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Abstract

Linker histones are essential components of chromatin, but the distributions and functions of many during cellular
differentiation are not well understood. Here, we show that H1.5 binds to genic and intergenic regions, forming blocks of
enrichment, in differentiated human cells from all three embryonic germ layers but not in embryonic stem cells. In
differentiated cells, H1.5, but not H1.3, binds preferentially to genes that encode membrane and membrane-related
proteins. Strikingly, 37% of H1.5 target genes belong to gene family clusters, groups of homologous genes that are located
in proximity to each other on chromosomes. H1.5 binding is associated with gene repression and is required for SIRT1
binding, H3K9me2 enrichment, and chromatin compaction. Depletion of H1.5 results in loss of SIRT1 and H3K9me2,
increased chromatin accessibility, deregulation of gene expression, and decreased cell growth. Our data reveal for the first
time a specific and novel function for linker histone subtype H1.5 in maintenance of condensed chromatin at defined gene
families in differentiated human cells.
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Introduction

In humans, there are eleven subtypes of linker histones that

stabilize higher order chromatin structure and are generally

associated with repressed genes [1–5]. Depletion of mouse H1c,

H1d and H1e leads to less compact packaging of chromatin,

changes in core histone modifications, and reduced DNA

methylation at certain loci [6]. Binding of H1 and poly (ADP-

ribose) polymerase-1 at 758 RNA polymerase II (Pol II)-

transcribed promoters is mutually exclusive at actively tran-

scribed genes [7]. In human cancer, linker histones exhibit

altered expression with at least one linker histone gene, namely

H1.5, being mutated in colon cancer [8]. Linker histones are,

therefore, important participants in normal biological as well as

disease processes. However, while some functional differences

have been reported for certain linker histones [9], our knowledge

of global distribution or function of each linker histone remains

rudimentary.

Gene families are groups of homologous genes that are likely to

have highly similar functions. While some gene family members

are dispersed throughout the genome (e.g., solute carrier protein

genes or SLCs), others are located in close physical proximity to

each other, forming clusters of functionally related genes on

human chromosomes. These gene family clusters include the

olfactory receptor (OR), late cornified envelope (LCE), histone

(HIST) and homeobox (HOX) genes. Current data indicate that

different gene families have distinct chromatin features. For

instance, the chromatin regions of OR and certain other gene

family clusters lack histone modifications such as histone H3

lysine 4 methylation (H3K4me) and H3K27me that are found in

the HOX clusters [10,11]. Considering the diversity of gene

families in the human genome, it is not expected a priori that they

would share similar chromatin characteristics or regulatory

mechanisms.

Here we show for the first time that human linker histone H1.5

(HIST1H1B) binds to families of genes that are enriched for those

encoding membrane or membrane-related proteins in terminally

differentiated cell types representing all three embryonic germ

layers. Little or no H1.5 enrichment was detected at the majority

of the gene families in undifferentiated human embryonic stem

cells (hESCs). H1.5 interacts with SIRT1 histone deacetylase

which, along with H3K9me2, a repressive histone modification,

were also enriched at H1.5 targets. Furthermore, H1.5 bound

regions were mutually exclusive of DNase I sensitive regions. H1.5

depletion in fibroblasts resulted in disturbed SIRT1 and

H3K9me2 distribution, and decreased chromatin compaction

specifically at target genes. H1.5 knockdown cells showed

extensive global deregulation of gene expression, with de-

repression of certain H1.5 target genes. Together, our findings

reveal an unexpected but widespread function of histone H1.5 in

chromatin compaction and gene expression in differentiated

human cells.
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Results

Histone H1.5 is differentially distributed in hESCs and
fibroblasts

To determine whether the genomic distribution of H1.5 is

different in hESCs versus fibroblasts, we used chromatin

immunoprecipitation combined with sequencing (ChIP-seq) of

linker histone H1.5 in H1 hESCs and human lung IMR90

fibroblasts. We defined a significant peak as enrichment of ChIP

over input DNA within a 100-bp window at a Poisson p-

value,0.001. We detected 8115 and 61349 significant peaks of

H1.5 in H1 hESCs and IMR90, respectively, with only 171 peaks

shared between the two cell lines (Figure 1A). In H1 hESCs, the

peaks of H1.5 were distributed between genic regions (63 kb of

genes) and distal intergenic regions which are at least 3 kb away

from any gene. In IMR90 cells, the majority of H1.5 peaks were in

distal intergenic regions with the rest within genic regions

(Figure 1B).

To understand the genome-wide distribution of H1.5, we

calculated H1.5 peak density (number of peaks per kb of genomic

DNA) in genic regions, which we defined as 23 kb from

annotated transcription start sites (TSS) to +3 kb from annotated

transcriptional stop sites (TTS), as well as intergenic regions.

Regions with at least one significant peak (see Text S1) per kb were

defined as H1.5 target loci. Genes that were bound by H1.5 in

their genic regions or were located upstream or downstream of

intergenic regions bound by H1.5 were defined as H1.5 target

genes. In IMR90 fibroblasts, we detected 4535 H1.5 target genes

with 1204 genes directly bound by H1.5, 2294 genes next to H1.5

target intergenic regions, and 1037 genes bound by H1.5 in both

genic and neighbouring intergenic regions (Figure S1A). In

hESCs, only 189 H1.5 target genes were detected (Figure 1C).

Gene ontology analysis showed no significant enrichment for

hESCs but enrichment of H1.5 target genes in membrane

associated receptor and signalling genes in fibroblasts (Table 1).

Among the 4535 genes bound by H1.5 in IMR90, we noticed that

some of them belonged to gene families, such as olfactory receptor

family and other G-protein coupled receptors, and solute carrier

family. This prompted us to systematically determine the

enrichment of H1.5 target genes within the HGNC (HUGO

Gene Nomenclature Committee) gene family database. Of the

4535 H1.5 target genes, 1659 (37%) genes were members of gene

families, whereas all gene family members only accounted for 28%

of total genes in human genome (binomial p-value = 4.53E-36),

indicating a significant enrichment of gene families within H1.5

targets (Figure 1D). The genes from the same family can be either

scattered throughout the genome or clustered in close physical

proximity. When considering at least three genes from the same

family that are located side by side as a ‘cluster’, ,23% of genes

from HGNC gene families form clusters throughout the genome.

Interestingly, the percentage of clustered genes increased to 37%

within H1.5 target genes (Figure 1E; binomial p-value = 2.29E-40).

In addition, the level of H1.5 binding at clustered genes is

significantly higher than that in non-clustered genes (Figure 1F).

Figure 1G shows an example of H1.5 binding to a block of

,1.5 Mbp on chromosome 1 covering the S100 calcium binding

protein A (S100A), LCE, and small proline-rich (SPRR) gene

family clusters in IMR90 cells, but not in H1 hESCs. This H1.5

binding block also includes fifteen genes that do not belong to a

gene family but are located in between the three gene family

clusters. Interestingly, five of these fifteen genes are involved in

‘‘keratinocytes differentiation’’ (binomial p-value = 2.2E-06) and

two are peptidoglycan recognition proteins, suggesting functional

relatedness to the nearby gene families.

Blocks of H1.5 enrichment were also found in intergenic regions in

IMR90 cells but not in hESCs (Figure 1H). To determine if this block

pattern is a genome-wide feature of H1.5 binding in fibroblasts, we

calculated the average significance of H1.5 peaks within 5 kb

windows and plotted the number of windows as a function of average

enrichment p-value (Figure 1I). Compared to a random set of peaks

(grey line) or the H1.5 peaks in hESCs (blue line), in IMR90 cells

there were many windows with no significant enrichment of H1.5 but

also many more windows with highly significant enrichment (red

line). This distribution indicates that H1.5 forms blocks of enrichment

over both genic and intergenic regions in IMR90 cells but not in

hESCs. Remarkably, H1.5 genic blocks of enrichment occurs

preferentially at a subset of gene families.

To confirm the H1.5 enrichment patterns in IMR90 fibroblasts,

we used an Agilent promoter microarray containing probes for

,17,000 gene promoters, tiling an 8-kb region from 25.5 to

+2.5 kb of the annotated transcriptional start sites (TSS) which we

divided computationally into 16 fragments of 500 bp each (Figure

S1B). We first verified the specificity of the H1.5 ChIP signal by

ChIP-chip analysis of H1.5 after knockdown (KD) of H1.5 in

IMR90 cells, which showed loss of H1.5 signal and no preferential

enrichment compared to the control KD (Figure S1C). Consistent

with ChIP-seq data, ChIP-chip of H1.5 showed significantly more

enrichment in fibroblasts (Figure 2A; gene promoters are ranked

from highest to lowest H1.5 enrichment in fibroblasts; all other

ChIP-chip heat maps are in the same order). Gene ontology

analysis of fibroblast data revealed that 59% of genes bound by

H1.5 on the array were members of HGNC gene families

(binomial p-value = 1.4E-08). When we sorted the genes based on

their locations on each chromosome, we found that H1.5 was

enriched in blocks of consecutive promoters (Figure S1D). For

instance, on chromosome 1, the promoter blocks comprised

families of highly homologous genes including LCE, SPRR, Fc

receptor-like (FCRL) and the OR genes. Similarly, the promoter

blocks on chromosome 11 corresponded to several OR gene

clusters. This binding pattern was specific to H1.5 as H1.3

(HIST1H1D) did not show preferential binding to the gene

families in IMR90 cells (Figure S1D). ChIP-quantitative PCR

Author Summary

In human cells, there are eleven subtypes of linker
histones, five (H1.1–H1.5) of which are ubiquitously
expressed in somatic cells. Somatic linker histones have
been thought of as a group of similar proteins with
redundant functions with few known differences among
them. Our work uncovers for the first time a novel and
unique role for the linker histone H1.5 (HIST1H1B). We
found that H1.5, but not H1.3 (HIST1H1D), forms blocks of
chromatin binding in genic and intergenic regions in
differentiated human cells from all germ layers but not in
embryonic stem cells. In genic regions, H1.5 binds to a
large fraction of gene families that encode membrane
associated proteins and are transcriptionally silent in a
tissue-specific manner. H1.5 binding is associated with
other repressive chromatin elements such as SIRT1 binding
and H3K9me2 enrichment, and it negatively correlates
with Pol II distribution. SIRT1 and H3K9me2 binding is
dependent on H1.5, but not vice versa. H1.5 depletion in
fibroblasts leads to increased chromatin accessibility at its
target loci, altered cell cycle, and deregulation of gene
expression. Our findings show that H1.5 has a dynamic
distribution during human cell differentiation and is
required for maintenance of proper gene expression in
differentiated cells.

Genome Distribution of H1.5 in Differentiation
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(qPCR) of selected genes confirmed the preferential binding of

H1.5 to the gene families in IMR90 cells (Figure S2). Moreover,

binding of H1.5 is not related to increased nucleosome density as

histone H3 ChIP-chip did not show significant enrichment at H1.5

target genes in hESCs or fibroblasts (Figure S1E).

H1.5 binding is dependent on cellular differentiation
state

Since hESCs and fibroblasts represent the extremes of cellular

differentiation states, we sought to determine the differentiation

stage at which the binding pattern of H1.5 is established. We

examined H1.5 distribution in two cellular differentiation systems.

First, we specified HSF1 hESCs to neural progenitor cells (NPCs)

and then used standard growth factor withdrawal to drive

differentiation towards neurons and astrocytes [12] (Figure 2B;

see Methods). Interestingly, H1.5 binding was established in

terminally differentiated neural cells with the NPCs showing an

intermediate pattern of H1.5 binding. Second, we obtained

primary keratinocytes from skin biopsies and induced them to

further differentiate in vitro using calcium (Ca2+) which promotes

Figure 1. Histone H1.5 is differentially distributed in fibroblasts and embryonic stem cells. (A) Venn diagram of significant peaks of H1.5
binding in H1 hESCs and IMR90 fibroblasts by ChIP-seq. (B) Pie chart of distribution of H1.5 relative to gene structure in H1 hESCs and IMR90
fibroblasts. (C) Venn diagram of number of H1.5 target genes in H1 hESCs and IMR90 fibroblasts. (D) Enrichment of HGNC gene family members in
H1.5 target genes. Height of bars represents percentage of gene family members in all RefSeq genes (left) or H1.5 target genes (right). (E) Enrichment
of clustered gene family members in H1.5 target genes. Height of bars represents percentage of clustered gene family members in all RefSeq genes
(left) or H1.5 target genes (right). (F) Box plot of H1.5 enrichment levels of non-clustered gene family members (left) and clustered gene family
members (right). (G) H1.5 enrichment block at the LCE/SPRR/S100A gene clusters. Each dot represents 2Log10 of Poisson p-value of ChIPed DNA
versus input DNA in a 100-bp window. Lines represent average values. LCE, SPRR and S100A genes are highlighted in orange, green and pink,
respectively. (H) An H1.5 enrichment block in an intergenic region of chromosome 2. (I) Histogram of average significance of H1.5 enrichment (x-axis)
in 5 kb windows versus the number of windows (y-axis) in H1 hESCs and IMR90 fibroblasts.
doi:10.1371/journal.pgen.1002879.g001

Genome Distribution of H1.5 in Differentiation
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primary keratinocytes to exit cell cycle and form stratified layers in

culture [13]. Like the neural differentiation, H1.5 binding was

more significant in more differentiated, Ca2+-treated keratinocytes

(Figure 2C). Finally, we also examined H1.5 binding pattern in

primary hepatocytes (Figure S3), which are derived from

endoderm, and found similar H1.5 binding pattern (Figure 2D)

as in fibroblasts and neural cells which are derived from mesoderm

and ectoderm, respectively. Altogether, these data indicate that the

H1.5 binding pattern is established progressively as cells acquire a

more differentiated phenotype and occurs in fully differentiated

cells derived from all three embryonic germ layers.

H1.5 binding pattern is tissue specific
Despite the similarity of H1.5 binding patterns in different cell

types, we noticed some degree of tissue specificity (Figure 3). For

instance, LCE and SPRR genes form an ‘‘epidermal gene cluster’’,

which together with the keratin gene cluster (Figure 2E scheme),

are highly expressed in all keratinocytes (with or without Ca2+

treatment) compared to IMR90 fibroblasts (Figure 2E bar charts).

The enrichment of H1.5 specifically at the LCE, SPRR and KRT

gene clusters in keratinocytes is significantly lower than that of

IMR90 fibroblasts (Figure 2E line chart) or other cell types

(Figure 3A, see bleow). These data suggest that the histone H1.5

binding pattern in differentiated cells is tissue specific, with H1.5

being depleted from gene families that are expressed appropriately

in certain cell types.

H1.5 binds to specific gene families
To systematically study H1.5 enrichment in gene families, we

generated a matrix containing enrichment values of H1.5 (as well

as RNA Pol II, SIRT1, and H3K9me2; see below) in 188 HGNC

gene families across all cell types analysed in this study. As shown

in figure 3A, the enrichment values were clustered hierarchically

across cell types/experiments (columns) and gene families (rows).

Interestingly, the main branch point in the columns separated the

differentiated cells with a dynamic pattern of H1.5 enrichment

(Figure 3A, Lanes 7–13) from those with little or no preferential

enrichment of H1.5 (Figure 3A, Lanes 1–6). The gene families

(rows) were grouped into two main sub-clusters. Cluster 1 included

gene families that were bound by H1.5 in at least two of the

differentiated cell lines. Gene ontology analysis of genes in cluster

1 families revealed highly significant enrichment for membrane-

associated proteins and sensory perception (Figure 3A). In

contrast, cluster 2 gene families that were depleted of H1.5 were

significantly enriched for ribosome associated proteins and those

involved in transcription regulation (Figure 3A). By classifying the

2181 genes in cluster 1 gene families based on their molecular

function or biological process [14], we detected 729 genes

(p = 1.17E-256) as signal transducers, 657 of which have receptor

activity (p = 2.71E-264). 696 genes are involved in stimulus

response (p = 6.81E-94) and 912 genes are involved in biological

regulation (p = 1.68E-13), in which 666 genes play roles in cell

surface receptor linked signal transduction (p = 2.96E-222)

(Figure 3B). These data indicate that H1.5 preferentially binds

to a defined subset of membrane and membrane-associated gene

families in differentiated cells.

Binding of H1.5 is associated with repressed genes
To determine whether H1.5 is associated with transcriptional

repression, we examined the global gene expression profile in

IMR90 cells, hepatocytes, HK Ca+ and hESCs. The expression

level of H1.5 target genes were significantly lower than that of a

randomly-selected, similarly-sized group of genes in the three

differentiated cell types but not in hESCs (Figure 4A and Figure

S4A–S4C). To further characterize the association between H1.5

binding and transcription, we sequenced messenger RNAs

(mRNAs) from IMR90 fibroblasts (transfected with non-targeting

siRNAs which will be later used as control for H1.5 knockdown

cells), and compared the expression to H1.5 binding. As shown in

Figure 4B, when we sorted all RefSeq genes by H1.5 enrichment

and divided these genes into 11 groups (2,000 genes per group),

the average gene expression level in each group decreased with

increasing H1.5 binding (r = 20.39). Interestingly, H1.5 binding

level in intergenic regions was also negatively correlated with the

expression of neighbouring genes (r = 20.17 for 59 genes and

r = 20.14 for 39 genes, Figure 4C). Genes that were bound by

H1.5 in their genic and intergenic regions were more significantly

repressed than those that were bound at either region (Figure 1D).

Within the H1.5 target genes, both those belonging to families and

non-families were equally repressed (Figure 4E). In addition, we

also examined Pol II binding which was negatively correlated with

Table 1. Gene ontology of H1.5 target genes in IMR90 fibroblasts.

Biological Process P-Value FDR

GO:0007186 G-protein coupled receptor protein signaling pathway 1.59E-35 2.85E-32

GO:0050877 neurological system process 1.17E-28 2.10E-25

GO:0007600 sensory perception 2.30E-26 4.13E-23

GO:0007166 cell surface receptor linked signal transduction 3.43E-26 6.15E-23

GO:0050890 cognition 5.34E-26 9.58E-23

GO:0006952 defense response 1.11E-08 2.00E-05

GO:0007155 cell adhesion 1.14E-08 2.05E-05

GO:0007267 cell-cell signaling 3.42E-07 6.13E-04

Cellular Component P-Value FDR

GO:0005886 plasma membrane 1.53E-29 2.14E-26

GO:0031224 intrinsic to membrane 2.57E-20 3.58E-17

GO:0016021 integral to membrane 1.91E-18 2.66E-15

GO:0005576 extracellular region 2.37E-14 3.31E-11

doi:10.1371/journal.pgen.1002879.t001

Genome Distribution of H1.5 in Differentiation
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H1.5 (r = 20.19; Figure 4F). Pol II binding at the gene families

also showed an opposite pattern to that of H1.5 (Figure 3A,

compare lanes 4 and 12). Taken together, we conclude that the

binding of linker histone H1.5 is correlated with depletion of Pol II

and repression of target genes in differentiated cells.

SIRT1 and H3K9me2 bind to H1.5 target genes
Vaquero et al. reported previously that human SIRT1 interacts

with linker histone subtype HIST1H1E [15]. Considering the high

amino acid sequence conservation between HIST1H1E and H1.5,

we asked whether H1.5 also interacts with SIRT1, and if so,

whether the genomic distributions of SIRT1 and H1.5 overlap.

Reciprocal co-immunoprecipitation experiments from IMR90 and

hESC nuclear extracts revealed a direct or indirect H1.5-SIRT1

interaction in IMR90 cells, but not in hESCs (Figure S4D).

Consistently, the SIRT1 binding pattern at promoter regions in

fibroblasts was highly similar to that of H1.5 (Figure 4F, r = 0.58).

Furthermore, SIRT1 deacetylates H3K9 which then can serve as

a substrate for methylation. H3K9 methylation has been shown to

be enriched at repressed regions [16]. Thus, we examined

H3K9me2 distribution at promoter regions in fibroblasts which

was also very similar to H1.5 (r = 0.56) and SIRT1 (r = 0.67)

binding (Figure 4F). Like H1.5, H3K9me2 and SIRT1 were also

enriched in gene families involved in sensory perception, and

clustered together with H1.5 enrichment in differentiated cells

(Figure 3A, Lanes 9 and 10). These data suggest that H1.5, SIRT1

and H3K9me2 associate with defined gene sets that are normally

repressed. Analyses of published data on distributions of other

histone modifications including H3K4me1, H3K4me2,

H3K4me3, H3K9me3 and H3K27me3 in IMR90 cells revealed

little overlap with H1.5 binding at representative target gene

cluster (Figure 4G; left panel) and intergenic regions (Figure 4G;

right panel) or globally (Figure S5A–C).

H1.5 is required for SIRT1 and H3K9me2 enrichment
To determine whether SIRT1 and H1.5 regulate chromosomal

distribution of each other, we transfected IMR90 cells with

siRNAs to knockdown (KD) H1.5 or SIRT1 and mapped the

binding of the other. Knockdown of H1.5 or SIRT1 did not affect

the expression levels of other linker histone subtypes (Figure S6A).

Figure 2. H1.5 distribution is established during cellular differentiation. Heat maps show the genome wide promoter distribution of H1.5 in
(A) H1 hESCs and IMR90 fibroblasts, (B) HSF1 hESCs, neural progenitor cells (NPC), neural cells (Neu), and (C) primary keratinocytes (HK Ca2), calcium-
treated keratinocytes (HK Ca+), and (D) primary human hepatocytes (Hepa). Each row represents the promoter of a gene in 500-bp intervals from
25.5 to +2.5 kb of the transcription start sites (TSS) which is indicated by the arrows. The gene promoters for all heat maps are ordered based on the
highest to lowest level of H1.5 enrichment in fibroblasts. (E) Average H1.5 enrichment and expression of the epidermal (LCE, SPRR) and KRT gene
clusters in HK Ca+ and IMR90 fibroblasts are shown as line charts and bar graphs, respectively. The relative position of genes in each cluster is
illustrated schematically.
doi:10.1371/journal.pgen.1002879.g002

Genome Distribution of H1.5 in Differentiation
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Figure 4. H1.5 is associated with repressed genes. (A) Boxplots of expression levels (Affymetrix array) of randomly selected genes (left) and
H1.5 target genes (right) in IMR90 fibroblasts. (B–C) Line charts show gene expression levels (mRNA-seq) as a function of H1.5 binding at (B) genic
regions or (C) intergenic regions in control knockdown IMR90 fibroblasts. All RefSeq genes were sorted by H1.5 binding levels; each data point
represents the average expression value of 2000 genes. Genes located upstream or downstream of an intergenic region were denoted as 59 gene (red
line) and 39 gene (blue line), respectively. (D) Average expression level of genes bound by H1.5 at either genic (left), intergenic (middle), or both
(right) regions in IMR90 fibroblasts. Wilcoxon rank sum test p-values are indicated. (E) Average expression level of genes that belong (‘family’) or do
not belong (‘non-family’) to HGNC gene families that were bound (purple bars) or not bound (yellow bars) by H1.5 in IMR90 fibroblasts. (F) Genome-
wide promoter binding of Pol II, H1.5, SIRT1 and H3K9me2 in IMR90 fibroblasts. (G) Distributions of H3K4me1, H3K4me2, H3K4me3, DNase I sensitive
sites, H3K9me3, H3K27me3, and H1.5 peaks at LCE/SPRR/S100A gene cluster (left panel) and an intergenic region in chromosome 2 (right panel). The
scale of DNase I hypersensitive sites represent z-score of counts in each 100-bp window. Scales of H1.5 and other histone modifications represent the
Poisson p-values of enrichment at each 100-bp window.
doi:10.1371/journal.pgen.1002879.g004

Figure 3. H1.5 enrichment in HGNC gene families. (A) Hierarchical clustering of H1.5 enrichment levels in HGNC gene families is shown as a
heat map. Enrichment z-score of each gene family was calculated by averaging the intensities of probes within a gene family region corrected for
number of probes. Each row represents a gene family, and each column represents an experiment. The main sub-clusters of gene families are
highlighted on the left and the most enriched gene ontology terms for each cluster are shown on the right. (B) Ontology classification of genes in
cluster 1 families. Number of genes in each category is indicated.
doi:10.1371/journal.pgen.1002879.g003

Genome Distribution of H1.5 in Differentiation
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In H1.5KD IMR90 cells (Figure 5A, lane 2), SIRT1 expression was

down-regulated, and its distribution was globally disrupted

(Figure 5C, r = 0.012). In contrast, H1.5 expression was not

changed significantly by SIRT1 knockdown (Figure 5A, lane 3),

and its distribution was only partially affected (Figure 5B, r = 0.47),

indicating that H1.5 binding is less dependent on SIRT1.

Knockdown of either protein resulted in lower H3K9me2 levels

(Figure 5A) and loss of H3K9me2 enrichment (Figure 5D),

suggesting that both proteins are required for establishment of this

repressive histone mark.

H1.5 knockdown leads to global deregulation of gene
expression

To determine if depletion of H1.5 affects gene expression, we

sequenced mRNAs from H1.5KD and controlKD IMR90 fibro-

blasts. We detected 2367 genes with at least 1.5 fold change in

expression in H1.5KD versus controlKD cells, 2022 (85%) of which

were up-regulated in H1.5KD cells. Among the genes with

deregulated gene expression, 371 genes were H1.5 targets, and

345 (93%) of them were up-regulated. Interestingly, many more

genes were up-regulated if they were bound by H1.5 in either

genic or intergenic regions than in both (Figure 5E), indicating that

genes located in larger H1.5 binding blocks were less affected by

H1.5 depletion (which could be due to incomplete KD of H1.5).

Consistently, we found that over 70% of the up-regulated H1.5

target genes do not belong to gene families (Figure 5F), which have

higher levels of H1.5 binding (Figure 1F). Finally, over 90% of

up-regulated genes in H1.5 targets are non-clustered, which is

significantly higher than the percentage of non-clustered genes in

all H1.5 targets (Figure 5G). The expression level of non-clustered

H1.5 target genes was significantly increased in H1.5KD, while

clustered genes were not affected (Figure 5H). These data indicate

that the singleton H1.5 target genes are more readily de-repressed

in H1.5KD cells. The lack of de-repression of H1.5-target clustered

genes may be due to incomplete knockdown of H1.5, lack of

appropriate transcriptional activators in fibroblasts or additional

but unknown layers of gene regulation.

Overall, the up-regulated genes in H1.5KD cells were enriched

in cell death and apoptosis, whereas the down-regulated genes

were enriched in DNA replication and cell cycle process (Figure

S6B). Consistent with these changes, we found that knockdown of

H1.5 significantly decreased the growth of cells as well as the

proportion of cells in S and G2/M phases of the cell cycle (Figure

S6C), suggesting that H1.5 is required for normal cell growth.

Altogether, these data suggest that disruption of H1.5 affects the

expression of .10% of all genes, contributing to altered cell cycle

and growth of fibroblasts.

H1.5 binding is required for chromatin compaction
The formation of H1.5 enrichment blocks in IMR90 cells

prompted us to ask whether H1.5 functions to compact chromatin

at its target regions. We performed micrococcal nuclease (MNase)

assays in controlKD, SIRT1KD and H1.5KD IMR90 fibroblasts and

H1 hESCs. Figure S7A and S7B show the ethidium bromide

Figure 5. H1.5 is required for enrichment of SIRT1 and H3K9me2 at H1.5 target loci and normal gene expression pattern. (A) Western
blotting of H1.5, SIRT1, H3K9me2, and b-Actin in controlKD, H1.5KD, and SIRT1KD IMR90 cells. (B–D) Genome wide promoter binding of the indicated
factors and experimental conditions is shown as heat maps. The genes are ordered as in Figure 2A. (E) Percentage of up-regulated genes with the
indicated H1.5 binding pattern. The binomial p-values are indicated. (F) Stacked bar chart of percentage of family (yellow) and non-family (purple)
genes in all H1.5 targets (left bar) and up-regulated H1.5 targets (right bar). The binomial p-value is indicated. (G) Stacked bar chart of percentage of
clustered (orange) and non-clustered (burlywood) in all H1.5 targets (left bar) and up-regulated H1.5 targets (right bar). The binomial p-value is
indicated. (H) Expression levels (mRNA-seq) of clustered and non-clustered H1.5 target genes in controlKD and H1.5KD cells are shown as a bar chart.
doi:10.1371/journal.pgen.1002879.g005
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staining of the MNase digested DNA from the indicated

conditions. To determine the accessibility at regions targeted by

H1.5, we performed Southern blotting using a fragment of one

H1.5 target gene OR5AS1 (Figure S7C) on chromosome 11 as

probe. The lanes corresponding to the highest concentrations of

MNase were quantitated and visualized as line charts. As shown in

Figure 6A, in H1.5KD IMR90 cells nucleosomal DNA repeat

length at the OR5AS1 gene locus appeared earlier with increased

intensity than control cells, indicating greater accessibility to

MNase. Interestingly, SIRT1KD cells showed an intermediate level

of accessibility with greater digestion than control but less than

H1.5KD cells. A similar result was also detected when using LCE4A

gene, another H1.5 target gene (Figure S7C), as a probe

(Figure 6B). In contrast, H1.5KD or SIRT1KD IMR90 cells did

not show MNase accessibility differences at a histone gene

(HIST2H2AA3) locus that is not bound by H1.5 (Figure 6C). In

H1.5KD or SIRT1KD H1 hESCs, we did not see significant

differences in MNase digestion pattern of the OR5AS1 gene locus

compared to controlKD (Figure 6D). Therefore, H1.5 contributes

to compaction of chromatin at its target loci.

Finally, we determined the relationship between H1.5 enrich-

ment and chromatin accessibility by comparing our H1.5 ChIP-

seq data with published DNase-seq data from IMR90 fibroblasts

(GSM530665). Remarkably, H1.5 enriched regions were clearly

excluded from DNase I sensitive regions with only 0.26% of H1.5

peaks overlapping with DNase I sensitive regions (Figure 7A; also

see Figure 4G green lane). To determine if H1.5 knockdown

increases DNase I sensitivity at target loci, we treated cell nuclei

from controlKD, SIRT1KD, and H1.5KD IMR90 cells with

increasing amount of DNase I followed by quantitative amplifi-

cation of two H1.5 target genes (OR5AS1 and LCE4A) and two

non-target genes (HIST2H2AA3 and HOXC11). In H1.5KD cells,

more digestion was detected at OR5AS1 and LCE4A gene loci

(Figure 7B and 7C) compared to controlKD and SIRT1KD cells. At

HIST2H2AA3, a potentially euchromatic locus, we did not observe

significant differences in DNase I sensitivity between H1.5KD and

controlKD cells (Figure 7D). Importantly, HOXC11 which is not a

target of H1.5 but enriched for H3K27me3 (Figure S7C) also did

not exhibit sensitivity to DNase I digestion (Figure 7E). These data

indicate that H1.5 target regions are less accessible and

knockdown of H1.5 primarily affects the chromatin compaction

at its target regions.

Discussion

Mammalian cells at different stages of differentiation are

generally thought to have dissimilar chromatin structures

[17,18]. Our data indicate that the linker histone subtype H1.5

contributes to dynamic formation of compact blocks of chromatin

in differentiated cells of all embryonic germ layers. These blocks

were found in intergenic regions as well as at the transcriptionally

inactive gene loci. The H1.5-bound intergenic regions did not

overlap with the defined enhancer elements [19] in IMR90 cells or

with the CCCTC-binding factor (CTCF) binding sites

(GSM935404) (data not shown). The H1.5-bound genes function

mainly in cell-cell communication and/or response to the

environment. Bulk of these genes is expressed in a tissue-specific

manner and has evolved in multicellular organisms [20–23].

Binding of H1.5 to these loci is established very late in the cellular

differentiation process, suggesting that H1.5 may contribute to a

terminally differentiated phenotype. H1.5 is an integral member of

a larger chromatin regulation system that involves SIRT1 and

H3K9me2. This system could establish a stable chromatin state

resembling condensed heterochromatin in terminally differentiat-

ed cells. H1.5 is, in fact, preferentially located in heterochromatic

regions of the genome by immunofluorescence of whole nuclei and

has a longer residence time in chromatin compared to other linker

histone subtypes [24]. Thus, H1.5 may contribute to the ‘more

closed’ chromatin structure in differentiated cells compared to

ESCs [17]. Consistent with this, depletion of H1.5 resulted in less

chromatin compaction at a target gene family locus. In particular,

H1.5 knockdown in fibroblasts resulted in decreased cell growth,

which revealed that the function of H1.5 could not be replaced by

other linker histone subtypes.

The mechanism by which H1.5 recognizes its target regions at a

specific developmental stage is an important question that remains

to be answered. While the H1.5 and SIRT1 binding patterns are

drastically different in hESCs versus fibroblasts, the levels of both

proteins are comparable in the two cell types (Figure S8A),

suggesting that mechanisms other than control of expression

contribute to H1.5 and SIRT1 binding at gene family loci. These

mechanisms may include developmentally-restricted interactions

with other chromatin-binding proteins and/or post-translational

modifications [25–27]. Certain DNA sequence elements and/or

chromatin features of the gene family regions may also contribute

to H1.5 binding. Considering the tissue specific binding of H1.5 to

certain gene families, it is likely that more than one mechanism

regulates its genomic distribution.

The binding of H1.5 to the OR genes constitutes a potential

mechanism by which the expression of this important gene family

cluster could possibly be regulated in olfactory neurons. In each

olfactory neuron, only one of the several hundred human OR

genes is expressed [28], which may not only involve deliberate

activation of a single OR promoter but also active repression of all

other OR genes. A recent study reported that OR genes are

marked in a highly dynamic fashion by activating and repressive

histone modifications in the mouse olfactory epithelium [29]. It

will be interesting to study if and how H1.5 may also contribute to

the regulation of OR gene expression in olfactory neurons.

Experimental evidence from cancer, ESCs, induced pluripotent

cells (iPS) and virally-transformed cells suggest that chromatin

states are dynamic and may be perturbed in disease conditions

[30–32]. Consistent with this, H1.5 expression is down-regulated

during cellular transformation by a viral oncoprotein [33] and in

many cancer cell types (Figure S8B). In addition, one nonsense

(K27*) and one point mutation (G86A) in H1.5 have been

reported in colon cancer [8]. The nonsense mutation occurs early

in the N-terminus of the protein, essentially eliminating the

protein. The G86A mutation is located in the third helix of the

conserved globular domain that participates in binding one side of

the DNA approximately one helical turn away from the

nucleosome dyad [34]. The G86A mutation may thus change

the local hydrophilicity and affect the interaction between histone

H1.5 and DNA. These data suggest that H1.5 may be down-

regulated and/or redistributed during processes that reverse the

terminally differentiated state.

Materials and Methods

Cell culturing, purification, and differentiation
H1 hESCs were plated on Matrigel (BD Biosciences)-coated

plates, and maintained in mTeSR (StemCell). Before purification,

cells were trypsinized to single cells and TRA-1-60 expressing cells

were isolated by using MACS cell separation columns (Miltenyi

Biotec). Isolated cells were tested by flow cytometry, and samples

with .99% purity were used. IMR90 human primary lung

embryo fibroblasts (ATCC) were cultured in Dulbecco’s modified

Eagle’s medium (DMEM) plus 10% FBS (Hyclone), 100 U/ml
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Figure 6. H1.5 knockdown increases micrococcal nuclease accessibility at target regions. (A–D) Southern blots of MNase digested
genomic DNA form the indicated cells are shown. The probe used for each blot is also indicated. Quantitated data from lanes 5, 10, and 15 are shown
as line chart. Y axis represents the pixel position in the images, and x axis shows the band intensity.
doi:10.1371/journal.pgen.1002879.g006

Figure 7. H1.5 knockdown increases DNase I sensitivity at target regions. (A) Venn diagram of the overlap between significant H1.5 peaks
and DNase I hypersensitive sites. The p-value for exclusivity of these two sets of peaks is indicated (Text S1). (B–E) Quantitative PCR of DNA fragments
at indicated genes from genomic DNA treated with increasing amount of DNase I. Data points with t-test p-value,0.05 are labelled with *.
doi:10.1371/journal.pgen.1002879.g007
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penicillin (Gibco), and 100 mg/ml streptomycin (Gibco) at 37uC in

5% CO2. Growing cells (passage,8) at 50,70% confluence were

used for further analysis. Human primary hepatocytes (Zen-bio

#HP-F) were grown in Hepatocyte Maintenance Medium (Zen-

Bio #HM-2) and used at passage four. Human ESCs (HSF1) were

differentiated to neural progenitor cells (NPCs) in DMEM:F12

(Gibco) plus B27 (Gibco), N2-supplement (Gibco), 20 ng/ml

bFGF (R and D systems), 1 mM Retinoic Acid (Sigma), and

1 mM Smoothened Agonist (Calbiochem). NPCs were mechani-

cally isolated from culture based on rosette morphology as

described [35] and expanded in DMEM:F12 plus B27, N2-

supplement, 20 ng/ml bFGF, and 50 ng/ml EGF (Gibco). NPCs

were further differentiated to neurons and glia by withdrawal of

the maintenance factors (bFGF and EGF) for 10 days. Human

keratinocytes were cultured per manufacturer’s protocol in KSFM

(Invitrogen). To induce differentiation, calcium chloride was

added to 1.5 mM for 48 hours [36].

ChIP–chip assay with Agilent promoter array and data
analysis

ChIP was performed with ,50 million cells as described [33].

Agilent two-color microarray data processing is described in Text

S1. H1.5 ChIP-chip in IMR90 cells, H1 hESCs, SIRT1KD cells,

neural progenitor cells, SIRT1 ChIP-chip in IMR90 cells, H1.5KD

cells, and H3K9me2 in IMR90 cells were performed twice.

Antibodies against human histone H1.3 (ab24174), H1.5

(ab24175) and SIRT1 (ab32441) were purchased from Abcam

and for H3K9me2 from Millipore (07-441).

ChIP–sequencing assay
,20 ng of ChIP and input DNA were end-repaired, added an

‘A’ base to the 39 end, and ligated to adaptors by using Illumina

ChIP-seq DNA Sample Preparation Kit Box 1. DNA fragments

(150–300 bp) were selected and purified by agarose gel extraction,

and amplified by PCR using Phusion polymerase (Illumina ChIP-

seq DNA Sample Prep. Kit Box 1) according to manufacturer’s

instructions. Amplified DNA were purified by gel extraction and

quantified by Qubit dsDNA BR assay (Invitrogen). DNA

sequencing was performed by Illumina GA-IIx sequencer with

read length of 76 bp as per manufacturer’s protocol. Raw reads

were generated by the software SCS2.6. Further information on

data analysis is available via Text S1.

Whole-genome expression profiling (Affymetrix array)
and data analysis

,200 ng of total RNA were extracted from ,50 million cells by

using Trizol (Invitrogen) and purified by RNeasy Plus Mini Kit

(QiaGen). Purified RNA was submitted to UCLA Clinical

Microarray Core to perform gene expression profiling by using

Affymetrix Human U133Plus2.0 Arrays. Gene expression profil-

ing of IMR90 cells, H1 cells, controlKD and H1.5KD cells were

performed twice. Probe intensities from different samples were

normalized by MAS5.0 provided by Affymetrix.

mRNA–seq assay
5 mg of total RNA from controlKD and H1.5KD IMR90

fibroblasts were used to prepare libraries for mRNA-seq by using

mRNA-seq Sample Preparation Kit (Illumina). Sequencing was

performed by Illumina HiSeq2000 sequencer with read length of

100 bp as per manufacturer’s protocol. Raw reads were aligned to

reference human genome (hg19) using TopHat, and expression

levels of each gene were calculated by in house software. Detailed

data processing information is described in Text S1.

ChIP–quantitative PCR
Real-time PCR was performed on ChIP and input DNA using

SYBR Green Real-time PCR Master Mix (Roche). For each

primer pair, an amplification standard curve was established by

gradient amount of input DNA. Specific targets were amplified

from 1/10 of ChIP DNA, and relevant template DNA amount

was calculated by comparing the Ct values of ChIP and input

samples to the standard curve.

Co-immunuprecipitation (co-IP) and Western assay
,100 million cells were harvested and co-IP assay was

performed by using nuclear complex co-IP kit (Active Motif)

according to manufacturer’s instructions. The precipitates were

separated in 4–20% gradient SDS-PAGE gel, and visualized by

standard Western blotting assay.

RNAi assay
siRNAs targeting H1.5 (MU-012049-00) or SIRT1 (MU-

003540-01) were purchased from Dharmacon. 1.5 mg of siRNAs

were transfected to 2 million cells by using Lipofectamine

RNAiMAX (Invitrogen Cat # 13778075). Cells were collected

48 hours after transfection for ChIP-chip, expression microarray,

and Western blotting assay.

Micrococcal nuclease assay
5 million IMR90 cells after controlKD, H1.5KD or SIRT1KD

were trypsinized, pelleted at 4uC for 10 minutes, and washed twice

with DPBS. MNase digestion was performed as described [37,38].

Digested DNA was purified by QiaQuick PCR purification Kit

(QiaGen) and quantified by Qubit dsDNA BR assay (Invitrogen).

Same amount of DNA was loaded onto a 1.5% agarose gel and

run at 50 V overnight at 4uC followed by Ethidium Bromide

staining. The gel image was processed by MatLab Image

Processing Toolbox.

Southern blotting
OR5AS1 probe was prepared by amplifying OR5AS1 gene DNA

with primers 59-ATGGCTTATGACCGCTATGC and 59-

TTGACGATATTGGAGCCACA from IMR90 genomic DNA.

Primers for LCE4A probe are 59- TGTCCCTCAAAGTGTG-

CATC and 59- TTCGCCCACTAATTCCTTTG, and primers

for HIST2H2AA3 probe are 59- ATTGCCTGGGGTAGT-

GAGTG and 59-GCCTTCGTCTTTGAGACTGG. The expect-

ed PCR product was gel purified. Biotin labeling was performed

by using BrightStar Psoralen-Biotin Nonisotopic Labeling Kit

(Ambion AM1480) according to manufacturer’s instructions.

MNase digested genomic DNA were separated in 1.5% agarose

gel, transferred to nylon membrane (Amersham), and cross-linked

by UV light. Hybridization was performed by incubating the

membrane with labeled probes in Express Hyb Hybridization

Solution (Clontech #636831) overnight at 42uC, and signals were

detected by using BrightStar BioDetect Kit (Ambion AM1930).

DNase I assay
5 million IMR90 cells after controlKD, H1.5KD or SIRT1KD

were trypsinized, pelleted at 4uC for 10 minutes, and washed twice

with DPBS. DNase I (Roche 04716728001) digestion was

performed as described [39]. Digested DNA was purified by

phenol/chloroform extraction followed by ethanol precipitation.

DNA pellet was air dried and re-suspended in 16 TE buffer.

Quantitative PCR solution (20 mL) was prepared by mixing 4 ng

of DNA, 20 pmol and 10 mL of FastStart Universal SYBR Green
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Master (Roche 04913850001), and the reaction was performed by

STRATAGENE Mx3000P Real-time PCR machine.

Supporting Information

Figure S1 Data representation and antibody specificity in ChIP.

(A) Pie chart of H1.5 target genes classified by H1.5 enrichment

pattern. (B) Design of scaling windows of each gene in ChIP-chip

data analysis. Each row in the heat map represents the promoter of

a gene in 500-bp intervals from 25.5 to +2.5 kb of the predicted

transcriptional start site (TSS). The genes are sorted in descending

order based on the average H1.5 promoter enrichment in IMR90

cells. All subsequent heat maps are in the same order. (C)

Genomewide promoter distribution of H1.5 in controlKD and

H1.5KD IMR90 fibroblasts. (D) Localization of H1.3 and H1.5 on

gene promoters along chromosomes 1 and 11 in IMR90

fibroblasts. (E) Genomewide promoter distribution of histone H3

in H1 hESCs and IMR90 fibroblasts.

(TIF)

Figure S2 Validation of ChIP-chip data by quantitative ChIP-

PCR. ChIP-qPCR of H1.5 and SIRT1 at the LCE4A, LCE1C,

SPRR2A, OR5W2, OR5AS1, and HIST3H2A genes at promoter

(PRO), transcription start site (TSS), and open reading frame

(ORF) regions. Error bars represent the standard deviation of

three independent ChIP-qPCR experiments. H1.5 and SIRT1

enrichment were higher in IMR90 (red lines) compared to H1

hESCs (blue lines) at its target genes (LCE4A, LCE1C, SPRR2A,

OR5W2, OR5AS1) but not at HIST3H2A which is a gene family

member that is not targeted by H1.5.

(TIF)

Figure S3 Expression of hepatocyte specific genes in primary

hepatocytes. Relative expression of hepatocyte specific genes in

human hepatocytes to IMR90 fibroblasts was calculated from

Agilent expression array data. Bars represent the logarithm of the

ratio expression in hepatocytes versus IMR90 fibroblasts.

(TIF)

Figure S4 H1.5 binding is associated with gene repression. (A–

C) Boxplots of expression levels of randomly selected genes (left)

and H1.5 target genes (right) in H1 hESCs, hepatocytes, and

calcium induced keratinocytes (HK Ca+). (D) Reciprocal co-

immunoprecipitation of SIRT1 and H1.5 from nuclear extracts in

IMR90 fibroblasts but not from hESCs.

(TIF)

Figure S5 H1.5 binding is not associated with common histone

modifications. (A) Venn diagram of overlaping peaks between

H1.5 and indicated histone modifications. (B) Average binding

profiles of indicated histone modifications across H1.5 peaks

center. (C) Average binding profiles of H1.5 across the peak center

of indicated histone modifications.

(TIF)

Figure S6 H1.5 is required for normal cell growth. (A)

Expression of linker histone subtype H1.1–H1.5 in knockdown

cells by Western blotting. (B) Gene ontology of up- and down-

regulated genes in H1.5 knockdown cells. (C) Morphology (left

panel), growth curve (line chart), and cell cycle distribution

(stacked bar chart) of controlKD, H1.5KD, and SIRT1KD IMR90

cells.

(TIF)

Figure S7 Micrococcal nuclease (MNase) digestion of chroma-

tin. Ethidium bromide staining of MNase treated genomic DNA in

controlKD (Ctrl), SIRT1KD and H1.5KD IMR90 fibroblasts (A) or

H1 hESCs (B). Quantitated data from lanes 5, 10 and 15 (highest

MNase concentration) are shown as line chart. Y axis represents

the pixel position in the images; x axis shows the band intensity.

(C) Patterns of DNase I hypersensitive sites, H3K9me3,

H3K27me3 and H1.5 enrichments at representative genes. The

scale of DNase I hypersensitive sites represent z-score of counts in

each 100-bp window. Scales of H3K9me3, H3K27me3 and H1.5

represent the Poisson p-values of enrichment at each 100-bp

window.

(TIF)

Figure S8 H1.5 is generally down-regulated in cancer cells. (A)

Expression levels of H1.5 and SIRT1 proteins are similar in hESC

and IMR90 fibroblasts as determined by Western blotting. (B)

mRNA levels of H1.5 in 173 normal cell types and 744 cancer cell

lines from NextBio database [40] are represented as boxplots.

(TIF)

Text S1 Supporting information including additional experi-

mental procedures for data processing, list of gene families in

cluster 1 shown in Figure 3, and list of primers used in Figure S2.

(DOC)
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