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Many insects can detect carbon dioxide (CO2) plumes using a conserved
receptor made up of members of the gustatory receptor (Gr) family Gr1,
Gr2 and Gr3. Mosquitoes are attracted to host animals for blood meals
using plumes of CO2 in the exhaled breath using the receptor expressed in
the A neuron of the capitate peg sensilla type on the maxillary palps. The
receptor is known to also detect several other classes of odorants, including
ones emitted from human skin. Here, we discover that a common skin odor-
ant, butyric acid, can cause a phasic activation followed by an unusually
prolonged tonic activity after the stimulus is over in the CO2 neurons of mos-
quitoes. The effect is conserved in both Aedes aegypti and Anopheles gambiae
mosquitoes. This raises a question about its role in a mosquito’s preference
for the skin odour of different individuals. Butyric acid belongs to a small
number of odorants known to cause the prolonged activation of the CO2

receptor. A chemical informatic analysis identifies a specific set of physico-
chemical features that can be used in a machine learning predictive model
for the prolonged activators. Interestingly, this set is different from
physico-chemical features selected for activators or inhibitors, indicating
that each has a distinct structural basis. The structural understanding
opens up an opportunity to find novel ligands to manipulate the CO2

receptor and mosquito behaviour.
1. Introduction
Carbon dioxide (CO2) serves as a long-distance orientation and host-seeking
cue for most mosquito species. Human beings generate CO2 odour plumes
through exhaled breath, causing fluctuation in CO2 between background
(0.04%) and expired levels (4%). This intermittency in CO2 concentration is
thought to increase host-seeking behaviour in mosquitoes, causing them to
fly upwind toward the odour source [1,2]. Once the mosquito has followed
the CO2 plume toward its source, it is thought that the insect will then detect
other sensory cues such as skin odours and heat [3]. Not surprisingly, mosquito
species, such as the ornithophilic Culex quinquefasciatus and the anthropophilic
Anopheles gambiae and Aedes aegypti, are differentially attracted to host odours
such as those from avian and human sources, respectively.

However, CO2 is an emanation common to all hosts as it signifies the pres-
ence of a vertebrate’s exhaled air. When presented in an optimal fashion, CO2

can readily attract mosquitoes in the field and in the laboratory [4–7], as well as
increase the sensitivity of mosquitoes to other human odours [2]. Since CO2 is
highly influential in host-seeking behaviour of many mosquito species, the
majority of mosquito traps employ CO2 as the primary lure. The maxillary
palp is the CO2 detecting organ, where of the three neurons housed in the
club-shaped capitate peg (cp) sensilla, the cpA neuron expresses the CO2 recep-
tor Gr1, Gr2 and Gr3 (also called Gr22, Gr23 and Gr24) which belong to the
gustatory receptor family [8,9]. These proteins are closely related to the CO2

receptor of Drosophila melanogaster, Gr21a and Gr63a which are required for
response to CO2 [10,11].
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Figure 1. Butyric acid is an ultra-prolonged activator of the CO2-sensitive neuron in A. gambiae and A. aegypti. Long-term traces from the cpA neuron of (a) A. gambiae and
(b) A. aegypti. A 3 s stimulus paraffin oil (PO) (i) or butyric acid (ii) is given followed by 1 s pulses of 0.15% CO2 every 30 s. Odour diluted 10

−1.
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Apart from CO2, this receptor is also activated and inhib-
ited by an array of volatile odorants that can be grouped into
multiple structural categories [12–16]. Each of the proteins in
the receptor has a 7-transmembrane structure and while Gr2
and Gr3 constitute the core receptor, Gr1 increases sensitivity
to CO2 and to inhibitory odorants [17]. It has been previously
shown that inhibition of the CO2 response by volatile odor-
ants corresponds to complete loss of innate CO2 avoidance
behaviour in Drosophila [13]. Given the reversal of behaviour
to CO2 in the presence of the inhibitory odorants, and that
mosquito CO2 receptors have high amino acid identity with
the Drosophila ortholog Gr63a and Gr21a [8,10,18,19], we
tested and identified similar odorants that could have a
similar effect on CO2-mediated host-seeking behaviour in
mosquitoes [12–16]. The identified volatile odorants
included: odours that inhibit the CO2-sensitive neuron and
are candidates for use in disruption of host-seeking behav-
iour, odours that activate the neuron and can be a
substitute for CO2 as a lure in trapping devices and odours
that cause strong and prolonged activation of the CO2

neuron which blocks the ability to detect changes in CO2

concentration and therefore offers a novel approach for dis-
ruption of host-seeking. These compounds could be used as
tools for mosquito control as they modify peripheral olfactory
responses to one of the most important host-seeking cues.
These odour-based strategies once developed could poten-
tially lower the incidence of human–mosquito contact, and
hence lower the spread of vector-borne diseases.

2. Results
In the past, we have used single-sensillum electrophysiology
to screen a large number of odorants for their effect on the
activity of the CO2-sensitive neuron in the peg sensilla of
the maxillary palp of female A. gambiae, A. aegypti, and
C. quinquefasciatus. The cpA neuronal response to CO2 is
nearly identical in all three species and it can be unambigu-
ously identified since it has a much larger spike amplitude
than the other two neurons in the same sensillum. When
looking for activator and inhibitory odorants, we also found
that the responses showed significant conservation [12–16].
One of the interesting questions has been how volatile com-
ponents of malodorous body odour might be interacting
with the mosquito CO2 receptor. Many of the malodorous
compounds are due to bacterial breakdown of lipids, such
as butyric acid. When performing the electrophysiological
recording odour screens, we observed that butyric acid
caused an initial phasic activation followed by inhibition of
the CO2 response (figure 1). However, following this brief
phasic excitation and inhibition, the odorant induced a
‘prolonged’ tonic activation of the cpA neuron.

In previous studies, a prolonged tonic activity has been
shown to mask the activation caused by subsequent
exposures to CO2 such as with 2,3-butanedione, (E)-2-methyl-
but-2-enal, 3-methyl-2-butenal and 3-methylbutanal [12,15].
This type of effect has also been observed in other odorant
receptor neurons with odorants like methyl 2-propenoate
and methyl propionate [20]. To investigate if prolonged acti-
vation by butyric acid could also cause a reduced response to
subsequent CO2, A. gambiae and A. aegypti mosquitoes were
exposed to a 3 s application of the odorant followed by
repeated 1 s stimulus of 0.15% CO2 applied every 30 s for a
period of approximately 5 min. When comparing spike rate
in both mosquito species, there is an increase in baseline
activity of the cpA neuron (figures 1 and 2). However, the
brief exposure to butyric acid significantly reduced CO2
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Figure 2. Butyric acid is an ultra-prolonged activator of the CO2-sensitive neuron in A. gambiae and A. aegypti. (a) Mean baseline activity of the cpA neuron counted
every 30 s interval after pre-exposure to a 3 s stimulus of butyric acid (10−1) or paraffin oil (PO) solvent. (b) Mean change in frequency of response of the cpA
neuron to stimulus of 1 s 0.15% CO2 applied approximately every 30 s, following a 3 s pre-exposure to butyric acid (10

−1) or paraffin oil (PO) solvent. n = 5, error
bars = s.e.m.
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response for as long as 5.5 min in A. gambiae (figure 2ii), while
the CO2 response in A. aegypti was completely abolished
(figure 2i). These results suggest that the prolonged tonic
response can substantially impair the ability to sense other
ligands like CO2 for minutes.

To investigate the structural basis of the different activities,
we first compared simple enriched substructures or cores
among activators, prolonged activators and inhibitors of the
cpA neuron (figure 3a). Interestingly, the correspondence
between enriched substructures and activity was unclear. We
next computed additional physico-chemical features, incorpor-
ating information about three-dimensional (3D) geometries,
the distribution of charge across a molecule and other
atomic-level properties describing bonds and bonding poten-
tial. As it is not feasible to manually search numerous
features, we applied machine learning to identify sets of fea-
tures that were particularly different among prolonged
activators (figure 3b) and all other cpA activities. This approach
involved iteratively training a support vector machine (SVM)
on a portion of data, followed by predicting the remaining
‘left out’ portion (Methods). Consistent with the overlapping
enriched substructures (figure 3a,b), the features that were pre-
dictive of prolonged activators often described 3D geometries
(figure 3c). We next tested whether SVMs trained on these
important features could successfully discriminate prolonged
activators from the other cpA activities.

Receiver operating characteristic (ROC) analysis is a
method for evaluating successful discrimination (see
Methods). The machine learning model (SVM) predicts chemi-
cals that were not in the training data. Predictions for these new
chemicals are then compared to the ground truth. Success is
defined by high positive (sensitivity) and low false-positive
(1 − specificity) rates. Subsequently, an ROC plot shows the
relationship between these two rates. The best possible
performance is an area under the curve (AUC) of 1.0
(Methods). When we evaluated the model using this method,
the high AUC suggested prolonged activators are physico-
chemically distinct (figure 3d ) (avg AUC= 0.958, shuffled
activities, avg AUC= 0.592). But this is particularly true
when considering physico-chemical properties (e.g. 3D geome-
tries) other than enriched two-dimensional (2D) substructures
or motifs, as indicated by the clear overlap in figure 3a.

3. Discussion
Interestingly, butyric acid is a component of human sweat
[21], which has been shown to activate as well as inhibit sev-
eral sensilla tricodae in A. gambiae [22,23]. Although human
sweat is highly attractive to anthropophilic mosquitoes
[24,25], it is not clear what role carboxylic acids play in the
attractiveness of this host odour blend. For example, there
are several conflicting studies as to the attractiveness of car-
boxylic acids to mosquitoes where in some cases carboxylic
acids are actually unattractive [24,26,27]. The varied attrac-
tiveness to human skin odours could be attributed to
intraspecific preferences for certain human hosts as their
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emanations differ from individual to individual [3,4,28–30].
No study, to our knowledge, has looked at the attractiveness
of carboxylic acids (or human odours) as it pertains to acti-
vation or inhibition of neurons in the maxillary palp. It is
unclear from these and other studies if behavioural responses
observed result from a direct repellent effect or another mech-
anism whereby the insects are failing to respond to normally
attractive cues such as CO2. Perhaps levels of butyric acid
from person to person can contribute to host preference in
the mosquito as a means of CO2 response modification.
Future behavioural assays will be required to test this
hypothesis.
Although the substructure that was enriched among the
prolonged activators differed subtly from cpA activators
and inhibitors, more rigorous 3D analyses indicated the pres-
ence of distinct physico-chemical attributes for each. When
incorporating these features into a machine learning model,
we observed high success rates for classifying prolonged acti-
vators from other cpA activities. The degree of success
implies cpA prolonged activation is indeed related to a set
of physico-chemical attributes, and machine learning could
therefore play an important role in identifying new ligands.
The prolonged activator represents an interesting class of
ligand, though there are currently few examples. Machine
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5
learning pipelines could predict new prolonged activators
and help resolve even finer distinctions from cpA activators
and inhibitors. This would subsequently have long-term
implications for mosquito vector control strategies.
ietypublishing.org/journal/rsfs
4. Methods
4.1. Mosquitoes
A. aegypti wild-type (Orlando strain) and A. gambiae (recently
renamed Anopheles coluzzii) were maintained using standard pro-
tocols in an insectary at approximately 27°C, approximately
70–80% humidity on a 14 L : 10 D h photoperiod.
Interface
Focus

11:20200043
4.2. Electrophysiology
Extracellular single-unit recordings were performed as described
previously [13] with few modifications. Chemicals were of the
highest purity available, typically greater than 99% (Sigma-
Aldrich). Odorants were diluted in paraffin oil at the indicated
concentration. Unless indicated 50 l of diluted odorant is applied
per cartridge, and each cartridge used for three stimuli. A con-
trolled volume of air at 5 ml s−1 was puffed through the odour
cartridge containing vapours and was delivered into a constant
humidified airstream of 10 ml s−1 that flowed over the fly
antenna. The odorant vapour present in the cartridge was thus
diluted approximately threefold before being passed over the
fly (each delivery cartridge was used no more than three times;
10−1 stimulus = approximately 0.43 µg equivalent from cartridge/
application; 10−2 stimulus = approximately 0.043 µg equivalent
from cartridge/application). CO2 stimulus was pulsed through a
separate delivery system that delivered controlled pulses using a
PSM 8000 microinjector (variable 2.5 – 6.5 ml s−1) into the same
humidified airstream, from either a 1% or 5% tank of CO2

(Airgas). The baseline constant humidified airstream (10 ml s−1)
was generated from a purified air tank (Airgas) and mixed with
a constant controlled volume (5 ml s−1) of filtered room air
(approx. 0.035% CO2). For delivery of binary mixtures of CO2

with another odorant, we ensured a steady concentration of CO2

to the fly preparation as described in detail in [13]. Unless men-
tioned, responses were quantified by subtraction of baseline
activity immediately preceding stimulus application from activity
during the stimulus. For each odorant that had a long-term effect
on CO2 response, each recording was obtained from a naive insect.
4.3. Chemical informatics
Chemicals were analysed for maximum common substructures
using RDKit (Python) [31]. The algorithm performs an exhaus-
tive search for enriched structural patterns over a set of
chemicals. For larger, more diverse sets of chemicals specifying
a threshold value can help the algorithm converge on more sub-
stantive structural patterns. Here, we set the threshold at 0.5,
which ensures that half of the chemical set should contain the
pattern. This algorithm was run separately for activators, inhibi-
tors and prolonged activators of cpA. The distinction between
the three (activators, inhibitors and prolonged activators) was
based on the spikes per second calculation, where inhibitors
reduce activity below the baseline firing rate and activators
increase activity above this rate; the prolonged activators
significantly above.

Chemical structures were converted into 3D optimized geo-
metries using RDKit (Python) [31]. The 3D chemical information
was then supplied to alvaDesc, which computes approximately
5300 physico-chemical features. We later removed the features
with low variance, high correlations (r = 0.85) and imputed
missing values using the median.
4.4. Selecting important chemical features
The reduced feature set was then run through the recursive fea-
ture elimination algorithm over 300 train/test partitions (e.g. 10-
fold cross-validation, repeated 30 times). Here, the algorithm
involves iteratively fitting a support vector machine (radial
basis function kernel) with different chemical feature sets on
the training portion, predicting what remains. Subsequently,
the average performance across these different feature sets pro-
vides an estimate of the number of features that are needed for
successful predictions. This analysis suggested between 20 and
50 features. The importance of each feature is from the AUC
achieved independently. A feature rank is assigned at the end
of the cross-validation iterations.

Machine learning algorithms for feature selection are from
the caret [32] and kernlab [33] packages in the R programming
language and similar to the way it has been used for ligand
prediction of human odorant neurons [34].

4.5. Machine learning
After selecting the physico-chemical features that are important
for the task, models are trained using these features, and predic-
tions are made for chemicals that are not in the training set to
evaluate whether learning has indeed occurred. Here, three
SVM models are fit, sampling different physico-chemical fea-
tures. The individual predictions (probability scores) are then
averaged. Each SVM learns a decision boundary from the phy-
sico-chemical features at training. To validate, new chemicals
are repeatedly projected into this space. The location of this
new chemical relative to the decision boundary provides the pre-
diction, which is compared to an observed value or label (e.g.
ground truth).

In machine learning terminology, iteratively training models
and predicting new chemicals is referred to as cross-validation.
Dividing the data into 10 different training and testing sets
refers to 10-fold cross-validation. Here, we repeated this process
five times (e.g. repeated 10-fold cross-validation). By using more
than one model, it is possible to diversify the training, gaining
more coverage of the data, getting better estimates of the error,
and ultimately, in most cases, producing more generalizable
predictions. Implementations of the machine learning algorithms
are from the caret [32] and kernlab [33] packages in the R
programming language

4.6. Support vector machine
The SVM algorithm uses kernels to facilitate the learning of
complex, nonlinear decision boundaries. The kernel is a function
that projects the chemical data into a new space where non-
obvious boundaries among chemicals of different classes are
increasingly identifiable. The SVM implemented here used the
Gaussian or radial basis function kernel. This kernel is adjusted
during the training phase through the sigma parameter, which
determines the influence of chemicals or data points that are
far from the decision boundary. This affects the prediction of
new chemicals and therefore the proper value is set by removing
and predicting a small subset of chemicals while training.
An additional parameter, C, defines the cost associated with
incorrect prediction performance. As the cost increases, the
boundary adapts to improve performance. However, setting the
cost value too high produces irregular boundaries that fail to
generalize to new chemicals or data points. The proper cost
value is therefore set alongside sigma using the approach
discussed above.

4.7. Receiver operating characteristic analysis
ROC analysis graphically represents classification success
and/or failure by comparing the true positive (y-axis: sensitivity)
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and false-positive rates (x-axis: 1-specificitiy). In this study, it is
analysing the success or failure of a machine learning model to
classify ‘prolonged activators’ versus other activities on the
cpA neuron. The trained machine learning model takes the
chemical features of a new chemical (e.g. not in the training
data) as input. Then it assigns a probability score to this new
chemical based on its similarity to the prolonged activators
and other activities on cpA from the training data. Subsequently,
the ROC analysis defines cutoffs or thresholds for these prob-
ability scores. For example, if the score is above 0.50, then these
chemicals are labelled as prolonged activators or simply posi-
tive/active cases. The labels are compared to the observed cpA
activity, yielding a tally of true positives and false positives
that are converted into rates. In the ROC plot, this information
is a single point (x, y). Continuing the above process for multiple
cutoffs results in a curve. The success is evaluated as the area
under the curve (AUC = 1.0; perfect success).

Typically, the curve is compared to a theoretical random clas-
sifier (AUC = 0.50), and this is shown as a diagonal that bisects
the plot area. Because chance level performance depends on
the classification problem, it may be higher or lower than
AUC = 0.50. Some classification problems are, for instance,
trivial, particularly if there are few positive and negative
examples. The chance performance could match the performance
of the actual machine learning model. To address this, we trained
the models using shuffled data, while keeping other parameters
constant. This showed that the success of the actual model(s) was
not attributable to chance.
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