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ABSTRACT

The influenée uponhéiial»étability in an electron ring of the
diffraction radiation reaction force; generated by a fing moving-in
an accelefétioﬁ-column, is calculated theoretically. A stabiliﬂy

" criterion is obtained, ahd numerical examples show that the criterion
.is not an important constraint upon the_choice of parametere or the

operation of an electron ring accelerator.
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I. INTRODUCTION

It is ﬁell khdwn‘that the diffraétion radiation by an electron
ring in the accelerétion column of én electron ring accelerator (EﬁA)
is an important éffect insofar #s it can cause significant loss of
enérgy.of the rinél’z. The effect of the diffraction radiétion upon
the interhnal dynamics‘of the rihg has not so far been studied, although
it 1is cleaf fhat the‘larée énergy radiation could easily have‘a‘ -
sighificant effeét upon ring stability in the axial direction, where
the focuéiﬁgb- cqming only from ions, ihages3, and possibly from the
accelerating field -- is weak. |

B In this note w; study the.contribdtién of diffracfiéh radiation
to £he axial fécusing forcés of é ring, limiting our’analysis, for
.convenience, to the'caseyof‘a ring moﬁing at relativistic-speeds..
We evalﬁate the defocusing forée_for two different geometries: vIn
Section‘IiIWe congider a chafged rod and'é current carrying rod moving
past an infiniﬁe array of semi—infinite‘perfectli_conducting platés,
which géometry has the advantage that the problem mﬁy be analyzed
analytically. In Section III we consider a charged ring in an accel-
erating column consisting of an infinitely long cérrugated cylindrical
waveguidé. vThe effect of the ring currentvis nof included in this v, A
model. Inlsection Iv‘we evaluate the axialvoscillatién frequency
resulting from defocusing forces, and in Section V wWe presgent some

numerical examples.

We may obtain a rough estimate of the order-of-megnitude of




tﬁe_diffréction defocusing from a simple physical modél. Consider

" a charge, Q, moviné along tﬁe axis of an acoeleration colﬁmn. The
complete solution to Maxwell's equatién is, in general, diffichlt
to obtain,.but roughly speaking fhere are image charges moving in
concert wifh'the charge Q. These images are slightly displaced behind
the charge; leadipg to an axial field, Ez’ at the charge and hence

- a net retérding force.. The magnitude of the displacement is diffi-
cult to estimate. The gradient of this field, which is what deter-.
mines theifocusing force, is, however, not sensiti&e to the image.

charge displacement. Thus, in a column of radius a , the field

gradient 'Eza in the frame of the moving charge is approximately
given by o
*
-——-dEz 1] :-9 . R
dz a3 - (r.r)

Thus in thé_laboratory frame, 'dEz/dz' is propdrtional tb the
|relativistic y-factor of fhe charge.
The defocusing force of (1.1) will give a shift in the square
of the axial oscillation frequency in the ring frame, ‘(ab*v)z, of
amount _
) *
| A(wo*v)2 - < EEE B . (1.2)

m
07.L

*

* - ’ :
where OR is the revolution frequency in the ring frame and 7,

is the relativistic y-factor for the circulating electrons. This

formula is derived in Section IV, although many readers may consider



it obvious. Thue, from (1.1) and (1{2);

Av = -

" where N is the number of electrons in the ring, and re is the

classical electron radius. Taking N = 1013, a

]

10 cm, and 7l* = 40 --
typical parameters of and ERA ~- we_obtainv sz = - 7. x 10-3;'Which
is small in comparison with the expected-sélf-focusing.

We have, in this simple;minded,discussion, ignored magnetic
images'which fdr a smooth accelerating,cblumn woﬁldvgreatly reduce
-the Ayz. However, the structure of an acceierating column destroys
the nearly perfect electric and megnetic cancellation of a smooth

pipe and thus our result -- obtained from considering only electric

imeges -- ig & fair estimation of the effect.

II SEMI-INFINITE PLATES

Tn this section we conaidei ag a model of an acceleration
column, an infinite set of semi-infinite conductihg planes; 1i.e.

-a comb. The electron ring is ieplaced by a charged rod and a current
carrying rqd moving past the comb. The advantage of this model is
that the défbcusing force -- just like the radiatioﬁ lo,ssl‘L -- can
be caléulated analytically.

We'eﬁploy exactly the notation of Ref. 4; which reference will

have to be consulted to make the present calculation understandable.

(1.3)




:‘whe?e ‘B = v/c, and 7 = (l»ﬁa)

The plates are taken in the x-y plane‘and extend from -« <y <o,

X > o. They are separated by the distance 2xL, while the rod,

- located at x = - x , 18 parallel to the y-axis and moves in the

z-direction with speed v.

| l._ Charged Rod
We firét considér é.fod having charge'q;'pef unit length.
We want to qomputevthe electric field in the z—direction due to the
chargeg-and éurrents on the plates, b#t‘ﬁe ohly.need this field
‘Egz’ evaluated at X = - x5, Z2'= vt + 0, and averaged over one
‘ period\of‘ the structure. From Eqas. 8 and 23 and the a.rgument

leading from Eqn. 23 to Eqn. 36 in Ref. 4,-it is easy to see that

it s uf(#) )48

2%X5N -
dan -vP2(7\,7) exp |E———z‘; +—l—gz\]

-1/2

e .
, and P(X;y) is given by Eqa. 34
of Ref. 4.

The - evaluatlon of (2. 1), in the limit of y >> 1, follows the
prddedupe employed lg Section 3 of Ref. L. In partlcular, Eqa. 51 is

modified to .

09

(E(c»'~;%£! (Eg): (1 . g;) gxg-Bx (1e2) &

(2.1)

(2.2)



with. : : S : '
' fex . 1o\ | o '
B= |\t -1/ 5 - (2.3)
oy . 2 o
2ol yT ) s X (2.4)

and we have written o = 0y/y. The expression (2.2) is correct, iny

fl

the limit of large 7, through the first two terms. ‘Evaluation of

the integral yields:

. Lot e\,
(E( » "2‘1{4 5 3 172, (‘a“x—) | (l

3 °o) 5
9 .5
B - Ex (2.5)

from which follqws:

(E(°)> "%7?755122 (2,,1;)3/ ) ' - ‘v (2.6)

: o y L \1/2
_y (‘ T fo=0 | ol S2iE (x| | S
‘ -0 . .

The formula for <E(o)> shows that the average energy-loss decreases

as 7-1/2 - - which was the major result of Ref. 4. On the other

hand, the leaqihg term in the defocusing field varies linearly with 7.
It is easy to see that this leading term corresponds in magnitﬁde5 to

what one would expect from an image rod located at x = + X,

_We have numerically eveluated <E (7)> for a number of values



of p = 2xd/x, end for 7 ranging from 2 to 50. Teking p =
0.5; for 7»5:5 the gsymptotic formula is only in error by 3%,
while for y = 10 the error is leés_thén 1%. For p = 3.5, the
error is aboﬁﬁ 7% at 7 = 5, but less than 1% for '7 = 20.

| The numerical calculations are important for evaluating how
well <ﬁ(d)> is‘apprbximated by its value and first derivative
at 0 = O.‘ The calculations showed that the diffraction fiélds
(in cdntrast to the self-field'of a rod) were'well-appréximated
by fhe first two termé of & Taylor seriéskovér distances
0 << x5/7; i.e. 0, <<x,. In appiications of this model to
an ERA we shall always sétisfy this condition; i.e. the ring
minor dimensions (in the ring frame) should be smaller than the
distance from the ring to the accelerating columnvwall. Thué,
in & ring with non-zero minor dimeﬁsions, which in the present
) mbdéllWould be approximated by a compact bundle of thin rods,
the field due to charges and currents on thevplates is adequately
described by (2.6) and 2.7) with q corresponding to the total
line chargevof the'ring.- The sélf-fieldq:decréasévas y < and

we can safely neglect them at large 7. .

2. Current CarrYing Rod.
A rod hévihg,current in the y-direction of magnitude
i_qp'é' is treated in Appendix A of Ref. k. Employing Maxwell!s

‘équations to relate Hx rté.'Ey one obtains



( 2 : g§'222 | .:.‘-.' -
B’ég'q >=,_0:' - q.‘lelz 2_7_2% . (2 L)

The energy loss, which is evaluated in Ref b, varies a8
»(ély) 7 é. Since the tranmverae velocity of electrons, in the ring
frame, ls approximately congtant as the ring is accelerated, the
quantlty B y is essentially 7-independent (and equal to unity,_
1f the electrons have relativlistic transverse velocities before
being.accelerated ax1ally). Thus the energy loss of a charged rod
and a current carrying rod_both vary as 7_%'kat large y) and in
fact are equal in Qagnitude in this limit. In like manner, the
focusing force contributions [Eqs._(?(?) and (2.9)] become equal
in the limit.:. of large Y. We beliQVe thie equality to be a general

(geometry-independent) result.

)

3. 'Focusing Force

The focusing force on an electron, in the agial direction,

is glven by

OF ,(0,t) o +(a, €)'

F(t) = eo —35—— - g —-5-—— (2.10)

(2.8)

(2.9)




which we write in the form
F(t) = K(t)o ' (2.11)

For the gemi-infinite plate model, ﬁhen, taking q = Ne/ZﬁR,

‘with R the ring radius

2 L % A T
» = 2x L 2l ;
K= &) , = &L |14 exL L+ ()| . (2.12)
v < > b 41Rx02 2’ 275 -\ % . _ - -

III CORRUGATED CYLINDRICAL WAVEGUIDE

In this section we. represent the acéglefaﬁingvcolumn'by ah
ihfinitely ldng, periodicall&»corrugated.cylindrica; waveguide with
geometrieal pafametars as showh in Figﬁré 1. We employ the notatioh
~ of Ref. 1 which is necessary for the understanding of'what follows.

~The complete vector potential.éﬂz?t) is given as a sum over the
eigenfunctions of the é@pty.wgfeguide A\(z) e

» < | r), : : O 3.1
A (z,%) z qk(t)ﬁl(m)- o (3-1)

where the functions qx(t) obey. the equation

- 2 coa1 % : o _
4 o+ ooy = N [ j'éx av = £y . : (3.2)
' . ' Vo o » .
Nc is thg’humber of cells and Vﬂ'is their volumé.

If:fhéiazimuthal motion of the electrons is negléétéd, an electron

ring with charge Q and geometrical parameteré ag shown in Figure 1,



.-_.l,o"

travelling with spéed'v, b&s,the’current density

j, = e B h - [z-weD Eo R H, -0 (D)
' wh(R2 - _Rl) . '

where H(x) is the Heaviside step function. Performing the integration in
(3.2) with A¥ from Ref. 1 yields :

| Qvi oy VI, .

£ = - Lo S(}Bmh) J(xm) .exp(llﬁmvt) | (3.4)

AA Ncwx

The factors S(x) = x_1 sin x and J take into account the finite dimensions
of the electron ring ; J is given by ‘
2[R2Ji(me2) - RlJl(-melﬂ

(3.5)
2 2
xm(R2 - Bl) Jo(xma)

J(xm) =

The propagation constants Bm and xm-aré defined in Ref. 1 by
g = “A/V - 2n2/d with 2 chosen such that_lB I ¢ 7w/d, B =8 + 2m/4,
o 1o m o
2 2,2 2 _ ,
X = W / [ 8™,
m AT m
~With the N_ cavities centred at z = 0, and with‘g‘frdm (3.3),

£,(t) = 0 for lt] > 1 = %ch/v,_and hence for t > T q,(t) is .

given by
1 T
qx(t) = w é ‘fx(t') sin wx(t -t') a4t - (3.6)
‘which becomes
_ qai o
D) = =TTk A8 e 300) s + seMsin wye ¢
b

(s(s%) - s(67)) i cos‘w)t] (3.7)

+ . i 1 )
where ¢— = 1} ch ( “A/V, + Qm), and S(¢) = ¢ 1 sin ¢ as above.

Val
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For N + = the contributions to q, come from two resonances with
- c . i ~ :

w, + Blv = O in the notation of Ref. 1. In that limit we find :

p)
14 (t) = - Qdiw -2 A, 8(3w h/v) J(w /yv) sin w_ t ' ‘ (3.8)
m g, A g Pt AT A
N> o .
c ‘ : y
- This result is multiplied .by a factor of two because two resonance conditions
are fulfilled at the same frequency by waves travelling in opposite difectionsv
which are counted as one mode in Ref. 1.
Therelectric field gradient for the A-th mode is
3E | 3A
zZX e zA
™ = - qx(t) arven (3.9)
z =vt z = vt
The z-derivative of the vector potential, averaged over the minor ring
dimensions, follows from Ref.l :
2, R ' ' - l
T2 = o-wy, T LAS s(%smh) I(x,) exp(-i8 vt) (3.10) .
Hz = vt e
Using (3.8), (3.9) and (3.10) we find the electric field gradient
in the limit N, 2w
‘ aEzA - .
lim —= = Qdiw, = A, S(3w, h/v) J(w /yv) £ A B S(I8 h)
N 4 , = vt A m mmn m
J(xm) cos w t exp(-iBmvt) (3.11)
e
When this expression is averaged over the time necessary to traverse one-
P period of the structure the sum reduces to a single term and yields
aEz . »  odi » o : '
lim —— \ = 2 [A S(3 wh/v) J(w,/ v)] 12
.<vc+m 2 . vt> 2wv L TR M (3.12)
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Since A is not available in closed form, it is advantageous to compare"

(3. 12) to the energy U radiated in the )A-th mode in one perlod of the
structure, calculated in Ref.1. We find

3aE wAUA

. Z _ .
Nlim; 3212 ) v;> = vag (3.;3)

c

The total electric field gradient
' 3E
&
9z

is obtained by summing (3.13) over all modes. ' Because of the factor w. it

zZ =

converges less rapidly as a function of w, than the energy loss U..

Finally, we wish to remind the reader that in this section we have

neglected ring current effects.

IV EVALUATION OF THE AXIAL FREQUENCY

In order to ‘evaluate internal ring dynémics it is convenient to
work in the frame of reference in which the ring is at rest. In this

frame, axial motion of electrons is described by

' o *, ¥,
dzz* ¥ 2 ¥  F(t)
% Ve Vo PF w0
at : mo7_L

~

where 'wb* is the revolution frequency, v desciibes the focusing
due'tp iohs; images, and the accelerating wave, 7l*. is the relativistic
y-factor for the circulating electroh, and_ F* is the axiél force on

an electron.dué to the’diffraétion radiation. The absence of a star

on vo follows from its invariance under Lorentz transformation. We

(b.1)



4]
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have neglected the change‘in energy of an electron in the interval'of
an axial oscillaﬁion.
From (2;11), and the invariance of lohgitudinal force under

Lorentz transformation, we have

F(t) = K(t) o,

' *
which, since 2z =0 7y becomes

W’

In the case of relativistic axial ring VelJCLty (7||>>-l)
and’ f01 closely spaced acceleratlng cav1t1es, the time variation
of K(t) is rapid compared with an axial oscillation period,

andee'mayvaverage K(t) over time. Thus letting

'1<Es<g(t)>',

and'comhininé (&.1), (4.3), and (h;h), ve have

vhere the total axial betatron oscillation frequency v is

given by

(4.2)

(4.3)

EURD

(k.5)

(u.e):



-1k -

We introducg the quantity B, by writing

2
Ne7y
K=—=m B
where N is the number of electrons in the electron ring and = R,
i the‘rihg major'radius. Clearly B has the dimensions of inverse
length squared. The factor ‘nl'rhaa'beenrinserted merely for
convenience. From (4.6) and (4.7) |
L Nr R B : - ‘
Bov?Boe (4.8)
o Do
27y

In (4.8); r, 1is the classical electron radius aad we have
émployed wo* é.c/R‘ in:deriving the equation. |
- The quantiﬁy- B, upon.ﬁhich v2 ,depénds, ;s a fuaétion.
of the geoﬁetry of the acceleratipg strucfuré and'df‘ringi.
speed. Fdr.bB'> 0, the diffraction radiation resction 18 & -
défocusing effect. Axial stability follows if vz' is positive,
and hence to obtain stability whed B > 0 requires that a noa-
zero amount of focusing be supplieg'by ioans, images, or the'
agcelefating Q;ve. | | |

Wé hﬁve not concerned ourselves with radial:motion in
this note-ag the focusing - - from ions, imagés, and the externsl
field -;-'ig strong in tﬁis direction, &nd theré_is do near
»I%gnggf ofvloss of }édial-étab;lity. Crossing ofva resonanée |

by a relativistic ring would - - presumably - - not be serious.

!

;
i
1
i
|
|
i
.
i

-
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V NUMERICAL EXAMPLES

@ ' In this section we evaluate (4.8) for the structures discussed
in Sections II and III.
The semi-infinite plate model, after replacing the charge per

unit léngth g by Ne/2nR and setting B'y = 1, yields, from (2.12),

The corrugated cylindrical kaveguide model for a charged ring

(ring currents ignored) yields

2xR1

B = 3 "

a

where the coefficient  n(b/a, d/a, g/a, 7) is & weak function of

_(SPl)

(5.2)

all of its arguments. Computations for a large number of cases indicate _

that. n < 0.5. As remarked at the end of Section II.Z, we expect
that in the relativistic limit ring current effects should introduce
an additional factor of 2 in 7.
: 13 o
Taking as typical values, N = 10", R=3.0cm, 7 = 4O  one

finds, from (4.9)

Thus (5.1) with x_ ~ 10.0 cm and n o> 1 yields N voz - 1.6

x lO—h; Whiie_(S.Z) with R = 3;0 cm, a = 10.0 cm and 1 = 1.0 (to

(5-3)
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: . e C a2 2 -4
include magnetic effects) yields v = Vo - 6.0 x 10 .
These défdcusing effects ere small, and presumably can be _

easily overcome in practice by means of ion focusing or image focusing.

@
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The sign is just wroang, however. The reaéon for this is that

ih the plate structure, since the plates are perpendicular to

the direction of motion of the rod, the boundary éonditions are -

_ satisfied - - to fair approximation - - by an image rod of the

same sign as the rod (thus minimizing H, along the plates);

hence the reversed sign ia (dE/do).
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‘FIGURE CAPTIONS

Fig. 1. Geometry of a corrugated cylindrical waveguide with a
‘ ~ charged ring. :
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Fig. 1
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