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ABSTRACT OF THE THESIS 

 

Interactions within Higher-order Antibiotic Combinations Influence the Rate of Adaptation in 

Bacteria 

by 

Emoni Cook 

Master of Science in Biology 

University of California, Los Angeles, 2022 

 Professor Pamela Yeh, Chair 

 

Using multiple drugs in combination has been suggested as a possible solution to the antibiotic 

resistance problem. However, drug combinations introduce new factors to consider, including 

how the interactions among drugs influence the evolutionary process. Antibiotic combinations 

are considered additive if the combined effect is equivalent to the drugs acting independently, 

synergistic if more effective and antagonistic if less effective. This study examines the evolution 

of S. epidermidis in single drug, two-drug, and three-drug environments to determine how the 

interaction types may influence the rate of adaptation. The net interaction of a combination as 

well as the emergent interaction—the interaction that is uniquely due to all drugs being present 

in a combination that is not due to pairwise interactions, was examined. We find that in three-

drug combinations, synergistic net interactions correlate with higher rates of adaptation, and the 

emergent interaction has no significant effect on the rates of adaptation.    
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INTRODUCTION 

Antibiotic-resistant bacteria are present in the majority of environments worldwide, 

occurring in both clinical and non-clinical settings (Esiobu et al., 2002; Martinez, 2009; Wright, 

2010). Through the overuse and misuse of antibiotics, bacterial populations evolve resistance 

(Ventola, 2015). This creates an arms race between the development of new antibiotics and the 

evolution of resistance resulting in a global health crisis (Levy & Marshall, 2004; Andersson, 

2006; Naik et al., 2022). While more bacteria continue to evolve single and multi-drug resistance 

(Bush et al., 2011; Spellberg & Gilbert, 2014), the discovery of new antibiotics has decreased 

dramatically (Nathan, 2004; Ventola, 2015). Antibiotic resistance has been projected to be 

responsible for 10 million deaths per year by 2050 if no new treatments or strategies are 

implemented (Tagliabue & Rappuoli, 2018). One solution to address this problem is to use 

antibiotics in combination (Fitzgerald et al., 2006; C. J. Brown et al., 2013; Foucquier & Guedj, 

2015; E. D. Brown & Wright, 2016). However, combinations with multiple drugs introduce new 

factors to consider, including how the interactions between drugs influence the evolutionary 

process of antibiotic resistance. 

When antibiotics are used in combination, the effects of the drugs themselves can interact 

with each other. These interactions can be categorized into three types: additive, synergistic, or 

antagonistic. An interaction is considered additive if the combination of drugs yields the same 

effect as if the single drugs were acting independently from each other (Bliss, 1939). A 

synergistic interaction gives a stronger response than expected; in the case of antibiotic 

interactions synergy would result in higher levels of growth inhibition (Bliss, 1939). In vitro 

studies have shown that these types of interactions can attain higher efficacy with lower 

concentrations however, they have been shown to promote the evolution of resistance 

(Hegreness et al., 2008; Michel et al., 2008). In contrast to synergistic interactions, antagonistic 
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interactions yield a weaker response (less inhibition of bacterial growth) than additive 

interactions (Bliss, 1939). Although higher concentrations of drugs within antagonistic 

combinations may be needed to obtain the desired degree of inhibition, they can also be more 

effective in preventing the evolution of resistance (Chait et al., 2007; Hegreness et al., 2008; 

Michel et al., 2008; Yeh et al., 2009).  

 The interactions of higher-order drug combinations (combinations that consist of three or 

more drugs) are more complex than the interaction of combinations consisting of only two drugs. 

This is because multiple interactions are occurring within a single higher-order combination. For 

example, in a three-drug combination, seven different factors contribute to the fitness effect of 

the combination. The first three factors are the effects of the three single antibiotics by 

themselves. The next three factors are the effects of the three pairwise interactions. The last 

factor is the effect of all three antibiotics interacting with each other. Thus, within a three-drug 

combination, there is a total of four interactions occurring simultaneously, the three pairwise 

interactions, and the interaction solely due to all three drugs being present (Beppler et al., 2016).  

The interactions of a higher-order combination can be characterized in two ways: (1) the 

net interaction and (2) the emergent interaction. The net interaction of a higher-order 

combination is the overall effect of all possible interactions within the combination. The 

emergent interaction of a higher-order combination is the interaction that is due to all drugs 

being present and not a result of any lower-order interactions or single drug effects (Beppler et 

al., 2016). Most studies examine the overall fitness effects or net interactions of higher-ordered 

combinations (Zimmer et al., 2016; Katzir et al., 2019; Yilancioglu & Cokol, 2019); however, it 

is unknown if or how emergent interactions may influence the evolution of populations 

experiencing higher-order combinations of drugs. Emergent interactions have been found in 
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multidrug higher-order (three or more drugs) combinations (Beppler et al., 2016; Tekin et al., 

2018). Understanding the properties of emergent interactions is crucial in having a complete 

picture of a complex system of stressors. 

Here we examine how net and emergent interactions of three-drug combinations affect 

the rate of antibiotic resistance adaptation. The interactions of two-drug combinations have been 

examined extensively (Yeh et al., 2006; Yeh et al., 2009; K. Wood et al., 2012; K. B. Wood, 

2016; Zimmer et al., 2016). It has been shown that they can influence the rates of resistance 

adaptations (Hegreness et al., 2008) and the likelihood of spontaneous resistance mutations 

(Michel et al., 2008). However, it is unclear how higher-order interactions affect the evolution of 

resistance.  We ask the following questions: 1) Does the net interaction of three-drug 

combinations affect the rate of adaptation? 2) Does the emergent interaction of three-drug 

combinations affect the rates of adaptation?  

MATERIALS AND METHODS  

 

Bacterial strain and experimental evolution  

 

We examined the evolution of Staphylococcus epidermis (ATCC 14990) populations to 

nine three-drug combinations (Table 1), all of the respective pairwise combinations (Table 1), 

and the single-drug treatments (Table 2). These drug combinations are comprised of a variety of 

antibiotics from different classes and have different main mechanisms of action (Table 2). For 

each drug treatment (three-drug combination, two-drug combination, and single drug) six 

populations were independently evolved. Each of these populations were evolved in one well on 

a 96-well plate with a working volume of 200 μL. For the first day of the experiment, plates were 

inoculated with cells via pin transferring (0.05 μL) of overnight cultures onto fresh plates. Plates 

were incubated at 37° C and had O.D.600nm measurements taken every ten minutes for 23 hours 
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with a five-second orbital shake before each read. Populations were evolved over a fourteen-day 

period (roughly 150 generations). Every 24 hours, each population was pin-transferred (0.5 μL) 

over to a new plate containing fresh lysogeny broth media with the corresponding antibiotic 

treatment. Then, the new plate was incubated at 37° C and the O.D.600nm measurements were 

taken every ten minutes for 23 hours with a five-second orbital shake before each read. The 

O.D.600nm measurements taken on the first day of the experiment were used to determine the 

interaction values and fitness effects of the combinations. The O.D.600nm measurements from all 

fourteen days were used to determine the rates of adaptation (see Determination of Adaptation 

Rates below). 

Antibiotic Combinations and Interaction Values 

 

The rescaled Bliss independence framework (RBI) (Tekin et al., 2016) was used to 

determine the interaction types and values of the combinations used here. For reference here is a 

brief overview of the framework. RBI uses Bliss independence (Bliss, 1939) as the additive 

model to evaluate interactions based on the relative fitness (w) to a no-drug control (Beppler et 

al., 2016; Tekin et al., 2016; Beppler et al., 2017; Tekin et al., 2017). Net interactions are 

determined using Equation 1. For example, in a two-drug combination, 𝑤𝐴𝐵 is the relative 

fitness of the bacterial population when treated with both drugs A and B in combination 

and 𝑤𝐴𝑤𝐵 is the product of the relative fitnesses of being treated with drug A alone and drug B 

alone. If the deviation from additive effects (DA/net) is a positive value, it would indicate more 

growth than expected thus implying the interactions are antagonistic. A negative value would 

indicate a synergistic interaction. 
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Equation 1: {
two-drug combinations; 𝑫𝑨𝑨𝑩 =  𝒘𝑨𝑩 − 𝒘𝑨𝒘𝑩

𝐭hree-drug combinations; 𝑫𝑨𝑨𝑩𝑪 =  𝒘𝑨𝑩𝑪 − 𝒘𝑨𝒘𝑩𝒘𝑪
 

Effectively the net interaction / deviation from additivity removes the additive effects of each 

individual drug. To find the emergent interactions we now must remove all the lower-order 

interactions from the DA leaving the value of the highest order interaction possible. To do this 

we used Equation 2 which can all be expressed in terms of relative fitness resulting in Equation 

3. 

Equation 2: 𝑬𝟑 = 𝑫𝑨𝑨𝑩𝑪 − 𝑫𝑨𝑨𝑩𝒘𝑪 − 𝑫𝑨𝑨𝑪𝒘𝑩 − 𝑫𝑨𝑩𝑪𝒘𝑨 

Equation 3: 𝑬𝟑 = 𝒘𝑨𝑩𝑪 − 𝒘𝑨𝑩𝒘𝑪 − 𝒘𝑨𝑪𝒘𝑩 − 𝒘𝑩𝑪𝒘𝑨 + 𝟐 𝒘𝑨𝒘𝑩𝒘𝑪 

Then the net (DA) and emergent (E3) interactions were rescaled to enhance the ability to identify 

interactions occurring. They were normalized to either the lethal cases (when evaluating 

synergistic interactions) or to the most effective single or a subset of drugs (when evaluating 

additive and antagonistic interactions). When rescaling non-synergistic emergent interactions, we 

normalized to relative effects from pairwise interactions. For more details on the rational and 

exact equations used please refer to Tekin et al. (2016). 

Determination of Adaptation Rates  

 

Rates of adaptation were determined by the change in the growth term (GT) (defined in 

Equation 4) over time following similar methods to Hegreness et al. (2008). The growth term 

used is a function of the growth rate (r) and the time it takes to grow to half of the carrying 

capacity (K). We will refer to this as 𝑡𝑚𝑖𝑑. This growth term was used to incorporate not only 

adaptations that increased growth rates but to also account for adaptations that reduced lag time 

promoting active growth in environments where antibiotics are subjugated to potential 

degradation (Li et al., 2016). 
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Equation 4: 𝑮𝑻 =
𝒓

𝒕𝒎𝒊𝒅
 

The growth rate (r), carrying capacity (K), and 𝑡𝑚𝑖𝑑 were all determined by fitting 

Equation 5 to the OD data over time with the use of the Growthcurver (0.3.1) package in R 

(Sprouffske & Wagner, 2016). 

Equation 5: 𝑶𝑫(𝒕) =
𝑲

𝟏+(
𝑲−𝑵𝟎

𝑵𝟎
)𝒆−𝒓𝒕

 

The adaptation rate (𝛼) is equal to the change between the initial and final growth term of 

a population (∆𝐺𝑇) divided by the time to navigate to a different fitness increase (tadapt), 

Equation 6 (Hegreness et al., 2008). 

Equation 6: 𝜶 =
∆𝑮𝑻/𝟐

𝒕𝐚𝐝𝐚𝐩𝐭
 

RESULTS 

 

Accounting for selection pressures 

 

Before any comparisons between interactions (additive, synergistic and antagonistic) and rates of 

adaptation were made, we determined the effects a combination has on the fitness of a population 

and the rates of adaptation. A Pearson correlation test was performed to measure the relationship 

between the two-drug and three-drug combinations relative fitness and rates of adaption, 

showing a significant correlation (R = 0.23, p = 0.0017) (Figure 1). We then took the residuals of 

this correlation to determine if any type of interaction may influence the rate of adaptation. These 

residual values were used when comparing any subset of the data when looking for correlations 

(following similar approaches outlined in (Baltagi, 1998)) between rates of adaptation and 

interactions. All rates of adaptation have been corrected for this relationship. 



 

 

 7 

 

Interactions and Adaptation Rates 

 

To determine how the net interactions correlate with rates of adaption, we performed a 

Pearson correlation on the populations that evolved and did not go extinct. We first observed the 

pooled data set comprising populations evolved to two-drug combinations and populations 

evolved to three-drug combinations. We observed a significant negative correlation (R= -0.23,   

p = 0.002) (

 

Figure 2A). As the net interaction values decrease and become more negative 

(synergistic) the rate of adaptation increases. We then examined if this relationship remained 

with the two-drug and the three-drug combinations separately. We found that the significant 
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negative correlation remained, but the degree of the correlation differed based on if there were 

two (R= -0.17, p = 0.037) or three (R= -0.38, p = 0.047) drugs in the combination (
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Figure 2B and 

 

Figure 2C respectively). We also asked if the emergent interactions of a three-drug 

combination correlate with rates of adaptation (Figure 3.). We performed another Pearson 

correlation test and found no significant correlation (R= 0.1, p = 0.6). 

DISCUSSION 

We asked how the interactions of a higher-order drug combination may correlate with the 

rates of adaption. We evolved multiple populations to a variety of three-drug combinations and 

all the corresponding two-drug and single-drug treatments over fourteen days. We found that the 

net interactions of both two-drug and three-drug combinations significantly correlate with the 

rates of adaptation, where more synergistic interactions correlated with faster rates of adaptation 
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(

 

Figure 2). We also determined that the emergent interaction of a three-drug combination 

did not correlate with rates of adaptation (Figure 3.). 

Hegreness et al. (2008) were the first to directly test if interactions between the 

antibiotics in a two-drug combination could correlate with adaptation rates. They evolved 

multiple populations of Escherichia coli to four different two-drug combinations for fifteen days 

(>150 generations). For each drug combination, a variety of doses and ratios were used and the 

interaction values were calculated for each drug-dose combination separately. This meant that 

two combinations with the same antibiotics but different doses could have different interaction 

values. Every 24 hours populations were transferred to fresh media that contained the same 
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antibiotic combination at the same dosage. Growth was measured and growth rates were 

determined to calculate adaptation rates. They found a significant positive correlation between 

the degree of synergy and rates of adaptation. That is combinations with synergistic interactions 

correlated with higher rates of adaptation. 

Multiple studies in two-drug combinations have suggested synergistic interactions 

promote antibiotic resistance evolution and antagonistic interactions limit antibiotic resistance 

evolution. Synergistic interactions have a higher likelihood of spontaneous resistance mutations 

(Michel et al., 2008). In addition, synergistic interactions have been shown to select for 

resistance while antagonistic interactions do not select for resistance (Chait et al., 2007). This is 

especially true when bacterial populations are faced with competition. It has been suggested that 

initial treatment with synergistic drug combinations could result in a  higher bacterial load after 

treatment when compared to initial treatment with additive or antagonistic combinations (Pena-

Miller et al., 2013). Antagonistic drug pairs maintain competitive interactions between the wild-

type and single-drug resistant populations thus limiting the growth and further mutation of the 

single-drug resistant bacteria. Antagonistic combinations can maintain this competition because 

they are effective at killing off the entire wild-type bacteria (Torella et al., 2010).   

Some previous studies did not find significant correlations between drug interaction and 

rates of adaptions or evolvability and rather suggest that collateral effects between a pair of drugs 

affect the evolution of resistance. Collateral effects are the unintentional changes in phenotypic 

response to other stressors because of previous adaptations. When evaluating collateral effects of 

antibiotic resistance, evolving resistance to one antibiotic may result in either increased 

resistance (cross-resistance) or increased sensitivity (collateral sensitivity) to another antibiotic 

(Haight & Finland, 1952; Sanders, 2001; Obolski et al., 2015). In two-drug combinations, 
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mutations that confer drug resistance are typically not selected for if they also confer collateral 

sensitivity to the other drug in the combination, limiting antibiotic resistance adaptation within a 

population (Munck et al., 2014). Pairwise drug combinations that are either cross-resistant or do 

not have collateral effects on each other have higher evolvability than those with collaterally 

sensitive drug pairs (Rodriguez de Evgrafov et al., 2015).   

More recent studies have suggested alternative factors in addition to collateral effects that 

can influence rates of adaptation. Multiple populations of Pseudomonas aeruginosa were 

evolved to 38 different pairwise combinations (based on a range of drug interactions and 

collateral effects) to assess the antibiotic combination efficiency (ACE) (Barbosa et al., 2018). 

The ACE characterizes the ability of antibiotic combinations to limit bacteria survival and limit 

antibiotic resistance adaptation over time. Many of the drug combinations examined had 

synergistic interactions (24 interactions) but some had additive and antagonistic combinations 

(14 interactions each). By categorizing the ACE into two networks based on population 

extinction or adaption rates, they discovered that reduction in adaptation rates is driven by two 

factors: the adaptation to the component of a drug combination that has a stronger selection 

pressure alone and the specific collateral effect. There was no significant relationship between 

drug interactions and evolvability although they did observe instances that supported synergistic 

interactions selecting for resistance. In addition, synergistic combinations were the only 

combinations to experience extinctions despite having the same inhibitory levels as the other 

interaction types. Our current study supports these conclusions from Barbosa et al. (2018) 

regarding the importance antibiotic interactions can have on resistance evolution. 

Another suggested factor that can influence rates of adaptation to a combination of 

antibiotics is the type of genetic response required for adapting resistance.  The adapted genetic 
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responses to single and two-drug combinations in E. coli were categorized to evaluate how 

different genetic responses affect evolvability among different two-drug combinations (Jahn et 

al., 2021).  The resistant mutation(s) selected by the drug combination was then compared to the 

mutation(s) selected for by each of the individual components alone. This resulted in four 

categories to describe the genetic response of adapting resistance to the combination. The four 

categories are as follows: 1) mutations conferring resistance to both drugs are the same and are 

selected by the combination; 2) mutations conferring resistance to both drugs individually are 

different and are selected by the combination; 3) mutations conferring resistance to both drugs 

individually are different but the combination only selects for one; or 4) mutations selected by 

combination are different than those selected by the individual drugs. Drug combinations that 

require novel mutations to gain resistance to the combination (category 4) limit the evolution of 

resistance compared to combinations where the mutations required for resistance are also 

selected by at least one of the components (categories 1, 2, and 3) (Jahn et al., 2021). When 

examining three-drug combinations the additional drug brings more complexities to evaluate by 

having to simultaneously consider three two-drug combinations. These additional complexities 

encountered when evaluating the genetic responses to a higher-order combination is similar to 

the additional complexities of determining the interactions of a higher-order combination. We hope 

that future studies will begin to examine the interplay between the genetic responses and the 

interactions of higher-order antibiotic combinations. 

Most of the studies that did not conclude that interactions can influence rates of 

adaptation or evolvability evolved populations to a dynamic environment—that is the antibiotic 

concentrations of the combinations were increased as the populations evolved (Munck et al., 

2014; Rodriguez de Evgrafov et al., 2015; Jahn et al., 2021). Even if the two antibiotics were 
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kept with the same ratio the change of dosage can change the strength or even type of the 

interaction (Berenbaum et al., 1983). This could mean that the populations being evolved may 

not have been adapting in response to the same interaction over the entire course of the 

experiments.  

In contrast, Hegreness et al. (2008) used constant ratio and dosage of the drug 

combinations for the entirety of each evolution experiment. Hegreness et al. (2008) also tested a 

wide range of interactions from a single drug combination by choosing a variety of ratios and 

dosages. They found a correlation between interaction and rate of adaptation hold within the 

same combination of two drugs for all four drug combinations tested. Additionally, within the 

strongly synergistic combination tested (the combination of erythromycin and doxycycline) the 

highest rates of adaptation were found for dosages that have higher amounts of synergy. These 

rates are even higher than those of the populations evolving to the single drug components alone. 

In contrast, within the strongly antagonistic combination (ciprofloxacin and doxycycline) there 

was a decreased rate of adaptation compared to the single drug components alone. Our current 

findings further support the conclusion that net synergies increase the rate of adaptation to 

antibiotics.  

But beyond that, this study is the first to directly test the relevance of emergent 

interactions regarding the evolution of a population. Studying emergent interactions has been 

historically difficult to do because it requires a large-scale data set with a full factorial design, 

where all possible subsets and individual factors are tested independently. But more recently, 

emergent interactions have been systematically measured and shown to be very frequent among 

antibiotic combinations (Tekin et al., 2018; Lozano-Huntelman et al., 2020) and ecological 
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stressors (Diamant et al., 2022).  Future studies can help elucidate the role emergent properties 

play in the evolution of a suite of population traits.    
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Tables and Figures: 

Table 1. The combinations and concentrations of antibiotics used in three-drug combinations. 

Fitness is expressed by relative fitness to a no-drug control. 

three-Drug 

Antibiotic 

Combination 

Net 

Interactions 

(DA) 

Emergent 

Interactions 

(E3) 

Fitness 

two-drug 

Antibiotic 

Combination 

Net 

Interactions 

(DA) 

Fitness 

CLI+FUS+TMP 10+ -0.545 2.069 

CLI- FUS -0.062 0.981 

CLI- TMP 5.503 2.987 

TMP- FUS 1.233 0.565 

NEO+PIP+TMP -0.967 0.394 0.049 

NEO-PIP 1.069 1.277 

NEO-TMP -0.140 1.017 

TMP-PIP -0.890 0.162 

GEN+PIP+TMP -0.956 1.076 0.085 

GEN-PIP 6.026  1.542 

GEN-TMP -1 0 

TMP-PIP -1 0 

CHL+GEN+TET 8.516 0.185 2.139 

CHL-GEN -0.116 0.667 

CHL-TET 6.706 1.569 

TET-GEN 4.008 1.788 

FUS+NAL+TMP 0.904 -1 1.110 

FUS-NAL -0.082 1.457 

FUS-TMP 2.656 1.310 

TMP-NAL 3.063 1.187 

CHL+DOX+NAL 0.284 -0.614 1.814 

CHL-DOX 2.823 1.431 

CHL-NAL 1.754 1.589 

NAL-DOX 1.222 1.869 

CHL+ERY+NAL 10+ 10+ 0.239 

CHL-ERY -0.045 1.499 

CHL-NAL 1 0 

NAL-ERY 1 0 

FUS+OX+TET -1 1 0.010 

FUS-OX -0.223 1.196 

FUS-TET -1 0 

TET-OX -1 0 

FOX+GEN+TET 4.297 -0.133 1.987 

FOX-GEN -0.024 0.920 

FOX-TET 2.771 1.417 

TET-GEN 5.271 2.089 
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Table 2. The class and the main mechanism of action for the 12 antibiotics used in this study. 

Fitness is expressed by relative fitness to a no-drug control. 

Antibiotic Abbr. 
Mechanism of 

Action 
Class 

Concentration  

 (𝝁Mol) 
Fitness 

Cefoxitin 

sodium salt 
FOX 

Protein synthesis, 

50S 

Beta-lactam; 

Cephalosporins 

 

0.7 

 

0.948 

 

Chloramphenic

ol 
CHL 

Protein synthesis, 

50S 
Broad-spectrum 90 1.054 

Clindamycin 

hydrochloride 
CLI 

Protein synthesis, 

50S 
Macrolides 0.01 1.023 

Doxycycline 

hyclate 
DOX 

Protein synthesis, 

30S 
Tetracyclines 0.6 1.215 

Fusidic acid FUS 
Protein synthesis, 

50S 
Fusidane 0.005 1.043 

Gentamicin 

sulfate 
GEN 

Protein synthesis, 

50S 
Aminoglycosides 0.15 0.965 

Nalidixic acid 

sodium salt 
NAL DNA Gyrase Quinolone 20 1.492 

Neomycin NEO 
Protein synthesis, 

50S 
Aminoglycosides 0.35 0.893 

Oxacillin 

sodium salt 
OX Cell Wall 

Beta-lactam; 

Penicillin 
0.005 1.193 

Piperacillin 

sodium salt 
PIP Cell Wall 

Beta-lactam: 

Penicillin 
0.6 1.061 

Tetracycline TET 
Protein synthesis, 

30S 
Tetracyclines 20 0.810 

Erythromycin ERY 
Protein synthesis, 

50S 
Macrolides 0.05 1.070 

Trimethoprim TMP Folic Acid Antifolate 1.5 0.065 
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Figure 1. The correlation between relative fitness of the ancestral strain exposed to a 

combination and rate of adaptation. A Pearson correlation test was performed to measure the 

relationship between fitness and rates of adaption, showing a significant correlation (R = 0.23, p 

= 0.0017). The data from both two- and three- drug combinations were pooled together. 
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Figure 2. Synergistic combinations of two- and three- drugs correlate with faster rates of 

resistance adaptation. A) A Pearson correlation was performed on the corrected rates of 

adaptation and the net interaction of the pooled combination data for both two-drug and three-

drug combinations. There was a significant negative correlation (R= -0.23, p = 0.002) which 

indicated that as net interactions become synergistic there are faster rates of adaptation. This 

trend is also observed when only examining B), two- drug combinations (R= -0.17, p = 0.037) or 

C), three-drug combinations separately (R= -0.38, p = 0.047).  
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Figure 3 Emergent interactions do not correlate to rates of adaptation. A Pearson correlation 

was performed on the corrected rates of adaptation and the emergent interactions of the three-

drug combinations. No significant correlation was found (R= 0.1, p= 0.6). 
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