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ABSTRACT OF THE DISSERTATION

Stochastically forced zonal flows

by

Kaushik Srinivasan

Doctor of Philosophy in Oceanography

University of California, San Diego, 2013

William R. Young, Chair

This thesis investigates the dynamics of multiple zonal jets, that sponta-

neously emerge on the barotropic β-plane, driven by a homogenous and rapidly

decorrelating forcing and damped by bottom drag. Decomposing the barotropic

vorticity equation into the zonal-mean and eddy equations, and neglecting the

eddy-eddy interactions, defines the quasi-linear (QL) system. Numerical solution

of the QL system shows zonal jets with length scales comparable to jets obtained by

solving the nonlinear (NL) system. Starting with the QL system, one can construct

a deterministic equation for the evolution of the two-point single-time correlation

function of the vorticity, from which one can obtain the Reynolds stress that drives

the zonal mean flow. This deterministic system has an exact nonlinear solution,

which is a homogenous eddy field with no jets. When the forcing is also isotropic

xiv



in space, we characterize the linear stability of this jetless solution by calculating

the critical stability curve in the parameter space and successfully comparing this

analytic result with numerical solutions of the QL system. But the critical drag

required for the onset of NL zonostrophic instability is up to a factor of six smaller

than that for QL zonostrophic instability.

The constraint of isotropic forcing is then relaxed and spatially anisotropic

forcing is used to drive the jets. Meridionally drifting jets are observed whenever

the forcing breaks an additional symmetry that we refer to as mirror, or reflexional

symmetry. The magnitude of drift speed in our results shows a strong variation

with both µ and β: while the drift speed decreases almost linearly with decreasing

µ, it actually increases as β decreases. Similar drifting jets are also observed in

QL, with the same direction (i.e. northward or southward) and similar magnitude

as NL jet-drift. Starting from the laminar solution, and assuming a mean-flow that

varies slowly with reference to the scale of the eddies, we obtain an approximate

equation for the vorticity correlation function that is then solved perturbatively.

The Reynolds stress of the pertubative solution can then be expressed as a function

of the mean-flow and its y-derivatives. In particular, it is shown that as long as

the forcing breaks mirror-symmetry, the Reynolds stress has a wave-like term, as

a result of which the mean-flow is governed by a dispersive wave equation.

In a separate study, Reynolds stress induced by an anisotropically forced un-

bounded Couette flow with uniform shear γ, on a β-plane, is calculated in conjunc-

tion with the eddy diffusivity of a co-evolving passive tracer. The flow is damped

by linear drag on a time scale µ−1. The stochastic forcing is controlled by a param-

eter α, that characterizes whether eddies are elongated along the zonal direction

(α < 0), the meridional direction (α > 0) or are isotropic (α = 0). The Reynolds

stress varies linearly with α and non-linearly and non-monotonically with γ; but

the Reynolds stress is independent of β. For positive values of α, the Reynolds

stress displays an “anti-frictional” effect (energy is transferred from the eddies to

the mean flow) and a frictional effect for negative values of α. With γ = β = 0,

the meridional tracer eddy diffusivity is v′2/(2µ), where v′ is the meridional eddy

velocity. In general, β and γ suppress the diffusivity below v′2/(2µ).
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1 Introduction

Zonal flows and eddies are a dominant component of the large-scale circu-

lation of terrestrial and planetary atmospheres and the Southern Ocean. In many

cases eddy fluxes of heat and momentum generate mean flows, while in other ex-

amples, they regulate the strength, structure and variability of mean flows. The

central aim of this dissertation is to construct simplified theories of eddy-mean flow

interactions, and characterize the eddy fluxes of momentum and a passive scalar,

under the paradigm of forced-dissipative barotropic β-plane flow. In Chapter 2,

we introduce the idea of zonal jets as being an instability of an underlying two-

dimensional homogenous turbulent flow and present an idealized statistical model

and analytical solutions that are tested against a wide swath of numerical results.

Chapter 3 analyzes a specific aspect of the variability of eddy-driven zonal jets,

namely their slow meridional drift. In Chapter 4, we calculate the Reynolds stress

of anisotropic eddies in a β-plane shear flow and show that the diffusivity of a

passive scalar is suppressed by both the shear and β.

1.1 Reynolds stresses and eddy-driven zonal jets

While zonal flows and jets are ubiquitous in geophysical systems, only some

examples are driven solely by the fluxes of turbulent eddies and waves. For ex-

ample, though eddy fluxes significantly modify the sub-tropical jet in the upper

troposphere, the existence of the jet is a consequence of temperature contrasts

at the terminus of the Hadley cell [Held , 2000]. The Southern Ocean is largely

driven by the mechanical action of westerly wind-stress applied at the surface.

However, baroclinic instability generates eddies that are responsible for the forma-

1
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tion of multiple jets with a high degree of spatial and temporal variability [Sokolov

and Rintoul , 2007; Thompson and Richards , 2011]. The zonal flows in the atmo-

spheres of giant planets (in our solar system Jupiter, Saturn, Uranus and Neptune)

are likely to be eddy-driven because these planets are too far from the sun to be

driven by equator-to-pole temperature contrasts [Aurnou et al., 2007]. Further, the

giant planets have very strong zonal jets [Vasavada and Showman, 2005; Beebe,

2005] (the peak mean zonal wind in Neptune is around 200 m/s) with a majority

of the surface energy in the mean zonal-flow.

Figure 1.1: A schematic depicting the formation of the mid-latitude eddy driven

jet from Vallis [2006]. Rossby waves (and eddies) generated due to baroclinic

instability in the mid-latitude radiate outward, break and dissipate, and deposit

momentum at the source region.

The surface westerly flow in the mid-latitude terrestrial atmosphere is per-

haps one of the simplest examples of a zonal flow that is primarily generated by

the action of eddy momentum fluxes (or Reynolds stresses) [Hartmann, 2007]. The

schematic in Figure 1.1 (from Vallis [2006]) presents a simplified view of how the

northern hemisphere westerlies are generated. The midlatitudes have a narrow

baroclinic unstable zone that are also identifiable with the region of the storm

tracks. Eddies formed due to baroclinic instability excite Rossby waves that prop-

agate away from the source region, and undergo breaking and dissipation at the
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Figure 1.2: Snapshots of the vorticity field obtained from equilibriated runs of

the forced barotropic vorticity equation, overlaid by the instantaneous zonal-mean

velocity (thick white curves) relative to a zero level (dashed white lines) for the

following two cases: (a) A numerical run on the barotropic β-plane that illustrates

the basic jet generation mechanism shown in Figure 1.1. The narrow source region

(between kfy = 96 and kfy = 104) is stirred by a random forcing, that models

baroclinic eddies. (b) Emergence of an intrinsic length scale: As the source region

expands in width (now between kfy = 80 and kfy = 120), multiple jets start to

appear and the jet width no longer scales with the width of the stirred region.

so-called ‘critical’ latitudes. An easily derivable property of Rossby waves [Held ,

2000; Vallis , 2006] is that the outward propagating Rossby waves converge mo-

mentum flux (or Reynolds stress), u′v′, into the source region, thereby creating

the eastward or westerly flow at the source region. This is a general result: conver-

gence (or divergence) of Reynolds stresses are responsible for generation of zonal

mean flows. This mechanism is illustrated clearly in Figure 1.2(a), which shows

a numerical result obtained from solving the barotropic vorticity equation on the

β-plane (the numerical approach is explained in detail in Chapter 2). The flow is

stirred in a narrow source region by a random forcing, which also ends up being

a region of high eddy-activity (like the atmospheric storm tracks). A strong east-
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ward jet is seen in the source region with a width that corresponds to the width

of the stirred zone. Outside the stirred region, westward flow exists to maintain

momentum conservation, since the stirring does not add momentum to the fluid.

The picture gets considerably muddled when the width of the stirring region

is increased and multiple jets start to emerge, as seen in Figure 1.2 (b). This is

because an intrinsic length scale has now emerged in the system and the model

and discussion surrounding Figure 1.1 no longer works. If the stirring region is

expanded to cover the entire domain, a systematic pattern of eastward and slower

westward jets emerges (see Figure 2.1 in Chapter 2). Similar results are seen in

idealized general circulation models with planetary radius and rotation rate larger

than that of the earth [Schneider and Walker , 2008; Williams , 2003; O’Gorman

and Schneider , 2008]. These examples have wide zones of baroclinic instability

and therefore display multiple zonal jets.

The atmospheres of giant planets are not driven by baroclinic instability but

by a combination of moist shallow-convection in the cloud layer [Gierasch et al.,

2000; Vasavada and Showman, 2005; Li et al., 2006] and possibly, deep convection

from the metallic interior to the surface [Heimpel et al., 2005; Schneider and Liu,

2009; Showman et al., 2011]. Figure 1.3 is a plot of the zonal mean-flow constructed

using observations from the Cassini mission [Porco et al., 2003; Vasavada and

Showman, 2005; Heimpel et al., 2005] and a pattern of east-west jets flanking a

strong equatorial super-rotating jet is clearly seen. Barotropic models have been

used previously to understand Jovian jets [Galperin et al., 2004, 2006], though

their validity is contingent on deep convection in Jupiter [Heimpel et al., 2005;

Showman et al., 2011; Schneider and Liu, 2009] being less important dynamically

than shallow convection in the cloud layer. On the other hand, the atmospheres of

Neptune and Uranus are shallow, as inferred from gravity measurements collected

during the Voyager mission [Kaspi et al., 2013] and barotropic models [Galperin

et al., 2004] are of value here.

For the barotropic model, starting from the pivotal work of Rhines [1975],

numerous physical mechanisms have been proposed to explain the formation of

multiple jets, their spacing and strucure, and we examine some of them in the
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Figure 1.3: The zonal mean flow of the jupiter calculated from NASA’s Cassini

mission. From Heimpel et al. [2005].

next section.

1.2 Zonal jets, eddies and Rossby waves

The presence of differential rotation, due to the near-spherical shape of

planets, or β-effect, is a basic requirement for the formation of large scale zonal

jets. The interaction between Rossby waves (which only exist for non-zero β) and

turbulent eddies is at the heart of most theories of jet formation. Rhines [1975]

proposed a scaling for the jet width based on idea that jet formation occurred as

consequence of a transition from turbulent eddies to waves. The small-scale driving

agent generates eddies that grow larger as a consequence of the two-dimensional

inverse cascade [Kraichnan, 1967]. When the eddies reach a particular scale, given
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by the Rhines wave number, kRh, the inverse cascade is halted and the eddies attain

a wave-like character, which Rhines interprets as representing the jets. Based on

this idea and a simple ad hoc balance between the advective (‘eddies’) and β

(‘waves’) terms of the momentum equation, Rhines [1975] obtained an expression

for the halting wavenumber,

kRh ∼
√
β

U
, (1.1)

where U is a velocity scale that needs to be determined. For example, one possible

choice of U suggested by Danilov and Gurarie [2004] and also used in Chapter 2

(upto a pre-factor of 2) is the root mean square velocity of the flow, Vrms (so that

the flow kinetic energy is proportional to Vrms). If linear bottom friction is assumed

to be the dominant dissipation mechanism, then the Rhines scale becomes

kRh ∼ β1/2µ1/4ε−1/4 , (1.2)

where ε is the energy disspation rate of the system. Vallis and Maltrud [1993]

proposed a mechanism for the anisotropization of two-dimensional turbulent flow

on the β-plane and suggested that it also explained the origin of jets. Following

along the lines of Rhines, they attempt to obtain the length scale (referred to as kβ)

at which the time-scales of eddies and Rossby waves are the same: if the Rossby

wave time scales are much faster, then eddies would be suppressed due to rapid

de-correlation induced by the waves (also see Salmon [1998]). But since the Rossby

wave frequency is highly anisotropic, the resulting halting scale has a dumbbell-

like shape centered along the zonal wavenumber axis.Vallis and Maltrud found

that eddy activity is indeed suppressed in the dumbbell and further speculated

that the inverse cascade would make the spectrum increasingly concentrated along

the meridional wavenumber axis (or equivalently, the zonal direction, in physical

space) eventually leading to the formation of zonal jets.

For one set of barotropic numerical solutions from Chapter 2, this dumbbell

shape is prominently seen along the zonal wavenumber axis in Figure 1.4 for all

the figures marked ‘turbulent’ (1.4 (b) to (f)). The problem is that, while Figure

1.4(c) is turbulent and has the anisotropic dumbbell structure proposed by Vallis

and Maltrud [1993], jets don’t exist (the red high energy spots in (e) and (f) mark
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Figure 1.4: Two dimensional spectra of equilibriated runs of the barotropic vor-

ticity equation from Chapter 2. The Vallis and Maltrud ‘dumbell’ is prominently

seen on the abscissa of all the runs marked as ‘turbulent’. The red spots in (d),

(e) and (f) are the zonal jets and their meanders.

the jets). Thus the mechanism proposed by Vallis and Maltrud is an inadequate

explanation for jet formation. In Chapter 2 we show that none of the mechanisms

reviewed in this section can serve as a fundamental theory for jet formation, by

eliminating turbulent eddies altogether: only wave-mean flow interactions are pre-

served, but zonal jets are still formed. In the mechanism explored in Chapter 2,

jets are formed as a result of direct (or non-local in wave-number space) transfer

of energy from the forced modes (the banded structure clearly visible in Figure 1.4

(a)) to the jets. In particular, the jets are viewed as a large scale (‘zonostrophic’)

instability of the underlying turbulent state.



8

1.3 Structure of forcing in the barotropic model

Previous studies on barotropic zonal jets have used a variety of choices

for the forcing that drives the jets. Steady monochromatic forcing was employed

by Manfroi and Young [1999], Tsang and Young [2008] and Boland et al. [2012]

with the aim of simulating baroclinic instability. In a quasigeostrophic model with

a zonal background vertical shear, the most unstable baroclinic mode is a pure

zonal mode (i.e. its phase lines are aligned with the longitude) and to model this,

the steady forcing is typically chosen as a sinusoidal function (like cos(kfx), kf

representing the deformation wavenumber) to force the barotropic vorticity equa-

tion. To motivate this construction, Figure 1.5 (a) shows the initial evolution of

baroclinic instability of an unstable background flow with zonally oriented verti-

cal shear. A two-layer quasi-geostrophic model was used for the run in Figure

1.5 (a) and the plotted upper layer potential vorticity shows the characteristic

‘noodle’-modes with their phase lines aligned along the meridional direction (as

expected from linear instability theory). An important property of the two-layer

QG model and the barotropic QG model (in the absence of forcing) is that they

are both Galilean invariant [Pedlosky , 1982], a property that is in fact broken by

the cos(kfx) forcing. A way to preserve Galilean invariance is to chose a stochastic

rapidly de-correlating forcing (see the discussion surrounding Chapter 4 (4.22) for

a proof of this).

Stochastic forcing is probably the most popular driving agent, with a ma-

jority of studies [Vallis and Maltrud , 1993; Smith, 2004; Danilov and Gurarie,

2004; Danilov and Gryanik , 2004; Galperin et al., 2006] using a forcing that has a

isotropic spatial structure (usually a narrow band of wavenumbers at small scales)

with the aim of simulating moist convection in giant planets. In Chapter 2 of

this dissertation, the same isotropic narrow band forcing is employed primarily

to establish a connection with the large body of research that uses this forcing.

Futher the forcing is also white-noise in time as this idealization allows the con-

struction of analytically solvable models. In Chapters 4 and 3 anisotropic forcing

is used. The model forcing in Chapter 4 considers a range of possible choices for

the forcing that vary from the meridional noodle-mode structure seen in Figure
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Figure 1.5: (a) Noodle modes: Snapshot of upper layer potential vorticity showing

initial stages of evolution of baroclinic instability for a background with zonally

oriented vertical shear (b) The same but for a flow whose vertical shear is aligned

at an angle π/4 to the zonal direction. Here λ is the deformation radius.

1.5(a) to a zonal noodle-mode structure (not shown here). In Chapter 3 we also

employ tilted noodle-like forcing, that models the baroclinically unstable modes

that appear from instability of a background flow with a non-zonal mean flow,

as seen in Figure 1.5(b). This titled eddy forcing causes the emergence of a new

phenomenon, that has not previously been seen in forced barotropic flow on the

β-plane, namely meridionally drifting zonal jets (as detailed in Chapter 3).

1.4 Tracer diffusion due to eddies in a back-

ground mean flow

Ocean sea surface maps obtained from satellite altimetry indicate that the

extra-tropics are dominated by geostrophic eddies. These eddies are formed due

to baroclinic instability of the background time-mean flow, which in case of the

extratopical ocean happens almost everywhere since most of the ocean has been

found to be baroclinically unstable[Ferrari and Wunsch, 2010; Tulloch et al., 2011].
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Eddies mix and transport momentum and heat across the ocean, while the corre-

sponding eddy fluxes alter the background mean flow and stratification. Eddies

also redistribute dissolved gases and minerals globally, and are important in both

climatic and biogeochemical studies.

Global ocean models at this juncture do not possess sufficient spatial and

temporal resolution to adequately resolve mesoscale eddies, and as a result, eddy

fluxes continue to be a significant source of uncertainty for climate studies. In

the absence of sufficient resolution, eddy fluxes are parametrized in terms of the

resolved large scale flow using a diffusivity. For example in case of eddy heat

fluxes, we write, u′T ′ = −κe∇T̄ where κe is the eddy-duffusivity. Here the idea

of ‘diffusion’ by eddies is invoked in analogy with the diffusion due to random

motion of molecules. Continuing in this vein, the eddy diffusivity is typically

written as κe = vele where ve is an estimate for the velocity scale associated with

the eddies (often taken to be proportional to
√
EKE, where EKE is the eddy

kinetic energy) and le is an average estimate of the eddy length scale, referred to

as the ‘mixing-length’ [Prandtl , 1925]. At the ocean surface, ve and le are obtained

from the surface geostrophic velocity calculated from satellite altimetry [Stammer ,

1998]. Excluding areas that have strong mean currents, like the western boundary

currents and the ACC, the kinetic energy in the eddies is an order of magnitude

greater than that in the time-mean flow. As a consequence, the effect of the mean

flow on tracer diffusivity is not significant and can be neglected. However, in flow

regions where the kinetic energy of the mean flow and the eddies are comparable,

like the ACC, the mean flow can no longer be neglected in diffusivity calculations.

To illustrate we start with one of the equilibrated zonal jet runs from Chapter

2 and co-evolve a passive scalar. The scalar equation and the vorticity equation

are identical except the presence of the stochastic forcing (described in Chapter 2)

in the vorticity equation. Figure 1.6 (c) plots the Eulerian eddy diffusivity vc/βc

where v is the meridional velocity, c the scalar field and βc the background scalar

field gradient. It is clear from the figure that the eddy-diffusivity is suppressed

at the faster eastward jets by about a factor of 4. In the oceanographic context,

Marshall et al. [2006] were the first to note the suppression of eddy-diffusivity by



11

k fx

k
f
y

ζ (x, y)

(a)

50 100 150 200

50

100

150

200

k fx

k
f
y

c(x, y)

50 100 150 200

50

100

150

200
0.01 0.015

50

100

150

200

v c/β c

k
f
y

(c)(b)

Figure 1.6: (a) Snapshot of equilibrated vorticity from a zonal jet run for µ∗ =

0.00182 and β∗ = 1 from Chapter 2 with overlaid zonal-mean velocity (thick white

line). (b) The corresponding snapshot of the passive scalar field. (c) The Eulerian

eddy-diffusivity v′c′/βc, where βc is the background scalar gradient.

strong mean flows in the ACC. Ferrari and Nikurashin [2010] provided a formal

theoretical framework for identifying the effect of a mean flow, U on the Prandtl

diffusivity, κe = vele and provided the following modification

κUe =
κe

1 + χ(U − c)2
, (1.3)

where c is the zonal speed of the eddies, and χ is a factor which depends on the

eddy structure. When there is no relative motion between the eddies and the mean

flow, U = c and the basic mixing length result is recovered. In other words, the

greater the relative motion between the eddies and mean flow, the greater the eddy

suppression.

One issue with the derivation of (1.3) by Ferrari and Nikurashin [2010] and

Klocker et al. [2012] is that the meridional variation of the mean flow U(y) is ne-

glected without sufficient justification. One of the consequences of this assumption

is that the mean-flow does not alter the spatial structure or scale of the eddies,

i.e. there is no eddy-mean flow interaction at all. In other words, the studies of

Ferrari and Nikurashin and Klocker et al. are kinematic. In Chapter 4, we allow

the eddies to be modified by the local shear of the background mean flow through

the Orr mechanism. This allows us to study the effect of shear on eddy diffusivity,
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which is not accounted for in (1.3) and find that strong shear can also suppress

eddy diffusivity. Our mathematical approach in deriving the eddy diffusivity is

based on the correlation dynamics approach used in Chapter 2.



2 Zonostrophic instability

Abstract. Zonostrophic instability leads to the spontaneous emergence

of zonal jets on a β-plane from a jetless basic-state flow which is damped by bottom

drag and driven by a random body force. Decomposing the barotropic vorticity

equation into the zonal-mean and eddy equations, and neglecting the eddy-eddy

interactions, defines the quasi-linear (QL) system. Numerical solution of the QL

system shows zonal jets with length scales comparable to jets obtained by solving

the nonlinear (NL) system.

Starting with the QL system, one can construct a deterministic equation

for the evolution of the two-point single-time correlation function of the vorticity,

from which one can obtain the Reynolds stress that drives the zonal mean flow.

This deterministic system has an exact nonlinear solution, which is an isotropic

and homogenous eddy field with no jets. We characterize the linear stability of this

jetless solution by calculating the critical stability curve in the parameter space

and successfully comparing this analytic result with numerical solutions of the QL

system. But the critical drag required for the onset of NL zonostrophic instability

is sometimes a factor of six smaller than that for QL zonostrophic instability.

Near the critical stability curve, the jet scale predicted by linear stability

theory agrees with that obtained via QL numerics. But on reducing the drag, the

emerging QL jets agree with the linear stability prediction at only short times.

Subsequently jets merge with their neighbors till the flow matures into a state

with jets which are significantly broader than the linear prediction, but have have

similar spacing as NL jets.

13
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2.1 Introduction

Zonal flows are banded, anisotropic, weakly fluctuating alternating jets that

form spontaneously and persist indefinitely in an otherwise turbulent plasma or

planetary fluid [Diamond et al., 2005; Vasavada and Showman, 2005]. The sub-

ject started with Rhines’ 1975 discovery that freely evolving barotropic β-plane

turbulence transfers energy into zonal shear modes with zero frequency [Rhines ,

1975]. Also in 1975, experiments by Whitehead showed that forcing, without the

exertion of azimuthal torque, in a rapidly rotating basin produces prograde jets; in

this context the curved upper surface provides an analog of the β-effect. We follow

Galperin et al. (2006) in referring to the development and persistence of these

anisotropic planetary flows as “zonation”. Williams [1978] showed that zonation

occurs in statistically steady forced-dissipative flows on the sphere, and proposed

this as an explanation of the banded structure of the planetary circulations of

Jupiter and Saturn.

Figure 2.1 shows a typical example of fully developed, forced and dissipative

zonation obtained by numerical solution of (2.3) below. The main features of the

statistically steady flow, such as the sharp eastward jets, the broader westward

return flows, and the sawtooth relative vorticity, are familiar from many earlier

studies of statistically steady, stochastically forced, dissipative β-plane turbulence

in doubly periodic geometry [Danilov and Gurarie, 2004; Danilov and Gryanik ,

2004; Maltrud and Vallis , 1991; Smith, 2004; Vallis and Maltrud , 1993], and on

the sphere [Williams , 1978; Nozawa and Yoden, 1997; Huang and Robinson, 1998;

Scott and Polvani , 2007].

To establish the notation used in this study, we start with the equations of

motion for a forced and dissipative barotropic flow, u = (u, v):

Du

Dt
+ f ẑ × u = ẑ ×∇a−∇p− µu + νn∇2nu , (2.1)

∇·u = 0 , (2.2)

where f = f0 + βy is the β-plane Coriolis frequency. The flow is energized by a

solenoidal (incompressible) force generated by the function a(x, y, t). There is no

loss of generality in taking the force to be solenoidal: any compressive component
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of the external force is balanced by the pressure gradient. Damping is provided by a

combination of drag µ and hyper-viscosity νn (with n = 4 in numerical simulations,

and n = 1 in development of theory).

The incompressible velocity field (2.2) admits a streamfunction, ψ(x, y, t)

with (u, v) = (−ψy, ψx), and relative vorticity, ζ = ψxx + ψyy. Eliminating the

pressure from (2.1), one obtains the β-plane vorticity equation

ζt + uζx + vζy + βv = ξ − µζ + νn∇2nζ . (2.3)

The vorticity forcing ξ on the right of (2.11) is the curl of the solenoidal force in

the momentum equation i.e.,

ξ = ∇2a . (2.4)

We assume that the forcing, a in (2.1) and ξ in (2.3), is a rapidly de-

correlating, isotropic, spatially homogeneous, random processes. Thus energy and

enstrophy are injected into a narrow band of wavenumbers centered on a “forced

wavenumber” kf (see Appendix A for details of the implementation). This model

of exogenous stochastic forcing, first proposed by Lilly [1969], is now a standard

protocol used in many barotropic and shallow-water studies of forced-dissipative

zonation. The physical interpretation of the forcing, and the choice of its spatial

structure, vary somewhat in literature. Considering ξ to be a representation of

baroclinic eddies, Williams [1978] chose the forced wavenumbers to lie in a nar-

row rectangular band, with the zonal extent of the band equal to the baroclinic

deformation radius. Scott and Polvani [2007] and Smith [2004] interpreted the

rapidly de-correlating, narrow-band, isotropic forcing as a model of small-scale

three-dimensional convection. Another possibility is that ξ is a representation of

the bubble-cloud forcing used by Whitehead [1975] in the laboratory. Below, in

the discussion surrounding (2.10) we give yet another interpretation of the forcing

ξ.

We have found no studies that establish any particular forcing protocol as

being a reasonable physical representation of three-dimensional small-scale eddies

acting on a barotropic flow. However, despite the two strong modeling approx-

imations, namely quasi-geostrophy and the choice of the forcing, some features
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Figure 2.1: Nonlinear (NL) zonal jets. Left panel: a snapshot of the zonally

averaged velocity U(y, t) obtained from a solution of (2.3) in a doubly periodic

domain 2πL × 2πL with kfL = 32, where kf is the dominant wavenumber of

the forcing ξ. Right panel: a snapshot of the vorticity ζ, with overlaid zonally

averaged vorticity −Uy(y, t) (solid white curve). The parameter values for this run

are µ∗ = 0.01824 and β∗ = 1.0. The snapshot is at 2µt = 25 with spin-up from

rest.

of Jovian jets, like the jet width, are approximately captured by simplified mod-

els [Smith, 2004; Vasavada and Showman, 2005]. A different model forcing due

to Showman [2007] uses non-solenoidal physical-space mass-forcing to represent

moist convection in a shallow water system. Despite the different choice of forcing,

Showman’s results on planetary zonal jets are broadly consistent with those ob-

tained by Smith [2004]. In light of this fact, and since the barotropic QG system

cannot represent mass-forcing, we do not address these issues further.

A common theme in all the studies mentioned above is a separation of scales

between the forcing length scale, k−1
f , and the width of the emergent jets. Indeed

the spacing of the jets in Figure 2.1 is significantly greater than k−1
f , which is

an indication of either the inverse cascade, or of a spectrally nonlocal transfer of
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Figure 2.2: Quasilinear (QL) zonal jets. Left panel: a snapshot of the zonally

averaged velocity U(y, t) obtained by integrating the QL system (2.6), (2.7) and

(2.9). Right panel: a snapshot of the QL vorticity ζ, with overlaid zonally averaged

vorticity −Uy (solid white curve). The parameters for this run are the same as

the nonlinear solution in Figure 2.1 i.e., µ∗ = 0.0182, β∗ = 1 and kfL = 32. The

snapshot is at 2µt = 40 after spin-up from rest.

energy [Huang and Robinson, 1998].

A striking feature of β-plane zonation is that the translational symmetry,

y → y + a, of the equation of motion (2.3) is spontaneously broken: the locations

of the eastward maxima in Figure 2.1 are an accident of the initial conditions and

of the random number generator used to create ξ. If the bottom friction is weak

enough, jets that form remain in the same position, apparently forever. In the limit

β → 0 however, the jets get weaker (with no jets for β = 0) and have a tendency

to meander along the meridional direction, without a net migration. We do not

discuss the phenomenon of meandering jets any further in this chapter. In the weak

friction limit, once quasi-steady jets are in place, their dynamics can be discussed in

mechanistic terms using concepts such as potential vorticity mixing, the resilience

of transport barriers at the velocity maxima, radiation stress and shear-straining of

turbulent eddies [Rhines and Young , 1982; Dritschel and McIntyre, 2010]. But the
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primary question addressed here is why the jets form in the first place, given that

the forcing ξ does not select particular locations. Following earlier investigations of

this phenomenon [Farrell and Ioannou, 2007; Manfroi and Young , 1999], we show

that zonation can be understood as symmetry-breaking instability of an isotropic,

spatially homogeneous and jetless β-plane flow .

In section 2.2 we introduce the eddy-mean decomposition and discuss a

statistical method, previously used by Farrell and Ioannou [1993a, 2003, 2007],

Marston et al. [2008], and Tobias et al. [2011], which is the basis of our linear

stability analysis of zonostrophic instability. This method amounts to forming

quadratic averages of the equations of motion and then discarding third-order

cumulants. Farrell and Ioannou [2003, 2007] refer to this method as stochastic

structural stability theory (SSST), while Marston et al. [2008] call it the second-

order cumulant expansion, or CE2. SSST and CE2 are completely equivalent, and

only one name is required. We have therefore adopted the more descriptive CE2

terminology of Marston et al. [2008].

In section 2.3 we present a physical space re-formulation of CE2 which has

analytic advantages over earlier numerically oriented formulations. Within the con-

text of CE2, section 2.4 provides a complete analytic description of zonostrophic

instability obtained by linearizing around an exact isotropic and homogeneous so-

lution with no jets. As in Farrell and Ioannou [2007], zonation is understood as a

linear instability of CE2: part of the linearly unstable eigenmode is a zonal flow.

This linear stability problem is characterized by two control parameters, a non-

dimensional drag parameter µ∗ and a non-dimensional planetary parameter β∗, and

we determine the CE2 zonostrophic stability boundary in the (β∗, µ∗)-parameter

plane. An important property of CE2 zonostrophic instability is that the most

unstable wavenumber, which determines the meridional scale of the exponentially

growing jets, is well away from zero. Because the instability unfolds around a

nonzero wavenumber, CE2 zonostrophic instability is not properly a negative-

viscosity instability. This point is reinforced in section 2.5 by showing that the

CE2 eddy viscosity is identically zero. Section 2.6 is a comparison between the

analytic results and direct numerical simulations of the nonlinear system. Section
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2.7 is the discussion and conclusion. The more technical aspects of the paper are

in five appendices.

2.2 The eddy-mean decomposition and quasilin-

ear (QL) dynamics

We use an eddy-mean decomposition

ψ(x, y, t) = ψ̄(y, t) + ψ′(x, y, t) , (2.5)

where the overbar denotes a zonal average; we also denote the zonal mean velocity

as U(y, t) = ū(y, t). Applying this average to (2.3) results in the zonal mean

momentum equation

∂tU + ∂y
(
u′v′
)

= −µU + ν∂2n
y U , (2.6)

and the eddy vorticity equation

ζ ′t + Uζ ′x + (β − Uyy)ψ′x + EENL = ξ − µζ ′ + ν∇2nζ ′ . (2.7)

In (2.7), the eddy-eddy nonlinearity is

EENL
def
= ψ′xζ

′
y − ψ′yζ ′x −

(
ψ′xζ

′
)
y
. (2.8)

In addition to the zonal average, the overbar includes a running time average

over a short interval so that ξ̄(y, t) does not appear on the right of (2.6). In

presenting equations subsequently used to obtain analytic results, we use n = 1

for the viscosity.

2.2.1 Quasilinear (QL) dynamics

The main results in this paper are obtained with a quasilinear (QL) system,

which is defined by taking

EENL→ 0 (2.9)

in (2.7). Figure 2.2 shows a QL solution at the same parameter values as the

fully nonlinear (NL) solution as Figure 2.1. Because of the coupling between the
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Figure 2.3: (a) Hovmöller diagram of the zonal mean velocity U(y, t) obtained

by solution of the full nonlinear (NL) system in (2.3). (b) Hovmöller diagram

of the zonal mean velocity U(y, t) obtained by solution of the quasilinear (QL)

system. (c) A comparison of the zonal mean energy fraction, zmf(t) defined in

(3.16), for QL and NL runs. The time-averaged fractions are 〈zmf〉NL = 0.3 and

〈zmf〉QL = 0.51. This figure shows the time evolution of the runs in Figures 2.1

and 2.2.
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mean and the eddies, the QL system is nonlinear, and Figure 2.2 shows that QL

dynamics still results in the spontaneous formation of quasisteady zonal jets.

Comparing the left panels in Figures 2.1 and 2.2, one sees that the QL

jets are faster and wider than NL jets, and the jet profiles are different: QL jets

are distinctly more east-west symmetric than NL jets. Nonetheless, we show in

section 2.6 that the QL jets in Figure 2.2 do have a small east-west QL asymmetry,

and at other points in the (β∗, µ∗)-parameter space, QL jets are strongly east-west

asymmetric.

Because the QL jets are faster, the QL system is more zonostrophically

unstable than the NL system. In Figures 2.1 and 2.2, quasi-steady jets evolve

spontaneously from an initially jetless state, as shown in the Hovmöller diagram of

the zonal mean flow U(y, t) in Figure 2.3. Comparing the upper and middle panels

in Figure 2.3, shows that the QL system has significantly longer adjustment times

than the NL system.

O’Gorman and Schneider [2007] made the QL approximation (2.9) in an

atmospheric general circulation model and showed by comparison with the full

nonlinear version of the model that several important features of the flow are unaf-

fected by complete removal of the eddy-eddy nonlinearity as in (2.9). Comparing

Figures 2.1 and 2.2 we reach a similar conclusion for the more idealized model

studied here. This preliminary conclusion is supported by a detailed comparison

between NL and QL solutions in section 2.6.

There are several ways of motivating QL dynamics. The QL system con-

serves both energy and enstrophy, and has the same zonal-mean equation and sym-

metries as the NL system. Thus arguments based on quadratic integral invariants

apply equally to the QL and the NL system [Salmon, 1998]. Nonetheless, because

EENL is discarded, the QL system cannot exhibit a true Batchelor-Kraichnan

inverse energy cascade: in the QL model all nonlinear interactions require par-

ticipation of the zonal mean flow. Because U(y, t) has a larger length scale than

the eddy field, all these nonlinear QL interactions are spectrally nonlocal. Fig-

ure 2.2 shows that the spectrally local Batchelor-Kraichnan inverse cascade is not

necessary for zonation.
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Potential vorticity (PV) is not materially conserved by the QL system, and

consequently non-quadratic functions of PV are not conserved by the nonlinear

terms remaining in QL. Thus Figure 2.2 also shows that strict material conservation

of PV is not necessary for zonation.

Thus, at the most basic level, the QL system is instructive as an indication

of the physically essential processes necessary for zonation.

2.2.2 Stochastic closure versus cumulant expansion

A main motivation of the QL system is that using the statistical method

pioneered in meteorology by Farrell and Ioannou [1993a, 2003, 2007] one can com-

pute important average quadratic properties of the QL flow, such as Reynolds

stress and the eddy enstrophy and energy. However rather than (2.9), Farrell

and Ioannou [2007] adopt a stochastic closure, which amounts to replacing the

eddy-eddy nonlinearity with a combination of random forcing and dissipation:

EENL→ −ξEENL + µEENLζ
′ ; (2.10)

see also DelSole [2001]. The intent of (2.10) is that the random forcing ξEENL(x, t)

and the dissipation µEENLζ
′ should be chosen to match the evolution of the NL

system. The terms in (2.10) then augment the exogeneous forcing and dissipation

on the right of (2.7).

However there is probably no reliable a priori method of determining the

right hand side of (2.10). Heeding the principle to first do no harm, we prefer the

QL alternative (2.9). This has the advantage that one can then make a specific

comparison between QL and NL solutions (e.g., as in Figures 2.1 and 2.2) and

assess the role of EENL.

Our point of view, which follows Marston et al. [2008] and Tobias et al.

[2011], is to regard the QL system as an approximation to the NL system. In fact,

(2.9) in tandem with the method of Farrell & Ioannou, is precisely the second-order

cumulant expansion CE2 of Marston et al. [2008]. It is from this perspective that

in section 2.3 we develop a physical-space formulation of CE2, which is suitable

for analytic solution.
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2.3 Dynamics of correlations: CE2

In the QL approximation, the eddy vorticity equation can be written as

∂tζ
′ + L ∂xψ

′ = ξ − µζ ′ + ν∇2ζ ′ , (2.11)

where L is the Rayleigh-Kuo operator

L
def
= U ∇2 + (β − Uyy) . (2.12)

In this section we obtain a closed deterministic evolution equation for the two-

point correlations function of vorticity ζ ′ and streamfunction ψ′. This correlation

equation, (2.23) below, is coupled to the evolution of the zonal mean flow via

the Reynolds stresses, and the Reynolds stresses can be obtained by evaluating

derivatives of the correlation function at zero separation. Thus one obtains the

zonal-mean evolution equation in (2.34) below.

2.3.1 Correlation functions: kinematics

We assume that the external forcing, a(x, t) in (2.1) and ξ(x, t) in (2.11),

has a two-point, two-time correlation functions of the form

a(x1, t1)a(x2, t2) = δ(t2 − t1)A(x1 − x2, y1, y2) , (2.13)

ξ(x1, t1)ξ(x2, t2) = δ(t2 − t1) Ξ(x1 − x2, y1, y2) , (2.14)

where the overbar above denotes an ensemble average. The dependence of the

spatial correlation functions A and Ξ only on the difference

x
def
= x1 − x2 (2.15)

indicates that the forcing is zonally homogeneous. We do not assume (yet) that

the forcing is isotropic and meridionally homogenous.

Because derivatives commute with the ensemble average, the relation (2.4)

implies that A and Ξ are related by

Ξ = ∇2
1∇2

2A , (2.16)
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where the Laplacian acting on the coordinates of point n is

∇2
n

def
= ∂2

x + ∂2
yn . (2.17)

Notice that that we have changed notation: undecorated x in (2.15) is

the zonal difference coordinate. We also use the shorthand u′1 = u′(x1, t), U2 =

U(y2, t), ζ
′
2 = ζ ′(x2, t) etc. Strictly speaking, we should decorate all the variables

in (2.11) with the subscript n = 1 or 2 to explicitly indicate whether we refer to the

eddy-vorticity equation at the point x1 = (x1, y1), or at the point x2 = (x2, y2).

We forbear.

We assume “ergodicity”, so that the overbar is also equivalent to the zonal

average of a single realization. We desire the single-time two-point correlation

functions

Z(x, y1, y2, t)
def
= ζ ′1ζ

′
2 , (2.18)

and

Ψ(x, y1, y2, t)
def
= ψ′1ψ

′
2 . (2.19)

The analog of (2.16) is

Z = ∇2
1∇2

2Ψ . (2.20)

Given the streamfunction correlation Ψ(x, y1, y2, t), one can obtain the velocity

correlation tensor as

Vij(x, y1, y2, t)
def
=

(
u′1u

′
2 u′1v

′
2

u′2v
′
1 v′1v

′
2

)
=

(
∂y1∂y2 ∂x∂y1

−∂x∂y2 −∂2
x

)
Ψ . (2.21)

Because the choice of denoting one point as x1 and the other as x2 is

arbitrary, all correlation function have an important “exchange” symmetry

Ψ(x, y1, y2) = Ψ(−x, y2, y1) , (2.22)

and likewise for A, Z, Ξ etc.

2.3.2 Correlation functions: dynamics

It follows from (2.11) and (2.14) that the correlation functions evolve as

∂tZ +
(
∇2

2L1 −∇2
1L2

)
∂xΨ = Ξ− 2µZ + ν

(
∇2

1 +∇2
2

)
Z , (2.23)
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where the Rayleigh-Kuo operator at point n is Ln ≡ Un∇2
n + (β − U ′′n).

To derive (2.23), multiply the equation for ∂tζ
′
1 by ζ ′2 and add this to the

∂tζ
′
2-equation multiplied by ζ ′2. The sum is then ensemble averaged, and after the

average all fields depend on x1 and x2 only through the combination x = x1 − x2.

Because of this zonal homogeneity ∂x1 = −∂x2 = ∂x. Thus, for example,

ζ ′2L1∂x1ψ
′
1 + ζ ′1L2∂x2ψ

′
2 =

(
∇2

2L1 −∇2
1L2

)
∂x ψ′1ψ

′
2 . (2.24)

A crucial simplification is that the forcing is rapidly decorrelating in time, as

expressed by the δ(t1 − t2) in (2.14). Considerations summarized in Appendix B

(amounting to a simple proof of Ito’s formula) show that

ζ ′1ξ2 + ζ ′2ξ1 = Ξ . (2.25)

The result above is the origin of the first term on the right hand side of (2.23).

2.3.3 Collective coordinates

As alternatives to y1 and y2, there are advantages in using the “collective

coordinates”

y
def
= y1 − y2 and ȳ

def
= 1

2
(y1 + y2) . (2.26)

Eventually we will restrict attention to homogenous and isotropic forcing, and at

that point we take Ξ in (2.14) to be a function only of the two-point separation

r
def
= |x1 − x2| =

√
x2 + y2 . (2.27)

Collective coordinates are then essential for analytic progress.

In terms of y and ȳ, the Laplacians are

∇2
n = ∇2 − (−1)n∂y∂ȳ + 1

4
∂2
ȳ , (2.28)

where ∇2 def
= ∂2

x + ∂2
y is the “separation” Laplacian. Thus, for instance,

Z =
(
∇2 + ∂y∂ȳ + 1

4
∂2
ȳ

) (
∇2 − ∂y∂ȳ + 1

4
∂2
ȳ

)
Ψ , (2.29)

= ∇4Ψ + 1
2

(
∂2
x − ∂2

y

)
∂2
ȳΨ + 1

16
∂4
ȳΨ . (2.30)
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Using the coordinates in (2.26), the correlation equation (2.23) becomes

∂tZ + (U1 − U2)∂xZ − (U ′′1 − U ′′2 )
(
∇2 + 1

4
∂2
ȳ

)
∂xΨ

− (2β − U ′′1 − U ′′2 ) ∂ȳ∂y∂x Ψ

= Ξ− 2µZ + 2ν∇2Z + 1
2
ν∂2

ȳZ , (2.31)

where now U1 = U
(
ȳ + 1

2
y
)

and U2 = U
(
ȳ − 1

2
y
)

2.3.4 The zonal mean flow equation

One advantage of collective coordinates is that mean square quantities,

such as the enstrophy, are obtained by evaluating correlation functions at zero

separation i.e., by setting (x, y) = 0. For example if one possesses Z = Z(x, y, ȳ, t)

then the eddy enstrophy is ζ ′2 = Z(0, 0, ȳ, t).

A key result, obtained by evaluating

u′1v
′
2 + u′2v

′
1 = 2∂x∂yΨ (2.32)

at (x, y) = 0, is that the Reynolds stress is

u′v′(ȳ, t) = ∂y∂xΨ(0, 0, ȳ, t) . (2.33)

Thus the mean flow equation (2.6) can be written as

∂tU + ∂ȳ∂y∂xΨ(0, 0, ȳ, t) = −µU + ν∂2
ȳU . (2.34)

The mean flow equation (2.34), coupled with the correlation equation (2.31), is a

closed system for the ensemble-averaged properties of QL dynamics.

2.4 Zonostrophic instability of a spatially homo-

geneous and isotropic base-state flow

2.4.1 The spatially homogeneous basic state

We now suppose that the forcing is statistically homogenous and isotropic,

i.e. that the correlation function of the forcing has the particular form

ξ(x1, t1)ξ(x2, t2) = δ(t2 − t1) Ξ(r) , (2.35)
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where r is the two-point separation defined in (2.27). Because Ξ does not de-

pend on ȳ, there is a simple exact solution to (2.31) and (2.34). This solution is

spatially homogeneous and isotropic and has no mean flow, U = 0. With these

simplifications the correlation equation (2.31) collapses to:(
2µ− 2ν∇2

)
ZH = Ξ . (2.36)

The subscript H emphasizes that ZH(r) is spatially homogeneous i.e., independent

of ȳ. The streamfunction correlation function, ΨH(x, y), can be obtained from

ZH by solving ∇4ΨH = ZH. It is remarkable that ZH in (2.36) is independent of

β: an isotropic and spatially homogenous forcing drives an isotropic and spatially

homogeneous flow, despite the anisotropy of Rossby wave propagation.

We now apply the Fourier integral theorem,

f̃(p, q)
def
=

∫∫
f(x, y)e−i(px+qy) dx dy , (2.37)

f(x, y) =

∫∫
f̃(p, q)ei(px+qy) dp dq

(2π)2
, (2.38)

to (2.36). We use the notation

h
def
=
√
p2 + q2 , (2.39)

so that after the Fourier transform h4Ψ̃H = Z̃H, and the streamfunction spectrum

is related to the forcing spectrum by

Ψ̃H(h) =
Ξ̃(h)

2µh4 + 2νh6
. (2.40)

We emphasize that Ψ̃H(h) in (2.40) is not singular as h→ 0. To see this, we recall

(2.16), which in this homogeneous and isotropic case implies that Ξ = ∇4A, and

therefore Ξ̃ = h4Ã. In terms of Ã then, the streamfunction spectrum in (2.40)

becomes

Ψ̃H(h) =
Ã(h)

2µ+ 2νh2
. (2.41)

Since a(x, t) is stationary, the spectra Ã(h) and Ψ̃H(h) are finite as h→ 0 (provided

that µ 6= 0).
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Later we will need two integral constraints on the vorticity forcing correla-

tion function Ξ: ∫∫
Ξ(x, y) dxdy = Ξ̃(0, 0) = 0 , (2.42)

and also ∫∫
Ξ(x, y)r2 dxdy = lim

h→0
h−2Ξ̃(p, q) = 0 . (2.43)

These follow from Ξ = ∇4A, and the assumption that the correlation function

A(r) decays faster than r−1 as r → ∞. The constraints above are satisfied by

the standard forcing protocol described in Appendix A, which has zero spectral

density around h = 0.

2.4.2 The dispersion relation of inviscid and isotropic flow

The linear stability of the spatially homogeneous solution in (2.41) is de-

termined by imposing small initial disturbances and examining evolution in time.

The perturbation variables are added to the base state variables, (0,ΨH,ZH) and

substituted into equations (2.31) and (2.34). The total ‘flow’, with mean and

imposed small perturbations, is
U(ȳ, t)

Z(x, y, ȳ, t)

Ψ(x, y, ȳ, t)

 =


0

ZH(x, y)

ΨH(x, y)

+ eimȳ+st


Û(m, s)

Ẑ(x, y;m, s)

Ψ̂(x, y;m, s)

+ c.c. , (2.44)

where m is the meridional wavenumber of the disturbances and s is the growth

rate, with growing perturbations corresponding to <(s) > 0. Retaining terms

linear in the perturbation variables (Û , Ψ̂, Ẑ), one has the equations governing the

evolution of small perturbations to the homogeneous solution. The details of the

subsequent solution are in Appendix C, and a main result of that analysis is the

dispersion relation

2µβ2 s+ µ

s+ 2µ
=∫ ∞

0

h5
(
h2 −m2

)
Ã(h)Q

[
h2(s+ 2µ)

mβ
,
m

h

]
dh

2π
, (2.45)
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where Ã(h) is the forcing spectrum in (2.41), and the function Q(χ, n) is defined

by the angular integral

Q(χ, n)
def
=∮

cos2 θ
(
1 + n2 − 4 sin2 θ

)
(χ+ i sin 2θ)2 + n2

[
χ2(n2 + 2− 4 sin2 θ) + cos2 θ

] dθ

2π
. (2.46)

The dispersion relation (2.45) applies to the special case of isotropic forcing, A =

A(r) and ν = 0; a more general expression of the dispersion relation is in Appendix

C.

Dr. George Carnevale has shown that the dispersion relation in (2.45) and

(2.46) is also obtained from equation (5.13) in Carnevale and Martin [1982]. The

field-theoretic approach of Carnevale and Martin [1982] is different from the ap-

proximation used to obtain the CE2 system in (2.31) and (2.34) e.g., CE2 contains

terms such as (U1 − U2)Zx, which Carnevale and Martin [1982] consider to be

fourth order in wave amplitude, and therefore negligible. However, after lineariza-

tion of CE2 around a basic state with U = 0, these terms are neglected. Therefore

the linearized version of CE2 in this section is equivalent to the weak-turbulence

limit (5.13) in Carnevale and Martin [1982]. This consistency provides confidence

in (2.45) and (2.46).

2.4.3 Ring forcing

In most previous investigations of zonation, the forcing is limited to an

annulus of wave numbers in Fourier-space. Typically the annulus of forced modes

has a mean radius h = kf and has thickness 2δk � kf . This is the “narrow-band

forcing” described in Appendix A. We idealize this choice further by considering

‘ring’ forcing corresponding to the limit δk → 0. In other words, we consider

a random flow, driven isotropically by injecting energy on the circle h = kf in

wavenumber space. This corresponds to

A(r) =
2ε

k2
f

J0(kfr) , Ã(h) =
4πε

k3
f

δ(h− kf ) , (2.47)

where J0 is the Bessel function of order zero. Notice that Ξ = ∇4A = k4
fA. With

ν = 0 — as we assume in (2.45) — the spatially homogeneous base state solution
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in (2.41) is

ΨH(r) = ε
J0(kfr)

k2
fµ

, Ψ̃H(h) = 2πε
δ(h− kf )
k3
fµ

. (2.48)

The parameter ε above, with dimensions Watts per kilogram, is the rate of working

of the force that sustains the base state (2.48) flow against dissipation.

With δ(h−kf ) in (2.47), the h-integral in (2.45) is trivial. Before proceeding

however, it is convenient to write the various parameters in the non-dimensional

form using the length scale k−1
f and time scale (εk2

f )
−1/3. These scales lead to the

control parameters

µ∗
def
=

µ

k
2/3
f ε1/3

, β∗
def
=

β

k
5/3
f ε1/3

. (2.49)

The nondimensional wavenumber and growth rate are

m∗
def
=

m

kf
, and s∗

def
=

s

(εk2
f )

1/3
. (2.50)

The zonostrophic dispersion relation in non-dimensional variables is then

µ∗β
2
∗
s∗ + µ∗
s∗ + 2µ∗

= (1−m2
∗)Q

(
s∗ + 2µ∗
m∗β∗

,m∗

)
, (2.51)

with the function Q defined in (2.46). We now lighten the notation by dropping

the ∗ on non-dimensional variables m and s. We have obtained the growth rate by

solving (2.51) numerically for s = sr + isi. This numerical solution indicates that

modes with sr > 0 are found only if 0 < m2 < 1, and these unstable modes have

si = 0. We have been unable to obtain a satisfactory non-numerical proof of these

two important properties of zonostrophic instability.

Figure 2.4 shows some examples of the growth rate s(m) plotted as a func-

tion of m for various values of β∗, with µ∗ = 0.15 in all cases. If s > 0 for some

values of m (e.g., β∗ = 0.15 and 1 in Figure 2.4) then the homogeneous flow is

unstable and zonal jets will grow from very small initial amplitude. Also shown in

Figure 2.4 are two marginally stable situations β∗ = 0.0634 and β∗ = 2.571. These

are defined by the condition that the most unstable disturbance has s = 0:

max
∀m

s(m; β∗, µ∗) = 0 . (2.52)
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Figure 2.4: The growth rate s as a function of m for µ∗ = 0.15 and five values

of β∗ indicated on the curves. The variables in this figure are non-dimensionalized

according to (3.15) and (2.50). These modes have si = 0 i.e., s is real. The curves

β∗ = 2.571 and 0.0634 correspond to the marginally stable situation defined by

(2.52).

A main conclusion resulting from our analysis is that zonostrophic instability is

suppressed if β∗ is either too large or too small e.g., in Figure 2.4 the flow is stable

if β∗ > 2.571 or if β∗ < 0.0634.

The marginal stability condition in (2.52), which is equivalent to the re-

quirements

s(m; β∗, µ∗) = 0 , and ∂ms(m; β∗, µ∗) = 0 , (2.53)

defines a “critical curve” in the (β∗, µ∗)-parameter plane. This curve, µ∗ = µc
∗(β∗)

is shown in the upper panel of Figure 2.5. The solution (Z, U) = (ZH, 0) is linearly

unstable in the region below the critical curve. The peak of the critical curve is

0.2464 = µc
∗(0.65). This peak defines the “most unstable” point in the (β∗, µ∗)-

parameter space i.e., the largest value of drag µ∗ at which the homogeneous solution

loses stability. The lower panel of Figure 2.5 shows the wavenumber mc(β∗) of the

incipient instability i.e., the wavenumber determined by simultaneously satisfying
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Figure 2.5: (a) The critical curve, µc
∗(β∗) (solid line); linear zonostrophic instabil-

ity occurs in the region below the critical curve. (b) The wavenumber on the critical

curve, mc(β∗) (solid line) i.e., the most linearly unstable wavenumber. Asymptotic

approximations for the critical curve and the most unstable wavenumber based on

β∗ � 1 (dash-dot) and β∗ � 1 (dash) are shown in both panels.

the two equations in (2.53).

2.4.4 Approximations to the neutral curve with large and

small β∗

Also shown in Figure 2.5 are analytic approximations in the complementary

limits β∗ � 1 and β∗ � 1. These results are obtained via asymptotic analysis of

the integral Q(χ, n) in (2.46), and simplification of the dispersion relation (2.51)

(see Appendix E). If β∗ � 1 then the critical curve is

µc
∗(β∗) =

(
3

64

)1/5

β2/5
∗ +O

(
β4/5
∗
)
, (2.54)
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with wavenumber

mc
∗(β∗) = 1− 0.43β2/5

∗ +O
(
β4/5
∗
)
. (2.55)

In the complementary limit β∗ � 1, the approximation to the critical curve

is

µc
∗(β∗) =

2

β2
∗

(
1− 35/3

β2
∗

)
+O

(
β−6
∗
)
, (2.56)

with wavenumber

mc
∗(β∗) =

31/3

β∗
+O

(
β−3
∗
)
. (2.57)

The lower panel of Figure 2.5 shows that linear zonostrophic instability is

spectrally nonlocal only in the limit β∗ → ∞: in that case the most unstable

wavenumber is much less than the forced wavenumber kf , implying a scale sepa-

ration between the scales at which energy is injected and the scale at which jets

initially form. In the other limit β∗ → 0 the linearly unstable wavenumber is close

to kf .

2.4.5 The small wavenumber structure of the growth rate

The structure of the dispersion relation at small m provides insight into the

nature of zonostrophic instability. Looking at Figure 2.4, we anticipate that

s = −µ∗ + η2m
2 + η4m

4 +O
(
m6
)
, (2.58)

where η2 > 0 might explain the increase in s that results in the instability with

s > 0. This would be a “negative-viscosity instability”, which is the interpretation

offered by Farrell and Ioannou [2007] and Bakas and Ioannou [2013, 2011].

However there is a small surprise: from (2.138) we find that the expansion

of the dispersion relation (2.51) around m = 0 is:

s = −µ∗ +
3β2
∗

8µ4
∗
m4 +O

(
m6
)
. (2.59)

i.e., the term η2 in (2.58), corresponding to viscosity, is identically zero. In-

stead, the instability is associated with a destabilizing hyperviscous term i.e., the

Reynolds stresses are related to the zonal mean flow by

u′v′ = −3β2
∗

8µ4
∗

∂3U

∂y3
, (2.60)
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leading to the small-m growth rate in (2.59). We analyze this curious situation

further in Section 2.5 and show that η2 = 0 follows from the assumed isotropy of

the forcing i.e., η2 = 0 is not a special property of the particular model in (2.48).

The conclusion is that zonostrophic instability requires anti-frictional momentum

fluxes, and in the small-m limit this anti-friction is hyperviscous.

In recent work Bakas and Ioannou [2013, 2011] reach a different conclusion

viz., that the anti-frictional effect resulting in nonzero Reynolds stress is equivalent

to non-zero and positive η2, and that the hyper-viscous coefficient η4 is negative and

therefore stabilizing. We believe that these differences may result from a different

choice of forcing Ξ. Bakas and Ioannou [2013, 2011] use an anisotropic forcing,

while our conclusion above is specifically for isotropic forcing. The importance of

isotropy to our conclusion is underscored in the section 2.5.

2.5 Isotropy and zero eddy viscosity

In the discussion surrounding (2.59) we observed that the term in the zonos-

trophic dispersion relation corresponding to the eddy viscosity is zero. This result

emerges from the analysis of a complicated dispersion relation and surely deserves

a more fundamental explanation, or at least another explanation. Thus in this

section we more directly obtain the eddy viscosity of an isotropically forced QL

β-plane shear flow, and show that the result is identically zero.

The eddy viscosity is obtained by calculating the Reynolds stresses in a

situation where there is good scale separation between a shear flow and eddies. The

best possible scale separation is achieved by considering a Couette flow, Un = γyn,

and in this case the CE2 correlation equation (2.31) collapses to

γy∂xZ − 2β∂ȳ∂x∂yΨ = Ξ(x, y)− 2µZ . (2.61)

For the moment we assume general forcing i.e., there is no restriction to isotropic

forcing (yet).

The eddy viscosity νe is defined by the relation

νe
def
= −γ−1 u′v′ . (2.62)
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The goal is to solve (2.61) and obtain the Reynolds stress u′v′ by evaluating Ψxy

at zero separation e.g., as in (2.33). The eddy viscosity then follows from the

definition (2.62).

We expect that νe defined above is equal to the coefficient η2 in (2.58). In

the m→ 0 limit, the modal solution in (2.44) varies on the length scale m−1, which

is much greater than the length scale of the forcing, viz., k−1
f . Thus on the scale

of the forcing, the growing zonal disturbance resembles the Couette flow 1 (except

at the “shearless” points, where Uy = 0). By calculating the Reynolds stress in

this situation one can anticipate the low-wavenumber structure of the dispersion

relation. This reasoning is identical to methods in kinetic theory by which the

molecular shear viscosity is calculated.

2.5.1 A solution of the correlation equation

We can simplify (2.61) with Z = Z(x, y) i.e., by looking for a solution

independent of ȳ:

γy∂xZ = Ξ(x, y)− 2µZ . (2.63)

This exact reduction is surprising because the β-effect is removed from the problem.

Equation (2.63) can be solved straightforwardly as an ordinary differential equation

in x. However to make contact with a large literature on sheared disturbances, it

is instructive to consider the initial value problem

Ft + γy∂xF = −2µF , (2.64)

with the initial condition

F (x, y, 0) = Ξ(x, y) . (2.65)

The solution of the steady problem (2.63) is then obtained as

Z(x, y) =

∫ ∞
0

F (x, y, t) dt . (2.66)

1There is also uniform advection by the zonal flow. But that sweeping is eliminated by the

difference U1−U2 in the correlation equation (2.31), and is therefore inconsequential to Reynolds

stresses.



36

Thus, solving the initial value problem for F , the vorticity correlation function is

written as the time integral of a sheared disturbance:

Z(x, y) =

∫ ∞
0

e−2µt Ξ (x− γty, y) dt . (2.67)

2.5.2 The Reynolds stresses

To obtain the correlation function Ψ from Z we must solve the two-

dimensional biharmonic equation ∇4Ψ = Z, which is accomplished with the

Green’s function defined by ∇4G = δ(x)δ(y), or G̃(h) = h−4, or

G(x, y) =
r2

8π
(ln r − 1) . (2.68)

With G(x, y) in hand, we have

Ψ(x, y) =

∫∫
G(x− x′, y − y′)Z(x′, y′) dx′dy′ . (2.69)

The Reynolds stress now follows by evaluating Ψxy at zero separation, or

u′v′ =
1

4π

∫∫
xy

x2 + y2
Z(x, y) dx dy . (2.70)

This is a very convenient and general expression for the Reynolds stresses u′v′ in

terms of the vorticity correlation function Z(x, y).

Substituting (2.67) into (2.70) results in a triple integral. To disentangle

this, exchange the order so that t-integral is last, and in the inner x and y integrals

“unshear” the correlation function with the coordinate change

x1 = x− γyt , y1 = y . (2.71)

After these maneuvers the Reynolds stress is

uv =
1

4π

∫ ∞
0

e−2µtΣ(t) dt , (2.72)

where

Σ(t)
def
=

∫∫
(x1 + γty1)y1

(x1 + γty1)2 + y2
1

Ξ (x1, y1) dx1dy1 . (2.73)

Now we restrict attention to isotropic forcing i.e.,

Ξ(x1, y1) = Ξ

(√
x2

1 + y2
1

)
. (2.74)
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Then in polar coordinates, the double integral in (2.73) factors:

Σ(t) =

∮
(cos θ + γt sin θ) sin θ

(cos θ + γt sin θ)2 + sin2 θ
dθ ×

∫ ∞
0

Ξ(r)rdr ,

=
2π γt

4 + (γt)2
×
∫ ∞

0

Ξ(r) rdr ,

= 0 . (2.75)

The final line follows from the constraint (2.42), and implies that u′v′ = 0. That

is, the eddy viscosity νe is zero.

We remark that the constraints in (2.42) and (2.43) are required so that

correlation function Ψ on the left of (2.69) decays as r → ∞, despite the r → ∞
divergence of the Green’s function G(r) in (2.68). In the convolution integral on

the right of (2.69), the large-r divergence of G is shielded by zero integrals of the

vorticity correlation function Z, which follows from the integral constraints on Ξ

in (2.42) and (2.43).

There are two important caveats associated with the conclusion that νe = 0:

the stochastic forcing is isotropic and dissipation is provided only by Ekman drag.

Relaxing either or both of these assumptions might result in non-zero νe.

2.5.3 The kinetic energy density

The energy power integral for the β-plane Couette flow problem considered

here is obtained by first rewriting (2.63) as

γ∇2
(
y∇2∂xΨ− 2∂x∂yΨ

)
= ∇4A− 2µ∇4Ψ . (2.76)

Canceling a Laplacian, and evaluating the result at zero separation, one obtains2

γu′v′ = ε− µ
(
u′2 + v′2

)
. (2.77)

The left hand side is the transfer of energy between the eddies and the Couette

flow, which is zero because u′v′ = 0. Therefore the statistically energy balance is

between dissipation due to drag and the rate of working of the random force that

2The rate of energy injection is ε = − 1
2∇

2A|0; see, for example, the model forcing in (2.47).
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drives the eddies. Remarkably, because the Reynolds stresses are zero, the eddy

kinetic energy of the statistically steady flow is ε/(2µ), independent of both β and

γ.

2.5.4 Discussion

To a certain extent the result νe = 0 is anticipated in the literature on

sheared disturbances. Shepherd [1985] showed that an isotropic initial distribution

of Rossby waves maintains a constant energy density, despite shearing by a Couette

flow; see also Farrell and Ioannou [1993b] and Holloway [2010]. The solution in

(2.67), with the isotropic initial condition in (2.65), is essentially a time integral

of Shepherd’s solution of the sheared-disturbance problem with an isotropic initial

condition.

Via direct numerical simulation (but with β = 0), Cummins and Holloway

[2010] have recently shown that the eddy-eddy nonlinearity, EENL, is essential

in producing nonzero Reynolds stresses from Couette-sheared eddies. Cummins

and Holloway [2010] identify the essential role of EENL as restoration of isotropy

at high wavenumbers. Moreover, as a result of nonlinearly restored isotropy, the

eddy viscosity νe is robustly positive, and thus cannot serve as an explanation of

zonostrophic instability. Whatever the sign of νe, an unfortunate consequence of

(2.9) is that restoration of isotropy at small scales is absent in QL dynamics, and

not represented in the ensemble-averaged dynamics CE2.

2.6 Zonation in QL and NL solutions

We now turn to numerical solutions for a comparison between the full non-

linear system, the quasilinear system and the predictions of CE2. In these calcu-

lations the resolution is 512× 512, and we use the ETDRK4 time-stepping scheme

[Cox and Matthews , 2005]. In addition to the control parameters β∗ and µ∗ de-

fined in (3.15), there is a third control parameter which is the size of the domain

relative to the forced wavenumber kf : in our computations the domain is a doubly

periodic square 2πL×2πL, with kfL = 32. Thus there is scale separation between
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Figure 2.6: The time-averaged zonal mean energy fraction 〈zmf〉 as a function

of µ∗, with β∗ fixed as indicated in the bottom right corner of each panel. QL

simulations are indicated by ◦ and NL solutions by ∗.

the forcing and the domain.

We have obtained about 150 QL and NL numerical solutions, with the

planetary vorticity gradient in the range

0.1 ≤ β∗ ≤ 3.3 ,

and the drag parameter in the range

0.0051 ≤ µ∗ ≤ 0.309 .

In this section we use these solutions to compare QL and NL solutions, and assess

the validity of the CE2 linear stability analysis.
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2.6.1 The onset of zonation in NL and QL solutions

Shown in the bottom panel of Figure 2.3 is the evolution of the fraction of

kinetic energy in the zonal mean flow,

zmf(t)
def
=

∫
U2 da∫

U2 + u′2 + v′2 da
. (2.78)

∫
· · · da above denotes the area integral over the entire domain. The index zmf(t) is

a gross measure of the strength of the zonal mean flow. The time average, denoted

by 〈zmf〉, is computed by averaging over an interval t1 < t < t1 + 10/µ, where

typically 2µt1 > 40. This long spin-up ensures that statistical equilibrium has

been achieved and is consistent with the equilibration time suggested by Galperin

et al. [2006].

The index 〈zmf〉 is used to classify the flow. Figure 2.6 summarizes a suite

of QL and NL calculations in which the drag parameter µ∗ is varied at fixed β∗.

The onset of zonation is indicated by the increase in 〈zmf〉. The dotted lines

marked µcQL correspond to the critical curve in the upper panel of figure 2.5; these

analytic predictions compare well with the increase in 〈zmf〉 in the QL numerical

solutions. The dotted lines marked µcNL in Figure 2.6 are eyeball estimates of the

onset of NL zonation.

The onset of zonostrophic instability requires significantly smaller values of

µ∗ in the NL case than in the QL case: in Figure 2.6 the ratio µcQL/µ
c
NL is as large as

five. Thus the QL system is much more unstable than the NL system. Regarding

this quantitative difference between NL and QL, we recall that QL (and CE2) is an

approximation based on dropping the eddy-eddy nonlinearity. This approximation

is most defensible when the mean flow is very strong i.e., in cases where the zonal

mean flow contains almost all of the energy. Therefore CE2 is not likely to be

quantitatively accurate near the linear stability boundary, where the zonal mean

flow is weak or nonexistent. The comparison in Figure 2.6 is thus a worst case test

of CE2. How, or if, CE2 might be improved to account for the missing eddy-eddy

nonlinearity in this weak mean-flow regime is an open issue.
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Figure 2.7: Snapshots of the vorticity ζ(x, y, t) with overlaid zonally averaged

vorticity −Uy(y, t) (solid white curve) with (a) µ∗ = 0.309 and, (b) µ∗ = 0.0545.

Both snapshots are at non-dimensional time 2µt = 25, after spin-up from rest, and

β∗ = 1.

2.6.2 Zonostrophically stable NL solutions

Figure 2.7 shows two NL solutions which are zonostrophically stable i.e.,

these solutions have

µcNL < µ∗ , (2.79)

and 〈zmf〉 ≈ 0. In the left panel of Figure 2.7 the drag is so heavy that the

approximate dominant balance in (2.1) is µζ ≈ ξ and the vorticity field closely

resembles a snapshot of the forcing ξ.

Figure 2.8 compares energy spectra of statistically steady QL and NL so-

lutions. With strong drag (i.e., µ∗ = 0.309) only the directly forced wavenumbers

are significantly excited. As µ∗ is reduced there is transfer of energy to small

wavenumbers. In the NL case the transfer of energy to wavenumbers smaller than

kf is the due to the inverse energy cascade. In the QL case the excitation of small

wavenumbers is due only to shearing by the zonal mean flow. Comparing QL and

NL solutions at the same value of µ∗, one sees from Figures 2.8(b) and 2.8(d), that

there is significantly more low-wavenumber eddy energy in the NL cases. Yet the

zonal mean energy is always stronger in the QL case. There is no clear association

between the inverse energy cascade and zonation.
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Figure 2.8: The upper panels show the zonal spectrum, EZ(ky/kf ), for QL and

NL solutions with β∗ = 1. The lower panels show the residual spectrum ER(k/kf ),

defined as the angularly averaged spectrum after removal of the “zonal modes”

with kx = 0. The largest peak in EZ(ky/kf ) defines the wavenumber mZ, even

if there are no quasi-steady steady zonal jets e.g., as in the NL simulation with

µ∗ = 0.0545 in panel (a).

The NL solution shown in right panel of Figure 2.7 with µ∗ = 0.0545 has

an eddy energy spectrum in Figure 2.8 (b) exhibiting the beginning of −5/3 range.

However this solution has 〈zmf〉 ≈ 0 and thus serves as example of an isotropic,

spatially homogeneous, weakly turbulent, β-plane flow, without jets. To activate

zonostrophic instability the drag µ∗ must be reduced e.g., to µ∗ = 0.0182 in Figures

2.1 and 2.8.
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2.6.3 The jet scale

If zonation occurs, as evinced by significantly nonzero values of 〈zmf〉, then

by counting the number of distinct jets one can reliably estimate3 a jet wavenumber

mJ. For example, in Figure 2.1 there are seven jets and therefore mJ/kf = 7/32.

However we noticed that there are cases without jets in which the zonal

energy spectrum EZ(ky/kf ) has a strong peak: an example is the µ∗ = 0.0545

solution in Figure 2.7(b): the corresponding zonal energy spectrum in Figure 2.8(a)

has a distinct peak even though there are no zonal jets. In cases like this, we report

a wavenumber mZ which is the peak of the zonal spectrum EZ(ky/kf ). In cases

where there are strong jets we invariably find that mZ ≈ mJ. It is interesting to

compare mJ and mZ with a Rhines wavenumber defined as

mRh =

√
β

2VRMS

, (2.80)

where the root mean square velocity is

V 2
RMS

def
=

〈
1

(2πL)2

∫
U2 + u′2 + v′2 da

〉
. (2.81)

We investigated other choices for the velocity in the Rhines wavenumber e.g.,

Rhines [1975] advocated the RMS of v′. We found however that VRMS gave the

best estimate of the NL jet spacing at small values of µ∗. An advantage of VRMS is

that the energy power integral4 can be used to express VRMS in terms of external

parameters as

ε ≈ µV 2
RMS . (2.82)

The relation above applies with an error (due to hyperviscous dissipation) of less

than 5% in our simulations. Substituting (2.82) into (2.80) one has

mRh ≈ kf

(
β∗µ

1/2
∗

2

)1/2

. (2.83)

3In certain cases the system may be transitioning between a state with n and n + 1 jets.

Following Panetta [1993], we then count n+ 1
2 jets; no other fractional values are permitted.

4From (2.3), the exact energy power integral is 〈ψξ + µ|∇ψ|2 + (−1)n−1νn|∇n−1ζ|2〉 = 0,

where 〈〉 is both a domain integral and a time average.
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Figure 2.9: A summary of zonal wavenumbers (jet scales) for solutions with (a)

β∗ = 0.5 and (b) β∗ = 1. The dot-dashed curve is the Rhines wavenumber defined

in (2.83). The solid curve labelled QLS is most unstable wavenumber calculated

from the dispersion relation (2.51). The NL solutions are indicated by ∗ and the

QL solutions by ◦.

Figure 2.9 compares the zonal wavenumber mZ obtained from QL and NL

solutions with the Rhines wavenumber on the right of (2.83), and with the most-

unstable wavenumber obtained from the linear stability analysis of section 2.4. In

Figure 2.9 we show only the β∗ = 1 and β∗ = 0.5 solutions: solutions with other

values of β∗ exhibit a broadly similar dependence of mZ on µ∗.

At large values µ∗ only the directly forced modes are excited, and conse-

quently mZ ≈ kf in both the QL and NL cases. At the critical value µ∗ = µcQL

in Figure 2.9, the QL solutions undergo zonostrophic instability, and close to this

transition, e.g., at µ∗ = 0.2 and 0.165 in Figure 2.9(a), the QL mZ agrees with the

analytic result from Figure 2.5. In this regime the NL solutions start to develop an
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Figure 2.10: Hovmöller diagrams for the (a) NL and (b) QL runs with β∗=1.0

and µ∗ = 0.0545. The NL run corresponds to the vorticity snapshot shown in Fig.

2.7(b) and shows zonal “streaks”. In panel (b) the QL jets initially appear at a

wavenumber predicted by linearization of CE2. Then successive mergers result in

an increase in jet spacing.

inverse cascade (but without exciting zonal jets) and the NL mZ begins to decrease.

There is an interesting transition at µ∗ = µcZ in Figure 2.9. At this point

the QL and NL zonal wavenumbers are equal, and as µ∗ is reduced the QL and

NL wavenumbers are locked together. At µ∗ = µcNL in Figure 2.9 the NL solutions

finally become zonostrophically unstable, resulting in NL jets and significantly

non-zero values of NL 〈zmf〉. At the smallest value of µ∗ in Figure 2.9, which

corresponds to the runs in Figures 2.1 and 2.2, the QL and NL wavenumbers are

almost equal, and are estimated roughly by mRh.

In Figure 2.9 the analytic result QLS agrees with the observed QL jet scale

only when µ∗ is not too far from the linear stability boundary µcQL. In the strongly

unstable regime, with µ∗ significantly less than µcQL, the observed wavenumber mZ
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is much smaller than the most unstable wavenumber predicted by linear theory.

This increase in the QL jet scale is a result of merging jets which initially appear

with a spacing which is well predicted by the linear theory. This phenomenology

begins at about µ∗ = µcZ and is illustrated in Figure 2.10.

Figure 2.10(a) shows the Hovmöller diagram of the jetless NL solution from

Figure 2.7(b). There is no zonation and U(y, t) shows “streaks” rather than jets.

These streaks are not strong relative to the turbulent eddy field i.e., 〈zmf〉 ≈ 0.

The corresponding zonal energy spectrum in Figure 2.8(a) exhibits a strong peak,

which is a signature of these transient zonal steaks.

Figure 2.10(b) shows the QL case in which jets initially appear with a rela-

tively small meridional spacing predicted by linear theory, followed by a sequence

of mergers so that the mature flow has mZ much less than the most linearly un-

stable wavenumber. The QL jet-merging phenomenology, which is effectively a

one-dimensional inverse cascade, is very similar to the “Cahn-Hilliard” solutions

obtained by Manfroi and Young [1999] from a model of deterministically forced

zonation.

2.6.4 The small drag regime

The flows in Figure 2.1 and 2.2 have relatively light damping and both flows

have organized jets containing a substantial fraction of the total kinetic energy.

Figure 2.11 shows the time-averaged zonal mean-flow, 〈U〉 and the corresponding

potential vorticity (PV) gradient, β∗−〈Uyy〉. In Figure 2.2 the QL jets are almost

symmetrical in the zonal direction, in contrast to the NL jets5. But the QL jets are

not perfectly symmetric: the PV gradient in Figure 2.11(b) reveals the QL east-

west asymmetry. The NL PV gradient is positive for all y and thus the NL jets

are stable according to the Rayleigh-Kuo criterion. The QL PV gradient in Figure

2.11(b) reverses sign on the flanks of the eastward jet, and also at the centers

of the westward jets. Nonetheless the QL zonal mean flow shows no indication

5If β = 0 then the equations of motion are invariant under y → −y and ψ → −ψ. This

symmetry, which induces u→ u, is broken in both QL and NL by non-zero β. This explains the

characteristic east-west asymmetry of U(y, t) on the β-plane
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Figure 2.11: Comparison of zonal mean velocity profiles of the β∗ = 1 NL and

QL runs in Figures 2.1 and 2.2.

of barotropic instability i.e., the deep spikes with β∗ − 〈Uyy〉 < 0 are permanent

features of the QL zonal mean flow even after time averaging.

Via integration of their SSST system, Farrell and Ioannou [2007] report

equilibrated zonal mean flows with much stronger east-west asymmetry than the

QL flow in Figure 2.11 e.g., see their figures 8 and 9. There are at least6 two non-

dimensional parameters, β∗ and µ∗, and the jet profile depends on both of these.

We will not attempt to characterize this variation systematically. However to make

some contact with the strong-forcing limit considered by Farrell and Ioannou [2007]

we consider the QL solution in Figure 2.10(b) and in Figure 2.12(a), and increase

the energy injection rate ε by a factor of one thousand, while holding β, µ and

kf approximately fixed. Then from (3.15), the control parameters β∗ and µ∗ are

each reduced by a factor of ten. The time averaged zonal-mean profile of this

6Farrell and Ioannou [2007] also employ a forcing with a different correlation functon than

our isotropic choice.
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strongly forced solution is shown in Figure 2.12(b), and exhibits the parabolic

velocity profile seen in the NL run in Figure 2.1: there are fast eastward jets

with sharp gradients and broad westward jets with smaller PV gradients. Also,

the time averaged QL jet-profile in Figure 2.12(b) is more asymmetric than the

weaker forced QL jet shown in Figure 2.12(a), that has a forcing that is a factor

of 10 smaller. In order to quantify the jet asymmetry, we use the ratio

α(β∗, µ∗) =
Umax

|Umin|
, (2.84)

where Umax and Umin are the maximum and mimimum values attained in the zonal-

mean velocity profile. By increasing the forcing strength by a factor of 1000, the jet

asymmetry increases from α = 1.25 in Figure 2.12(a) to α = 1.56 for the profile in

Figure 2.12(b). This is smaller than the “ideal”, marginally stable (i.e. β−Uyy = 0

everywhere except at the eastward jet where the PV jumps) profile considered in

Danilov and Gurarie [2004], which has α = 2.

Thus, although a detailed study of QL jet asymmetry is not a focus of the

present work, our QL numerical solutions are thus generally consistent with the

equilibrated SSST jets presented in Farrell and Ioannou [2007].

2.6.5 Discussion of the eddy-eddy nonlinearity

An important effect of eddy-eddy nonlinearity is the stirring of PV, produc-

ing an exponential-in-time reduction in the length scale of vorticity fluctuations.

Eddy-driven stirring is removed from the QL system by (2.9): shearing by U(y, t)

is the only scale-reduction mechanism acting on the QL eddy vorticity. The small-

scale structure evident in the QL PV gradient in the right panel of Figure 2.11

may reflect the relative inefficiency of shearing by U(y, t) at removing vorticity

fluctuations.

Further differences in the jet structure evident in Figure 2.11 can be ex-

plained by meandering of the NL jets, so that the zonal average reduces the sharp-

ness of the NL PV gradient. The spectral signature of the NL jet meanders is a

high energy mode at (kx, ky) = (1/32, 6/32)kf in the two-dimensional NL spec-

trum; this same mode is only weakly excited in the QL spectrum. The excitation
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Figure 2.12: Comparison of time-averaged zonal-mean velocity profiles (thin

lines) of QL runs. Panel (a) is the solution from Figure 2.10(b) with β∗ = 1.0

and µ∗=0.054 and panel (b) is the strongly forced solution with β∗ = 0.1 and

µ∗=0.005. Also plotted are the corresponding PV gradients (thick curves).

of almost-zonal modes, with a small but non-zero of value of kx, is a well known

aspect of zonation. These are called a “satellite modes” by Danilov and Gurarie

[2004], and they correspond to a domain-scale meander of the NL jets, which is

not present in the QL case.

2.7 Discussion and conclusion

A contribution of this work is the analytic development of the linearized

theory of zonostrophic instability within the context of the second-order cumulant

expansion (CE2) of Marston et al. [2008], and the stochastic structural stability

theory (SSST) of Farrell and Ioannou [2003, 2007]. These statistical formula-

tions are equivalent to the correlation dynamics derived in section 2.3, and that



50

physical-space formulation, in terms of partial differential equations for the corre-

lation functions Ψ and Z, provides some insight into the mathematical structure

of CE2/SSST.

In the upper panel of Figure 2.5 we display the curve of neutral zonostrophic

stability in the (β∗, µ∗)-parameter plane obtained by solution of linearized CE2

dynamics. We have shown that with isotropic forcing zonostrophic instability is

not a negative-viscosity instability: the hallmark of a negative-viscosity instability

is that at the stability boundary the most unstable wavenumber is zero. The

deterministic model of anisotropically forced β-plane zonation analyzed by Manfroi

and Young [1999] provides a bona fide example of the negative-viscosity case.

Instead, for the isotropically and stochastically forced model analyzed here, the

onset of zonostrophic instability is at the non-zero meridional wavenumber shown

in the bottom panel of Figure 2.5; only at large β∗ does this wavenumber approach

zero. Moreover, in Section 2.5 we showed that with isotropic forcing the CE2 eddy

viscosity νe is identically zero.

Comparison of QL and NL numerical solutions indicates that the CE2 linear

stability boundary does not provide an accurate estimate of the onset of zonos-

trophic instability for NL flows. This quantitative failure of CE2 is not surprising:

neglect of the eddy-eddy nonlinearity is most plausible in cases where most of the

energy is in the zonal mean flow: close to the stability boundary the zonal-mean

flow is only incipient. An outstanding open problem is improving CE2 to account

for the missing physics in the eddy-eddy nonlinearity. Another important problem

is obtaining analytic insight into the solution of the CE2 system in the regime

where CE2 is likely to be valid i.e., in the strongly unstable regime where the

drag µ∗ is much less than the critical drag µc and the fraction of energy in the

zonal-mean flow is substantial.

2.A Implementation of the random forcing ξ(x, t)

For numerical purposes we model the δ-correlated forcing ξ(x, y, t) in (2.3)

using a discrete approximation. The goal is to construct a statistically isotropic
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and narrow band forcing localized close to a radial wavenumber kf . Thus the

forcing is confined to an annulus A in wavenumber space, where wavenumbers k

in A satisfy the inequality

kf + δk < |k| < kf − δk . (2.85)

We take δk = kf/8, so that A is tightly around the average radius kf . We use a

fourth-order Runge Kutta scheme, with time step δt. Implementing the Runge-

Kutta scheme requires the value of the forcing not just at points in time separated

by the time step δt but also at the mid-points. Some care must be exercised here

though, since the Runge-Kutta scheme assumes a certain degree of smoothness of

the solution. To ensure this, we use a forcing that during the n’th time step, when

(n− 1)δt < t < nδt, has the form

ξ(x, t) =
∑
ki∈A

{ξi(n− 1) + [ξi(n)− ξi(n− 1)]χn(t)} eiki·x , (2.86)

where χn(t)
def
= (t/δt) − (n − 1) varies linearly from zero to one during the n’th

time step. The coefficient ξi(n) above is

ξi(n) =

√
2εk2

f

NAδt
eiφi(n) , (2.87)

where NA is the number of wavevectors in A, and ε = −〈ψξ〉 is the rate of energy

injection. The dependence ξi(n) ∝ 1/
√
δt ensures that the forcing is δ−correlated

in the limit δt→ 0. The phase, φi(n), is a random variable, chosen from a uniform

distribution in [0, 2π]; the phase is set independently for each wavevector ki, and

resets at the start of each time step.

The narrow-band forcing is described by the correlation function,

Ξ̃b(k) =
2πεkf
δk

1 , if kf − δk < k < kf + δk;

0 , otherwise,
(2.88)

which has the physical-space form

Ξb(r) =
εkf
δk

∫ kf+δk

kf−δk
J0(kr) kdk ,

=
2εkf
r2δk

[zJ1(z)]
(kf+δk)r

(kf−δk)r . (2.89)
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Figure 2.13: Comparison of the ring forcing, δk → 0 (solid line) and the narrow-

band forcing with δk = kf/4 (dashed line).

A comparison of Ξb(r) and its idealized form, Ξ(r) ∝ J0(kfr) is shown in Figure

2.13

2.B Rapid temporal decorrelation: derivation of

(2.25)

The crucial assumption leading to (2.25) is that the temporal de-correlation

of the forcing is rapid, as indicated by the δ(t1− t2) on the right of (2.14). Opera-

tionally, this means that we might integrate (2.11) during the first time step from

t = 0 to t = δt as

ζ ′(x, τ) = ζ ′(x, 0) +
√
δt× ξ̂(x) + δt× AOT(x, 0) , (2.90)

where AOT(x, 0) indicates “all other terms” in (2.11), evaluated at t = 0. Also in

(2.90), ξ̂(x) is a spatial random field with correlation function

Ξ(x, y1, y2, ) = ξ̂(x1)ξ̂(x2) . (2.91)

The forcing ξ̂ “renovates” during each time step i.e., in the n’th time step one

creates a new independent realization of ξ̂, but always with the same spatial cor-

relation function Ξ. According to this recipe the magnitude of ξ̂ is independent

of δt as δt → 0, and therefore ξ = ξ̂/
√
δt → ∞ as δt → 0. As demanded by this

argument, notice that ξi(n) in (2.87) is proportional to 1/
√
δt.
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Before ensemble averaging, we can multiply (2.90) evaluated at x1 with

(2.90) evaluated at x2 to obtain

ζ ′1(δt)ζ ′2(δt) = ζ ′1(0)ζ ′2(0) +
√
δt
[
ζ ′1(0)ξ̂2 + ζ ′2(0)ξ̂1

]
+ δt

[
ξ̂1ξ̂2 + ζ ′1(0)AOT2(0) + ζ ′2(0)AOT1(0)

]
+O

(
δt3/2

)
, (2.92)

where the subscript n indicates evaluation at xn e.g.,

ζ ′(x1, δt) = ζ ′1(δt) . (2.93)

Upon ensemble averaging, the terms of order
√
δt on the right of (2.92) vanish

because ξ̂(x) is independent of ζ ′(x, 0). Thus

Z(δt)−Z(0)

δt
=Ξ + ζ ′1(0)AOT2(0) + ζ ′2(0)AOT1(0)

+O
(
δt1
)
. (2.94)

As δt→ 0 the left hand side is the time derivative of the vorticity correlation func-

tion. The
√
δt-terms in (2.92), which prohibit a differentiable limit, are nulled in

(2.94) by the ensemble average. Thus, taking the limit δt→ 0 in (2.94), we obtain

the deterministic differential equation (2.23) for the evolution of the correlation

function Z ≡ ζ1ζ2.

2.C Derivation of the dispersion relation (2.45)

The linearized equations resulting from substitution of (2.44) into (2.34)

and (2.31) are(
s+ 2µ+ 1

2
νm2 − 2ν∇2

)
Ẑ+2i sin

(my
2

)
ΦHx Û(m)

− 2imβΨ̂xy = 0 , (2.95)(
s+ µ+ νm2

)
Û(m)+imΨ̂xy

∣∣
x=y=0

= 0 , (2.96)(
∇2 + im∂y − 1

4
m2
) (
∇2 − im∂y − 1

4
m2
)

Ψ̂ = Ẑ , (2.97)
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where in (2.95)

ΦH
def
= ZH +m2∇2ΨH =

(
∇4 +m2∇2

)
ΨH . (2.98)

A key intermediate step on the path to (2.95) is noting U1 = U
(
ȳ + 1

2
y
)

and

U2 = U
(
ȳ − 1

2
y
)
, so that with U(y, t) in (2.44) one has

U1 − U2 = 2i sin
(my

2

)
eimȳ+st Û(m) + c.c. . (2.99)

Applying the Fourier transform in (2.38) to (2.95) and (2.97), one has[
2imβpq + h2

+h
2
−s
′] Ψ̃ + ip Û

(
Φ̃−H − Φ̃+

H

)
= 0 , (2.100)

im

s̄

∫∫
pq Ψ̃

dp dq

(2π)2
= Û , (2.101)

h2
+h

2
−Ψ̃ = Z̃ . (2.102)

In (2.100) through (2.102) we use the notation

h±
def
=
√
p2 + (q ±m/2)2 , (2.103)

Φ̃±H
def
= h2

±

(
h2
± −m2

)
Ψ̃H(p, q ±m/2) , (2.104)

s̄
def
= s+ µ+ νm2 , (2.105)

s′
def
= s+ 2µ+ 1

2
νm2 + 2νh2 . (2.106)

Eliminating Û(m) between (2.100) and (2.101), we obtain the dispersion relation

s̄ = mΛ− (s′,m)−mΛ+ (s′,m) , (2.107)

where the functions Λ+(s′,m) and Λ−(s′,m) are defined by the integral

Λ±(s′,m)
def
=

∫∫
p2q

h2
±

(
h2
± −m2

)
Ψ̃H(p, q ±m/2)

s′ h2
+h

2
− + 2imβpq

dp dq

(2π)2
. (2.108)

Changing variables with p → −p and q → −q, and using the exchange

symmetry in (2.22), one finds that

Λ−(s′,m) = −Λ+(s′,m) , (2.109)
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so that the right of (2.107) is equal to 2mΛ−. Then with the change of variables

q′ = q − m/2 in the Λ− integral, and using (2.41), one can write the dispersion

relation (2.107) as

s̄ =

∫∫
p2 (h2

++ − h2)h2 (h2 −m2)

s′ h2h2
++ + iβp (h2

++ − h2)

Ã(p, q)

2µ+ 2νh2

dp dq

(2π)2
, (2.110)

where h++

def
=
√
p2 + (q +m)2.

If the forcing is isotropic then Ã(p, q) = Ã (h), and the integral on the right

of (2.110) can be simplified using polar coordinates (p, q) = h(cos θ, sin θ):

β2s̄ =

∫ ∞
0

h4
(
h2 −m2

) Ã(h)

2µ+ 2νh2
S

(
s′h2

βm
,
m

h

)
dh

2π
, (2.111)

where S is the function

S(χ, n)
def
=

∮
cos2 θ (2 sin θ + n)

χ (1 + 2n sin θ + n2) + i cos θ (2 sin θ + n)

dθ

2π
. (2.112)

One can show that S(χ, n) = −S(−χ, n) = −S(χ,−n), and therefore S(0, n) =

S(χ, 0) = 0. These symmetries are important for further work, and they are not

manifest from the definition of S in (2.112). Thus we seek an alternative form with

more obvious properties. The change of variables θ → θ + π results in

S(χ, n) =

∮
cos2 θ (−2 sin θ + n)

χ (1− 2n sin θ + n2)− i cos θ (−2 sin θ + n)

dθ

2π
. (2.113)

The average of (2.112) and (2.113) is then

S(χ, n) = χn

×
∮

cos2 θ (1 + n2 − 4 sin2 θ)

[χ+ i sin 2θ]2 + n2
[
χ2(n2 + 2− 4 sin2 θ) + cos2 θ

] dθ

2π︸ ︷︷ ︸
def
=Q(χ,n)

. (2.114)

The function Q(χ, n) is manifestly an even function of n, and θ → −θ shows that

Q is also an even function of χ.

Substituting (2.114) into (2.111) gives the dispersion relation in the form

β2s̄ =

∫ ∞
0

h5
(
h2 −m2

) Ã(h) s′

2µ+ 2νh2
Q

(
s′h2

βm
,
m

h

)
dh

2π
. (2.115)

If ν = 0 then s′ = s+ 2µ, and we obtain the dispersion relation in (2.45).
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2.D The function Q(χ, n)

In this appendix we summarize some properties of the function Q(χ, n)

defined in (2.114). We first note that

Q(χ, 0) =

∫ 2π

0

cos2 θ (1− 4 sin2 θ)

(χ+ i sin 2θ)2

dθ

2π
,

= 1− |χ|(2χ
2 + 3)

2 (χ2 + 1)3/2
. (2.116)

If 0 ≤ n2 ≤ 1 then

Q(0, n) = 1 + Pr

∫ 2π

0

1

n2 − 4 sin2 θ

dθ

2π
,

= 1 ,

(2.117)

where ‘Pr’ refers to the Cauchy-principal value.

The case β∗ � 1 requires the approximation of Q(χ, n) in the limit χ→∞.

One can expand the integrand in inverse powers of χ and integrate term by term.

The first two non-zero terms are

Q(χ, n) =
3

23χ4(1− n2)

+
5

25χ6

(n4 + 2n2 − 4)

(1− n2)3
+O

(
χ−8
)
. (2.118)

The case β∗ � 1 requires the approximation of Q(χ, n) in the limit χ→ 0.

A somewhat laborious ‘range-splitting’ calculation shows that

Q(χ, n) = 1− 3

2

24− 7n2

24− 6n2
|χ|+O

(
χ2
)
. (2.119)

Finally, if χ→∞, with n = 0 then from either (2.116) or (2.118) we obtain

Q(χ, 0) =
3

8χ4
+O

(
χ−6
)
. (2.120)
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2.E The neutral curve

The neutral curve in the (β∗, µ∗)-parameter plane is defined by the condi-

tions in (2.53). For the dispersion relation in (2.51), these take the form,

µβ2 = 2(1−m2)Q (χ0,m) , (2.121)

m =
(1−m2)2

µβ2

∂Q (χ0,m)

∂m
, (2.122)

with χ0 = 2µ/mβ above. (For brevity, in this Appendix, we drop the ∗’s indicating

non-dimensional variables.) An examination of the numerical values of χ0 on the

neutral curve motivates the possibility that χ0 →∞ as β → 0 and χ0 → 0 as β →
∞. We now use this numerical observation to derive analytical approximations for

the neutral curve in the complementary limiting cases β → 0 and β →∞. To this

end, we use the approximations to Q(χ,m) summarized in Appendix D.

2.E.1 Approximation of the marginal curve, β � 1 and

χ0 � 1

First in the case of β →∞, we have from (2.119)

Q(χ0,m) = 1− µ

β

(
3

m
+

5m

8

)
+O(m2χ0) . (2.123)

Clearly, neglecting the O(mχ0) term must be justified post-facto once a consistent

dominant balance is found. Substituting (2.123) in the neutral curve equations,

(2.121) and (2.122) and keeping in mind that that β−1 � 1, we get

µβ2

2
= (1−m2)− 3µ

mβ
+

29µm

8β
+O

(
µm2β−1

)
, (2.124)

m3 = 3β−3 +O
(
m2β−3

)
. (2.125)

The only consistent balance in the m-equation corresponds to m3 ∼ 3β−3 and

consequently,

m =
31/3

β
+O(β−3) . (2.126)
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Since m ∼ O(β−1) the only consistent balance in (2.121) is µ ∼ 2β−2. A higher

order estimate for µ can be derived by substituting for m to get

µ =
2

β2

(
1− 35/3

β2

)
+O(β−6) . (2.127)

These approximate expressions are superimposed on the numerically obtained neu-

tral curve in the Fig. 2.5 with agreement once β > 2.

2.E.2 Approximation of the marginal curve, β � 1 and

χ0 � 1

A similar analysis is used when β → 0 for which, we can write from (2.118),

Q(χ0,m) =
3

27

(
β

µ

)4(
m4

1−m2

)
+

5

211

(
β

µ

)6 [
m6(m4 + 2m2 − 4)

(1−m2)3

]
+O(χ−8

0 ) , (2.128)

(2.129)

and therefore

∂mQ(χ0,m) =
3

26

(
β

µ

)4 [
m3(2−m2)

(1−m2)2

]
−

5

211

(
β

µ

)6 [
m5(4m6 − 6m4 − 16m2 + 24)

(1−m2)4

]
+O(χ−9

0 ) . (2.130)

Substituting into equations (2.121) and (2.122) one has

µβ2 =
3

26

(
β

µ

)4

m4+

5

210

(
β

µ

)6 [
m7(m4 + 2m2 − 4)

(1−m2)2

]
+ h.o.t. , (2.131)

m =
3

26

β2

µ5
m2(2−m2)−

5

211

β4

µ7

[
m5(4m6 − 6m4 − 16m2 + 24)

(1−m2)2

]
+ h.o.t. (2.132)

Above, h.o.t. refers to the higher order terms that have been neglected from the

above equation and can be justified to be small post-facto. In (2.131), assuming a
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dominant balance between the term on the left and the first term on the right, we

have

µ ∼
(

3

64

)1/5

β2/5m4/5 . (2.133)

Similarly from (2.132)

m ∼ 3

26

β2

µ5
m3(2−m2) , (2.134)

which on substituting for µ from (2.133), gives us m ∼ 1 and

µ ∼
(

3

64

)1/5

β2/5 . (2.135)

Proceeding to the next order, we obtain after some algebra

m ≈ 1− 51/3

37/15219/15︸ ︷︷ ︸
≈0.43

β2/5 . (2.136)

As in the case before, we plot this estimate for m against the numerical estimate

in Figure 2.5 and the agreement is excellent. In fact the approximations to mc(β)

practically span the entire range of the neutral curve.

2.E.3 The small-m expansion

When m→ 0 with all other parameters fixed, we observe in Figure 2.4 that

s→ −µ and therefore in (2.51) the first argument of Q is

s+ 2µ

mβ
≈ µ

mβ
� 1 . (2.137)

To compute the small-m expansion of the dispersion relation we write s = −µ+ s1

and use (2.120) to approximate Q. Thus the dispersion relation (2.51) becomes

β2s1 ≈
3

8

m4β4

µ4
. (2.138)

This produces the small-m version of the dispersion relation in (2.59).

Chapter 2, in full, is a reproduction of the material as it appears in Srini-

vasan and Young [2012], J. Atmos. Sci,, 69, 1633. The dissertation author was the

primary investigator and author of this work. W.R Young supervised and directed

this research.



3 Meridionally drifting zonal jets

on the β-plane

3.1 Introduction

Coherent eddy-driven jets are a prominent feature of the large-scale

circulation of terrestrial [Hartmann, 2007] and planetary atmospheres [Porco

et al., 2003; Vasavada and Showman, 2005], and the Southern Ocean [Sokolov

and Rintoul , 2007; Thompson and Richards , 2011]. While the jets in Jupiter

have been observed to be remarkably stable over the past three decades [Porco

et al., 2003], southern ocean jets display a high degree of spatial and temporal

variability [Sokolov and Rintoul , 2007], characterized by eddy variability, drift

and steering attributed to the presence of background topography [Thompson,

2010; Thompson and Richards , 2011]. In this paper we study one aspect of the

variability of eddy-driven zonal jets, namely the possibility that they slowly drift

(or migrate) on a forced-dissipative barotropic β-plane.

Drifting jets have been found previously, in idealized primitive-equation

models of the ocean and atmosphere. Williams [2003] characterized multiple drift-

ing zonal jets in a weather-layer general circulation model of a Jupiter-like planet.

Chan et al. [2007] observed migrating jets in a primitive variables, semi-hemispheric

zonally reentrant channel model of the ocean. Chan et al. showed that the jet drift

was a consequence of the meridional residual flow that caused an asymmetry in

the baroclinicity on the flanks of each jet. Thompson and Richards [2011] describe

topographically mediated jet drift in the southern ocean using a high-resolution

ocean model and find that the jets migrate from regions of high background po-

60
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tential gradient towards regions of lower PV gradient. In a bid to further isolate

the interactions between the jets and topography, Boland et al. [2012] used a two-

layer quasigeostrophic system on the β-plane in a background topography that

has a constant gradient in both the zonal and meridional directions. The jets in

the model of Boland et al. [2012] were found to be aligned with the background

barotropic PV gradient (which was non-zonal due to topography), and also exhib-

ited a prominent drift in the meridional direction.

We simplify the problem further by studying turbulent jets on a barotropic

β-plane, driven by a model for exogenous stochastic forcing and dissipated by bot-

tom drag. The equation governing the evolution of the two-dimensional vorticity

field, ζ(x, y, t), is

ζt + uζx + vζy + βv = ξ − µζ + ν8∇8ζ , (3.1)

where the random forcing, ξ(x, y, t) is spatially homogenous and rapidly decorre-

lating, β is the background potential vorticity gradient, µ the coefficient of bot-

tom friction while the hyperviscosity ν8 is required for numerical stability. Pre-

vious studies of stochastically driven turbulent jets have often used a spatially

isotropic forcing [Rhines , 1975; Vallis and Maltrud , 1993; Huang and Robinson,

1998; Danilov and Gurarie, 2004; Smith, 2004; Galperin et al., 2006; Scott and

Polvani , 2007; Srinivasan and Young , 2012; Parker and Krommes , 2013]. The

few studies that have chosen an anisotropic driving force, [Farrell and Ioannou,

2003, 2007; Bakas and Ioannou, 2013; Tobias and Marston, 2013; Constantinou

et al., 2012], inadvertently impose an additional symmetry on the statistics of the

forcing, that we identify as mirror (or reflexional) symmetry. Specifically, mirror

symmetry refers to the invariance of the unforced barotropic equation ((3.1), but

with ξ ≡ 0) under the transformation,

y → −y , ψ → −ψ , (3.2)

x→ x , t→ t . (3.3)

Thus, the only mechanism for breaking mirror symmetry in (3.1) is through the

forcing, ξ. In this Chapter, we show that a forcing that preserves mirror symmetry



62

does not lead to drifting jets and that breaking mirror symmetry is required for

meridional jet drift to occur in the barotropic model, (3.1). It is also precisely

why this phenomenon has not been observed in any of the aforementioned studies

involving the barotropic model.

In section 3.2, we detail the idea of mirror symmetry and specify our choice

of model forcing used for numerical runs in this chapter. In section 3.3, we present

numerical solutions of the barotropic vorticity equation and characterize the vari-

ation of jet drift as a function of the forcing structure, β and µ. Further, we

introduce the quasilinear model, obtained from the barotropic vorticity equation

through a eddy-zonal-mean decomposition and subsequent neglect of eddy-eddy

interactions in the eddy vorticity equation. Detailed comparisons between jets

obtained from the quasilinear and nonlinear barotropic equations have been per-

formed by Srinivasan and Young [2012] for isotropic forcing and more recently

by Constantinou et al. [2012] using anisotropic mirror-symmetric forcing. Here

we show that similar comparisons hold for the case of drifting zonal jets that are

formed when mirror-symmetry of the forcing is broken.

The second order cumulant equation, the statistical equivalent of the

stochastically forced quasilinear equations [Farrell and Ioannou, 2003, 2007] is

used in section 3.4 but in the continuous-space formalism of Srinivasan and

Young [2012] that has also been used in Marston et al. [2008], Bakas and Ioannou

[2013] and Parker and Krommes [2013]. Employing the perturbative approach

of Bakas and Ioannou [2013], a theory for jet drift is constructed by assuming a

scale-separation between the mean flow and eddies. The details of the theory are

relegated to the appendices.

3.2 Statistical properties of the forcing

The forcing function is completely described by its two-point two-time cor-

relation function and we assume that it is homogenous in space and white noise in

time,

ξ(x1, t1)ξ(x2, t2) = δ(t2 − t1) Ξ(x1 − x2, y1 − y2) . (3.4)
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3.2.1 Exchange symmetry

The forcing statistics in (3.4) must remain unchanged if the points x1 and

x2 are interchanged. Using x = x1−x2 and y = y1− y2, this ‘exchange’ symmetry

is expressed as

Ξ(x, y) = Ξ(−x,−y) . (3.5)

As a consequence of exchange symmetry, a rotation of the (x, y) axis by π leaves

Ξ(x, y) unchanged. This ensures that the spectrum

Ξ̃(p, q)
def
=

∫∫
e−ipx−iqy Ξ(x, y) dxdy , (3.6)

is real and non-negative.

3.2.2 Mirror symmetry

The transformations in (3.3) take an even simpler form for the random

forcing specified in (3.4). We are concerned with two point correlations of the

streamfunction, ψ(x1, t1)ψ(x2, t2), on which a sign change in ψ (i.e. the transfor-

mation ψ → −ψ) has no effect and all that remains is the transformation y → −y.

Thus the forcing specified by (3.7) is mirror symmetric if its statistics are invariant

under reflection about the x-axis,

Ξ(x, y) = Ξ(x,−y) . (3.7)

In conjunction with the exchange symmetry, (3.5), (3.7) also implies an invariance

of Ξ(x, y) to a reflection about the y-axis. In terms of the spectrum, Ξ̃(p, q), mirror

symmetry takes a similar form as (3.7),

Ξ̃(p, q) = Ξ̃(p,−q) . (3.8)

In polar coordinates, (p, q) = k(cosφ, sinφ), the 2π-periodicity of the angle, φ

allows a general spectrum Ξ̃(k, φ) (that does not necessarily satisfy (3.8)) to be

expressed as a Fourier series,

Ξ̃(k, φ) =
∞∑
m=0

Am(k) cos 2mφ︸ ︷︷ ︸
Ξ̃c

+
∞∑
m=1

Bm(k) sin 2mφ︸ ︷︷ ︸
Ξ̃s

, (3.9)
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where the functions, Ξ̃c and Ξ̃s satisfy

Ξ̃c(k, φ) = Ξ̃c(k,−φ) , (3.10)

Ξ̃s(k, φ) = −Ξ̃s(k,−φ) . (3.11)

Because (3.10) is just another way of expressing the mirror-symmetry relation,

(3.8), it follows that any arbitrary forcing spectrum can be written as the linear

sum of a mirror symmetric component (Ξ̃c) and one that explicitly breaks this

symmetry (Ξ̃s).

3.2.3 The anisotropic ring forcing

For this paper, we choose a simplified forcing that is concentrated on a circle

with radius kf in wavenumber space. The anisotropy is characterized by the lowest

modes (m = 0, 1) of the Fourier series in (3.9) and contains both mirror-symmetric

and anti-symmetric components. The spectrum of this model forcing is written as

Ξ̃(p, q) = 4πkfε (1 + αc cos 2φ+ αs sin 2φ) δ(k − kf ) , (3.12)

where ε is a measure of the strength of the forcing, while αc and αs are parameters

that must satisfy the condition,

α2
c + α2

s ≤ 1 (3.13)

to ensure that the spectrum is non-negative. The corresponding correlation func-

tion in polar coordinates, (x, y) = r(cos θ, sin θ) is,

Ξ(x, y) = 2εk2
f [J0(kfr)− J2(kfr) (αc cos 2θ + αs sin 2θ)] , (3.14)

where Jm(z) is the Bessel function of order m.

Figure 3.1 shows model correlation functions and forcing obtained by vary-

ing αc and αs in (3.14). When αs = 0 and αc = 1 (Figure 3.1(a), (b)), the forcing

has a spatial structure that closely resembles the ‘noodle’-modes obtained from

baroclinic instability of flow with zonally oriented vertical shear [Berloff et al.,

2009]. The tilted-noodle structures seen in Figure 3.1(f) can be obtained through

baroclinic instability of a background flow with a non-zonal vertical shear [Smith,
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Figure 3.1: The left panels show the anisotropic ring correlation function Ξ in

(3.14) and the right panels show corresponding snapshots of the forcing ξ. Panels

(a) and (d) show αc = 1, αs = 0; (b) and (e) show the isotropic case αc = αs = 0;

panels (c) and (f) show αc = 0 and αs = 1.

2007] or if the background topography has a zonally varying component [Chen and

Kamenkovich, 2013]. The isotropic forcing corresponding to αc = αs = 0 is also

shown for reference in Figure 3.1(b) and (d).
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3.3 Numerical solutions of the barotropic vortic-

ity equation

In this section we present numerical solutions of (3.1) by varying the forcing

parameters (αc, αs) and the flow parameters µ and β. Following Srinivasan and

Young [2012], we solve (3.1) on a doubly-periodic domain of size, 2πL× 2πL and

we pick kfL = 32 to ensure scale separation. The ETDRK4 scheme [Cox and

Matthews , 2005] is used for time-stepping at a spatial resolution of 512×512 for

all the results in this section. The flow parameters (µ, β) are non-dimensionalized

using a time-scale (εk2
f )
−1/3 and length-scale k−1

f ,

µ∗
def
=

µ

k
2/3
f ε1/3

, β∗
def
=

β

k
5/3
f ε1/3

. (3.15)

The forcing spectrum is modified from the theoretical ‘ring’-forcing form in (3.12)

to a ‘band’-forcing form where the radial δ-function is replaced by a narrow band

of wavenumbers centered around kf and having a thickness δk = kf/8. The details

of the numerical implementation of the forcing have been discussed at length in

Srinivasan and Young [2012] and are not repeated here.

3.3.1 Forcing with broken mirror-symmetry: Drifting jets

As a starting point, we pick the flow parameters, β∗ = 1 and µ∗ = 0.0364

and study the effect of varying αc and αs on the time evolution of the zonal-

averaged velocity, U(y, t) = ū(x, y, t), where the overbar denotes a zonal-average.

We first consider a forcing that breaks mirror-symmetry by setting αc = 0 and for

three values of αs: −1, 0 and 1 (if αc = 0, then |αs| ≤ 1 from (3.13)). Note that

αc does not need to be zero but is chosen so for simplicity. Figure 3.2 shows the

Hovmöller plots of the zonal-mean velocity and we observe that the jets drift south-

ward or northward depending on whether αs takes the value 1 or −1. Isotropically

forced jets are plotted in Figure 3.2 (b) as a reference. The drift is character-

ized as being ‘slow’ because it happens over many decades of the drag time scale

τ = (2µ)−1. Other than the presence of jet drift, the three cases shown in Figure

3.2 are remarkably similar in terms of the number of jets (which varies between 9
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and 10 jets) and also the strength of the jets. The jet strength can be quantified

using the zonal mean fraction (zmf), defined as the ratio of the kinetic energy of

the zonal-mean flow to the total flow kinetic energy,

zmf
def
=

〈 ∫
U2 da∫

U2 + u′2 + v′2 da

〉
t

, (3.16)

where
∫
· · · da is the area integral over the domain of the flow while the operator

〈 〉t denotes a time average that is performed after the flow attains equilibrium.

The zmf values for the the three cases in Figure 3.2 are 0.15 (αs = 1), 0.12 (αs = 0)

and 0.145 (αs = −1). Owing to the symmetry in the jet strength, structure and

spacing in the αs = 1 and αs = −1 cases, for the remainder of this section we only

present results for the αs = 1 forcing.

k
f
y

0 10 20 30 40 50 60

50

100

150

200

k
f
y

0 10 20 30 40 50 60

50

100

150

200

k
f
y

2µ t

(a)

(b)

(c)

0 10 20 30 40 50 60

50

100

150

200

Figure 3.2: Turbulent drifting jets: Hovmöller diagrams of the zonal-mean veloc-

ity when the forcing breaks mirror symmetry. Here αc = 0 and (a) αs = −1, (b)

αs = 0 (isotropic forcing) and (c) αs = 1. The flow parameters are µ∗ = 0.036 and

β∗ = 1.
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3.3.2 The effect of varying µ∗ and β∗
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Figure 3.3: Hovmöller diagrams of the zonal-mean velocity when the forcing

breaks mirror symmetry as the drag parameter is varied. Here αc = 0 and αs = 1.

β∗ = 1 is fixed while the drag values are (a) µ∗ = 0.055 and (b) µ∗ = 0.0046.

We now attempt to characterize the variation of the jet drift for the αs = 1,

αc = 0 forcing as a function of the flow parameters µ∗ and β∗. All the numerical

results involving jet drift lie in the range 0.3 ≤ β∗ ≤ 5 and 0.0046 ≤ µ∗ ≤ 0.055,

about a decade of variation in each parameter. Figure 3.3 compares the Hovmöller

plots for β∗ = 1 and the two extreme values of µ∗ for which numerical results

are available: the strong drag flow consisting of weak ‘streaky’ jets encountered

in Chapter 2 (zmf=0.04) while the weak drag flow has strong persistent jets

(zmf=0.45). Through visual inspection of Figure 3.3, we notice that the drift

in the two cases is almost the same. However since the axis in each case is written

in terms of the inverse drag time-scale (2µ)−1, this admits the inference, vd ∝ µ∗.

For β∗ = 1, and using drift values from runs over the entire range of available µ∗,

we get a best-fit numerical estimate :

vd(µ∗, β∗ = 1) ≈ 1.6µ∗ε
2/3k

−2/3
f . (3.17)

To see how well this estimate works, we compute drift from the Hovmöller diagrams

using a Radon transform [Maximenko et al., 2008] and as can be seen from Figure
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3.5 (b), (3.17) provides a reasonable estimate for the drift speed when αc = 0,

αs = 1 and β∗ = 1. The proportional decrease of the drift speed with drag is not

unexpected: as the µ∗ decreases the jets get stronger and wider (as seen in Figure

3.3) while the forcing strength (characterized by ε) is constant. Thus stronger and

more scale separated jets would be expected to interact with the forcing to a lesser

degree, thereby reducing drift.

The dependence of drift on β∗ can be seen in Figure 3.4 which contains

results for µ∗ = 0.0182 and β∗ about a factor of 16 apart. A surprising result that

is noted here is that the drift increases for decreasing β∗. In fact, based on the

results shown in Figure 3.5 the numerics indicate a vd ∝ β
−7/10
∗ scaling for the

parameter range for which results are available. In conjunction with the empirical

scaling suggested in (3.17), we get

vd(µ∗, β∗) ≈ 1.6µ∗β
−7/10
∗ ε2/3k

−2/3
f . (3.18)

A wider range of numerical results are needed in the β∗ → 0 limit to have any

degree of confidence in the scaling, (3.18), though the important point here that

the jet speed increases with decreasing β∗ faster than β−1/2 but slower than β−1

. While this apparent divergence in the jet drift with β∗ is surprising, it should

be noted that for fixed µ∗ and as β∗ → 0, the jets become wider (as β
−1/2
∗ based

on the Rhines scale form in Chapter 2 (2.83)) and also weaker, there being no jets

when β∗ = 0. As the jets get weaker they have a greater tendency to meander

even for isotropic or mirror-symmetric forcing.

An important point regarding the drifting jets is that they are all zonal,

as seen from a snapshot of vorticity field plotted in Figure 3.6 (a). In the study

by Boland et al. [2012] however, the drifting jets are always non-zonal, i.e. non-

zonality of the jets (also referred to as topographic steering) is intrinsically coupled

to jet drift. In the two-layer quasigeostrophic model used by Boland et al, the layer-

wise potential vorticity is slanted at an angle to the barotropic PV gradient, along

which the jets propagate (which is again, non-zonal due to topopgraphy). Boland

et al. conjecture that this cross-gradient advection of layerwise PV by the jets

causes jet drift.

There is some similarity of Boland et al. [2012] with the present study
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Figure 3.4: Hovmöller diagrams of the zonal-mean velocity when the forcing

breaks mirror symmetry as the drag parameter is varied. Here αc = 0 and αs = 1.

µ∗ = 0.0182 is fixed while the β∗ values are (a) β∗ = 0.3 and (b) β∗ = 5.

because jet drift is only found when the phase lines of the forcing are inclined at

an angle to that of the barotropic potential vorticity gradient, which in this case

is just β.

3.3.3 Mirror-symmetric forcing

We take a brief look at anisotropic mirror-symmetric forcing (αs = 0) for

three choices of αc: −1, 0 and 1 (for αs = 0, |αc| ≤ 1 from (3.13)). Figure 3.7

shows the Hovmöller plots of the zonal-mean velocity and we notice that even

though the jets get stronger and more pronounced as αc increases from −1 to 1,

no drift of jets is observed. For the results shown in Figure 3.7 the jet strength

increases from zmf=0.06 when αc = −1 to zmf=0.22 when αc = 1, a factor of

about 4. Keeping β∗ fixed at β∗ = 1, when the drag is reduced by a factor of

20 to µ∗ = 0.00182 (jets not shown), the zmf values for the αc = −1 case and

αc = −1 case are 0.49 and 0.51 respectively. Thus at large values of µ∗, the αc = 1

forced jets are much stronger than the αc = −1 jets, but this effect disappears as

µ∗ becomes sufficiently small. This phenomenon remains true for other values of

β∗. A possible explanation for the effect of the cosine-forcing is provided based
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Figure 3.5: (a) Non-dimensional jet-drift at fixed β∗ = 1, as a function of µ∗

for the non-linear (filled-circles) and quasi-linear runs (crosses). The dashed line

represents the 1.6µ∗ curve and is a best-fit estimate of the non-linear drift variation.

(b) Jet drift at fixed µ∗ = 0.0182 as a function of β∗ for the non-linear (filled-

circles) and quasi-linear runs (crosses). The dashed line is the 1.6µ∗β
−7/10
∗ curve

(with µ∗ = 0.0182).

on the theoretical results derived in section 3.4.1. The effect of anisotropic mirror

symmetric forcing is not a particular focus of this study, except to establish that

no drift of the jets is observed, a finding that is consistent with previous studies

[Constantinou et al., 2012; Bakas and Ioannou, 2013].
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Figure 3.6: (a) Snapshot of the vorticity ζ(x, y), obtained from the nonlinear

barotropic model at 2µt = 50 for αc = 0, αs = 1, β∗ = 1, µ∗ = 0.0046 corresponding

to the run shown in Figure 3.3 (b). (b) The same but obtained from the quasi-linear

model.

k
f
y

0 10 20 30 40 50 60

50

100

150

200

k
f
y

2µ t

(a)

(b)

0 10 20 30 40 50 60

50

100

150

200

Figure 3.7: Hovmöller diagrams of the zonal-mean velocity subject to a mirror

symmetric forcing (αs = 0) and two extremal values of αc, (a) αc = −1, (b) αc = 1.

The flow parameters are µ∗ = 0.036 and β∗ = 1.

3.4 Quasi-linear dynamics and a CE2-based the-

ory

Following the methodology of Chapter 2, we solve the quasi-linear equations

for the zonal-mean flow, U(y, t) and eddy vorticity field ζ ′(x, y, t):

∂tU + ∂y
(
u′v′
)

= −µU + ν∂2n
y U , (3.19)

ζ ′t + Uζ ′x + (β − Uyy)ψ′x = ξ − µζ ′ + ν∇2nζ ′ . (3.20)
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where the spectrum of ξ(x, y, t) is given by the sine-forcing (αc = 0, αs = 1)

discussed in the previous section. We first show that jet drift is indeed found to

occur in the QL system and the magnitude of jet drift is similar to that observed

in the non-linear system. Then we construct a theory based on the second-order

cumulant expansion equations (CE2) derived in Chapter 2, (2.31) to explain some

of the features of jet drift observed in this chapter.

Figure 3.8 shows the Hovmöller plots of the mean-flow obtained from quasi-

linear runs with forcing and (µ∗, β∗) values identical to the results shown in Figure

3.2. Consistent with the results found in Chapter 2, the QL jets are stronger than

their NL counterparts. However comparing Figures 3.2 and 3.8, we see that the jet

spacing (or number of jets), jet drift and asymmetry in the drift between αs = 1

and αs = −1 are almost identical. A more detailed comparison can be seen from

the drift speed variation with the parameters, µ∗ and β∗ in Figure 3.5 (a) and (b).

First, we note that, like the nonlinear jets, vd in the QL jets decreases with µ∗ but

the nearly linear decrease with µ∗ is no longer observed. Further, the decrease of

jet drift in the µ∗ → 0 limit is actually slower for the QL jets when compared to vd

of the NL jets. One possible reason for this is that, as µ∗ decreases, the turbulent

inverse cascade mechanism transfers energy to the mirror symmetric components

thereby reducing the effectiveness of the drift generating components (that break

mirror symmetry). For fixed µ∗ and varying β∗, (Figure 3.5 (b)), the QL and

NL drift values track each other surprisingly well, especially in the limit β∗ → 0.

However for larger values of β∗, the NL drift values decrease almost monotonically

whereas the QL drift values increase. The reasons for the variation of vd with

β∗ remain unclear at this juncture, an issue that is not addressed by the theory

presented in the next section.

3.4.1 CE2 theory for a slowly varying mean flow

In this section we attempt to construct a theory for the observed jet drift

when a mirror symmetry breaking forcing is used. Our starting point is the second-

order cumulant equation, the statistical equivalent of the quasi-linear eddy equa-

tion, (3.20), under some ergoticity assumptions. This correlation equation has
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Figure 3.8: Quasi-linear drifting jets: Hovmöller diagrams of the quasi-linear

zonal-mean velocity when the forcing breaks mirror symmetry. Here αc = 0 and

(a) αs = −1, (b) αs = 0 (isotropic forcing) and (c) αs = 1. The flow parameters

are µ∗ = 0.036 and β∗ = 1.

been derived in considerable detail in Chapter 2 (2.31) and is,

∂tZ + (U1 − U2)∂xZ − (U ′′1 − U ′′2 )
(
∇2 + 1

4
∂2
ȳ

)
∂xΨ

− (2β − U ′′1 − U ′′2 ) ∂ȳ∂y∂x Ψ

= Ξ− 2µZ + 2ν∇2Z + 1
2
ν∂2

ȳZ . (3.21)

Here Z(x, y, ȳ) = ζ ′(x1, y1, t)ζ ′(x2, y2, t) and Ψ(x, y, ȳ) = ψ′(x1, y1, t)ψ′(x2, y2, t)

are the two-point single time correlation functions of the vorticity and streamfunc-

tion respectively, while x = x1 − x2, y = y1 − y2 and ȳ = (y1 + y2)/2 are the

collective co-ordinates introduced in Chapter 2.

The Reynolds stress obtained from Ψ using,

u′v′(ȳ, t) = ∂x∂yΨ(x, y, ȳ, t)
∣∣
x=y=0

, (3.22)

is then used to solve the mean-flow evolution equation, (3.19). However, the com-

plexity of the correlation equation, (3.21) leaves any direct solution untenable.
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Instead, following Bakas and Ioannou [2013], we make the following assumptions

that allow us to obtain approximate solutions to (3.21):

1. The adiabiatic approximation: The eddies adjust instantaneously to the

mean flow so that the time derivative term in (3.21) is neglected. As a result

of this assumption, the Reynolds stress, (3.22) is only a function of the mean

flow, U(y, t) and all its y-derivatives, and not of time.

2. Scale-separation between mean-flow and forced modes : i.e. U ≡
U(εy), where ε = kfL

−1
J � 1, where LJ is the jet scale. In other words, the

forcing varies slowly over the scale of the forced modes.

3. Near laminar flow: We assume that the parameters (µ∗, β∗) are chosen so

that the jets are are just beginning to emerge and are close to the zonostrophic

stability boundary evaluated in Chapter 2. In other words, the dominant

balance in (3.21) is the homogenous solution

ZH =
Ξ

2µ
. (3.23)

As a consequence of scale separation, the mean flow at the two points y1 and y2

can be written as

U1,2 ≡ U(εy1,2) = U(Y ± εy) , (3.24)

where the ‘slow’ variable Y = εȳ tracks the variation over the jet scale. The

structure of the mean flow in (3.24) allows a perturbation expansion in the form,

U1,2 = U(Y )± εyUY +
ε2y2

2
UY Y +O(ε3) . (3.25)

We now substitute (3.25) in (3.21) and using the adiabatic approximation (setting

∂tZ = 0 in (3.21)), arrange the terms in increasing powers of ε (see Appendix 3.A

for steps involved in the derivation) to obtain a single equation in Z and Ψ,

2µZ = Ξ− ε (yUY ∂xZ − 2β∂Y ∂y∂xΨ) +O(ε3) . (3.26)

Z and Ψ are related to each other through the double Laplacian equation, Z =

∇2
1∇2

2Ψ, which in terms of the perturbed coordinates (x, y, Y ) takes the form,

Z = ∇4Ψ +
ε2

2
(∂2
x − ∂2

y)∂Y Y Ψ +O(ε4) , (3.27)
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a more detailed derivation of (3.27) is in Appendix 3.A. If we substitute for Z
using (3.27) in (3.26), we get a single differential equation for Ψ involving the per-

turbation parameter ε. This equation in Ψ can be solved iteratively after assuming

the lowest order balance to be the homogenous laminar flow solution (assumption

3 above),

∇4ΨH =
Ξ

2µ
, (3.28)

where Ξ is the homogenous anisotropic forcing defined in (3.12) and (3.14). The

iterative solution to (3.26), starting from (3.28) is best accomplished in Fourier

space and the interested reader is referred to Appendix 3.A for details. Here we

just note that once this solution is obtained, we can find the Reynolds stress using

(3.22) in the form,

u′v′ = b0 αs + εαc b1UY + ε2 αs
[
b21UY Y + b22U

2
Y

]
+O(ε3) . (3.29)

Here the coefficients b0, b1, b21 and b22 are functions of (µ, β) and turn out to be,

b0 = − ε

4µ
, , b1 =

ε

8µ2
, (3.30)

b21 =
β

k2
f

ε

32µ3
, b22 =

3ε

32µ3
. (3.31)

Note that when solving the mean-flow equation, we need to go back to the ‘real’

coordinate, ȳ = Y/ε, so

εUY = Uȳ , ε2UY Y = Uȳȳ , ε2U2
Y = U2

ȳ , (3.32)

and ε does not appear explicitly when the Reynolds stress, (3.29) is used in the

mean-flow equation, (3.19).

The Reynolds stress expression, (3.29) leads to some important inferences.

First if we isolate the UY Y term in (3.29) and after using (3.32), substitute it in

the mean-flow equation, (3.19), and neglect the friction terms, we get,

∂U

∂t
= − ε

32k2
f

αsβ

µ3

∂3U

∂y3
. (3.33)

(3.33) is a one-dimensional dispersive wave-equation and is in fact the term that

accounts for jet drift observed in this chapter. This wave moves in the positive
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y-direction when αs < 0, and in the negative y-direction when αs > 0, and there is

no propagation when αs = 0 (mirror-symmetric forcing). Thus the basic features

of jet-drift, pertaining to the results shown in Figures 3.2 and 3.8 are qualitatively

explained by the CE2 theory. We should also mention here that there are no other

dispersive terms in the Reynolds stress, at this order in (3.29).

However, the problem with (3.33), is that it predicts the wrong scaling for

the jet drift compared to the observed scaling in Figure 3.5 and (3.18). This is

reminiscent of the theoretical predictions for zonation (jet emergence) in Chapter

2 where the incorrect scaling for jet size is found. The reason here for the incorrect

scaling is probably the same as the one speculated in Chapter 2: our perturbation

theory is based around the neutral stability curve of the quasi-linear system, which

is rather far (in (µ∗, β∗) parameter space) from the parameter values when turbulent

jets actually exist in the non-linear equation. To get a realistic estimate for the

drift scaling, we speculate that equation (3.26) must be solved directly instead

of a perturbative expansion around the homogenous, laminar solution. Another

reason for the quantitative failure of the perturbation theory approach is that we

have assumed that ε is independent of the parameters µ∗ and β∗, which is hard to

justify. For example, if the jet scale (characterized by its wave-number m) is given

by the Rhines scale, which in terms of the parameters µ∗ and β∗ is

mRh = kfµ
1/4
∗ β1/2

∗ , (3.34)

then, ε = mRh/kf is clearly not independent of µ∗ and β∗. To make matters

worse, the magnitude of mean-flow velocity is also a strong function of µ∗ (and

consequently of ε) and cannot be treated to be independent either.

A second observation from (3.29), is that when αs 6= 0, the forcing itself

has a non-zero Reynolds stress in absence of the mean-flow or β. This is evident

from the structure of the correlation function in Figure 3.1(c) but is still somewhat

surprising. This constant, mean-flow independent Reynolds stress is however not

dynamically relevant for the mean flow equation, (3.19), as it is the divergence of

Reynolds stress that drives the mean-flow.

Finally, the second term in the right-hand-side of (3.29), recovers the weak-

shear result from Chapter 4 (4.41) and justifies the slowly varying flow interpre-
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tations put forth in (4.45). As in the case of Chapter 4, the shear (UY ) term in

(3.29) admits a effective viscosity interpretation,

νe = −εαc
8µ2

, (3.35)

which is obviously identical to (4.41). The effective viscosity, (3.35), offers an

possible explanation for why the αc = 1 jets are stronger than the αc = −1 jets in

Section 3.3.3: the αc = 1 forcing has a negative viscosity to the lowest order and is

therefore more efficient at transferring energy to the mean-flow than the αc = −1

forcing which has a net positive viscosity at this order (so energy is transferred

from the mean-flow to the forced modes).

3.5 Conclusion

In this Chapter, we have demonstrated the phenomenon of meridional jet-

drift on a forced-dissipative barotropic β-plane. The occurrence of jet drift is

determined by the spatial structure of the stochastic forcing, though its magnitude

is controlled by the flow parameters, β and the bottom friction, µ (which is also

the dominant dissipation mechanism in this study). Drift occurs whenever the

forcing breaks a particular kind of spatial symmetry that we refer to as mirror, or

reflexional symmetry. Physically, this means that the phase lines of the forcing are

inclined at an angle (not 0◦ or 90◦) to the lines of constant background potential

vorticity, i.e. the zonal direction. This interpretation also allows us to explain

the occurrence of jet drift in the two-layer quasi-geostrophic model on a β-plane

in the presence of zonally varying topography, as found by Boland et al. [2012].

The presence of zonally varying topography, results in unstable baroclinic modes

that are slanted with respect to the background barotropic gradient [Chen and

Kamenkovich, 2013] to cause jet drift in a fashion similar to that found in our

barotropic simulations. The magnitude of drift speed in our results shows a strong

variation with both µ and β: while the drift speed decreases almost linearly with

decreasing µ, it actually increases as β decreases.

In conjunction with the numerical results from the barotropic vorticity equa-

tion, we also study jet drift in a simpler quasi-linear model. The quasi-linear
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equation governs the evolution of eddy vorticity, that is only modified due to in-

teractions with the zonal-mean flow and not with other eddies, so that non-linear

eddy-eddy interactions are suppressed. Chapter 2 presents detailed comparisons

between the isotropically forced jets obtained from quasilinear and non-linear equa-

tions, and considerable agreement is found between the jet scales and strength over

a wide range of the (µ, β) parameter space. In this study, the quasi-linear equa-

tion is forced with the anisotropic mirror-symmetry breaking forcing and as in the

case of the nonlinear runs, drifting jets are observed, with the same direction (i.e.

northward or southward) and similar magnitude as nonlinear jet-drift.

In light of the agreement between the quasilinear and nonlinear jet drift, we

construct a theory based on the second order cumulant equation [Marston et al.,

2008; Srinivasan and Young , 2012], that is essentially a statistical equivalent of the

stochastically forced quasilinear equation. Starting from the laminar solution, and

assuming a mean-flow that varies slowly with reference to the scale of the eddies, we

obtain an approximate equation for the vorticity correlation function that is then

solved perturbatively. The Reynolds stress of the pertubative solution can then be

expressed as a function of the mean-flow and its y-derivatives. In particular, it is

shown that as long as the forcing breaks mirror-symmetry, the Reynolds stress has

a wave-like term, as a result of which the mean-flow is governed by a dispersive

wave equation. The drift speed predicted by the wave-equation has the correct

direction of drift observed in the numerical simulations but the wrong dependence

on the parameters µ and β.

3.A The perturbation expansion

Using (3.25), we have the following expressions:

U1 − U2 = UY εy +
UY Y Y ε

3y3

24
+O(ε5) , (3.36)

U1 + U2 = 2U(Y ) +
UY Y ε

2y2

4
+O(ε4) , (3.37)
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and

U ′′1 − U ′′2 = UY Y Y ε
3y +O(ε5) , (3.38)

U ′′1 + U ′′2 = 2UY Y ε
2 +O(ε4) , (3.39)

The left hand side of the correlation equation (3.21), accurate to O(ε5) expands

to,(
UY εy +

UY Y Y ε
3y3

24

)
∂xZ − UY Y Y ε3y∇2∂xΨ− ε

(
2β − 2UY Y ε

2
)
∂Y ∂y∂xΨ. (3.40)

We then substitute (3.40) in (3.21) and arrange the terms in increasing powers of

ε to get (3.26). Remember that Z and Ψ are related by

Z = ∇2
1∇2

2Ψ , (3.41)

which in collective coordinates is (from Chapter 2),

Z = ∇4Ψ + 1
2

(
∂2
x − ∂2

y

)
∂2
ȳΨ + 1

16
∂4
ȳΨ . (3.42)

The next step is to write this in terms of the slow variable Y = εȳ,

Z = ∇4Ψ +
ε2

2
(∂2
x − ∂2

y)∂Y Y Ψ +
ε4

16
∂Y Y Y Y Ψ . (3.43)

which accurate to O(ε2) is precisely (3.27).

Now, Fourier transform (3.26) and (3.27), noting the identity,

F {ynf(x, y, ȳ)} = in
∂f̃(p, q, ȳ)

∂qn
, (3.44)

where F denotes the Fourier transform that takes functions from (x, y, ȳ) to (p, q, ȳ)

space. The relation between Ψ̃ and Z̃, (3.43) is now

Z̃ = k4Ψ̃ +
ε2

2
(q2 − p2)∂Y Y Ψ̃ +O(ε4) , (3.45)

where we have defined, k2 = p2 + k2 the correlation equation is,

2µZ̃ = Ξ̃− ε
(
−pUY Z̃q + 2βpqΨ̃Y

)
+O(ε3) . (3.46)

Substituting, (3.45) in (3.47), we finally get the equation in Ψ that we need to

solve,

2µk4Ψ̃ = Ξ̃ + ε
[
pUY (k4Ψ̃)q − 2βpqΨ̃Y

]
︸ ︷︷ ︸

def
= L1Ψ̃

+ε2
[
µ(p2 − q2)∂Y Y Ψ̃

]
︸ ︷︷ ︸

def
= L2Ψ̃

+O(ε3) , (3.47)

and for future reference, we have introduced the linear operators L1 and L2.
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3.B Solution of perturbed equation by iteration

Our lowest order solution is the homogenous laminar solution,

Ψ̃H(p, q) =
Ξ̃

2µh4
. (3.48)

Starting from Ψ̃H, we can obtain a solution of (3.47) by iteration and in terms of

the operators L1 and L2, we get

Ψ̃ = Ψ̃H + εL1Ψ̃H + ε2(L1L1Ψ̃H +��
��*0

L2Ψ̃H ) +O(ε3) . (3.49)

The reason the L2Ψ̃H term vanishes is because Ψ̃H is only a function of (p, q) whereas

L2 contains a double Y -derivative. Now we need to calculate the Reynolds stress,

which can be obtained, starting from the Fourier space equivalent of (3.22),

σ = u′v′ = −
∫∫

pqΨ̃d p d q . (3.50)

To find the Reynolds stress, we subsitute (3.49) in (3.50) and evaluate the integrals

at each order in ε in the form,

σ = σ0 + εσ1 + ε2σ2 +O(ε3) . (3.51)

The integrals involved in σ0, σ1 and σ3 are rather laborious but the general ap-

proach is as follows: since the operator, L1 does not involve p-derivatives, the

procedure is to repeatedly integrate by parts in q till no derivatives of Ξ̃ remain

for each term in the integrand of (3.50). Then we transform to polar coordinates

(p, q) = k(cosφ, sinφ) and get

σ0 = − 1

4µ

∫ ∞
0

1

k

∮
sin 2φ Ξ̃(k, φ)

dφ d k

4π2
, (3.52)

σ1 = − UY
4µ2

∫ ∞
0

1

k

∮
cosφ cos 3φ Ξ̃(k, φ)

dφ d k

4π2
, (3.53)

σ2 =
1

8µ3

[
3U2

Y

∫ ∞
0

1

k

∮
cos2 φ sin 4φ Ξ̃(k, φ)

dφ d k

4π2

−βUY Y
∫ ∞

0

1

k3

∮
cosφ cos 3φ sin 2φ Ξ̃(k, φ)

dφ d k

4π2

]
. (3.54)
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Now, using the radial δ-function dependence of Ξ̃(p, q) in (3.12) to evaluate the

k-integral trivially, we are only left with an integral in φ, which is also fairly simple.

If this procedure is followed then we finally get the result shown in (3.29).

Chapter 3 is currently being prepared for submission for publication of the

material. The dissertation author was the primary investigator and author of this

material. W.R. Young supervised and directed this research.



4 Reynolds stress and eddy

diffusivity of β-plane shear flows

Abstract. The Reynolds stress induced by anisotropically forcing an

unbounded Couette flow, with uniform shear γ, on a β-plane, is calculated in

conjunction with the eddy diffusivity of a co-evolving passive tracer. The flow is

damped by linear drag on a time scale µ−1. The stochastic forcing is white-noise

in time and its spatial anisotropy is controlled by a parameter α, that character-

izes whether eddies are elongated along the zonal direction (α < 0), along the

meridional direction (α > 0) or are isotropic (α = 0). The Reynolds stress varies

linearly with α and non-linearly and non-monotonically with γ; but the Reynolds

stress is independent of β. For positive values of α, the Reynolds stress displays a

“anti-frictional” effect (energy is transferred from the eddies to the mean flow) and

a frictional effect for negative values of α. When γ/µ� 1, these transfers can be

identified as negative and positive eddy-viscosities, respectively. With γ = β = 0,

the meridional tracer eddy diffusivity is v′2/(2µ), where v′ is the meridional eddy

velocity. In general, non-zero β and γ suppress the eddy diffusivity below v′2/(2µ).

When the shear is strong, the suppression due to γ varies as γ−1 while the sup-

pression due to β varies between β−1 and β−2 depending on whether the shear is

strong or weak, respectively.

83
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4.1 Introduction

In this work we consider a canonical linear problem: the stochastically

forced, linearized β-plane vorticity equation with a background mean shear γ

ζ ′t + γyζ ′x + βv′ + µζ ′ = ξ . (4.1)

The eddy vorticity is related to the eddy stream function by ζ ′ = ψ′xx+ψ′yy, and the

eddy velocities are (u′, v′) = (−ψ′y, ψ′x). The random forcing, ξ(x, y, t) is spatially

homogenous and white-noise in time, and characterized more precisely in section

2. Drag, with coefficient µ, is the dissipative mechanism.

Our main concern is the eddy transport of momentum, potential vorticity

and tracer in the ultimate statistically steady state of the model (4.1). Despite

the evident importance of this linear problem, to our knowledge it has only been

discussed previously by Farrell and Ioannou [1993b] and Bakas and Ioannou [2013],

for the case of weak background shear. The problem is, however, closely related

to the initial value problem for the evolution of linearized disturbances on an

unbounded viscous Couette flow, first considered by Kelvin [1887] and Orr [1907].

A main result of these early studies is that an initial sinusoidal disturbance with

crests “leaning” into the shear is amplified for some time. Various aspects of

the Kelvin-Orr initial value problem, such as the inclusion of planetary vorticity

gradient β and a spectrum of initial disturbances, were subsequently discussed

by Rosen [1971], Tung [1983], Boyd [1983] and Shepherd [1985]. The transient

amplification of Kelvin and Orr is now understood as one consequence of the non-

normality of the linear vorticity equation [Farrell , 1982].

In conjunction with the vorticity equation (4.1), it is instructive to con-

sider the co-evolution of a passive tracer c′(x, y, t) satisfying the linearized tracer

equation

c′t + γyc′x + βcv
′ + µc′ = 0 . (4.2)

where βc is the large-scale tracer gradient. For simplicity, we assume that the

scalar damping rate, µ, is the same as that of the vorticity. The tracer c′ differs

from the vorticity ζ ′ because there is no stochastic forcing in (4.2). Instead, scalar

fluctuations are created by the eddy velocity v′ stirring the mean gradient βc.



85

Statistically steady solutions of (4.1) and (4.2) are characterized by the

Reynolds stress

σ
def
= u′v′ , (4.3)

and the tracer eddy diffusivity

κe
def
= −v

′c′

βc
. (4.4)

The overline above indicates either a zonal or an ensemble average. Using the

correlation-function formalism of Srinivasan and Young [2012] we provide explicit

analytic results for σ, κe, and other quadratic statistics, such as the eddy kinetic

energy and enstrophy, and the anisotropy of the velocity field.

The correlation-function formalism — introduced in sections 2 and 4 — is

an economical framework for analysis of the statistically steady flow. Rather than

solving (4.1) and (4.2) explicitly and then averaging the solution, one averages at

the outset, and then solves steady deterministic equations that directly provide σ

and κe.

Farrell and Ioannou [1993b] have previously discussed the statistically

steady flow corresponding to (4.1) with β = 0. Farrell and Ioannou [1993b] use

the eddy kinetic energy (rather than σ and κe) as the main statistical descriptor of

the flow and they emphasize viscosity (rather than Ekman drag) as the dissipative

mechanism. In the related context of surface geostrophy, the tracer equation

has recently been considered (with γ = 0) by Ferrari & Nikurashin (2010) and

Klocker, Ferrari & LaCasce (2012).

The forcing and drag terms in (4.1) incorporate the effects of two different

processes, that we characterize as external and internal. External processes, such as

small-scale convection in planetary atmospheres [Smith, 2004; Scott and Polvani ,

2007] or baroclinic instability [Williams , 1978], are often modeled as a stochastic

driving agent combined with a damping term representing Ekman friction (Val-

lis 2006, section 2.12.6). On the other hand, internal nonlinear interactions —

that is J(ψ′, ζ ′) — are sometimes represented using a stochastic turbulence model

[DelSole, 2001]. This is the interpretation of ξ and µ in the studies of Farrell

and Ioannou [2003, 2007], Ferrari and Nikurashin [2010] and Klocker et al. [2012].
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As suggested by fluctuation-dissipation arguments, the turbulence model has a

stochastic forcing term and eddy-damping; the combination ensures energy con-

servation. In section 2 we introduce a forcing which is distributed anisotropically

around a circle in wavenumber space.

Section 4.2 contains a description of the forcing structure and symmetries of

the correlation functions. Section 4.3 shows that (4.1) and (4.2) have a statistical

Galilean symmetry implying that all quadratic statistics, in particular σ and κe,

are independent of y. Section 4.4 summarizes the quadratic power integrals that

follow from taking quadratic averages of (4.1) and (4.2). These power integrals are

used to obtain some simple and general bounds on σ and κe. Analytic expressions

for σ and κe are presented in sections 4.5 and 4.6. Section 4.7 is a conclusion and

discussion of the results. Technical details are relegated to the appendices.

4.2 Correlation functions and statistical symme-

tries

We assume that the stochastic forcing ξ(x, y, t) in (4.1) is temporal white-

noise, with a two-point, two-time correlation function

ξ(x1, t1)ξ(x2, t2) = δ(t1 − t2) Ξ(x) . (4.5)

We restrict attention to spatially homogeneous forcing, so that Ξ depends only on

the difference x = x1 − x2.

We do not assume that the forcing is isotropic: Ξ(x) might depend on the

direction of the two-point separation x = (x, y). One motivation for examining the

effect of anisotropy is that in many studies of zonal jets on the β-plane [Vallis and

Maltrud , 1993; Smith, 2004] and on the sphere [Williams , 1978; Scott and Polvani ,

2007; Showman, 2007], the small scale-forcing used to drive the jets is assumed to

be isotropic, even though the physical processes that the forcing models, such as

baroclinic instability in the ocean and moist convection in planetary atmospheres

are typically not isotropic [Arbic and Flierl , 2004; Li et al., 2006].
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4.2.1 A remark on scale separation and homogeneity in y

The background mean flow, γy in (4.1) can be interpreted as a local ap-

proximation to a mean flow U(y) that is slowly varying relative to the eddy scale

and to the scale of Ξ(x). At a particular position, y, the mean flow is

U(y) ≈ U(0) + γy , (4.6)

where γ = U ′(0). However the constant U(0) has no physical consequences in this

model: one can move the origin of the coordinate system with ỹ = y + U(0)/γ to

remove U(0) from the problem. This removal hinges on the spatial homogeneity

of the statistical properties of ξ(x, y, t) = ξ(x, ỹ − U(0)/γ, t). In particular Ξ is

unaltered by this shift of the origin.

4.2.2 Statistical properties of the solution

The statistical properties of the solution are encapsulated in two-point

same-time correlation functions:

Z(x)
def
= ζ ′1ζ

′
2 , and Ψ(x)

def
= ψ′1ψ

′
2 . (4.7)

In (4.7), ζ ′n = ζ ′(xn, yn, t) is the eddy vorticity at point (x1, y1) and likewise for

ψ′n; x and y are the components of the two-point separation x = x1−x2. In (4.7)

we have anticipated that statistical properties of the solution are spatially homo-

geneous so that the correlation functions Z and Ψ depend only on the separation

x = x1−x2. The correlation functions Ψ and Z are connected by the biharmonic

equation

Z = (∂2
x + ∂2

y)
2Ψ . (4.8)

The statistics of the scalar are characterized by

P (x)
def
= ψ′1c

′
2 , and Q(x)

def
= ψ′2c

′
1 , (4.9)

and

C(x)
def
= c′1c

′
2 . (4.10)
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4.2.3 Exchange symmetries

Because the notation of one point as “1” and the other point as “2” is

arbitrary, the correlation function Ξ has the “exchange symmetry”

Ξ(x, y) = Ξ(−x,−y) . (4.11)

The exchange symmetry implies that Ξ is unchanged by a rotation of 180◦ in the

plane of x, and ensures that the spectrum,

Ξ̃(p, q)
def
=

∫∫
e−ipx−iqy Ξ(x, y) dxdy , (4.12)

is real.

The auto-correlations functions Z, Ψ and C all satisfy the exchange sym-

metry (4.11). For the mixed statistics in (4.9), exchange implies

P (x, y) = Q(−x,−y) . (4.13)

The Fourier transform of this relation shows that

P̃ (p, q) = Q̃∗(p, q) . (4.14)

4.2.4 Reflexion symmetry

If the statistics of the forcing are reflexionally symmetric in the axis of x,

then the correlation function has a second symmetry

Ξ(x, y) = Ξ(x,−y) . (4.15)

The exchange symmetry (4.11) in concert with (4.15) implies that Ξ is an even

function of both arguments.

Now the left of (4.1) is unchanged by

ψ → ψ , t→ t , x→ x , (4.16)

γ → −γ , y → −y . (4.17)
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This transformation induces (u′, v′) → (−u′, v′), and therefore σ → −σ. If the

statistics of the forcing ξ also obey (4.15), then (4.17) is a statistical symmetry of

(4.1) and therefore

σ(γ) = −σ(−γ) . (4.18)

But the symmetry (4.15) is not compulsory e.g., the single-wave forcing of

Ferrari and Nikurashin [2010] and Klocker et al. [2012] does not satisfy (4.15).

However we make the assumption that the forcing is reflexionally symmetric and

proceed confining attention to ξ’s with statistics obeying (4.15). As a consequence

of this restriction, σ(γ), calculated explicitly in section 4.5, satisfies (4.18).

4.2.5 The stochastic forcing

Our main illustrative example is provided by the correlation function

Ξ = 2εk2
f [J0(kfr)− αcJ2(kfr) cos 2θ] , (4.19)

where (x, y) = r(cos θ, sin θ), kf is the “forced wavenumber” and Jm(z) is the

Bessel function of order m. The corresponding spectrum is

Ξ̃(p, q) = 4πkfε (1 + αc cos 2φ) δ(k − kf ) , (4.20)

with (p, q) = k(cosφ, sinφ). The forcing is concentrated on a circle with radius kf

in wavenumber space. To ensure that the spectrum is non-negative, the anisotropy

parameter αc must satisfy −1 ≤ α ≤ 1. Figure 4.1 shows model correlation

functions and forcing obtained by varying αc in (4.19).

4.3 Statistical Galilean invariance

The linearized vorticity equation in (4.1), with the rapidly decorrelating

forcing in (4.5), has a form of statistical Galilean invariance. To explain this,

consider two observers, one of whom is stationary and at the origin of the (x, y, t)

coordinate system in (4.1). The other observer is at y = b and moves “with the

mean flow”, at speed γb along the axis of x relative to the first. Because of the

rapid temporal decorrelation of the forcing ξ, these two observers see statistically
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Figure 4.1: The left panels show the anisotropic ring correlation function Ξ in

(4.19) and the right panels show corresponding snapshots of the forcing ξ. Panels

(a) and (d) show αc = −1; (b) and (e) show the isotropic case αc = 0; panels (c)

and (f) show αc = +1.

identical versions of the problem (4.1). Thus all zonally averaged quantities are

independent of y. This simple argument allows us to anticipate some curious

aspects of the detailed calculations which follow in section 4.5.

Notice that if the forcing has a non-zero temporal decorrelation time then

the statistical properties of ξ are different in the two frames of reference, and con-

sequently the problem is no longer statistically Galilean invariant (or even Galilean

invariant). If there is a non-zero decorrelation time then averaged quantities do

depend on y. A clear example is steady forcing, such as ξ = cos kfx used by Man-

froi and Young [1999]. In the frame of the observer at y = b this forcing is periodic

in time. In this example the forcing breaks Galilean invariance because there is a
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special frame in which the forcing is steady (or has the longest decorrelation time

in the stochastic case).

To formally prove statistical Galilean invariance, suppose that the second

observer above uses coordinates (x̃, ỹ, t̃). The relation between the two coordinate

systems is

x̃ = x− γbt , ỹ = y − b , t̃ = t . (4.21)

In the “tilde frame” the equation of motion (4.1) is

ζ ′t̃ + γỹζ ′x̃ + βv′ + µζ ′ = ξ(x̃+ γbt, ỹ + b, t̃) . (4.22)

If the right hand side of (4.22) has the same statistical properties as ξ(x, y, t) in

(4.1) then this Galilean transformation is a statistical symmetry. And indeed,

because of the δ(t1 − t2) correlation in (4.5), this is the case.

The important consequence of statistical Galilean invariance is that zonally

averaged quantities are independent of y, despite the explicit y-dependence in (4.1)

and (4.2). As an application of this result, the eddy vorticity flux is related to the

Reynolds stress by the Taylor identity

v′ζ ′ = −
(
u′v′
)
y
. (4.23)

Because u′v′ is independent of y it follows that the statistically steady solution of

(4.1) must have

v′ζ ′ = 0 . (4.24)

That is, there is no eddy flux of vorticity, even though the planetary vorticity βy

is stirred by eddies (but see the discussion surrounding (4.45)).

4.4 Power integrals

4.4.1 Enstrophy

The enstrophy power integral is obtained by multiplying (4.1) by ζ ′ and

zonally averaging. Using (4.24), the result is

µζ ′2 = ξζ ′ . (4.25)
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Because there is no production of eddy enstrophy by stirring of the β-gradient,

there is a strict balance in (4.25) between local eddy enstrophy production on the

right and enstrophy dissipation by drag on the left.

4.4.2 Energy

The energy power integral is obtained by multiplying the vorticity equation

(4.1) by ψ′ and zonally averaging. Again, because of statistical Galilean symmetry,

zonally averaged quantities, such as u′2, are independent of y and one finds

γu′v′ = ε− µ
(
u′2 + v′2

)
. (4.26)

The left of (4.26) is the transfer of energy between the eddies and the shear flow.

The first term on the right of (4.26),

ε
def
= −ψ′ξ , (4.27)

is the rate of working of the stochastic force. Because the forcing is white-in-time,

ε in (4.27) is the same as ε in (4.19) and (4.20). A more detailed discussion of this

aspect can be found in Srinivasan and Young [2012].

4.4.3 Tracer variance

The tracer variance equation is obtained by multiplying the scalar equation

(4.2) by c′ and zonally averaging:

βc v′c′ + µc′2 = 0 . (4.28)

Thus κe = µc′2/β2
c : the tracer eddy diffusivity is non-zero and positive. Taylor’s

analogy between eddy transport of vorticity and eddy transport of scalars fails:

according to (4.24) there is no eddy flux of vorticity, while from (4.28) there must

be a down-gradient tracer flux.
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4.4.4 Covariance of tracer and vorticity

The fourth and final power integral is obtained by “cross-multiplying” the

vorticity equation (4.1) and the scalar equation (4.2):

β v′c′ + 2µc′ζ ′ = 0 , (4.29)

and therefore κe = 2µζ ′c′/ββc. The power integral (4.29) relates the tracer eddy

flux to the covariance c′ζ ′ and, in combination with (4.28), shows that 2βcc′ζ ′ =

βc′2 > 0.

4.4.5 A bound on the Reynolds stress

Combining the energy power integral (4.26) with the inequality u′2 + v′2 ≤
2u′v′ we obtain

σ ≤ ε

γ + 2µ
. (4.30)

This bound on the Reynolds stress is important because it is independent of the

details of the forcing (i.e., the model for Ξ) and because in (4.44) below, the bound

is saturated.

4.4.6 Bounds on the eddy diffusivity

Combining the tracer variance power integral (4.28) with the Cauchy-

Schwarz inequality,

|v′c′| ≤
√
c′2 v′2 , (4.31)

we obtain

κe ≤ 2κv , (4.32)

where

κv
def
=
v′2

2µ
. (4.33)

Another bound on κe is obtained by combining the covariance integral (4.29)

with the Cauchy-Schwarz inequality for ζ ′c′. One finds

κe ≤ 2κζ , (4.34)
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where

κζ
def
=

2µζ ′2

β2
. (4.35)

A more elaborate analysis in Appendix A shows that (4.33) and (4.35) can be

combined into a single stronger inequality

κe ≤
2κvκζ
κv + κζ

, (4.36)

or equivalently in terms of harmonic averages

1

κe

≥ 1

2

(
1

κv
+

1

κζ

)
. (4.37)

We will see later that the bounds above are typically too generous by a factor of

two.

The four power integrals, and the ensuing bounds on σ and κe, provide

important and general connections between quadratic statistics characterizing the

main properties of the flow. However these relations are unclosed and to make

further progress we consider the dynamics of correlation functions.

4.5 Reynolds stress and anisotropy

An evolution equation for the correlation function Z in (4.7) is obtained

using the replica trick: take (4.1) at point 1 and multiply by ζ ′2 and vice versa.

Adding these two expressions and then zonally averaging one finds

γy∂xZ = Ξ− 2µZ . (4.38)

The enstrophy and energy power integrals in (4.25) and (4.26) are recovered by

evaluating (4.38), and the inverse laplacian of (4.38), at zero separation. A sur-

prising aspect of (4.38) is the lack of a term containing β: the β-term that would

appear in the left hand side of (4.38), on performing the replica trick mentioned

above is,

β
(
v′1ζ
′
2 + v′2ζ

′
1

)
= β(∂x1 + ∂x2)∇2Ψ . (4.39)



95

The term above is zero because, owing to the homogeniety property of Ψ section

4.2a, ∂x1 = −∂x2 = ∂x. For a more detailed and general derivation of (4.38), see

Srinivasan and Young [2012].

Once one has the solution of (4.38), the Reynolds stress is given by

u′v′ = Ψxy(0, 0) . (4.40)

It is remarkable that the vorticity correlation equation (4.38) is independent of β

i.e., anisotropic Rossby wave propagation does not affect the vorticity correlation

function Z(x, y), nor the Reynolds stress in (4.40). Thus all results in this section,

which follow from the solution of (4.38) alone, apply to β-plane flows, even though

the parameter β does not appear.

4.5.1 Reynolds stress

A general solution of (4.38) is detailed in Appendix B. With the anisotropic

ring forcing in (4.15), the Reynolds stress σ = u′v′ obtained from (4.40) is

σ =
εαc
4µ

F1

(
γ

µ

)
, (4.41)

where the function F1 is

F1

(
γ

µ

)
def
= 4µγ

∫ ∞
0

τ 2e−τ

16µ2 + γ2τ 2
dτ . (4.42)

The function F1 can be expressed in terms of the exponential integral (see Appendix

C), and is shown in Figure 4.2.

We emphasize the linear dependence of σ in (4.41) on the forcing anisotropy

parameter α. In particular, if α = 0 (isotropic forcing), there is no Reynolds stress.

This recapitulates the result that anisotropic forcing, or initial conditions, are

essential to the generation non-zero Reynolds stress [Kraichnan, 1976; Shepherd ,

1985; Farrell and Ioannou, 1993b; Holloway , 2010; Cummins and Holloway , 2010;

Srinivasan and Young , 2012].

The Reynolds stress (4.41) depends nonlinearly on the shear γ and thus the

concept of an eddy viscosity is not generally useful. Instead, there is a nonlinear,
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Figure 4.2: F1 in (4.42) as a function of the non-dimensional shear γ/µ. The

dashed curve is the approximation F1(γ/µ) = 4µ/γ +O(µ/γ)2.

and non-monotonic, stress-strain relation encoded in F1. However in the weak-

shear limit, γ/µ � 1, the integral in (4.42) simplifies and the Reynolds stress is

then

σ ≈ εαc
8µ2︸︷︷︸
=−νe

γ . (4.43)

The sign of the eddy viscosity νe is determined by the anisotropy parameter αc,

with αc > 0 being the antifrictional case. A negative viscosity in the weak shear

limit, with the same form as (4.43), was also found by Bakas and Ioannou [2013]

using a forcing function that is similar to the α = 1 case in this paper.

The integral in (4.42) also simplifies in the strong shear limit γ/µ � 1,

reducing to

σ ≈ εαc
γ
. (4.44)

The inverse dependence of stress on shear in the strong-shear limit is striking. This

might be interpreted as an indication that strong shear is rapidly pushing wavy

disturbances into the Farrell and Ioannou’s “unfavorable” sector of the wavenumber

plane, where they damp away due to the Kelvin-Orr mechanism1. But as we show

in the next section, a complicating factor is the dependence of the kinetic energy

density on the shear.

1In the solution in Appendix B the sheared wavenumber is q = q̂− pγt, where q̂ is the initial

meridional wavenumber. The unfavorable sector is q < 0. In this sector, according to the solution

of the Kelvin-Orr initial value problem, the energy of the disturbances decreases.
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Another interpretation of (4.44) is that if α = ±1 then the Reynolds-stress

bound in (4.30) is an asymptotic equality as γ/2µ → ∞. One might say that

the γ−1 dependence in (4.44) is the strongest possible Reynolds stress that can

be achieved, consistent with the energy power integral (4.26) and the associated

bound (4.30). Notice that (4.44) was obtained with the ansiotropic ring forcing in

(4.19), but the bound (4.30), which makes no assumptions about the structure of

the forcing, indicates that σ ∝ γ−1 is a general result in the strongly sheared limit.

4.5.2 The vorticity flux of a slowly varying mean flow

In the discussion surrounding (4.23) and (4.24) we argued that the vorticity

flux v′ζ ′ is zero. However, if following (4.6), we view γ as the shear of a slowly vary-

ing mean flow U(y) then a non-zero v′ζ ′ can be calculated with our results. Using

this “slowly-varying” argument we can write the Reynolds stress as a function of

the shear,

u′v′ = σ(Uy) , (4.45)

where σ is the function in (4.41). Then using the Taylor identity (4.23) one has

v′ζ ′ = −σ′(Uy)Uyy , (4.46)

where σ′ is the derivative with respect to γ.

4.5.3 Eddy kinetic energy and enstrophy

In addition to the Reynolds stress, the statistically steady solution is char-

acterized by the eddy enstrophy and the eddy kinetic energy. The eddy enstrophy

is obtained by evaluating (4.38) at x = 0 and is simply

ζ ′2 =
Ξ(0, 0)

2µ
=
εk2

f

µ
. (4.47)

There is no dependence of the eddy enstrophy on the parameter γ/µ (nor on β).

The eddy kinetic energy is obtained from the energy power integral (4.26).

For anisotropic ring forcing, the result is

1
2

(
u′2 + v′2

)
︸ ︷︷ ︸

def
=E′

=
ε

2µ

(
1− γαc

4µ
F1

)
. (4.48)
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Figure 4.3: (a) The non-dimensional eddy kinetic energy as a function of γ/µ,

calculated from (4.48). (b) The non-dimensional meridional velocity variance as a

function of γ/µ.

Figure 4.3(a) shows the scaled eddy kinetic energy, 2µE ′/ε, as a function of γ/µ.

The anti-frictional case is α = +1, with 2µE ′/ε < 1 i.e., the eddy kinetic energy

is depleted below the unsheared value by transfer to the large-scale shear flow. In

the frictional case (α = −1) the eddy kinetic energy is enhanced by transfer from

the mean flow: the energy level approaches twice that of the isotropically forced

flow as the shear increases.

In the strong-shear limit in Figure 4.3(a) there is much more eddy energy

in the frictional flow (αc = −1) than in the anti-frictional flow (αc = +1). Yet

the amplitude of the Reynolds stress in (4.44) is the same in the two cases. The

relatively energetic αc = −1 eddies are inefficient at forming the requisite corre-

lation to produce a Reynolds stress. This motivates further examination of the

anisotropy of the eddies.
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4.5.4 Velocity anisotropy
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Figure 4.4: (a) The function F2(γ/µ) defined in (4.50). The dashed curve is the

asymptotic approximation (16µ2/γ2)[ln(γ/4µ) − γE], where γE = 0.57721 · · · is

Euler’s constant. (b) The index aniso in (4.51), with α = −1, 0 and 1.

In Appendix B we show that the mean square meridional velocity is

v′2 =
ε

2µ

[
1 +

α

2

(
F2 −

γ

2µ
F1

)]
, (4.49)

where F1 is in (4.42) and

F2

(
γ

µ

)
= 16µ2

∫ ∞
0

τe−τ

16µ2 + γ2τ 2
dτ . (4.50)

Figure 4.4(a) shows F2 as a function of the non-dimensional shear, γ/µ and Figure

4.3(b) shows the variation of the mean square meridional velocity with γ/µ.

As a non-dimensional index of the flow anisotropy, we use the quantity

aniso
def
=
v′2 − u′2

v′2 + u′2
, (4.51)
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or equivalently
v′2

u′2
=

1 + aniso

1− aniso
. (4.52)

Using (4.49), the numerator in (4.51) is

v′2 − u′2 =
εαc
2µ

F2

(
γ

µ

)
. (4.53)

The dependence of the index aniso in (4.51) on the shear is shown in Figure 4.4(b).

In the large-shear limit, the case α = −1 in Figure 4.4(b) rapidly tends

to isotropy. This is consistent with the earlier result that the amplitude of the

Reynolds stress in (4.44) is the same for αc = +1, as for αc = −1, despite the

great difference in the energy level of the two flows as γ/µ→∞. In other words,

with α = −1 the eddies are energetic but almost isotropic and are therefore not

very efficient at producing a non-zero Reynolds stress.

4.5.5 Tenacity of isotropy

Figure 4.4(b) shows that if the forcing is isotropic (α = 0) then the flow is

also isotropic i.e., if the flow is isotropically forced then neither the mean shear nor

the β-effect induces anisotropy of the eddies. Moreover, if the forcing is anisotropic,

then the effect of shear is to make the flow more isotropic: in both panels of Figure

4.4 the index of flow anisotropy approaches zero monotonically as the shear γ/µ

increases. We cannot provide an intuitive explanation of this result.

For a recent discussion of isotropy in the context of fully nonlinear sheared

turbulence see Cummins and Holloway [2010]: a main point is that nonlinear

eddy-eddy interactions also decrease anisotropy. We summarize all these results

by saying that isotropy is tenacious.

4.6 The eddy diffusivity κe(αc, β, γ, µ)

We turn now to the eddy diffusivity, viewed as a function of the four main

parameters: κe(αc, β, γ, µ). Using the replica trick, one can obtain evolution equa-

tions for the tracer correlation functions defined in (4.9) and (4.10). Combining
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(4.1) and (4.2) one has

γy∇2Px + βPx + 2µ∇2P = βc∇2Ψx , (4.54)

and from (4.2) alone one has

γyCx + 2µC = −βc(Px −Qx) . (4.55)

The equation for Q is obtained by P → Q and (x, y) → −(x, y) in (4.54). After

solving (4.54), the tracer diffusivity, κe defined in (4.4), is obtained as

κe = −Px(0, 0)

βc
. (4.56)

The solution of (4.54), and the calculation of the tracer diffusivity κe defined in

(4.4), is summarized in Appendix D. The result is

κe =
1

β2

∫∫
Ξ̃(p, q)M̃(p, q)

dpdq

(2π)2
; (4.57)

the kernel in (4.57) is

M̃(p, q; β, γ, µ) = 1− 2µ

∫ ∞
0

e−2µt cosχ dt , (4.58)

with the phase

χ =
β

γp

[
arctan

(
q

p
− γt

)
− arctan

(
q

p

)]
. (4.59)

4.6.1 The case γ = β = 0

If β = γ = 0 then we don’t need the complicated expressions for κe above:

cancel the ∇2 in (4.54) and then take an x-derivative to obtain

κe(α, 0, 0, µ) =
v′2

2µ︸︷︷︸
κv

, (4.60)

where we have used v′2 = Ψxx(0, 0), and recalled the definition of κv in (4.33).

Notice that the upper bound on κe in (4.32) is too generous by a factor of two

relative to (4.60). Using results from section 4.5, the eddy diffusivity in (4.60) can

also be written as

κe(α, 0, 0, µ) =
ε

4µ2

(
1 +

α

2

)
; (4.61)

the dependence of κe on the anisotropy α reflects that of v′2.
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4.6.2 The suppression factor, S

One can view (4.60) as saying that the eddy diffusivity is the product of

a typical meridional eddy velocity, equal to the root mean square of v′, times the

mixing length √
v′2/2µ . (4.62)

We adopt this interpretation and express κe in terms of κv and Ferrari and

Nikurashin [2010] suppression factor S as

κe = κv S . (4.63)

In (4.60), S = 1. But the effect of non-zero β and γ is usually to make κe less than

κv.

4.6.3 The case γ = 0

Unlike the Reynolds stress in (4.41) and the anisotropy in (4.51), the eddy

diffusivity κe depends on the planetary vorticity gradient β. This dependence is

illustrated by the special case γ = 0. With no mean shear, the phase in (4.59)

simplifies to χ = ωt, where

ω = − βp

p2 + q2
(4.64)

is the Rossby wave frequency. Thus the kernel in (4.58) reduces to

M̃(p, q; β, 0, µ) =
ω2

(2µ)2 + ω2
. (4.65)

For the anisotropic ring forcing in (4.19), the γ = 0 tracer diffusivity obtained from

the integral in (4.57) is then

κe(α, β, 0, µ) =
ε

4µ2

(
B0 +

αc
2

√
1 + β̃2B2

0

)
, (4.66)

where

β̃
def
=

β

2µkf
, (4.67)

is a non-dimensional planetary vorticity gradient and

B0(β̃)
def
=

2

β̃2

1− 1√
1 + β̃2

 . (4.68)
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Figure 4.5: (a) The non-dimensional γ = 0 tracer diffusivity in (4.66) as a function

of β̃ = β/(2µkf ). (b) The suppression factor, S defined in (4.69).

Following (4.63), the eddy diffusivity in (4.66) can alternatively be written as

κe(α, β, 0, µ) =
v′2

2µ︸︷︷︸
κv

2B0 + αc

√
1 + β̃2B2

0

2 + αc︸ ︷︷ ︸
S

, (4.69)

Figure 4.5(a) shows the eddy diffusivity in (4.66) as a function of β, and Figure

4.5(b) shows the factor S in (4.69). Increasing β reduces both measures of the

tracer diffusivity.

The dependence of κe on α in Figure 4.5(a) is intuitive: in Figure 4.1(f)

αc > 0 forces meridionally elongated eddies resulting in enhanced diffusive fluxes

in the y-direction. The difference between αc = 1 and αc = −1 is a factor of three

in diffusivity at β̃ = 0, but the dependence on forcing anisotropy α is reduced as

β̃ increases.
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When β̃ →∞:

B0(β̃) = 2β̃−2 +O
(
β̃−3
)
, (4.70)

and therefore for large β̃ the eddy diffusivity is

κe(α, β →∞, 0, µ) =
ε

4µ2

2

β̃2
, (4.71)

=
2µζ ′2

β2︸ ︷︷ ︸
κζ

, (4.72)

where we have recalled the definition of κζ in (4.35). The bound (4.34) is too

generous by a factor of two relative to (4.72).

The β → ∞ diffusivity in (4.72) is a general result that is not specific to

the anisotropic-ring forcing in (4.20). To see this, we note that if β →∞ then the

kernel M̃ in (4.65) simplifies to

M̃(p, q; β →∞, 0, µ)→ 1 . (4.73)

Setting M̃ = 1 in (4.69) and substituting for the enstrophy from (4.47), we arrive

at (4.72).

4.6.4 Comparison with Klocker, Ferrari & LaCasce (2012)

The β−2 suppression of transport in (4.72) is via the mechanism of Ferrari

and Nikurashin [2010] and Klocker et al. [2012]: nonzero β enables Rossby wave

propagation so that eddies drift relative to the mean flow. We have used the

anisotropic ring forcing in (4.20), whereas Klocker et al. force a single wave. To

fully explain the connection we briefly consider the single-wave forcing of Klocker

et al., with correlation function

Ξ(x, y) = 2εk2
f cos(pfx+ qfy) . (4.74)

The spectrum is

Ξ̃(p, q) = 4επ2k2
f [δ(p− pf )δ(q − qf )

+ δ(p+ pf )δ(q + qf )] , (4.75)
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where k2
f = p2

f + q2
f . Ferrari and Nikurashin [2010] and Klocker et al. [2012] do not

have damping in the scalar equation (4.2), so to see the connection to their work we

replace µc′ in (4.2) by µcc
′. Ferrari and Nikurashin [2010] and Klocker et al. [2012]

take µc = 0. With γ 6= 0 this change complicates the expression for the diffusivity

in (4.57). But, for comparison with Klocker et al. [2012] we restrict attention to

γ = 0. Then there is only a minor modification in the tracer correlation equation

(4.54) and the diffusivity formula in (4.125): every 2µ term is just replaced by

µ+ µc. In particular the kernel M̃ is modified from (4.65) to

M̃(p, q; β, 0, µ) =
ω2

(µ+ µc)2 + ω2
, (4.76)

The diffusivity integral (4.57) is modified by a factor of (µ+ µc)/2µ and the diffu-

sivity then evaluates to

κe =
p2
f

k2
f

µ+ µc
µ

ε

(µ+ µc)2 + c2
Rp

2
f

, (4.77)

where

cR = − β

k2
f

(4.78)

is the intrinsic Rossby wave phase speed in the zonal direction. Alternatively, we

can express (4.77) in terms of the meridional velocity variance, v′2 obtained from

(4.101),

v′2 =
εp2

f

µk2
f

, (4.79)

in the form

κe =
v′2

µ+ µc︸ ︷︷ ︸
κv

1

1 + c2
Rp

2
f/(µ+ µc)2︸ ︷︷ ︸
S

. (4.80)

If µ = µc the expression above has the same form as the anisotropic-ring diffusivity

in (4.69); if µc = 0 the expression in (4.77) is identical to equation (20) in Klocker

et al. [2012]. Further, in the limit of β →∞, the general result κe ∝ β−2 in (4.72)

is recovered by using ζ ′2 = εk2
f/µ.

There are two important remarks to make about (4.80). First, and intu-

itively, it is v′2, rather than the eddy kinetic energy, that determines the unsup-

pressed eddy diffusivity. Second, it is the intrinsic Rossby wave speed, proportional
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to the base state potential vorticity gradient, that appears in the suppression fac-

tor. In the model of Klocker et al. [2012] the intrinsic zonal phase speed is

cR = −β + UL−2
d

k2
f + L−2

d

, (4.81)

where U is the background mean flow in the upper layer of their equivalent

barotropic model (the lower layer is quiescent) and Ld is the deformation length.

Because the potential vorticity gradient, β+UL−2
d , is modified by the background

mean flow, strong mean flow increases cR and therefore suppresses κe. By com-

parison in (4.78), our cR does not depend on a background mean flow. In both

models it is the meridional potential vorticity gradient, β in (4.78) and β+UL−2
d in

(4.81), that enables eddies to move relative to the mean flow, results in a non-zero

cR = c− U , and the associated suppression of κe. (Note that the Doppler-shifted

phase speed c is the observed zonal speed of eddies, as seen, for example, in satellite

altimetry.)

4.6.5 The case β = 0

With β = 0 we evaluate the integrals for κe in (4.57) and (4.58) numerically.

Figure 4.6(a) shows the diffusivity κe(α, 0, γ, µ) as a function of the shear γ/µ. In

Figure 4.6(b) we express the diffusivity in terms of the suppression factor S in

(4.63). The three curves are much closer together in (b) than in (a) and therefore

the variation in κe with αc and γ/µ is due mainly to variation in v′2.

The case α = −1 in Figure 4.6(b) shows a slight enhancement of κe above

κv. Thus, in some cases at least, shear can enhance eddy diffusivity, so that S

is slightly greater than 1. This weak effect is due to the Kelvin-Orr mechanism:

α = −1 loads the forcing variance deep in the Farrell & Ioannou’s (1993) favorable

sector of the wavenumber plane. The diffusivity in (4.57) through (4.59) is given

by a weighted time-integral of the v′2 associated with a sheared wave. Apparently

this time integral is not necessarily bounded above κv (though it is by 2κv).
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Figure 4.6: (a) The non-dimensional tracer diffusivity as a function of γ/µ with

β=0 and different values of α. (b) The corresponding suppression factor defined

in (4.63).

4.6.6 Large shear

When γ̃ � 1, and provided γ̃ � β̃, the kernel M̃ in (4.58) is concentrated

near φ = π/2 and the integrals can be evaluated approximately (see Appendix E).

In this large-shear limit the eddy diffusivity is

κe(α, β, γ →∞, µ) ≈ (1− αc)
πε

2γµ
B1(πβ̃) , (4.82)

where the function B1 is

B1(b)
def
= b−2

[
πb− 2b arctan

1

b
− ln(1 + b2)

]
. (4.83)

Figure 4.7(a) shows the variation of the function B1(πβ̃) with β̃ while Figure

4.7(b) shows that the approximate expression in (4.82) is in good agreement with

numerical computation of κe using (4.57).
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Figure 4.7: (a) The function B1(πβ̃) given in (4.83) shown as a function of β̃. The

large β̃ approximation is the dashed curve. (b) A comparison of the numerically

computed non-dimensional tracer diffusivity for γ/µ=500 (dashed curve) with the

approximate expression in (4.82) (solid curve).

In the limit of large shear, the meridional velocity variance in (4.49), be-

comes

v′2 =
ε

2µ
(1− α) +O(γ̃−1) , (4.84)

and can be used to rewrite the eddy diffusivity in terms of the suppression factor

S in the form

κe(α, β, γ →∞, µ) ≈ κv
2π

γ̃
B1(πβ̃)︸ ︷︷ ︸
S

. (4.85)

This result leads to two important conclusions: first that S ∝ γ−1 i.e., large shear

suppresses eddy diffusivity and in the large-shear limit the γ−1 dependence is the

same as the earlier result for the Reynolds stress in (4.44). Second, the effect

of anisotropy on the diffusivity is completely included in the meridional velocity

variance v′2, so that S is independent of α. Limiting forms of the suppression
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Figure 4.8: (a) The numerically computed non-dimensional tracer diffusivity as

a function of γ/µ, with different values of β, and isotropic forcing α = 0. Also

plotted are the large γ asymptotes for β̃ = 0 (dashed line) and β̃ = 50 (dot-dashed

line) in (4.86). (b) Comparison of the numerically computed non-dimensional κe

for γ̃ = 100 (solid line) as a function of β̃/γ̃, with asymptotes corresponding to the

limits β̃ � γ̃ � 1 (dot-dashed line) and γ̃ � β̃ � 1 (dashed line).

factor in (4.85) for large and small β̃ can be inferred from Figure 4.7 (a) as

S ≈



2π

γ̃
if β̃ → 0 ,

2π

γ̃β̃
if γ̃ � β̃ � 1 .

(4.86)

Figure 4.8 (a) shows comparisons of the numerically computed diffusivity integral

in (4.57) for isotropic forcing (α = 0), with the asymptotic forms displayed in

(4.86).

Finally, we note that in the limit β̃ � γ̃ � 1, the general result of (4.72) is
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recovered, i.e.

κe = κζ if β̃ � γ̃ � 1 . (4.87)

In Figure 4.8 (b), the normalized eddy diffusivity is plotted as a function of β̃/γ̃

for a large value of the shear, γ̃ = 100. It is clear that when β̃/γ̃ is small, the

diffusivity asymptotes to the lower result in (4.86), and to (4.87) (written in the

equivalent form, (4.71)) for large values of β̃/γ̃.

4.7 Discussion and conclusion

The model (4.1) and (4.2) has a special status as an analytically tractable

example whose solution sheds light on eddy transport of momentum, vorticity

and tracer. To be sure, the model is linear and, unless one has strong faith in

stochastic turbulence models, the results might therefore apply only in the case of

weak, externally forced, eddies on a strong mean flow.

Key results for (4.1) and (4.2) detailed in this paper emphasize the depen-

dence of the statistical properties of the solutions of linear vorticity equation (4.1)

and the scalar equation (4.2) on the spatial structure of the forcing, ξ, and the

shear, γ. However, the role of β is peculiar: a great and unexpected simplification

is that the eddy kinetic energy level and the Reynolds stress, σ, are independent

of β. But σ is a non-linear and non-monotonic function of the γ. Thus, while it

is sensible to define an eddy diffusivity according to (4.4), one cannot define an

analogous eddy viscosity because σ is not linearly proportional to γ. Thus our re-

sult for σ in (4.41) provides an explicit analytic example of Dritschel and McIntyre

[2010]’s “anti-friction” (as opposed to negative eddy viscosity).

The spatial structure of the stochastic forcing, ξ, is characterized by the

anisotropy parameter α in (4.19). The Reynolds stress is found to be directly

proportional to α, so “frictional” and “anti-frictional” stresses are obtained when

α is negative and positive, respectively. And if the forcing is isotropic then the

Reynolds stress is identically zero. When the background shear, γ is weak, the

Reynolds stress is proportional to γ. Thus, in this special case, one can identify

an effective viscosity, νe, whose sign is opposite to that of α. The expression for νe
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in (4.43) connects with a similar result obtained by Bakas and Ioannou (2013) for

a forcing function resembling our α = 1: in this case νe < 0.

In general, the most important determinants of the tracer eddy diffusivity,

κe, are the meridional kinetic energy, v′2, and the drag µ. With β = γ = 0, the

diffusivity is precisely v′2/(2µ). But typically, κe is smaller than v′2/(2µ) whenever

β or γ are non-zero. In other words, both γ and β suppress eddy diffusivity. If

γ = 0 the suppression due to β is a consequence of propagation of Rossby waves

relative to a background mean flow. The suppression of diffusivity due to β (or

more generally, any background potential vorticity gradient) has been discussed

previously by Klocker et al. [2012], and their results can be interpreted as a special

case of ours with γ = 0. Strong shear also causes the diffusivity to decrease as γ−1,

and this inverse proportionality mirrors the γ−1 variation of the Reynolds stress

for large γ.

We caution against summarizing the results above by saying that “mean

flow suppresses eddy diffusivity”. The mean flow is γy and “mean flow suppression”

invites the incorrect conclusion that κe would decrease as |y| increases. Instead,

fundamentally because of the Galiliean invariance in section 4.3, κe is independent

of y. The “mean-flow suppression” explained in Klocker et al. [2012] and Ferrari

and Nikurashin [2010] is caused by the relative motion of eddies with respect to the

mean flow. However, this relative motion is due to a non-zero potential vorticity

gradient, which in the case of Klocker et al. [2012] includes both β and a term

resulting from the baroclinic shear of the mean flow. If a barotropic mean flow

U(y) has Uyy 6= 0 then the background potential vorticity gradient is modified to

β − Uyy, and it is this total gradient (rather than just β) that is relevant for eddy

suppression. Thus it is not the mean flow directly, but rather the contribution of

the mean flow to the PV gradient that results in suppression of diffusivity.

We close by remarking that our results bear on the historical controversy

between Prandtl’s theory of momentum transfer and Taylor’s theory based on

vorticity transfer. The debate migrated into geophysical fluid dynamics in the

seventies [Welander , 1973; Thomson and Stewart , 1977; Stewart and Thomson,

1977] and has recently been recalled by Maddison and Marshall [2013]. The results
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here do not support Taylor’s view. Taylor argued that in ideal two-dimensional

fluid dynamics, vorticity should be transferred much like a passive scalar and thus

advocated an eddy closure which, in our notation, is

v′ζ ′ = −κeβ . (4.88)

A prominent problem with this proposal has always been that because of the

identity (4.23) momentum is not conserved on a β-plane. Our results pile on

more: although the passive scalar eddy diffusivity κe is non-zero, the vorticity flux

on the left of (4.88) is zero. Moreover, in general agreement with Prandtl’s views,

there is a non-zero momentum flux which is, painfully for Taylor, independent

of mean potential vorticity gradient, β. Thus, in the model solved here, β is an

important control on passive-scalar transport, but it is irrelevant for momentum

transport.

4.A A bound on eddy diffusivity

In addition to the definition in (4.4), the eddy diffusivity can be obtained

from the power integrals in (4.28) and (4.29). Thus we can write the eddy diffu-

sivity as a linear combination of three different expressions:

κe = p
µ c′2

ββc
+ 2q

µ ζ ′c′

ββc
− r v

′c′

βc
, (4.89)

where p+ q+ r = 1. Completing the square involving c′, assuming that p < 0, and

then dropping the squared term (which has the same sign as p) gives the inequality

κe ≤
1

2

q2κζ + r2κv
q + r − 1

, (4.90)

where κv and κζ are defined in (4.33) and (4.35). Minimizing the right hand side

of (4.90) over q and r we find

q =
2κv

κv + κζ
, r =

2κζ
κv + κζ

, (4.91)

and therefore p = −1. The smallest value of the right hand side of (4.90) produces

the best upper bound on κe, which is the result in (4.36).
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4.B Details of the Z solution

Using the convention in (4.12), the Fourier transform of (4.38) is

−γpZ̃q = Ξ̃− 2µZ̃ . (4.92)

The solution of the ordinary differential equation (4.92) can be written as the time

integral of a “sheared disturbance”:

Z̃(p, q) =

∫ ∞
0

e−2µt Ξ̃(p, q̂) dt , (4.93)

where

q̂
def
= q + pγt . (4.94)

4.B.1 A polar representation of Ξ̃

It is convenient to use a polar representation of the spectrum:

Ξ̃ = Ξ̃0(k) +
∞∑
n=1

Ξ̃2n(k) cos 2nφ; (4.95)

above p = k cosφ and q = k sinφ. The anisotropic ring forcing in (4.12) has this

form. Because of the exchange symmetry (4.11), only even terms appear within

the sum on the right of (4.95). And because of the assumed reflexion symmetry

in (4.15) there are no sin 2nφ terms in (4.95).

4.B.2 The Reynolds stress

In wavenumber space, the Reynolds stress in (4.40) is

u′v′ = −
∫∫

pq Z̃(p, q)

(p2 + q2)2

dpdq

(2π)2
. (4.96)

Combining (4.93) and (4.96) we obtain

γu′v′ = ε− µ
∫∫

J1(p, q) Ξ̃(p, q)
dpdq

(2π)2
, (4.97)

where the kernel is

J1(p, q)
def
=

∫ ∞
0

e−2µt

p2 + (q − pγt)2
dt . (4.98)
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The three terms in (4.97) correspond to the three terms in the energy power integral

(4.26).

Substituting the Fourier series expansion of Ξ̃(p, q) in (4.95) into (4.97),

and performing the φ-integrals using (4.107) below, one finds

u′v′ =
µ

γ2

∞∑
n=1

(−1)n+1T2n

∫ ∞
0

Ξ̃2n(k)

2πk
dk . (4.99)

The coefficients in (4.99) are

T2n =

∫ ∞
0

e−mτ/2
[

τ√
τ 2 + 4

]n
Tn

(
τ√
τ 2 + 4

)
dτ , (4.100)

where m
def
= 4µ/γ and Tn is the Chebyshev polynomial of order n.

When the forcing Ξ̃ is specialized to the anisotropic ring spectrum in (4.20),

only the n = 1 term in (4.99) is non-zero, and the k-integral is trivial. The

expression for u′v′ in (4.41) is obtained from (4.100) with n = 1.

Notice that the isotropic part of the spectrum i.e., Ξ̃0(k) in (4.95), does not

contribute to the Reynolds stresses in (4.99). This recapitulates the result that

isotropic forcing of a Couette flow does not produce Reynolds stresses [Farrell and

Ioannou, 1993b; Srinivasan and Young , 2012].

4.B.3 Anisotropy

We first compute v′2 starting from

v′2 =

∫∫
p2 Z̃(p, q)

(p2 + q2)2

dpdq

(2π)2
. (4.101)

Combining (4.93) and (4.101), we have

v′2 =

∫∫
J2(p, q) Ξ̃(p, q)

dpdq

(2π)2
, (4.102)

where the kernel is,

J2(p, q)
def
=

∫ ∞
0

p2e−2µt

[p2 + (q − pγt)2]2
dt . (4.103)
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Owing to the complexity of the kernel J2(p, q), we compute v′2 only for the special

case of the anisotropic ring spectrum in (4.20). On combining with (4.102) and

evaluating the angular integral as a special case of (4.108) gives

v′2 =
ε

2µ

[
1 + 2αc

∫ ∞
0

e−τB

(
γτ

2µ

)
dτ

]
. (4.104)

where the function B is defined in (4.111). Using v′2− u′2 = 2v′2− (u′2 + v′2), and

the expression for the eddy kinetic energy in (4.48), we obtain v′2 − u′2 in (4.53).

4.B.4 Two angular integrals

Although the Fourier integral

An(t)
def
=

∮
e2inφ

cos2 φ+ (sinφ− t cosφ)2

dφ

2π
(4.105)

defeats Mathematica, An(t) can be evaluated using the method of residues:

An(t) =

[
−t(t− 2i)

t2 + 4

]n
, (n = 0, 1, 2, · · · ) (4.106)

If n ≥ 1, real and imaginary parts of (4.106) are separated as

An(t) = (−1)n

(
t√
t2 + 4

)n[
Tn

(
t√
t2 + 4

)

− 2i√
t2 + 4

Un−1

(
t√
t2 + 4

)]
, (4.107)

where Tn is the Chebyshev polynomial of order n and Un−1 is the modified Cheby-

shev polynomial.

An integral required for the evaluation of v′2 is

Bn(t)
def
=

∮
cos2 φ e2inφ

[cos2 φ+ (sinφ− t cosφ)2]2
dφ

2π
. (4.108)

The method of residues gives

B0(t) =
1

2
, (4.109)

and

Bn(t) = −
[
−t(t− 2i)

t2 + 4

]n [
1

2
+

n

t(t+ 2i)

]
, (4.110)
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where n = 1, 2, · · · Although (4.110) can be separated into real and imaginary

parts along the lines of (4.107), the resulting expression is long and is not stated

here. Instead, for the special case of n = 1, we have

B(t)
def
= <B1(t) =

8

(t2 + 4)2
− t2

4(t2 + 4)
− 1

4
. (4.111)

4.C Properties of F1 and F2

The functions F1 in (4.42) and F2 in (4.50) can be written compactly in

terms of the exponential integral

E(z)
def
=

∫ ∞
z

e−u

u
du , (4.112)

and the parameter m
def
= 4µ/γ, as

F1 = m+m2=eimE(im) , (4.113)

F2 = m2<eimE(im) (4.114)

Standard properties of the exponential integral can then be used to deduce the

dependence of u′v′ on the non-dimensional shear γ/µ in various limits.

4.D Details of the solution for κe

It is convenient to use the tracer-vorticity correlation function

H
def
= ζ1c2 = ∇2P . (4.115)

In terms of H, the Fourier transform of (4.54) is

−γpH̃q + (iω + 2µ) H̃ = i
βc
β
ωZ̃ , (4.116)

where

ω(p, q)
def
= − βp

p2 + q2
(4.117)

is the Rossby wave frequency. Using the method of characteristics, the solution of

(4.116) is

H̃(p, q) = i
βc
β

∫ ∞
0

Z̃(p, q̂)ω(p, q̂)e−2µt−iη(p,q,t) dt , (4.118)
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where q̂
def
= q + pγt and

η(p, q, t)
def
=

∫ t

0

ω(p, q + pγt′) dt′ . (4.119)

Noting that ω(p, q̂) = ∂tη, one can integrate by parts in (4.118) and obtain a

simpler expression for H̃:

H̃(p, q) =
βc
β

[
Z̃(p, q)−

∫ ∞
0

e−2µt−iη Ξ̃(p, q̂) dt

]
. (4.120)

To calculate the eddy diffusivity in (4.125) below one needs the integral

of H̃ in (4.120) over the wavenumbers p and q. The ensuing triple integral is

disentangled by changing variables in the wavenumber integrals from (p, q) to p̂ = p

and q̂ = q + pγt. One finds∫∫
H̃(p, q)

dpdq

(2π)2
=
βc
β

[
ζ ′2 −

∫∫
K̃(p, q) Ξ̃(p, q)

dpdq

(2π)2

]
, (4.121)

where K̃(p, q) = K̃r(p, q) + iK̃i(p, q) is the kernel

K̃(p, q)
def
=

∫ ∞
0

e−2µt−iχ(p,q,t) dt , (4.122)

with

χ(p, q, t)
def
=

∫ t

0

ω(p, q − pγt′) dt′ . (4.123)

The phase χ is evaluated explicitly in (4.59). The kernel in (4.122) has the sym-

metry

K̃(p, q) = K̃∗(−p,−q) , (4.124)

which shows that K̃ is the Fourier transform of a real function.

Our main goal is to calculate the tracer eddy diffusivity κe in (4.4). Using

the power integral (4.29) this is

κe =
2µ

ββc

∫∫
H̃r(p, q)

dpdq

(2π)2
, (4.125)

where H̃r is the real part of H̃. Taking the real part of (4.121) we obtain from

(4.125)

κe =
2µζ ′2

β2
− 2µ

β2

∫∫
K̃r(p, q)Ξ̃(p, q)

dpdq

(2π)2
. (4.126)

Using

ζ ′2 =

∫∫
Ξ̃(p, q)

2µ

dpdq

(2π)2
(4.127)

the result in (4.126) is rewritten in (4.57).
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4.E Tracer diffusivity in the limit γ/µ→∞

Using the exchange symmetry we can perform the p and q integrals in (4.57)

over the right half plane p > 0, and then multiply by two. In polar coordinates,

we therefore limit attention to −π/2 < φ < π/2, so that the arctan(q/p) = φ. As

γ/µ → ∞ and γ̃ � β̃, the kernel M̃ in (4.58) becomes increasingly concentrated

close to φ = π/2. Indeed, in the distinguished limit γ/µ→∞, with

t∗
def
=

1

γ
(
π
2
− φ
) (4.128)

fixed and order unity, the phase function in (4.59) simplifies to

χ ≈ −βt∗
k

(π
2

+ arctan γ(t− t∗)
)
. (4.129)

Moreover, as γ becomes large, the arctangent above approaches a discontinuous

step function with a jump at t = t∗. In this limit the function cosχ(t) in (4.58) is

constant on either side of the jump at t∗. This observations enables one to easily

perform the integral in (4.59) with the result

M̃(k, φ) ≈ e−2µt∗

[
1− cos

(
πβt∗
k

)]
. (4.130)

The errors are probably O(γ−1).

Using the anisotropic ring forcing in (4.19), we have therefore

κe ≈
2k2

fε

πβ2

∫ π/2

−π/2
M̃(kf , φ) (1 + αc cos 2φ) dφ . (4.131)

The main contribution comes from the neighborhood of φ = π/2, and after some

approximations and transformations

κe ≈ (1− αc)
2k2

fε

πβ2

∫ ∞
0

e−2µv/γ

[
1− cos

(
πβv

kfγ

)]
dv

v2
. (4.132)

The integral above can be evaluated exactly:∫ ∞
0

e−nx (1− cosmx)
dx

x2

=
m

2

[
π − 2 arctan

n

m
− n

m
ln

(
1 +

m2

n2

)]
(4.133)
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The result for κe is (4.69).

Chapter 4 has been accepted for publication in the Journal of Atmospheric

Sciences. The dissertation author was the primary investigator and author of this

material. W.R. Young directed and supervised this research.
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