(6.5)

from (6.21) and (6.24) with a = X, and (6.19). Here we instead assume, in addition to (6.34),
that Q̄C

X = 0 if 1− γ̄ 6= 0, that is PV masses can be noninvariant under either T-duality or
U(1)X , but not both. In this case the last term in (6.4) drops out and we recover a factor
three, in agreement with the requirement for anomaly cancellation.

The full set of PV fields sufficient to regulate light field couplings is described in Section
3 of [92]. These include a set ŻP = ŻI , ŻA, with negative signature, ηŻ = −1, that regulates
most of the couplings, including all renormalizable couplings, of the light chiral supermul-
tiplets Zp = T i,Φa. The Ż get invariant masses through a superpotential coupling to PV
fields ẎP with the same signature, opposite gauge charges and the inverse Kähler metric:

(Ta)Ẏ = −(T Ta )Ż = −(T Ta )Z . (6.6)
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It remains to cancel the divergences introduced by the fields Ẏ . To this end we take the
following set:

ψPn : fPn = αPψK + βPψ g + qPψ g
n +QP

ψVX , αPψ + βPψ = γPψ , q̄Pψ = 0,

T P : fPT = αPTK + βPT g +QP
T VX , αPT + βPT = γPT ,

φC : fφ
C

= αCK. (6.7)

In the solution to the constraints given in Appendix C, the ψC and TC are further subdivided,
together with additional fields, into sets Sa, a = 1, . . . , 12, some of which are charged under
the nonanomalous gauge group. The φC regulate certain gravity supermultiplet loops and
nonrenormalizable coupling of chiral multiplets. These must be included together with the
other PV fields introduced above in implementing the sum rules (6.20). Their contributions
will be included in all the finiteness and anomaly conditions that involve only the parameters
α in (6.7); otherwise they play no role in the analysis below. In the expressions given in the
remainder of this section, we drop terms that contain only Xα or Xµν since their contributions
are included in the sums (6.20) and the additional sum rule [182]∑

C

ηCα2
C = −4. (6.8)

In [185] we also introduced pairs ΦP ,Φ′P with modular invariant masses that did not
contribute to the anomaly, but played an important role in canceling certain divergences.
However, because the Z3 sum rules (6.21) are much simpler than the analogous sum rules
for the Z7 case studied in [185], here we need only the set in (6.7).

The quadratic and logarithmic divergences we are concerned with here involve the su-
perfield strengths −i(Ta)W a

α ,

ΓCDα = −1

8
(D̄2 − 8R)DαZpΓCDp, (6.9)

and

Xα = −1

8
(D̄2 − 8R)DαK, (6.10)

associated with the Yang-Mills, reparameterization and Kähler connections, i(Ta)
C
DAµ, ∂µZ

pΓCpD
and δCDΓµ, respectively, where

Γµ =
i

4

(
DµziKi −Dµz̄m̄Km̄

)
. (6.11)

Cancellation of quadratic divergences requires

TrηΓα = TrηTX = 0, (6.12)

and cancellation of logarithmic divergences requires

TrηΓαΓβ = TrηΓαT
a = Trη(T a)2 = 0, (6.13)
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where η = +1 for light fields. Cancellation of all contributions linear and quadratic in Xα

is assured by the conditions in (6.20) and (6.8). The Yang-Mills contribution to the term
quadratic in Wα is canceled by chiral fields in the adjoint (see footnote on page 73) that we
need not consider here. Finally, cancellation of linear divergences requires cancellation of
the imaginary part of

TrηXχ = TrηφG · G̃, G̃µν =
1

2
εµνρσGρσ, (6.14)

where Gµν is the field strength associated with the fermion connection;3 for left-handed
fermions:

Gµν = −ΓCDµν + iF a
µν(Ta)

C
D +

1

2
Xµνδ

C
D, (6.15)

where

Xµν =
(
DµziDν z̄m̄ −DνziDµz̄m̄

)
Kim̄ − iF a

µν(Taz
i)Ki

= 2i (∂µΓν − ∂νΓµ) , i = p, s, (6.16)

is the field strength associated with the Kähler connection (6.9). For a generic PV superfield
ΦC with diagonal metric, its fermion component χC transforms under (6.1) and (6.6) as

χ′C = eφ
C

χC , φC =

(
1

2
− αC − βC

)
F −

∑
i

F i(ti)qCi − λQX . (6.17)

In evaluating (6.14) we will use the fact that the expression4

εµνρσgiµνg
i
ρσ = 0, (6.18)

vanishes identically, and the expressions

X ij = εµνρσImF igiµνg
j 6=i
ρσ = 4εµνρσImF i∂µg

i
ν∂ρg

j
σ = 4∂ρ

(
εµνρσImF i∂µg

i
νg

j
σ

)
,

X i =
1

2
εµνρσImF igiµνXρσ = 4i∂ρ

(
εµνρσImF i∂µg

i
νΓσ
)
,

X ia = εµνρσImF igiµνF
a
ρσ = 4∂ρ

(
εµνρσImF i∂µg

i
νA

a
σ

)
, (6.19)

are total derivatives, where Aaµ is an Abelian gauge field, and

gi = − ln(ti + t̄i), giµ = −∂µt
i − ∂µt̄ı̄

ti + t̄ı̄
, giµν = ∂µg

i
ν − ∂νgiµ. (6.20)

3Here we neglect the spin connection whose contribution was discussed in [185].
4It was noted in [185] that the expression (6.18), which is in fact the T -dependent part of the chiral

anomaly found in [379], vanishes. The authors of [379] attribute [364] this to their approximation that neglects
higher order corrections. However if these corrections take the form gi(T i, T̄ i) → gi(T i, T̄ i) + ∆i(T i, T̄ i),
our results our unchanged. Note that the functional form of ∆i is severely restricted by the fact that it has
to be invariant under T-duality.
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The full Kähler potential for Ẏ , with no anomalous U(1)X , is given in [92, 185]; here it
takes the form

K(Ẏ ) = eĠ

(∑
A

e−g
a−qaVX |ẎA|2 +

∑
I

e−2gi|ẎI |2 +
∑
N

|ẎN |2
)

+ . . . ,

ga =
∑
n

qang
n, Ġ = α̇K + β̇g, α̇ + β̇ = 1, (6.21)

where ẎN=1,2,3 (and their counterparts ŻN) are gauge singlet PV fields needed [182] to
make the Kähler potential and superpotential terms for Ż, Ẏ fully invariant, and the ellipsis
represents terms that make no contribution to the expressions given below. Using the sum
rules in (6.21) and (6.20) we obtain:

Trη̇ΓẎα = −
[
(N + 2)β̇ − A1

]
gα, Trη̇T ẎX = TrTX ,

Trη̇ΓẎαΓẎβ = −2α̇
[
β̇(N + 2)− A1

]
Xαgβ −

[
β̇2(N + 2)− β̇A1 + A2

]
gβgα

−B2

∑
n

gnαg
n
β

Trη̇ΓẎαTa = δaXTrT ẎX Ġα −Q1agα, Ġα = α̇Xα + β̇gα. (6.22)

Using (6.19) and (6.21), the part of X Ẏ that is independent of gauge charges takes the
form:

X Ẏ
χ 3 1

2
[(N + 2)− 2A1]FĠ · ˜̇G− (A1 − 2A2)FĠ · g̃ − A3Fg · g̃

+total derivative, Ġµν = α̇Xµν + β̇gµν . (6.23)

The modular weights for the ψ satisfy∑
m,n

gnqPm
n = gqPψ ,

∑
P

ηPψ q
Pk
l q

Pk
n q

Pk
n = 0,∑

l,m,n

gmgnqPl
m q

Pl
n = (qPψ )2

∑
n

gngn. (6.24)

Like X Ẏ
χ , Xψ

χ depends only on F, gµν and Xµν , and (6.22) and (6.23) can be cancelled by
some combination of the fields in (6.7), with the condition∑

P

ηPψ (qPψ )2 = B2. (6.25)

The pure T-moduli anomaly is given by

∆L1(Fg2) =
F

8π2
Trηψ (1− 2γ̄ψ) q2

ψΩg, (D̄2 − 8R)Ωg =
∑
n

gαng
n
α. (6.26)
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Consistency with string results [257] requires

Trηψ (1− 2γ̄ψ) q2
ψ = −8π2b (6.27)

Finally, we require

∆L1(QXg
2) = − 2Λ

8π2
TrηQ̄XΩf =

1

2
ΛδXΩg. (6.28)

Using (6.24), the condition (6.28) requires∑
P

ηPψ Q̄
P
ψ (qPψ )2 = −4π2δX . (6.29)

All other other contributions to ∆L1 are required to vanish.

We conclude this section by noting that cancellation of divergences linear in the U(1)a
field strengths is much simpler than for the Z7 case considered in [185], as outlined below.

The gauge charges for the FIQS ( [252, 171]) model are listed5 in Appendix C. The uni-
versality of the anomaly term quadratic in Yang-Mills fields strengths is guaranteed by the
universality condition (6.19), as discussed in Section 6.3. Since gauge transformations com-
mute with modular transformations, a set of chiral multiplets Φb that transform according
to a nontrivial irreducible representation R of a nonabelian gauge group factor Ga have the
same modular weights qRn such that∑

b∈R

qbn(Ta)
b
b = qRn (TrTa)R = 0. (6.30)

Therefore terms linear in Yang-Mills field strengths occur only for Abelian gauge group
factors. We need to cancel the Ẏ -loop contribution to logarithmic divergences(

Trη
∑
n

qng
n
αTa

)
Ẏ

= −
∑
b,n

qbnQ
b
ag
n
α = −Q1agα, (6.31)

and, dropping terms proportional to the last expression in (6.19), the relevant Ẏ contributions
to linear divergences:

X Ẏ
χ 3

∑
a,b,n

Qb
aF̃

a ·

[
gnqbn

(
F − 2

∑
m

qbmF
m

)
+ 2qbnF

n

(
Ġ− 1

2
X

)]

=
∑
a

F̃ a ·

{[
g
(

1 + 2β̇
)

+X (2α̇− 1)
]
Q1aF − 2

∑
n

gnF nQ2a

}
, (6.32)

5We have made some corrections to the U(1)a, charges given in [252, 171].
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where we used (6.21). The last term in (6.32) is cancelled by

Xψ
χ 3 −2

∑
a,P,l,m,n

ηPψQ
P
a q

Pl
m q

Pl
n F

mF̃ a · gn = −2
∑
a,P

ηPψQ
P
a (qP )2F̃ a ·

∑
n

gnF n, (6.33)

provided ∑
P

ηPψQ
P
a (qP )2 = −Q2a. (6.34)

The remaining terms in (6.32), as well as (6.31) can be cancelled by a combination of the
fields in (6.7). For a = X there are additional terms proportional to (TrηTX)PV = −TrTX .

6.5 The final anomaly in the FIQS model

In Appendix C we show that is possible to cancel all the ultraviolet divergences from the Ẏ
fields with a choice of the set (6.7) such that the fields with noninvariant masses have the
properties

Trη(lnM)n>1 = ∆Trη(lnM)n>1 = Trη(∆ lnM)(f̄α)n>0 = 0. (6.1)

Then, including the results of [185], the anomaly due to the variation of (6.9) takes the form

δLanom =

∫
d4θE

(
bF − 1

2
δXΛ

)
Ω +

∫
d4θEbFΩ′, (6.2)

where

Ω = ΩYM − ΩGB + Ωg,

Ω′ = −bspin

48b

(
4Gβ̇αG

αβ̇ − 16RR̄ +D2R + D̄2R̄
)
− 1

8π2b
ΩD, (6.3)

where Ωg is defined in (6.26), and bspin governs the contributions from PV masses, as opposed
to those arising from uncancelled divergences:

8π2bspin = 8π2b+ 1, (6.4)

with 8π2b = 6 in the FIQS model. In the absence of an anomamous U(1), Λ = 0, the anomaly
can be cancelled by the four dimensional GS mechanism as described in [185]. However with
Λ 6= 0, the anomaly as written in (6.3) is no longer universal and cannot be cancelled by the
GS term alone. However all of the “D-terms”, in other words the full expression Ω′, can be
removed [90] by adding counterterms to the Lagrangian, giving a universal anomaly which
can now be cancelled by the GS term.6

The results for the Gauss-Bonnet and Yang-Mills terms are well-established [38] and
result from the universality conditions (6.19).

6The elimination of ΩD further obviates the need for a modification of the linear-chiral duality transfor-
mation, a possibility condsidered in Appendix B of [185] and Appendix E of [92].
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6.6 Conclusion

We have shown that a suitable choice of Pauli-Villars regulator fields allows for a full can-
cellation of the chiral and conformal anomalies associated, respectively, with the linear and
logarithmic divergences in the effective supergravity theory from a Z3 orbifold compactifica-
tion with Wilson lines and an anomalous U(1).

A future work [257] will compare this result with that obtained directly from string
theory.
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Part III

Cosmology & The String Swampland
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Overview of Part III

In the remainder of this dissertation, we apply concepts from the string swampland to in-
flation and dark energy. Dark energy is perhaps the most mysterious known aspect of our
Universe. Dark matter is also mysterious, but we are fairly certain it consists of unknown
particles. However, we have a much more tenuous grasp on the characteristics dark energy.
Observations suggest that dark energy can be modeled as a cosmological constant in Ein-
stein’s equations. If we invoke a cosmological constant explanation for dark energy, then
the mystery is translated into the small scale associated with the phenomena, ∼ O(meV).
Another possibility is that dark energy is not constant but instead arises from the dynamics
of a scalar field known as quintessence.

As we will describe below, there are some theoretical arguments from string theory that
dark energy should be quintessence as opposed to a cosmological constant. In this final
chapter, we describe experimental prospects of differentiating between quintessence and a
cosmological constant and how the swampland conjectures relate the phenomena of inflation
and dark energy.
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Chapter 7

What does inflation say about dark
energy given the swampland
conjectures?

7.1 Introduction

The discovery of the accelerating expansion of the Universe [358, 370] was a huge surprise
to the community. Because gravity only pulls , it should put a brake on the expansion of
the Universe after the Big Bang and hence the expansion should decelerate. Acceleration
implies there is a substance in the Universe that pushes the expansion. It was dubbed dark
energy . The most discussed candidate for dark energy is the cosmological constant Λ, a finite
energy density of the vacuum, due to the simple way it can be implemented into cosmological
models based on general relativity. However, despite being consistent with data [19], the 120
orders of magnitude difference between the observed vacuum energy density (ρ ≈ (meV)4)
and the näıve theoretical expectation (ρ ≈ M4

Pl) still remains the most challenging problem
in modern physics [412].

Since dark energy and the cosmological constant problem inevitably involve quantum
gravity, string theory, as a theory of quantum gravity, should address these topics. The
attempts to construct de Sitter solutions (spacetime solutions to general relativity with a
positive Λ) in string theory [83, 196, 270] have lead to the notion of the string landscape. The
landscape consists of an enormous number of vacua, each described by different low-energy
effective field theories (EFTs) of different fields and parameters. String theory therefore
supports the anthropic argument [410], namely that the value of the observed dark energy
density is what it is because otherwise human civilization could not exist. If we really live
in a (meta-)stable vacuum in the string landscape where a constant vacuum energy explains
dark energy, then there is no point in measuring the dark energy equation of state parameter
w = p/ρ, where p and ρ are the pressure and energy density of the dark energy, respectively.

String theory seems to lead to many possible low-energy EFTs, so conversely one can ask
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what criteria a given low-energy EFT should satisfy in order to be contained in the string
landscape. For the last decade, several criteria of this kind, dubbed swampland conjectures,
have been proposed [400, 348, 41]. These can have important cosmological implications.
For instance, one of the relatively well-established conjectures is the distance swampland
conjecture [348, 351, 61, 293, 401, 80, 352, 314, 229, 117, 211, 231, 81, 304] which implies
that scalar fields in a low-energy EFT of a consistent theory of quantum gravity cannot have
field excursions much larger than the Planck scale since otherwise an infinite tower of states
becomes exponentially light and the validity of the EFT breaks down. In other words, one
has the constraint1

∆φ . αMPl, α ≈ O(1). (7.1)

In the context of inflation, field excursions are related to the tensor-to-scalar ratio r by
the Lyth bound [130],

∆φ

MPl

'
√
r

8
N (7.2)

where N is the number of e-folds of inflationary expansion. Clearly the distance conjecture,
Eq. (7.1), limits the possibility of measuring tensor modes and hence primordial B-modes in
the cosmic microwave background (CMB). Naively, with N & 50, we find r . 0.003, which
is on the edge of observability for future experiments [10, 393].

The attempts to construct de Sitter solutions or inflationary models in string theory [270,
271, 390, 54, 59, 415, 60, 155, 375, 77, 119, 116] have sparked discussions on various issues
with such constructions, as well as no-go theorems [319, 396, 236, 132, 326, 105, 104, 98,
418, 387, 206, 194, 65, 78, 64, 136, 300, 365, 140, 268, 267, 35, 330, 382, 33, 137]. Motivated
by the obstructions encountered in various attempts, the de Sitter swampland conjecture
was proposed [346], which states that the scalar potential of a low-energy limit of quantum
gravity must satisfy

MPl|∇V | ≥ c V, c ≈ O(1) > 0 (7.3)

where ∇ denotes the gradient with respect to the field space, and the norm of the gradient
is defined by the metric on field space. Whether the conjecture holds true is still an open
debate [275, 169, 69, 70, 228, 273, 360, 274, 9, 118, 141, 373, 32, 34, 129, 27, 276, 269, 329,
66, 193]. Yet, even before the debate is settled, it is interesting and important to investigate
both its consequences in cosmology and potential modifications or extensions [112, 233, 232,
322, 340, 290, 309, 63, 324, 128, 144, 147, 284, 191, 15, 138, 407, 85, 218, 84, 148, 160, 307,
215, 282, 336, 49, 139, 408, 177, 230, 347, 192, 353, 76, 377, 306]. The primary implication of
this condition is that the observed positive energy density of our Universe should correspond
to the potential of a rolling quintessence field rather than a positive Λ [24]. The fact that
one can easily embed any quintessence model into supergravity [86, 111] in a rather simple
fashion, despite the difficulty that supersymmetry breaking generically spoils the flatness of

1We note that α can be greater than unity. We restrict ourselves to a more conservative approach and
keep α ∼ 1, but values as large as 2 log(Mpl/Hinf ) could be permitted.
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the quintessence potential, is also encouraging. This raises the hope that w 6= −1 might be
detected.

The de Sitter conjecture forbids (meta-)stable vacua with positive energy density, so it is
not surprising that the inflationary paradigm has apparent conflicts with the conjecture and
one may call for a paradigm shift. Nonetheless, one can also adopt a conservative approach
and regard the conjecture as a parametric constraint where the inequality holds but the
number c may not be strictly O(1) [147]. From this perspective, constraints on inflation can
then be used to constrain c.

However, if we follow this route, the optimism that one can observe w 6= −1 is greatly
diminished. To see this, recall that in single-field slow-roll inflation, the slow-roll parameters
of the potential are defined as

εV ≡
M2

Pl

2

(
V ′

V

)2

, ηV ≡M2
Pl

V ′′

V
, (7.4)

where the primes denote derivatives with respect to the inflaton. The distance conjecture
limits the inflaton field excursion ∆φ ≈

√
2εV N . O(1) and therefore the necessary number

of e-folds N ≈ 50 forces c .
√

2εV . N−1 ∼ 0.02. On the other hand, the number c
in Eq. (7.3) is meant to be universal in a given EFT. Therefore, the current accelerating
expansion must involve a quintessence field Q whose potential VQ must satisfy

1 + w =
2(V ′Q)2

(V ′Q)2 + 6V 2
Q

>
2c2

6 + c2
≡ ∆ & 1.33× 10−4. (7.5)

Although this does not exclude observable quintessence, given the fact that so far almost
all observations are consistent with a cosmological constant, such a small lower bound on
possible deviation of w from −1 makes it questionable if it is worthwhile to push the sensi-
tivity of the observations further. We may never know whether the Universe is de Sitter or
quintessence.

However, the original de Sitter conjecture, Eq. (7.3), was so strong that even the Higgs
potential was in tension with it [144]. The conjecture was also in tension with the well-
understood supersymmetric AdS solutions [129]. Recently the refined de Sitter swampland
conjecture was proposed [191, 349], which states that the scalar potential of a low-energy
theory that can be consistently coupled to quantum gravity should satisfy either

MPl|∇V | ≥ c V, c ≈ O(1) > 0, (7.6)

or

M2
Plmin(∇i∇jV ) ≤ −c′V, c′ ≈ O(1) > 0, (7.7)

where min(...) denotes the minimum eigenvalue of the Hessian ∇i∇jV in an orthonormal
frame of the scalar field space. With this refinement, the aforementioned conflicts with the
Higgs potential and the SUSY AdS solutions are resolved. The refined conjecture also raises
new possibilities for inflation. In particular, one can evade the strict bound on c arising from
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the distance conjecture by having the scalar potential satisfy the second condition Eq. (7.7)
of the new conjecture during part (or all) of inflation. As such, one may regain the hope
that observable time-varying dark energy with w 6= −1 can be obtained. See also [22] for a
recent discussion on w in consideration of the refined dS conjecture.

7.2 Single-Field Slow-Roll Inflation Models

Due to the above tension between the de Sitter conjecture and the requirements of inflation,
we assume that the inflaton potential switches from one de Sitter condition to another as the
inflaton rolls, an idea also utilized in [177]. To be specific, we take the following step-function
approach to keep the discussion general and simple: we apply the first condition, Eq. (7.6),
for the initial N1 e-folds and apply the second condition, Eq. (7.7), for the remaining N2 =
Ntot−N1 e-folds. In our analysis we set Ntot = 50. We assume εV and ηV are approximately
constant for each interval so that we have√

2ε
(1)
V ≥ c and η

(2)
V ≤ −c

′. (7.8)

Additionally, Eq. (7.1) requires that√
2ε

(1)
V N1 +

√
2ε

(2)
V N2 ≤ α ∼ O(1). (7.9)

To maximize c, we assume ε
(2)
V < 10−4 so that the contribution of the second era to Eq. (7.1)

is negligible. Combining Eq. (7.8) and Eq. (7.9), we have

c <
α−

√
2ε

(2)
V N2

N1

. (7.10)

We can also obtain a bound for c′ from the spectral tilt ns = 1−2ε−η, where the Hubble
slow-roll parameters are

ε = − Ḣ

H2
, η =

ε̇

Hε
. (7.11)

For single-field inflation models, these are related to the slow-roll parameters of the potential
as εV = ε and ηV = 2ε− 1

2
η. Therefore, we can constrain ηV and hence the second parameter

of the refined de Sitter conjecture as

c′ <
1

2

(
1− ns(k)− 6ε

(2)
V

)
, (7.12)

where we are allowing for a k-dependent spectral tilt. Since we assume ε
(2)
V is small, our

bounds simplify to

(c′, c) <

(
1− ns(k)

2
,
α

N1

)
. (7.13)
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Eq. (7.13) is valid until N1 = Ntot, at which point the derivation on the bound of c′ above no
longer applies, and the only constraint one finds is that c < α/Ntot. To proceed, we utilize
the Planck analysis based on TT, TE, EE, lowE, lensing and BAO [19], which gives

dns/d ln k = −0.0041± 0.0067, (7.14)

ns = 0.9659± 0.0040, (7.15)

at k∗ = 0.05Mpc−1. We add errors in quadrature, ignoring correlations, and use

ns(k) = 0.9659− 0.0041 ln
k

k∗

±

√
(0.0040)2 +

(
0.0067 ln

k

k∗

)2

. (7.16)

A smaller ns allows for larger c′ in Eq. (7.13), so we take the 1σ allowed lower end
in order to place our bounds. The weak correlation between ns and dns/d ln k we see in
Fig. 26 of [19] actually works in our favor and ignoring correlation is therefore the more
conservative approach (i.e., gives a smaller allowed range) 2. Using the simple relationship
N1 = ln (k/a0H0), where a0 is the present scale factor and H0 is the present Hubble scale, we
can constrain the swampland parameters in single-field inflation as shown in Fig. 7.1. The
current CMB constraints on the spectral index and its running are limited to N1 . 10. This
range is denoted by the solid lines in Fig. 7.1. Beyond this there are no strong observational
constraints and we extend our analysis by extrapolating Eq. (7.16) to N1 ≥ 10 shown by the
dashed lines in Fig. 7.1. The unshaded regions indicate values of (c′, c) that satisfy the above
inequalities. The vertical asymptotes correspond to satisfying Eq. (7.7) for the entirety of
the inflationary epoch, N1 = 0, so that c is left completely arbitrary but c′ has a strict upper
bound that is much less than the O(1) expectation. The horizontal dotted lines correspond
to satisfying the first constraint Eq. (7.6) for all of inflation, N2 = 0, which leaves c′ arbitrary
but severely limits c. The horizontal black dashed lines indicate the lowest values of c that
yield the given ∆ defined in Eq. (7.5) as the lower bound on 1 + w from the constraint
Eq. (7.6). Finally, the grey region excludes values of c that may satisfy Eq.(7.13), depending
on the value of α, but conflicts with the constraint r0.002 < 0.064 [26], as r = 16ε ≥ 8c2. The
grey excluded region has a left vertical boundary since the constraint applies only to k >
0.002 Mpc−1.

We also comment on the observability of the tensor mode r. The swampland distance
conjecture, Eq. (7.1), combined with the Lyth bound, Eq. (7.2), is normally believed to

2The Planck 2018 paper [19] also shows the analysis where they allow for the running of running
d2ns/d ln k2. Unfortunately they do not show the correlation and we cannot use it for our purposes. In
fact, the extrapolation of ns(k) to small scales from the Planck data is most likely too restrictive, as the
allowed range for the primordial power Pζ(k) blows up for k & 0.2 Mpc−1 (see Fig. 20 in [26]).



CHAPTER 7. WHAT DOES INFLATION SAY ABOUT DARK ENERGY GIVEN THE
SWAMPLAND CONJECTURES? 89

Figure 7.1: Bounds on swampland parameters for generic single-field inflation models at
the 1σ level assuming the running of ns can be extended to Ntot = 50 e-folds. The unshaded
region is the allowed parameter space. The solid lines are for N1 ≤ 10; the dashed lines
are for 10 < N1 < 50, and the horizontal dotted lines correspond to N1 = 50, i.e. the first
constraint Eq. (7.6) applies to the whole inflationary period. The values of c excluded by
[26] are shaded in grey. We required the distance conjecture with ∆φ ≤ αMPl, and display
the minimum values for 1 + w ≥ ∆ with black dashed lines. With the original de Sitter
conjecture, c had to be below the dotted horizontal lines but there were no constraints on c′.

disfavor observably large r, assuming α ≈ 1. The best sensitivity anticipated in the future
is r ∼ 10−3 [10, 393]. There is a parameter region in Figure 7.1 where r ≥ rmin ≡ 8c2 is
close to the current observational bound. Physically this is because, in our spirit of a step
function approximation, we can allow for a brief initial period, say N0 ∼ 4, where the upper
bound on ε from the distance conjecture,ε . N−2

0 /2 ∼ 0.03 , is relaxed. Thus it is possible
to have r large enough to saturate the observational bound at low `. This is encouraging,
especially for space-born CMB B-mode experiments such as LiteBIRD [393].
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7.3 Multi-Field Slow-Roll Inflation Models

The constraints discussed above are due to the tight relations between ns, εV , ηV , and r in
single-field slow-roll inflation models. It is natural to ask whether the constraints can be
relaxed in multi-field models. In our analysis below, we take the conservative assumption
that the swampland distance conjecture applies to the proper length of the trajectory, instead
of the geodesic distance between the starting and ending points in the field space.

We discuss here a class of multi-field models where directions orthogonal to the slow-roll
direction are massive, M & H. The inflaton therefore rolls near the bottom of the valley,
which has “bends” in the multi-dimensional field space. The main difference here is that
the local angular velocities of the inflaton around the bends can modify the effective sound
speed cs of fluctuations. As a result, we have the modified relation [237]

12ηV = (c−2
s − 1)

M2

H2
+ 2

M2

H2
+ 3(4ε− η)

− 2

√(
M2

H2
− 3

2
(4ε− η)

)2

+ 9(c−2
s − 1)

M2

H2
. (7.17)

Here, ηV is the minimum eigenvalue of the Hessian and M is the effective mass of the field
orthogonal to the slow-roll direction, and cs is given by

c−2
s = 1 +

4Ω2

M2
, (7.18)

where Ω is the local angular velocity describing the bend of the inflaton trajectory in the
potential. Note that in the limit Ω → 0, the sound speed reduces to unity and ηV to the
expression of the single-field models. Allowing for a significant deviation of cs from unity
relaxes the constraints on (c, c′), as shown in Fig. 7.2, where we set M = H. This allows
for larger values of c and c′ compared to the single-field case, which are preferred by the
swampland conjecture. Note that lowering the sound speed further will not achieve O(1)
values for c′ because our scenario relies on having negative ηV . As cs is reduced from unity,
ηV initially becomes more negative and widens the allowed parameter space. Beyond some
critical value cs ≈ 0.3, further reduction of cs makes ηV less negative, thereby narrowing the
allowed parameter space. For cs . 0.2, ηV becomes positive and our analysis no longer holds.
Empirically, we find that cs ∼ 0.24 maximizes the allowed parameter region in the (c′, c)-
plane. The grey shaded regions again correspond to experimental constraints on r = 16εcs,
but their area is greatly reduced as cs decreases.

It is also interesting to note that we expect primordial equilateral and orthogonal non-
Gaussianities once cs 6= 1 in this class of models [237],

f equil
NL = −(c−2

s − 1)(0.275 + 0.078c2
s), (7.19)

f ortho
NL = (c−2

s − 1)(0.0159− 0.0167c2
s). (7.20)
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Figure 7.2: Bounds on swampland parameters for generic multi-field inflation models. We
took α = 1 and M = H. cs is the sound speed for fluctuations, and the rest is the same as in
Fig. 7.1. With the original de Sitter conjecture, Eq. (7.3), and single-field slow-roll models,
c had to be below the red dot-dashed horizontal line.

Here we have ignored the third order parameter. The current observational constraint on
the sound speed is cs ≥ 0.024 (see Eq. (89) of [17]), which is an order of magnitude below
the limit we can reach in our setup, as shown in Fig. 7.2. Future observations combining
CMB lensing, galaxy and 21cm surveys, Lyman α forest, etc. have the potential to improve
the constraint on fNL by an order of magnitude or more [302].

7.4 Implications for Dark Energy

The de Sitter conjecture states that constants c and c′ are universal and should apply to all
sectors in a given EFT. Therefore, we can use inflationary physics to get a handle on the
values of c and c′ and apply this knowledge to the quintessence potential VQ. When this
argument is applied to single-field inflation models with conjectures Eq. (7.3) and Eq. (7.1),
one deduces that there may be little hope in finding w 6= −1 due to the small lower bound
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seen in Eq. (7.5). This depressing outlook is drastically changed in light of Eqs. (7.6) and
(7.7), as Fig. 7.1 illustrates. We see that the refined de Sitter conjecture has allowed for the
possibility of having ∆ bounded from below such that it must be larger than a few per cent
and should be observable to experiments. Current and future experiments, such as DES
[1], HSC [2], DESI [3], PFS [4], LSST [5], Euclid [6], and WFIRST [7], are aiming for an
accuracy of about a percent in w. The cost for this is that c′ must be much lower than the
O(1) expectation of [191, 349] in the single-field case. This seems to indicate that single-field
inflation falls more in line with the modified de Sitter conjecture discussed in [340], where
the smallest Hessian eigenvalue needs only be negative when |∇V | < cV .

This state of affairs is altered by considering multi-field inflation models. Not only could
∆ be forced to be as large as several per cent, it is also possible to have both c and c′

approximately O(1) as long as the sound speed is low enough, as seen in Fig. 7.2. In either
the single-field or multi-field scenario, a better theoretical understanding of the magnitude
of c′ is essential to understand the consistency of the swampland conjectures and inflation.

7.5 Conclusion

In this chapter, we studied the consequences of the latest swampland conjecture on inflation
and dark energy. The original de Sitter conjecture raised the hope that measuring the dark
energy equation of state w would be promising while simultaneously dashing that hope
since consistency with single-field inflation suggests that the deviation from w = −1 would
likely be unobservable. As we have shown, this situation is much more encouraging with
the refined de Sitter conjecture. Not only could w 6= −1 be observable even with a single-
field inflationary scenario, but tensor modes could be as well. If one considers multi-field
inflationary scenarios, then the prospect for observing w 6= −1 is better and one gains
improved agreement with the swampland conjectures.
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Appendix A

Parametric Resonance

In this appendix, we numerically study the process of parametric resonance for our model.
To be concrete, let us consider the potential in Eq. (3.5) with n = 3. We decompose the PQ
symmetry breaking field as

P =
1√
2

(fa + s (t) + σ (t, x) + ia (t, x)) , (A.1)

where s is a zero mode and σ and a are saxion and axion fluctuations, respectively. The
linearized equation of motion of the axion in a mode k is

äk +

(
k2 +

m2
s

fa
s+

3m2
s

2f 2
a

s2 +
m2
s

f 3
a

s3 +
m2
s

4f 4
a

s4

)
ak = 0. (A.2)

For a small saxion oscillation amplitude, a quadratic approximation can be used to give the
saxion profile, s = S0 sin(mst), and Eq. (A.2) can be transformed into the Mathieu equation
for the axion with a wave number k,

a′′k(z) + (Ak − 2q cos (2z)) ak(z) = 0 (A.3)

where mst = 2z − π/2, Ak = 4k2/m2
s, and q = 2S0/fa. For certain values of (Ak, q), the

mode solutions exhibit exponential growth of the form ak ∼ exp (µ (k)mst) [297], where µ(k)
is the so-called Floquet index.

Since the amplitude of the saxion oscillations is as large as fa, the quadratic approxima-
tion may not be valid and so we numerically solve the saxion zero mode’s nonlinear equation
of motion, which is given in this case by

s̈+

(
m2
s

4f 4
a

s4 +
5m2

s

4f 3
a

s3 +
5m2

s

2f 2
a

s2 +
5m2

s

2fa
s+m2

s

)
s = 0. (A.4)

The profile determined from this equation of motion is then used to examine the growth of
axion modes. This process can also be done for saxion perturbation modes σk, which have
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Figure A.1: Floquet indices for axion (top) and saxion (bottom) modes with a background
saxion amplitude of 0.8fa.

the equation of motion

σ̈k +

(
k2 +m2

s +
5m2

s

fa
s+

15m2
s

2f 2
a

s2 +
5m2

s

f 3
a

s3 +
5m2

s

4f 4
a

s4

)
σk = 0. (A.5)
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The numerical results for the indices µ(k) for both the axion and saxion are displayed in
Fig. A.1. The axion and the saxion have similar index profiles and both plots feature a sharp
peak at the mode k ' ms/2.
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Appendix B

Anomaly Cancellation Details for the
Z3 and Z7 Models

Cancellation of ultraviolet divergences and evaluation of the
anomaly

In this appendix, we will specify a choice of PV fields that cancel leftover divergences from
the invariant mass PV sector of [92] (referred to in what follows as BG) and reproduce
the universal chiral anomaly of [379]. Aside from the residual divergences discussed in
Appendix B, the PV fields introduced in BG eliminate all the divergences from the light
sector of the two string models we are considering, but have some leftover divergences arising
from the Ẏ fields if one excludes the noninvariant mass PV sector of BG. Since we must alter
the noninvariant mass sector of BG to produce a universal anomaly, our strategy here will be
to introduce fields with parameters that decouple as much as possible from the BG fields but
still cancel the divergences of the Ẏ . These new fields replace the BG set that was collectively
denoted by Ψ. We expand the sum rules of BG to accommodate the more general Kähler
potential of PV fields we consider in (5.16), and find that the sum rules that the PV fields
must satisfy to cancel divergences are

∑
C

ηC = N ′ = −N − 29 (B.1)∑
γ

ηVγ = N ′G = −12−NG (B.2)∑
C

ηCαC = −10 (B.3)

∑
C

ηC

(
βCg +

∑
n

qCn g
n

)
= −A1g (B.4)
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∑
n

2qCnX · g̃n
)

(B.13)

−F
(
A2

2
− A3

)
g · g̃ =

∑
C

ηC

(
F

2
− γCF −

∑
n

qCn F
n

)

×
(
βCβCg · g̃ +

∑
n

2βCqCn g · g̃n +
∑
n,m

qCn q
C
mg

n · g̃m
)

(B.14)

1

2

∑
p

(
F

2
−
∑
n

qpnF
n

)
(T(G))

p
p =

∑
C

ηC

(
F

2
− γCF −

∑
n

qCn F
n

)(
αC − 1

2

)
(Ta)

C
C (B.15)

∑
C

ηC

(
F

2
− γCF −

∑
n

qCn F
n

)
(T(G))

C
Cβ

C = 0 (B.16)
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C

ηC
(
F

2
− γCF−

∑
n

qCn F
n

)
(T(G))

C
Cq

C
n

= −
∑
p

(
F

2
−
∑
n

qpnF
n

)
(T(G))

p
pq
p
n (B.17)

∑
C,J

ηC

(
F

2
− γCF −

∑
n

qCn F
n

)
(Ta)

C
J (Tb)

J
C = −

∑
p,q

(
F

2
−
∑
n

qpnF
n

)
(Ta)

p
q(Tb)

q
p (B.18)

where we have used the sum rules for the light field modular weights (5.23), (5.23) and
Eq. (5.18) and Eq. (5.19). F is defined by Eq. (5.4). On the left hand side of each condition
we are summing over all PV fields, while the right hand sides correspond to summing over
the parameters of the light fields. Since a subset of the the BG PV fields already eliminate
divergences from the light sectors of the string models, we can recast the above conditions
by setting the right hand side of all conditions to zero and summing over only the Ẏ , Φ, φ,
T, and ψ fields. To match the anomaly calculated in [379], we also require

0 =
∑
C

ηC(1− 2γ̄C)

(
αCαC − 2

3
ᾱCᾱC − 1

3
ᾱC
)

(B.19)

0 =
∑
C

ηC(1− 2γ̄C)

(
2βCαC − 4

3
β̄CᾱC − 1

3
β̄C
)

(B.20)

0 =
∑
C

ηC(1− 2γ̄C)

(
βCβC − 2

3
β̄C β̄C

)
(B.21)

0 =
∑
C

ηC
(
1− 2γ̄C

)2
(B.22)

0 =
∑
C

ηCqCn α
C(1− 2γ̄C) (B.23)

0 =
∑
C

ηCqCn β
C(1− 2γ̄C) (B.24)

0 =
∑
C

ηCᾱC(1− 2γ̄C)2 (B.25)

0 =
∑
C

ηC β̄C(1− 2γ̄C)2 (B.26)

0 =
∑
C

ηCᾱC(1− 2γ̄C)(1− 2ᾱC) (B.27)

0 =
∑
C

ηC β̄C(1− 2ᾱC)(1− 2γ̄C) (B.28)

0 =
∑
C

ηCᾱC β̄C(1− 2γ̄C) (B.29)
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0 =
∑
C

ηC β̄C β̄C(1− 2γ̄C) (B.30)

0 =
∑
C

ηCᾱCᾱC(1− 2γ̄C)2 (B.31)

0 =
∑
C

ηC β̄C β̄C(1− 2γ̄C)2 (B.32)

0 =
∑
C

ηCᾱC β̄C(1− 2γ̄C)2 (B.33)

0 =
∑
C

ηC β̄C(1− 2γ̄C) (B.34)

0 =
∑
C

ηC β̄C β̄C β̄C(1− 2γ̄C) (B.35)

30δnm =
∑
C

ηCqCn q
C
m(1− 2γ̄C) (B.36)

2
∑
p

qpn + 3−N +NG =
∑
C

ηC(1− 2αC + 2qCn ) (B.37)

In this second set of conditions, only fields with noninvariant masses contribute to the sums
since γ̄ = 1

2
for fields with invariant masses. We now describe a particular choice of {Φ,T, ψ}

fields that lead to an easily solvable system for their parameters. We must also supplement
these fields with the φC fields, since some of these have noninvariant masses. Starting with
divergences related to gauge interactions, we introduce a pair of T fields for each non-Abelian
simple factor of the string model gauge group: (TP

(G)1,T
′P
(G)1), (TP

(G)2,T
′P
(G)2), where G specifies

the simple group factor. We take the T(G)1 (T′(G)1) to be in the fundamental (antifundamental)

representation of G while the T(G)2 are gauge singlets. Then Eq. (B.9) gives

CM
G = 2Cf

(G)

∑
P

ηPT(G)1
(B.38)

Cf
(G)N(G) = 2NT(G)1C

f
(G),

∑
P

ηPT(G)1
=
N(G)

2
, (B.39)

for non-Abelian gauge groups and∑
p

Qp
aQ

p
a = 2

∑
P

(ηΦ)P (QΦ)Pa (QΦ)Pa + 2
∑
P

(ηTa1)
P (QT)Pa (QT)Pa (B.40)

for Abelian groups. These are just the conditions needed to cancel the Ẏ factor of CM
G . The

Φ’s enter in Eq. B.40 since they are given U(1)a charges as per the prescription in Section
4.2. Note also that Eq B.39 works for the two models considered here since the number N(G)

of fundamentals in G is even for all the gauge groups. We will constrain these T fields so that
they do not contribute to any divergences other than those arising from gauge interactions.
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To do this, we enforce the following

(αT(G)2) = (αT(G)1) (B.41)

(βT(G)2) = (βT(G)1) (B.42)

(α′T(G)2
) = (α′T(G)1

) (B.43)

(β′T(G)2
) = (β′T(G)1

) (B.44)

(ηT(G)2)
P = −(ηT(G)1)

P (B.45)

For the T fields charged under non-Abelian group factors, we impose that γ̄PT(G)1
is indepen-

dent of P so that we can cancel all remaining divergences from non-Abelian interactions by
demanding

CGS − C(G)

2
=
Cf

(G)N(G)

2

(
1− 2γ̄T(G)1

)
, (B.46)

for every non-Abelian group factor G, where

CGS = 8π2b = 30 (B.47)

is the adjoint Casimir for E8, which is the gauge group of the pure Yang-Mills hidden sector
of the models considered here. For the Abelian divergences, we will not force γ̄PT(G)1

to

be independent of P , but we will require Eq. (B.43) and that the primed and unprimed
parameters are identical:

(αT(G)1)
P = (α′T(G)1

)P (B.48)

(βT(G)1)
P = (β′T(G)1

)P .

With these conditions, the remaining divergences from Abelian interactions are canelled by
imposing

CGS
2

=
∑
M

(ηT(a)1
)P
(

1− 2γPT(a)1

)
(QT)Pa (QT)Pa . (B.49)

With the above restrictions, the charged T fields will eliminate only gauge-related divergences
and not contribute to any of ther other sum rules listed above. Turning to the ψ and φ fields,
we choose parameters such that

γ̄Pψ = ᾱPψ = β̄Pψ = 0. (B.50)

Then the second set of conditions reduces to
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0 =
∑
P

(ηψ)P +
∑
C

η̂C
(
1− 2¯̂αC

)2
(B.51)

0 =
∑
P

(ηψ)P (αψ)P (αψ)P

+
∑
C

η̂C(1− 2¯̂αC)

(
α̂Cα̂C − 2

3
¯̂αC ¯̂αC − 1

3
¯̂αC
)

(B.52)

0 =
∑
C

η̂C ¯̂αC
(
1− 2¯̂αC

)2
(B.53)

0 =
∑
C

η̂C ¯̂αC ¯̂αC
(
1− 2¯̂αC

)2
(B.54)

2
∑
p

qpn + 3−N +NG =
∑
C

η̂C(1− 2α̂C) (B.55)

0 =
∑
P

(ηψ)P (B.56)

0 =
∑
P

(ηψ)P (αψ)P (αψ)P (B.57)

0 =
∑
P

(ηψ)P (αψ)P (βψ)P (B.58)

0 =
∑
P

(ηψ)P (βψ)P (βψ)P (B.59)

0 =
∑
P

(ηψ)P qPψα
P
ψ (B.60)

0 =
∑
P

(ηψ)P qPψβ
P
ψ (B.61)

30 = 2
∑
P

(ηψ)P qPψ q
P
ψ (B.62)

Finally, to cancel all the divergences as required by the sum rules in (B.1)–(B.14), we in-
troduce gauge singlet T fields (TP

3 ,T
′P
3 ) with invariant masses. These fields, along with the

Φ and ψ fields, are enough to regulate those divergences of the Ẏ fields that do not involve
gauge couplings. While we have solved this system to obtain numerical solutions, the results
are not particularly enlightening and we will not reproduce them here.

Residual linear and logarithmic divergences

There are two sources of the chiral anomaly involving space-time curvature. The first arises
from the spin connection in the fermion covariant derivatives. The three sum rules in (5.17)
assure that the linear divergent terms from the PV fermion spin connection cancel those from
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the light fields, and the residual anomaly arises from the PV masses, giving a supersymmetric
contribution

∆Lspin = −bsp

∫
EFΩGB + h.c., (B.1)

which is the variation of the first term in L0 in (5.5), with

8π2bsp =
1

24

(
N ′ −N ′G − 2α + 2

∑
p

qnp

)
=

1

24

(
2
∑
p

qpn + 3−N +NG

)
= 31 ∀ n (B.2)

for Z3 and Z7 orbifolds without Wilson lines. The second contribution arises from the
affine connection in the gravitino covariant derivative; it has no PV counterpart and is
not canceled. However there is a residual conformal anomaly associated with the linear
divergence arising from the Gauss-Bonnet term which is a total derivative, and which is
uniquely determined [37, 36] by the spins of the particles in the loop. For PV regulated
supergravity we have

LGB =

√
gbBG

2

(
rµνρσr

µνρσ − 4rµνr
µν + r2

)
ln Λ, (B.3)

with

8π2bGB =
1

48
(N +N ′ − 3NG − 3N ′G + 41) = 1. (B.4)

The variation of (B.3) forms a supersymmetric operator with the chiral anomaly from the
gravitino affine connection provided the cut-off takes the value in (5.10), giving a contribution

∆Laff = bGB

∫
EFΩGB + h.c., (B.5)

which is the variation of the KΩGB term in (5.5), and combines with (B.2) to give

∆Lanom 3 −b
∫
EFΩGB + h.c., (B.6)

where

8π2b = 8π2(bsp − bGB) =
1

24

(
2
∑
p

qpn −N +NG − 21

)
= 30. ∀ n (B.7)

There is also a linear divergence arising from an off-diagonal gravitino-gaugino connection
in the fermion covariant derivative. This also combines with an uncanceled logarithmically
divergent total derivative to form an anomaly supermultiplet if the cut-off satisfies (5.10). It
was shown in Appendix B.3 of [92] that this anomaly can be canceled for a particular choice
of masses for certain PV fields that regulate gauge and gravity sector loops.

Finally, there are “D-term” anomalies that arise from uncanceled logarithmically diver-
gent terms with no chiral anomaly counterpart. These were simply dropped in the evaluation
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of on-shell ultraviolet divergences in [183] and [184]. Since they have no chiral anomaly part-
ner they are more difficult to identify than the above terms. With the cut-off (5.10), the
conformal anomaly includes a contribution

∆Lconf 3
√
g

8π2
ReFKim̄D

µ
[
Dµz̄m̄

(
2F i
∣∣ R| −DνDνzi

)
+DνDµz̄m̄Dνzi + h.c.

]
, (B.8)

where

F i = −1

4
D2Zi (B.9)

is the auxiliary field of the chiral supermultiplet Zi, that was identified in [92] as arising from
a total derivative dropped in the evaluation [183] of UV divergences for gravity coupled to
chiral matter. When Yang-Mills couplings are included [184], there are many more terms,
and digging out total derivatives is much more difficult. We find the additional light field
contribution:

∆Lconf 3 −
√
g

8π2
ReFDµ

[
3

2
Kim̄Dµz̄m̄Da(Taz)i +

∂µs̄

s+ s̄
DaDa

]∣∣∣∣+ h.c., (B.10)

where

Da = −1

2
DαW a

α (B.11)

is the auxiliary field for the superfield strength W a
α , and we evaluated the result of [184]

using the classical Kähler potential in (5.9) for the dilaton. We also find a contribution [182]
from the PV sector

∆Lconf 3
√
g

16π2
ReFDµ

[
Kim̄Dµz̄m̄Da(Taz)i − ∂µs̄

s+ s̄

(
F iF̄i − 8RR̄

)]∣∣∣∣+ h.c. (B.12)

With the classical Kähler potential in (5.9) the equations of motion give

F s| = 2(s+ s̄)R̄
∣∣ , F̄s

∣∣ =
2

s+ s̄
R

∣∣∣∣ , (B.13)

and the dilaton-dependent contribution can be written

∆Lconf(s, s̄) = −
√
g

8π2
ReFDµ [(∂µs̄2s− ∂ν∂µs̄∂νs+ h.c.)

+
1

2

∂µs̄

s+ s̄

(
F pF̄p − 12RR̄ + 2DaDa

)∣∣] , (B.14)

However we cannot be certain that we have identified all the uncanceled total derivatives.
It is also possible that one might be able to modify the PV sector parameter such that the
dilaton dependence can be canceled, as was the case for F-term anomaly arising from the
off-diagonal gaugino-gravitino connection mentioned above.
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Appendix C

Anomaly Cancellation Details for the
FIQS Model

Conditions for the cancellation of ultraviolet divergences and the
evaluation of the anomaly

Notation

We pair PV fields according to their mass terms. A pair of PV fields (ΦP , Φ′P ) has a
superpotential coupling

WPV =
∑
P

µPΦ′PΦP (C.1)

and a Kähler potential

KPV =
∑
P

ef
P

Φ∗PΦP +
∑
P

ef
′P

Φ′∗PΦ′P , (C.2)

where

fP = αPK + βPg +
∑
n

qPn g
n (C.3)

with an identical definition holding for f ′P but with primes on the constants {αP , βP , qPn }.
While we will not use it often, summing over the index C means summing over PV fields and
then their primed partners whereas summing over P means summing over only the unprimed
or primed fields, depending on the quantity being summed. For example,∑

C

ηCαC =
∑
P

ηPα
P +

∑
P

ηPα
′P . (C.4)

However, to reduce clutter, we will abbreviate the above. When summing over primed and
unprimed fields, we will use “Tr”. When summing over only primed or unprimed ones, we
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will use “Sum”. Thus the above would be written as

Tr[ηα] = Sum[ηα] + Sum[ηα′]. (C.5)

We will also encounter sums over various combinations of U(1) charges, U(1)X charges, and
modular weights. To abbreviate these, especially when dealing with the quantum numbers
of the light fields, we will define

Q1a = Sum[ηQaqn] (C.6)

Q2a + P2aδnm = Sum[ηQaqnqm] (C.7)

Ra = Sum[ηQaQXqn] (C.8)

Rab = Sum[ηQaQbqn] (C.9)

Sa = Sum[ηQaQX ] (C.10)

Sab = Sum[ηQaQb]. (C.11)

Conditions for Regularization

The terms we must cancel come from linear, logarithmic, and quadratic divergences. It
is helpful to organize these terms by forming subsets based on whether terms depend on
nonabelian gauge interactions, nonanomalous Abelian gauge interactions, anomalous Abelian
gauge interactions, or none of the above. We will refer to these groupings as nonabelian
divergences, U(1)a divergences, U(1)X divergences, and modular divergences, respectively.
As an overview, the divergences come from the terms

Tr[ηΓα] (C.12)

Tr[ηΓαΓβ] (C.13)

Tr[ηΓαTa] (C.14)

Tr[ηTaTb] (C.15)

Tr[ηQa], (C.16)

where

ΓCDα = −1

8

(
D̄2 − 8R

)
DαZiΓCDi (C.17)

φC =

(
1

2
− αC − βC

)
F −

∑
i

F iqCi − qCXΛ (C.18)

Gµν = ΓCCµν −
1

2
Xµνδ

C
D − iF a

µν(Ta)
C
D − iFX

µν(QX)CD. (C.19)

for our PV fields defined above.
The PV fields involved in this procedure are numerous. We take all of the PV fields

described in sections 3 and 4 of [92] and supplement them with further fields. However, to
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cancel the divergences above, we need only focus on the Ẏ and φ̂ fields of [92]. We now
group all the terms in the above expressions with our organizational scheme.

Modular Divergences

To cancel all the modular divergences, we require

0 = −Tr

[
ηβ

(
1

2
− α

)2 ]
− Tr

[
ηqn

(
1

2
− α

)2 ]
(C.20)

0 = −1

2
Tr

[
η(1− 2α)β(1− 2γ)

]
+ Tr

[
ηβqn(1− 2α)

]
−1

2
Tr

[
η(1− 2α)(1− 2γ)qn

]
+ Tr

[
ηqnqm(1− 2α)

]
(C.21)

0 =
1

2
Tr

[
ηβ2(1− 2γ)

]
− Tr

[
ηβ2qn

]
+ Tr

[
ηβ(1− 2γ)qn

]
− 2Tr

[
ηβqnqm

]
+

1

2
Tr

[
η(1− 2γ)qnqm

]
− Tr

[
ηqnqmqk

]
. (C.22)

U(1)X Divergences

To cancel all the U(1)X divergences, we need

0 = Tr[ηQX ] (C.23)

0 = Tr[ηQXβ] + Tr[ηQXqm] (C.24)

0 = Tr[ηQXα] (C.25)

0 = Tr

(
ηQX

(
α− 1

2

)2
)

(C.26)

0 = −Tr

(
ηQXβ

(
α− 1

2

))
+ Tr

(
ηQXqn

(
α− 1

2

))
(C.27)

0 = Tr
(
ηQXβ

2
)

+ 2Tr (ηQXqnβ) + Tr (ηQXqnqm) (C.28)

0 = Tr
(
ηQ3

X

)
(C.29)

0 = Tr

(
ηQ2

X

(
1

2
− γ
))
− Tr

(
ηQ2

Xqn
)

(C.30)

0 = Tr

(
ηQ2

X

(
α− 1

2

))
(C.31)
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0 = 2Tr

(
ηQX

(
α− 1

2

)(
1

2
− γ
))
− 2Tr

(
ηQXqn

(
α− 1

2

))
(C.32)

0 = −2Tr
(
ηQ2

Xβ
)
− 2Tr

(
ηQ2

Xqn
)

(C.33)

0 = 2Tr

(
ηQXβ

(
1

2
− γ
))
− 2Tr (ηQXqnβ) + 2Tr

(
ηQXqn

(
1

2
− γ
))

−2Tr (ηQXqnqm) . (C.34)

Note that only fields that have Q̄X 6= 0 will contribute to Eq. (C.29).

Non-Abelian Divergences

To cancel the non-Abelian divergences, we need

0 = Tr[ηTaTb] (C.35)

0 = Tr[ηQXTaTb] (C.36)

0 = Tr

[
ηTaTb

(
γ − 1

2

)]
, (C.37)

where T a is a generator of a non-Abelian gauge group factor.

U(1)a Divergences
Finally, the conditions for canceling the abelian divergences are

0 = Tr[ηQa] (C.38)

0 = Tr[ηQaα] (C.39)

0 = Tr[ηQaβ] + Tr[ηqnQa] (C.40)

0 = Tr[ηQXQaQb] (C.41)

0 = Tr[ηQXQaβ] + Tr[ηQXqnQa] (C.42)

0 = Tr

[
ηQXQa

(
α− 1

2

)]
(C.43)

0 = −Tr

[
ηQXQa

(
1

2
− γ
)]

+ Tr[ηQXQaqn] (C.44)

0 = Tr

[
ηQa

(
α− 1

2

)((
1

2
− γ
)
− qn

)]
(C.45)

0 = Tr

[
ηQaβ

((
1

2
− γ
)
− qn

)]
+ Tr

[
ηQaqn

((
1

2
− γ
)
− qn

)]
(C.46)

0 = Tr

[
ηQaQb

((
γ − 1

2

)
+ qn

)]
. (C.47)

In all of the above sets, we have assumed that the modular weights of all PV fields satisfy
sum rules reminiscent of those satisfied by the light sector, (5.23). Indeed, this will be baked
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directly into our choice of PV fields. We have also used the total derivative identities (5.19).
In addition to the above conditions, we must enforce the sum rules of [92]:

−N − 29 = Tr[η] (C.48)

−10 = Tr[ηα] (C.49)

−4 = Tr[ηα2] (C.50)

0 = Tr

[
ηβ

]
(C.51)

0 = Tr

[
ηβ2

]
(C.52)

0 = Tr

[
ηβα

]
. (C.53)

Conditions for Anomaly Matching

By drawing an analogy with the calculation of [379], we infer that in four dimensions the
anomaly polynomial for the FIQS model has the form [257]

I6 =

(
− b

4π

3∑
i=1

Gi +
δX
8π
FX

)(
tr(R2) −

∑
n

(F SU(3)
n )2 −

∑
n

(F SU(2)
n )2 −

∑
n

(F SO(10)
n )2

−
7∑

a=1

(Fa)
2 − (FX)2 + 2

∑
i

G2
i

)
(C.54)

where

Gi = dZi (C.55)

Zi =
1

2i

d(T i − T̄ i)
T i + T̄ i

(C.56)

(C.57)

and

tr(R2) = Ra
bR

b
a (C.58)

=
1

4
Rτ

εµνR
ε
τρσdx

µdxνdxρdxσ (C.59)

(FA)2 =
1

4
FAµνFAρσdx

µdxνdxρdxσ (C.60)

In the above, we have implicitly assumed wedge products in the multiplication of differential
forms. To get the 4D anomaly from the 6-form anomaly polynomial, one goes through the
usual descent equations:

2πI6 = dI5 (C.61)

δI5 = dI4 (C.62)
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For example, under a modular transformation, Zi → Zi + dIm(F i) so that the modular-
gravity-gravity anomaly has the form∫

I4 ⊃
∫
− 3

32π2

( 3∑
i=1

Im(F i)

)
Rτ

ωµνR
ω
τρσε

µνρσ√gd4x (C.63)

which is precisely what one would expect if one considers the modular-gravity-gravity anomaly
to have the same form as a U(1)-gravity-gravity anomaly. To match this anomaly, we look at
the anomalous contributions of PV fields with masses that are noninvariant under modular
and U(1)X transformations. The general form of their contribution is

Lanom =

∫
d4θE(L0 + L1 + Lr) (C.64)

with

L0 =
1

8π2

(
Tr[η ln(M2)]Ω0 +K(ΩGB + ΩD)

)
(C.65)

Lr = − 1

192π2
Tr

[
η

∫
d ln(M)Ωr

]
. (C.66)

Focusing on the second term of Eq. (C.64) , we again break up terms based on whether they
contribute to the U(1)X related anomalies or the pure modular anomaly.

U(1)X Anomaly Conditions

To match the anomalies involving U(1)X , we require

0 =
2

3
Tr

[
ηQ̄X

(
2ᾱ2 + ᾱ− 3α2

)]
(C.67)

0 =
2

3
Tr

[
ηQ̄X

(
β̄ + 4ᾱβ̄ − 6αβ

)]
(C.68)

0 =
2

3
Tr

[
ηQ̄X

(
2β̄2 − 3β2

) ]
(C.69)

0 = −4Tr

[
η
(
αQ̄Xqn

) ]
(C.70)

0 = −4Tr

[
η
(
βQ̄Xqn

) ]
(C.71)

8π2δXδmn = −2Tr

[
η

(
Q̄Xqnqm

)]
(C.72)

0 =
1

3
Tr

[
η

(
QX (−4ᾱ + 6α− 1) (1− 2γ̄)

)]
(C.73)



APPENDIX C. ANOMALY CANCELLATION DETAILS FOR THE FIQS MODEL 141

0 =
2

3
Tr

[
ηQX (1− 2γ̄)

(
3βQX − 2β̄Q̄X

)
)

]
(C.74)

0 = 2Tr

[
η (QXqn (1− 2γ̄))

]
(C.75)

8π2b =
1

3
Tr

[
η (1− 2γ̄)

(
3Q2

X − 2Q̄2
X

) ]
(C.76)

0 =
2

3
Tr

[
ηQ̄X

(
4ᾱQ̄X + Q̄X − 6αQX

) ]
(C.77)

0 =
1

3
Tr

[
η
(
8β̄Q̄2

X − 12βQXQ̄X

) ]
(C.78)

0 = −4Tr

[
η
(
QXQ̄Xqn

) ]
(C.79)

−4π2δX = Tr

[
η

(
4Q̄3

X

3
− 2Q2

XQ̄X

)]
= −2

3
Tr

[
ηQ3

X

]
. (C.80)

Note that the last term is fixed by cancellation of the linear divergence term Eq.(C.29).
Pure Modular Anomaly Conditions
To match the pure modular anomaly, we require

0 =
1

3
Tr

[
η (1− 2γ̄)

(
−2ᾱ2 − ᾱ + 3α2

) ]
(C.81)

0 =
1

3
Tr

[
η (1− 2γ̄)

(
3β2 − 2β̄2

) ]
+ 2Tr

[
ηβ (1− 2γ̄) qn

]
(C.82)

0 =
1

3
Tr

[
η (1− 2γ̄)

(
6αβ − (4ᾱ + 1) β̄

) ]
+ 2Tr

[
ηα (1− 2γ̄) qn

]
(C.83)

−8π2bδmn = Tr

[
ηqmqn (1− 2γ̄)

]
. (C.84)

As for the third term of Eq. (C.64), we need it to vanish identically. This can be achieved
so long as the following are satisfied

0 = Tr

[
ηx(1− 2γ̄)2

]
(C.85)

0 = Tr

[
ηxq̄X(1− 2γ̄)

]
(C.86)

0 = Tr

[
ηxq̄2

X

]
(C.87)

0 = Tr

[
ηᾱβ̄(1− 2γ̄)

]
(C.88)

0 = Tr

[
ηᾱβ̄q̄X)

]
(C.89)
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0 = Tr

[
ηβ̄k(1− 2γ̄)

]
(C.90)

0 = Tr

[
ηβ̄kq̄X

]
Tr

[
ηβ̄3q̄X

]
, (C.91)

where x = 1, ᾱ, β̄, q̄X , ᾱ
2, β̄2, q̄2

X , ᾱβ̄, ᾱq̄X , β̄q̄X and k = 1, 2, 3.

Solution to the Pauli-Villars Regularization Conditions

We will now elucidate a solution to the system described above. The solution consists of
sets Sa, a = 1, 2, . . . of PV fields that address each of the divergence and anomaly sets
of conditions more or less separately. For example, it is possible to introduce PV fields
that cancel only the nonabelian divergences and contribute to no other conditions. We will
try to follow the same strategy for all the sets of conditions described above. It is not
entirely possible to do so - for example, fields that solve the modular anomaly conditions
will generically contribute to modular divergences. Of course, this is far from the only way to
tackle the system, but it is straightforward method to illustrate that a solution can be found.
To this end, we define the notion of clone fields for PV fields. For a given pair of PV fields(
ΦP ,Φ′P

)
, we define clone fields

(
ΦP
cl,Φ

′P
cl

)
that have almost the same parameters (α, β, qn,

. . .) and quantum numbers as the original pair but with negative signature. We say almost
here because this notion is only useful if the

(
ΦP ,Φ′P

)
have quantum numbers different

from the clones so that the two sets cancel each other’s contributions to some subset of the
conditions, but not all conditions. As a concrete example, which will be described below,
one can introduce PV fields with nonabelian gauge interactions to eliminate divergences
associated with those same interactions. One can then introduce clone PV fields without
gauge interactions that exactly cancel the contributions of the gauge charged PV fields to
all other terms. The primary advantage of this technique is tidiness.

PV Fields for U(1)X Anomaly Matching

The fields described here will satisfy Eqs. (C.67)–(C.80) and will contribute to some of
the U(1)X divergence conditions (C.24)–(C.34). In particular, only PV fields with Q̄X 6= 0
contribute to Eq. (C.29), so this condition will be taken care of by this sector only. The sets
of PV fields we need are

• S1: A set of PV fields with modular invariant masses,α1 = α′1 = γ̄1 = 1/2, and q̄
(1)
n = 0

and modular weights of the form (q(1))Cm = qP(1)δ
n
m and clone fields with no U(1)X .

• S2 : A set of PV fields with ᾱ2 = β̄2 = γ̄2 = Q̄
(2)
X = (q(2))Cn = 0 and clone fields with

no U(1)X charge.
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We then place the following conditions on the parameters for these fields:

Sum
[
Q

(L)
X

]
= −Sum

[
ηQ

(1)
X

]
(C.1)

Sum

[
(QL

X)3

]
= −Tr

[
η1(Q

(1)
X )3

]
(C.2)

0 = Tr
[
η1Q̄

(1)
X

(
1− 3α2

1

)]
(C.3)

0 =
[
η1Q̄

(1)
X α1q

(1)
n

]
(C.4)

0 = Tr

[
η1α1Q̄

(1)
X Q

(1)
X

]
(C.5)

0 = Tr

[
η(Q̄

(1)
X )2

]
(C.6)

0 = Tr

[
η(Q̄

(1)
X )3

]
(C.7)

0 = Tr

[
η(Q̄

(1)
X )4

]
(C.8)

0 = Tr

[
ηQ̄

(1)
X q(1)

n

]
(C.9)

0 = Tr

[
ηQ̄

(1)
X Q

(1)
X q(1)

n

]
(C.10)

−4π2δXδnm = Tr

[
ηQ̄

(1)
X q(1)

n q(1)
m

]
(C.11)

2π2δX = −1

3
Sum

[
(Q

(L)
X )3

]
= Tr

[
ηQ̄

(1)
X (Q

(1)
X )2

]
. (C.12)

Once again, the first condition is a linear divergent term that can only be cancelled by fields
with masses that are noninvariant under U(1)X . This in turn forces the correct coefficient
for the pure U(1)X anomaly in the last condition. While the second set must satisfy

0 = Tr[η2] (C.13)

0 = Tr

[
η2α2Q

(2)
X

]
(C.14)

0 = Tr

[
η2β2Q

(2)
X

]
(C.15)

8π2b = Tr

[
η2(Q

(2)
X )2

]
. (C.16)

The first condition here comes from Eq. (C.85) and potentially can be relaxed.
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PV Fields for Modular Anomaly Matching

The fields described here will satisfy conditions (C.81)–(C.84) and contribute to the modular
divergence conditions (C.20)–(C.22). The sets are

• S3: A set of pairs of PV fields with β3 = β′3 = 0, q
(3)
n = q

′(3)
n = 0.

• S4: A set of pairs of PV fields with α4 = α′4 = β4 = β′4 = q̄n4 = 0, (q(4))Cm = (q(4))P δnm ,
and clone fields with no modular weights.

These fields will also contribute to the modular divergence conditions, as outlined below. We
also have to consider the φ̂ fields of [92] here since they have noninvariant masses under a
modular transformation. These fields have no β or modular weight parameters but do have
fφ̂ = α̂K. then the conditions the S3, S4, and φ̂ fields must satisfy are

0 = Tr

[
η̂(1− 2¯̂α)2

]
+ Tr

[
η3(1− 2ᾱ3)2

]
(C.17)

0 = Tr

[
η̂ ¯̂α(1− 2¯̂α)2

]
+ Tr

[
η3ᾱ3(1− 2ᾱ3)2

]
(C.18)

0 = Tr

[
η̂ ¯̂α2(1− 2¯̂α)2

]
+ Tr

[
η3ᾱ

2
3(1− 2ᾱ3)2

]
(C.19)

0 = Tr

[
η̂
(
1− 2¯̂α

) (
−2¯̂α2 − ¯̂α + 3α̂2

) ]
+ Tr

[
η3 (1− 2ᾱ3)

(
−2ᾱ2

3 − ᾱ3 + 3α2
3

) ]
(C.20)

and

−8π2b = Tr

[
η4q

P
4 q

P
4

]
= 2Sum

[
η4q

P
4 q

P
4

]
. (C.21)

PV Fields for the Regulation of Modular Divergences

Here we introduce fields that can cancel the contributions to Eqs. (C.20)–(C.22) from the
Ẏ , S3, and S4 and contribute to the sum rules in Eqs. (3.37), (3.38) and (A.16) of [92]. The
only new set we introduce here is

• S5 : A set of pairs of PV fields with γ̄5 = 1
2

and (q̄(5))Cn = 0 with (q(5))Cm = (q(5))P δnm.

Then the conditions we must satisfy are

0 = (N + 2)β̇

(
1

2
− β̇

)2

−A1

(
1

2
− β̇

)2

− Sum

[
η5β5

(
1

2
− α5

)2 ]
− Sum

[
η5β
′
5

(
1

2
− α′5

)2 ]
−Sum

[
η5q

P
5

(
1

2
− α5

)2 ]
+ Sum

[
η5q

P
5

(
1

2
− α′5

)2 ]
(C.22)
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0 = (N + 2)β̇

(
1

2
− β̇

)
−A1

(
1

2
− β̇

)
− 2A2β̇

(
1

2
− β̇

)
+ 2A2

(
1

2
− β̇

)
−1

2

(
Sum

[
η5β5(1− 2α5)(1− 2γ5)

]
+ Sum

[
η5β
′
5(1− 2α′5)(1− 2γ′5)

])
+Sum

[
η5q

P
5 β5(1− 2α5)

]
− Sum

[
η5q

P
5 β
′
5(1− 2α′5)

]
− 1

2
Sum

[
η5q

P
5 (1− 2α5)(1− 2γ5)

]
−1

2
Sum

[
η5q

P
5 (1− 2α′5)(1− 2γ′5)

]
+ Sum

[
η5q

P
5 q

P
5 (1− 2α5)

]
+ Sum

[
η5q

P
5 q

P
5 (1− 2α′5)

]
+2Sum

[
η4q

P
4 q

P
4

]
(C.23)

0 = (N + 2)
β̇2

2
−A1β̇ +

A2

2
−A1β̇

2 + 2A2β̇ −A3 +
1

2

(
Sum

[
η5β

2
5(1− 2γ5)

]
+ Sum

[
η5β
′2
5 (1− 2γ′5)

])
−
(

Sum

[
η5q

P
5 β

2
5

]
− Sum

[
η5q

P
5 β
′2
5

])
+

(
Sum

[
η5β5q

P
5 (1− 2γ5)

]
− Sum

[
η5β
′
5q
P
5 (1− 2γ′5)

])
−2

(
Sum

[
η5β5q

P
5 q

P
5

]
+ Sum

[
η5β
′
5q
P
5 q

P
5

])
+

1

2

(
Sum

[
η5(1− 2γ5)qP5 q

P
5

]
+ Sum

[
η5(1− 2γ′5)qP5 q

P
5

])
+Sum

[
η4q

P
4 q

P
4

]
. (C.24)

We include an explicit P in the modular weights simply to remind ourselves that we sum
over the “P” index and not the “n” index since C = (P,n).

PV Fields for the Regulation of U(1)X Divergences

Here we introduce fields that cancel the contributions to Eqs. (C.24)–(C.34) from the Ẏ , S1,
and S2. Note that we will omit Eq. (C.29) since has been taken care of above. We introduce
the following set:

• S6: A set of pairs of PV fields with Q
(6)
X = −Q′(6)

X and q̄
(6)
n = 0 and clone fields without

U(1)X charge.

Then the conditions we must satisfy are

0 = 12C ′GS β̇ + 2Sum

[
η2Q

X
(2)β2

]
+ Sum

[
η6Q

X
(6)β6

]
− Sum

[
η6Q

X
(6)β

′
6

]
(C.25)

0 = 12C ′GS(1− β̇) + 2Sum

[
η2Q

X
(2)α2

]
+ Sum

[
η6Q

X
(6)α6

]
− Sum

[
η6Q

X
(6)α

′
6

]
(C.26)

0 = 12C ′GS

(
1

2
− β̇

)2

+ Sum

[
η6Q

X
(6)

(
α6 −

1

2

)]
− Sum

[
η6Q

X
(6)

(
α′6 −

1

2

)]
(C.27)

0 = 12C ′GS β̇

(
1

2
− β̇

)
+Q

(L)
1X

(
1

2
− β̇

)
+ Sum

[
η2Q

X
(2)q

P
2

]
+ Sum

[
η6Q

X
(6)β6

(
α6 −

1

2

)]
−Sum

[
η6Q

X
(6)β

′
6

(
α′6 −

1

2

)]
− Sum

[
η6Q

X
(6)q

P
6

(
α6 −

1

2

)]
− Sum

[
η6Q

X
(6)q

P
6

(
α′6 −

1

2

)]
(C.28)
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0 = 12β̇2C ′GS − 2β̇Q
(L)
1X +Q

(L)
2X + Sum

[
η1Q

X
(1)q

P
1 q

P
1

]
+ Sum

[
η1Q

′X
(1)q

P
1 q

P
1

]
+ Sum

[
η6Q

X
(6)β

2
6

]
−Sum

[
η6Q

X
(6)β

′2
6

]
+ 2Sum

[
η6Q

X
(6)β6q

P
6

]
+ 2Sum

[
η6Q

X
(6)β

′
6q
P
6

]
(C.29)

0 =
1

2
Tr

[
(QX(L))

2

]
−R(L)

X − Sum

[
η1(QX(1))

2qP1

]
+ Sum

[
η1(Q′X(1))

2qP1

]
+ Sum

[
η2(QX(2))

2

]
+Sum

[
η6(QX(6))

2

(
1

2
− γ6

)]
+ Sum

[
η6(QX(6))

2

(
1

2
− γ′6

)]
(C.30)

0 = Tr

[
(QX(L))

2

(
1

2
− β̇

)]
− Sum

[
η2(QX(2))

2

]
+ Sum

[
η6(QX(6))

2

(
α6 −

1

2

)]
+Sum

[
η6(Q′X(6))

2

(
α6 −

1

2

)]
(C.31)

0 = −1

2
Q

(L)
1X

(
1

2
− β̇

)
+R

(L)
X

(
1

2
− β̇

)
+ Sum

[
η2Q

X
(2)(α2 + γ2)

]
+ Sum

[
η2Q

X
(2)q

P
2

]
+Sum

[
η6Q

X
(6)

(
α6 −

1

2

)(
1

2
− γ6

)]
− Sum

[
η6Q

X
(6)

(
α′6 −

1

2

)(
1

2
− γ′6

)]
− Sum

[
η6Q

X
(6)q

P
6

(
α6 −

1

2

)]
−Sum

[
η6Q

X
(6)q

P
6

(
α′6 −

1

2

)]
(C.32)

0 = −β̇Tr

[
(QX(L))

2

]
+R

(L)
X + Sum

[
η1(QX(1))

2qP1

]
− Sum

[
η1(Q′X(1))

2qP1

]
+ Sum

[
η6(QX(6))

2β6

]
+Sum

[
η6(QX(6))

2β′6

]
(C.33)

0 = −6β̇C ′GS + βQ
(L)
1X +

1

2
Q

(L)
1X −Q

(L)
2X − Sum

[
η1Q

X
(1)q

P
1 q

P
1

]
− Sum

[
η1Q

′X
(1)q

P
1 q

P
1

]
+ Sum

[
η2Q

X
(2)β2

]
+Sum
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η2Q

X
(2)q

P
2

]
+ Sum

[
η6Q

X
(6)β6

(
1

2
− γ6

)]
− Sum

[
η6Q

X
(6)β

′
6

(
1

2
− γ′6

)]
− Sum

[
η6Q

X
(6)β6q

P
6

]
−Sum

[
η6Q

X
(6)β

′
6q
P
6

]
+ Sum

[
η6Q

X
(6)q

P
6

(
1

2
− γ6

)]
+ Sum

[
η6Q

X
(6)q

P
6

(
1

2
− γ′6

)]
. (C.34)

PV Fields for the Regulation of Nonabelian Divergences

Here we introduce fields to cancel Eqs. (C.35)-(C.37). We introduce a separate PV set for
each of the nonabelian factors of the FIQS gauge group as follows

• S7: A set of pairs of PV fields in the fundamental of SU(3) ( anti-fundamental for the
primed fields) with no modular weights, uniform constants, and clone fields with no
gauge charges. By uniform coefficients, we mean that αC and βC are independent of
index within the set: αC = α and βC = β.

• S8: A set of pairs of PV fields in the fundamental of SU(2) with no modular weights,
uniform constants, and clone fields with no gauge charges.
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• S9: A set of pairs of PV fields in the 16 (and 16 for primed fields) of SO(10) and a
set of pairs of PV fields in the 10 of SO(10), all with no modular weights, uniform
constants, and clone fields with no gauge charges.

• S10: A set of PV fields with γ = γ′ = 1/2, zero modular weights, a nonzero trace U(1)X
charge matrix, and charged under the nonabelian gauge groups in the same reps as the
light fields and clone fields without nonabelian gauge charges.

Let us discuss this choice briefly. First we need to check the number of fields in a given
representation. This is because we care about the quantity

CM
(G) = Cm

(G)N(G), (C.35)

which comes from the first term in the list above. The technique in [185] relies on having an
even number of light fields in a given representation for all the gauge factors. Let us check if
this is the case for the FIQS model. See Appendix C for a detailed breakdown of the FIQS
spectrum. For the SU(3) of FIQS, the total number of triplets charged under this gauge
group is

N
SU(3)
QL

+NSU(3)
uL

+NSU(3)
u2

+
2∑
i=1

N
SU(3)
di

+
4∑
j=1

N
SU(3)
Dj

+
2∑
j=1

N
SU(3)

D̄j

= 6 + 3 + 12 + 15 = 36. (C.36)

For the SU(2) of FIQS, there are

N
SU(2)
QL

+
4∑
i=1

N
SU(2)

Ḡi
+

5∑
i=1

N
SU(2)
Gi

+
4∑
i=1

N
SU(2)
Fi

= 9 + 3 + 33 + 3 = 48 (C.37)

doublets. Note that we have used the fact that each state in the table of Appendix C has
a degeneracy of 3, with the exception of the states Y1, Y2, and Y3. The number of states
charged under the SU(3) and SU(2) groups are indeed even, but this is not the case for
SO(10), since there are only 3 16’s charged under this gauge factor. To resolve this, we first
list the Casimirs for the first few SO(10) reps.

Fundamental 10 : C10 = 1 (C.38)

Spinor 16 : C16 = 2 (C.39)

Adjoint 45 : C45 = 8 (C.40)

Note that these satisfy the sum rule (5.12) of [92] when considering the fields charged under
SO(10):

C45 − 3C16 + 2C16

∑
i

δin = 8− 6 + 4 = 6 (C.41)
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The first divergence we cancel is Tr(ηTaTb). The Ẏ give the negative of the contribution of
the light fields, so in the case of SO(10) this trace is simply −3C16 = −6. Since PV fields
come in pairs, we cancel this with at least 2 fields and we have

3C16 = 2
∑
P

ηPCP (C.42)

Thus, we have two options. We can have a PV pair in the 16 (and 16) plus a PV pair
in the 10 or we can have 3 pairs of PV fields in the 10. The other divergence from gauge
interactions we have to get rid of is the linear divergence proportional to the Casimir. We
note that the Ẏ ’s here give

(−1)

(
F

2
− F +

∑
n

qanF
n

)
C(Ga) =

(
−1

2

)
(CGS − CG) (C.43)

since α̇ + β̇ = 1. The overall sign is the sum of the signatures. Cancellation then requires

CGS − CG
2

=
∑
C

ηCCGC

(
1

2
− γC

)
(C.44)

=
∑
P

ηPCGP
(
1− 2γ̄P

)
. (C.45)

provided that the PV fields have no modular weights. The first sum is over all PV fields
whereas the second is over PV pairs. Both of our potential solutions can work here since
we have either 1 or 2 free parameters in the γ’s. In the list of sets of PV fields above, we
opted for the combination of PV fields in the 10 and 16 of SO(10). For the last nonabelian
divergence, Eq. (C.36), we explicitly write out the contribution from the Ẏ so that is takes
the form

0 = Tr(QL
X)Cm

G + Tr

[
ηQPV

X TaTb

]
, (C.46)

where Cm
G is the Casimir of the representation of the matter fields. If we consider fields from

the set S10, then this becomes

−Tr(QL
X) = Tr(QPV

X ) = 2Sum

[
ηQ̄PV

X

]
(C.47)

(C.48)

The fields in S10 contribute to Eq. (C.35) but not to Eq. (C.37) since we have restricted
their γ parameters to be γ = 1

2
. Their contribution to Eq. (C.35) is not an issue since

we can simply include more fields in the other sets described in this section to cancel their
contribution. Finally, the clone fields ensure that none of the sets described in this section
contribute to other conditions.
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PV Fields for the Regulation of Abelian Divergences

Here we satisfy the conditions Eqs. (C.40)–(C.47). The Ẏ contribute here, and to cancel
them we will need to introduce fields with q̄n 6= 0, which is different from all other fields
considered thus far. This would alter some of the expressions we have used above, but we
will not consider these alterations since we will employ clone fields that cancel contributions
to previously considered terms from the fields introduced here. Specifically, we consider

• S11: A set of pairs of PV fields such that the unprimed fields have the same abelian
gauge charges as the light fields (including U(1)X), αP11 = α̇, βP11 = β̇, q

(11)
n = −q(L)

n ,

α′P = 1
2
, β′P = Q′PVX = q

′(11)
n = 0, and positive signature and clone fields with no U(1)a

charges.

• S12: A set of pairs of PV fields with no β parameters or modular weights and with
αP12 = α′P12 = 1/2, Q′X(12) = 0, QX

(12) = 4QX
(L), and U(1)a charges Qa

(12) = Qa
(L)/
√

2 and

negative signature and clone fields with no U(1)a charges.

These satisfy

0 = −S(L)
ab + 2Sum

[
η11Q

a
(11)Q

b
(11)

]
+ 2Sum

[
η12Q

a
(12)Q

b
(12)

]
(C.49)

0 = −2π2δX + Sum

[
η11Q

X
(11)Q

a
(11)Q

b
(11)

]
+ Sum

[
η12Q

X
(12)Q

a
(12)Q

b
(12)

]
(C.50)

0 = −β̇S(L)
a +R(L)

a + Sum

[
η11Q

a
(11)Q

X
(11)β11

]
+ Sum

[
η11q

(11)
n Qa(11)Q

X
(11)

]
(C.51)

0 = −
(

1

2
− β̇

)
S(L)
a + Sum

[
η11Q

X
(11)Q

a
(11)

(
α11 −

1

2

)]
(C.52)

0 = −1

2
S(L)
a +R(L)

a + Sum

[
η11Q

X
(11)Q

a
(11)

(
γ11 −

1

2

)]
+ Sum

[
η11Q

X
(11)Q

a
(11)q

(11)
n

]
(C.53)

0 = −1

2
S

(L)
ab +R

(L)
ab + Sum

[
η11Q

a
(11)Q

b
(11)

((
γ11 −

1

2

)
+ q(11)

n

)]
, (C.54)

where again a subscript or superscript (L) implies a trace over the corresponding values
of the light fields. Note that we have omitted some conditions that are automatically zero.
There are also terms in the above that vanish for the choice of U(1) charges defined in this
work but do not vanish for other choices. If one substitutes the parameters of S11 and S12

as per the discussion above, one sees that all the remaining conditions above are satisfied.

The FIQS spectrum

The FIQS model was described in [252, 172, 171, 102, 103]. The modular weights in this
model are simple: the fields in the ith untwisted sector have qin = δin, and the twisted sector
fields have qn = 2

3
, except for the Y i with qin = δin + 2

3
. Here we will focus in particular on

the U(1) charges of the low-energy matter spectrum. The U(1) charge generators arising
from the Cartan subalgebra of the E8 × E8 and the corresponding charges were worked out
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in [102, 103].Table 2 of [172] lists the charges of the massless spectrum. However, the linear
combinations of generators given in [252, 171] have a mixed anomaly:

Tr(Q6Q7QX) = 1296. (C.1)

To avoid this, one should re-define Q6 and Q7. The fix is very simple:

Q′6 = Q6 −Q7, (C.2)

Q′7 = Q6 +Q7. (C.3)

Below we produce a table of the new charge designations.

Table C.1: U(1) charges of the FIQS massless spectrum

(n1, n3) Field Rep Q1 Q2 Q3 Q4 Q5 QN
6 QN

7 X

untwisted QL (3,2) -6 -6 0 0 0 0 0 0
uL (3̄,1) 6 0 0 -6 0 0 0 0
Ḡ1 (1,2) 0 6 0 6 0 0 0 0
16′ 1 0 0 0 0 0 0 0 9

(0,0) D1 (3,1) 0 4 0 0 0 4 4 4
Ḡ2 (1,2) 6 -2 0 0 0 4 4 4
Ā1 1 -3 -2 -3 -3 -3 4 4 4
Ā2 1 -3 -2 3 -3 3 4 4 4
A1 1 -3 -2 -3 3 3 4 4 4
A2 1 -3 -2 3 3 -3 4 4 4

(1,0) S4 1 6 4 0 0 -2 2 10 4
S5 1 6 4 0 0 -2 -4 -8 4
S6 1 6 4 0 0 -2 2 -2 -8
Ā3 1 -3 -2 -3 -3 1 2 10 4
Ā4 1 -3 -2 -3 -3 1 -4 -8 4
Ā5 1 -3 -2 -3 -3 1 2 -2 -8
A3 1 -3 -2 3 3 1 2 10 4
A4 1 -3 -2 3 3 1 -4 -8 4
A5 1 -3 -2 3 3 1 2 -2 -8

(-1,0) S7 1 6 4 0 0 2 6 -2 4
S8 1 6 4 0 0 2 0 4 -8
S9 1 6 4 0 0 2 -6 -2 4
Ā6 1 -3 -2 3 -3 -1 6 -2 4
Ā7 1 -3 -2 3 -3 -1 0 4 -8
Ā8 1 -3 -2 3 -3 -1 -6 -2 4
A6 1 -3 -2 -3 3 -1 6 -2 4
A7 1 -3 -2 -3 3 -1 0 4 -8
A8 1 -3 -2 -3 3 -1 -6 -2 4

(0,1) d1 (3̄, 1) 0 0 0 2 2 0 -8 4
F1 (1,2) 3 0 -3 -1 -1 0 -8 4
Ā9 1 3 6 3 -1 -1 0 -8 4
A9 1 3 -6 3 -1 -1 0 -8 4
l̄1 1 -6 0 0 -4 2 0 -8 4
S10 1 -6 0 0 2 -4 0 -8 4
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(n1, n3) Field Rep Q1 Q2 Q3 Q4 Q5 QN
6 QN

7 X

(1,1) D2 (3,1) 6 0 0 2 0 -2 -2 4
u2 (3̄,1) 0 0 0 -4 0 -2 -2 4
F2 (1,2) 3 0 3 -1 -3 -2 -2 4
F3 (1,2) 3 0 -3 -1 3 -2 -2 4
S1 1 -6 0 0 2 0 4 4 -8
Y1 1 -6 0 0 2 0 -2 -2 4
Ā10 1 3 6 -3 -1 -3 -2 -2 4
Ā11 1 3 6 3 -1 3 -2 -2 4
A10 1 3 -6 3 -1 3 -2 -2 4
A11 1 3 -6 -3 -1 -3 -2 -2 4

(-1,1) d2 (3̄, 1) 0 0 0 2 -2 -4 4 4
F4 (1,2) 3 0 3 -1 1 -4 4 4
Ā12 1 3 6 -3 -1 1 -4 4 4
A12 1 3 -6 -3 -1 1 -4 4 4
l̄2 1 -6 0 0 -4 -2 -4 4 4
S11 1 -6 0 0 2 4 -4 4 4

(0,-1) D̄1 (3̄, 1) -3 2 -3 1 1 2 -2 4
D3 (3,1) 3 2 3 1 1 2 -2 4
Ḡ3 (1,2) 0 2 0 4 -2 2 -2 4
G1 (1,2) 0 2 0 -2 4 2 -2 4
S2 1 0 -4 0 -2 -2 -4 4 -8
Y2 1 0 -4 0 -2 -2 2 -2 4
l1 1 0 -4 0 4 4 2 -2 4
l̄3 1 0 8 0 -2 -2 2 -2 4
Ā13 1 -9 2 3 1 1 2 -2 4
A13 1 9 2 -3 1 1 2 -2 4

(n1, n3) Field Rep Q1 Q2 Q3 Q4 Q5 QN
6 QN

7 X

(1,-1) D̄2 (3̄, 1) -3 2 3 1 -1 0 4 4
D4 (3,1) 3 2 -3 1 -1 0 4 4
Ḡ4 (1,2) 0 2 0 4 2 0 4 4
G2 (1,2) 0 2 0 -2 -4 0 4 4
S3 1 0 -4 0 -2 2 0 -8 -8
Y3 1 0 -4 0 -2 2 0 4 4
l2 1 0 -4 0 4 -4 0 4 4
l̄4 1 0 8 0 -2 2 0 4 4
Ā14 1 -9 2 -3 1 -1 0 4 4
A14 1 9 2 3 1 -1 0 4 4

(-1,-1) G3 (1,2) 0 2 0 -2 0 4 -8 4
G4 (1,2) 0 2 0 -2 0 -2 10 4
G5 (1,2) 0 2 0 -2 0 -2 -2 -8
l3 1 0 -4 0 4 0 -2 10 4
l4 1 0 -4 0 4 0 4 -8 4
l5 1 0 -4 0 4 0 -2 -2 -8
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