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Abstract: A force plate is mainly used in biomechanics; it aims to measure the ground reaction force
in a person’s walking or standing position. In this study, a large-area force mat of the piezoresistance
sensing type was developed, and a deep-learning-based weight measurement calibration method
was applied to solve the problem in which measurements are not normalized because of physical
limitations in hardware and signal processing. The test set was composed of the values measured at
each point by weight and the value of the center of the pressure variable, and the measured value
was predicted using a deep neural network (DNN) regression model. The calibration verification
results show that the average weight errors range from a minimum of 0.06% to a maximum of 3.334%.
This is simpler than the previous method, which directly measures the ratio of the resistance value to
the measured weight of each sensor and derives an equation.

Keywords: piezoresistance sensor; force plate; center of pressure; deep neural network; calibration

1. Introduction

Various principles and types of sensors are used to measure the functions of kinetic
characteristics [1]. In particular, the force plate, which is primarily used in biomechanics,
aims to measure the ground reaction force. It is used to measure the dynamic reaction
force, such as in walking, and the static reaction force, as in standing, and to measure the
direction and magnitude of the force movement.

Most commercial force plates have load cells that may contain piezoelectric elements,
strain gauges, or beam-load cells [2–4]. There are two main types of force plate. The
first is a general force plate. These are the data measured in the load cell inserted at the
four rectangular plate edges, and the force in the three-axis direction is summed, measured,
and presented as a force vector value in consideration of the direction of the force [5]. The
other is the central-support-type force plate. The ground reaction force is calculated from
the moment measured at the pillar fixed at the bottom of the plate [6]. Thus, the voltage
measured by the load cell is proportional to the applied force. Advantageously, the force
plate enables relatively accurate measurements and is fabricated from a hard material with a
flat surface that facilitates measuring the movement. Another type of kinetic measurement
device is a force sensor.

Force sensors are used to determine the value of the force measured in the walking or
standing postures or the shape of the positional change of the sensed force, which consists
of an array of force sensors (FSRs) or piezoelectric sensors on the surface. The dynamic
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perspective of the human physique is treated as a ridged body. Force measurement data
for kinetic analyses require precise and sophisticated values. The value of the force is used
as information about the overall external force to return the joint torque to the inverse
dynamics [7]. The calculated joint torque is also used to predict muscle activity along with
the acceleration and length values of the limb [8]. Accuracy must be guaranteed for use
in medical and healthcare diagnosis [9]. Therefore, the commercial force plate for motion
analysis converts the value of the force applied to the load cell into an electrical signal,
precisely calculates and provides the value of the force corresponding to the voltage value,
and indicates the error level [10].

Several studies have been conducted to confirm the accuracy of measurement values
and calibrate the values of force measurement systems using diverse sensors, such as load
cells and FSRs, which have been developed for use in research as well as commercialized
force measurement systems. Weizman identified a novel method for validating the force
and center of pressure (CoP) obtained from pressure-measuring insoles using commercially
available equipment [11]. Faber proposed a six-degree-of-freedom force/torque sensor
(FTsensor) using a precalibrated force plate (FP) as a measurement reference method
for device calibration [12]. Bobbert evaluated the accuracy of commonly used plates
and proposed a calibration algorithm to improve it [13]. These studies measured the
values at each position of the force plate and derived a conversion formula from the
measured values. However, in FSR and piezoelectric-type measurement devices composed
of multiple sensors, the pattern of each sensor value may be irregular depending on the
data communication speed and processing method.

In this study, we present a measurement and correction method for calibrating the
force of a customized capacitance- and resistance-sensing-type flexible force measurement
mat developed in-house.

2. Materials and Methods
2.1. Introduction of Flexible Force Measurement Mat

This sensor is of the piezoresistance sensing type, and the size of one flexible sensor
cell is 21 × 36 × 2.5 mm. A total of 3264 were placed in a 1530 × 1820 mm area comprising
68 rows and 48 columns [14]. A piezoresistance sensor is made from semiconductor mate-
rial. The resistance of this varies greatly when the sensor is compressed or stretched [14].
A thin electrode connects each sensor, and there is a large area of polyethylene coated on
both sides for protection. The measured data are obtained following the order of each
column and row from the upper PCB and transmitted to a connected PC. The sensor unit
being measured and the upper PCB area for data acquisition and processing are connected
to a socket jack connector port in the form of an electrode port (Figure 1). The power of
the system is DC 5.0 V, 2.0 A using a micro USB, and the measured data are obtained at a
sampling frequency of 20 Hz through a dedicated PCB, with a force range of 10 kg to 100 kg.
The serial port is connected by a USB, and the measured pressure distribution of the flexible
force mat connected to the console PC is given as an image. A 15 mm thick polyvinyl
chloride safety mat is adhered to the top surface of the force mat to reduce slipping and
enhance safety (Figure 2).
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2.2. Verifying Flexible Force Mat Acquisition Data

Considering that this system is used to measure the standing posture or walking
ability of the human body, the center of pressure (CoP) was calculated from the value
measured when supported with both feet. The CoP was calculated as (location information
of each cell × measured value)/total pressure value of each foot, and the formula is shown
in Figure 3 and Equations (1)–(3) [15].

CoProw =
∑ Rown × Value

∑ Value
(1)

CoPcolumn =
∑ Columnn × Value

∑ Value
(2)

CoPvalue =
∑ Value

n
(3)
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The CoP was calculated from the sum of values measured from the sensor in the row
position, and the change in the sensor value compared with the same weight was confirmed
by calculating the number of columnar measured CoPs from the center {1,34} position to
the {48,34} position. The sensor row and column numbering defined the opposite lower left
side as position {1,1}; with the PCB module mounted at the top, the columns increased to
{48} and the rows increased to {68}.
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2.3. Development an Algorithm for Flexible Force Mat Weight Estimation

A deep neural network-based predictive deep learning regression model was devel-
oped to predict the value measured by the sensor and output a kilogram value. To construct
a dataset, it is difficult to measure the value of each sensor, which is small; therefore, the
value of 463 points was measured with 63 intersections and 400 random points along the
rows and columns to match the average foot size, and the features were calculated.

There are a total of 6 features used in model learning. The “Sensor value” is the total
value of data in activated cells. The “No. Cell” means the number of sensors activated
during weighting, and “CoP row” and “CoP column” are values calculated using formulas
1 to 3. The “Row Gap” and “Column Gap” refer to the width that is activated in the top,
bottom, left, and right directions (Table 1).

Table 1. Feature for DNN algorithm.

Feature Description

Sensor value Total values of data in activated cells
No. Cell Number of activated cells
CoP Row Row point of the CoP-activated area

CoP Column Column point of the CoP-activated area
Row Gap Row width of activated area

Column Gap Column width of activated area

The training data were the CoPs and location-related features that could be measured
and calculated from the ground reaction force. First, using 20, 40, and 60 kg weights,
pressure distribution information at 20 Hz sampling frequencies was collected at a total of
63 locations in rows 7 and 9 within an array of 68 × 48, and the weights’ data were randomly
collected at 400 locations to secure additional data for training. Six training feature sets
were acquired from one array and calculated to construct a set of learning data for each
array (Table 1). For example, if the data were obtained by applying 60 kg for approximately
30 s at position A, the frequency would be 20 Hz, resulting in a total of 600 independent
matrices. Thus, 600 lines of data consisting of a set of features were generated from a single
measurement. These 600 matrices differ only slightly from each other, making it difficult
to find significant differences; however, this method for data expansion is more reliable
than generating the data virtually. The training dataset’s 833,400 lines were completed
by accumulating data extracted from hundreds of matrices in each experiment (Figure 4).
The entire dataset was constructed, and measurements exceeding 3 times the standard
deviation of the repeated measurements were defined as outliers and excluded.
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Deep neural network (DNN) regression, a deep neural network, was used to develop
the predictive model. Respectively, the dataset, test, and validation sets were randomly
divided into 60%, 20%, and 20% groups. The optimizer and loss function, respectively,
were adaptive momentum estimation (ADAM) and mean squared error (MSE). ADAM
integrates the momentum algorithm and the RMSProgram [16]. The input shape of the
hidden layer of the learning model was six, consisting of 150 nodes. The hyperparameters
were set to 500 epochs and a batch size of 100 (Figure 5).
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To verify the developed regression model’s accuracy, the mean absolute error (MAE),
mean squared error (MSE), and R-squared (R2) values were calculated using 20% of the
test set data as input values (Equations (4)–(6)) [17].

MAE(Mean Absolute Error) = ∑|y − ŷ|
n

(4)

MSE(Mean Squared Error) =
∑n

i=1(y − ŷ)2

n
(5)

R2(R − Squared) = 1 − SSE
SST

, SSE = MSE, SST =
1
n∑n

i=1

(
yi − y

)2
(6)

2.4. Validation Using Real Data

To confirm the accuracy of the deep learning model developed using the data measured
using the weight of the disk, an additional experiment was conducted using a standard
weight similar in size to a square foot-shape. Measurements were taken at a total of
9 points arranged by row and column. Based on the measurement center point sensor,
the 9 coordinates were #1.{13,41}, #2.{13,25}, #3.{13,11}, #4.{34,41}, #5.{34,25}, #6.{34,11},
#7.{51,41}, #8.{51,25}, and #9.{51,11}.

The purpose of this study was to confirm whether accurate weight estimation is
possible, even with weights of different shapes. The weight (kg) was estimated by placing
rectangular weights of 20, 40, and 60 kg at nine positions on the force mat and inputting
the measured data into the customized deep learning model. See Figure 6.
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3. Results
3.1. Force Mat Weight Sensor Value

Figure 7 and Table 2 show the results of the values measured using 15 kg weights
placed in rows spanning the 4th to 45th columns, based on sensor positions 12, 20, 28, 35,
43, 50, and 58. Based on each row, the value of the column tended to be 0.9 or higher when
checked by the regression equation; however, when compared to the average value, there
was a variation in the sensor value for each location.
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Table 2. Average of sensor values: 15 kg weighting.

Row
Column 12 20 28 35 43 50 58

45 4361.81 3801.10 4432.26 4626.48 4231.57 3788.62 4208.67
40 3353.14 2993.63 3920.44 4278.25 3627.51 2576.39 3447.71
35 3505.48 3031.93 3726.73 3672.93 3399.90 2749.87 3505.99
30 3281.29 3164.10 3564.50 4103.60 4061.09 2572.16 3335.32
25 3113.13 3034.10 3612.79 3688.41 3364.83 2817.65 3064.23
19 2263.09 1910.09 2707.31 2714.86 2477.88 1980.80 2218.33
14 2570.04 2159.12 3191.69 2860.07 2800.15 2345.33 2409.73
9 2562.44 2233.04 3170.10 2948.55 2828.51 2223.13 2409.29
4 2766.91 2334.68 3327.82 3042.83 2931.93 2289.39 2692.63

Average 3086.37 2740.20 3517.07 3548.44 3302.60 2593.70 3032.43
SD (±) 635.73 611.28 496.67 691.22 597.08 520.87 654.53

SD: standard deviation.

The value of each location was measured, and the average value for each row position
was calculated. As a result, it was confirmed that the closer to the top where each location
PCB module was inserted and the closer to the center than to the left and right, the higher
the value (Figure 8).
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3.2. Results of Validating the Deep Learning Model on the Test Set

The model used data that were not used for learning, at a rate of 20%, to confirm its
performance [17,18]. The MSE, which is the loss function between the predicted value and
the actual target value, was 1.078, the MAE, which is the regression index, was 3.330, and
R2, which is the coefficient of dimension, was 0.985, confirming high prediction accuracy.
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3.3. Results of Validating the Deep Learning Model on Real Data

To verify actual usability, the results of the estimated kg value using calibrated weights
of 20, 40, and 60 kg as input values are shown in Table 3. As shown in Figure 4, the average
error of the regression model results calculated from the values measured at a total of nine
locations was confirmed to be 0.06% for 20 kg, −2.14% for 40 kg, and 3.34% for 60 kg.

Table 3. Results of the deep learning model’s estimation error on real data.

Weighing
Point 20 kg Error (%) 40 kg Error (%) 60 kg Error (%)

1 19.57 2.15 40.53 −1.33 57.46 4.23
2 19.80 1.00 43.74 −9.35 54.19 9.68
3 20.49 −2.45 42.69 −6.72 60.08 −0.13
4 19.18 4.10 40.89 −2.22 60.51 −0.85
5 20.26 −1.30 39.96 0.10 58.38 2.70
6 20.44 −2.20 42.34 −5.85 60.84 −1.40
7 19.91 0.45 39.41 1.48 55.33 7.78
8 20.33 −1.65 38.96 2.60 54.96 8.40
9 19.92 0.40 39.19 2.03 60.19 −0.32

Average 19.99 0.06 40.86 −2.14 57.99 3.34
SD (±) 0.44 2.18 1.70 4.26 2.62 4.36

SD: standard deviation.

4. Discussion

In this study, the specifications of the pressure sensor applied to the custom-made
force mat were the same, but the measurement values for the same weight were different
depending on the power for transmitting and receiving data and the limitations of the
data processing module. Therefore, the sensor had to be calibrated [19]. Initially, a simple
conversion equation was derived by measuring all sensors, and this was commonly used
for calibration. However, this study proposed a method of calibration by developing a
regression model based on deep learning to estimate weight using a simplified measure-
ment method [20,21]. To develop a calibration model, the characteristics of the trends in
the measured values must first be checked for each sensor. The first result of this study
confirmed that there was no tendency in the measured value at the designated location,
which means that there is a limit to performing calibration using a simple linear correction
formula. Looking at the tendency of each value, it was confirmed that it changed to a
nonlinear value, and the row position decreased closer to the PCB module at the top of
the data-receiving unit and decreased as the distance increased. The column position
tended to increase as it approached the center and decreased as it moved farther to the
side. Because the power differs depending on the order of transmission and reception of
the data and the distance at which the power is applied and transmitted, it is thought that
there will be a difference in the measured value [22]. Various studies have been conducted
to correct errors caused by factors such as the order of transmission, reception, and voltage
differences [23–26]. A previous study measured and calculated the hysteresis for the value
of the force applied in calibrating a force-sensing resistor, and a digital filter was designed
to perform individual matching of the measured value of the sensor [26]. This is believed to
be heavily influenced by face-to-face problems and hardware specifications for processing
the measured data. Measurement calibration is required to solve this problem, and it is
difficult to create a regression equation owing to the inconvenience of direct measurement
and the low tendency of measurement values. Therefore, deep-learning-based calibration
methods have recently been developed and applied. In related prior research, a method
for setting the multiaxis force as a raw reference dataset and estimating and calibrating
the value using a deep natural network was proposed to solve the coupling effects and
nonlinearity problem caused by the force torque sensors used in robotic arms [26]. The
learning features used to develop a deep learning model to predict measurement weight
were the sum value of data in the activated cells, the number of activated cells, the row
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and column points of the CoP activated area, and the activated area in rows and columns.
This system is meant to calculate the CoP based on measuring the ground reaction. Rather
than calibrating individual sensor values, the dataset was set and considered using the
weights of foot-sized objects. In addition, various correlated features were set to estimate
the weights so that more accurate predictive models could be developed. In the deep
learning model’s validation results that were verified using the test set, the MSE which
is the loss function between the predicted and actual target values was 1.078. The MSE
value indicates the similarity between the predicted and actual values, and the closer it is to
zero, the better the fit. This confirms that the estimated evaluation of the model is possible
because it shows a relatively low value [27]. The MAE was 3.330, and the R-squared value
was 0.985, which is close to 1 [28]. This shows that the estimation result for the applied
input value is excellent. This system will be commercialized in the future and the lowest
(0.06%) and highest (3.34%) error rates were found in the results calculated using this
model. The weight used for learning was circular. However, the standard weight for
verification was rectangular. The error tended to increase as the applied weight increased.
This is expected to be an error caused by the characteristics of the sensor, and the data loss
characteristics of this sensor must be checked more precisely; this would be reflected in
the calibration.

5. Conclusions

Various measurement errors occur in the piezoresistance sensing type large area force
plate used to measure ground reaction force. This is caused by the processing delay time
of the measured data and the voltage difference applied for measurement, so weight
measurement calibration work for each sensor is required. In this study, a CoP-based
deep learning regression model was developed with more simplified measurements to
solve the difficulty of developing repetitive measurements and individual calibration
correction equations for all sensors, and accuracy was secured. It is not suitable as a method
for precise measurement, but the possibility of use was confirmed as a method that can
estimate the CoP of a person’s walking or standing posture and estimate quantitative
weight. In future research, it is necessary to develop more diverse deep learning models to
supplement precision.
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