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Key Points: 12 

 We develop a data-driven method that evaluates a velocity model using the K-means 13 

clustering and Rayleigh wave phase velocity dispersion 14 

 The model evaluation method is applied to community velocity models, CVM-S4.26 and 15 

CVM-H15.1, in Southern California 16 

 The result suggests that CVM-S4.26 gets an evaluation score ~3 times higher than that of 17 

CVM-H15.1 for structures in the top ~20 km 18 
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Abstract 20 

We develop a data-driven clustering method to evaluate a velocity model using surface wave 21 

velocity dispersion. This is done by first computing theoretical dispersion curves for 1-D velocity 22 

profiles of all the grid locations and then splitting the resulting dispersion curves into a certain 23 

number of groups via the K-means clustering. The observed dispersion curves are also clustered 24 

following the same procedure and the velocity model is assessed by comparing the spatial 25 

patterns obtained for the observed and synthetic datasets. The method is applied to evaluate two 26 

community velocity models in southern California, CVM-S4.26 and CVM-H15.1, using phase 27 

velocity maps derived for 3-16s Rayleigh waves. We found a good correlation in the spatial 28 

distribution of clusters between the result of CVM-S4.26 and that of the observed data, 29 

suggesting that the CVM-S4.26 fits the observed dispersion maps better than the CVM-H15.1 in 30 

terms of features extracted from the clustering analysis. 31 

 32 

Plain Language Summary 33 

With increasing volume of recorded seismic data, various velocity models are often derived for 34 

the same region using different datasets and seismic networks with different spatial coverage and 35 

resolution. Therefore, evaluating all the existing velocity models in the overlapping region can 36 

provide crucial information to future development of tomographic models, such as constructing a 37 

standard model by merging all the velocity models. As a machine learning technique, clustering 38 

analysis has proven its ability to extract hidden grouping features from large unlabeled datasets. 39 

In this study, we develop a simple workflow that utilizes a specific (K-means) clustering method 40 

to evaluate velocity model. Instead of applying the clustering method directly to the velocity 41 

model, we first calculate theoretical predictions for a certain measurable parameter (phase 42 

velocity of Rayleigh wave) using the input model and assess the model by comparing the 43 

clustering results obtained for the synthetic and observed datasets. The proposed model 44 

evaluation method is applied to the well-maintained community velocity models, CVM-H15.1 45 

and CVMS-4.26, in Southern California. The result suggests that CVM-S4.26 is much better 46 

than CVM-H15.1 for structures in the top ~20 km. 47 

1 Introduction 48 

With the increasing volume of data recorded by regional and global seismic networks, 49 

seismic tomography has become an important and powerful tool for understanding earth interior 50 

structure in the past decades. Southern California (SC; Fig. 1) is one of the most active and 51 

imaged plate boundary regions. Velocity models that cover various depth from near surface to 52 

upper mantle and spatial ranges with different resolutions were derived for this area (e.g., Berg et 53 

al., 2018; Lee et al., 2014; Lin et al., 2013; Roux et al., 2016). This is done by using different 54 

types of datasets, such as surface waves (e.g., Zigone et al., 2015) and teleseismic body waves 55 

(e.g., Schmandt and Humphreys, 2010), and inversion schemes, for example, by fitting travel-56 

time (e.g., Fang et al., 2016) and full-waveform (e.g., Tape et al., 2010). Among these velocity 57 

models, the community velocity models (CVMs), CVM-H15.1 (Shaw et al., 2015) and CVM-58 

S4.26 (Lee et al., 2014), are well maintained and often used as the starting model in travel-time 59 

based tomography studies (e.g., Qiu et al., 2019; Share et al., 2019).  60 

Although CVM-H15.1 and CVM-S4.26 are both constructed through full-waveform 61 

inversion, differences between the two models are obvious (e.g., Figs. 2a-b and 2d-e). This 62 
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inconsistency is related to the choice of input dataset (e.g., frequency range, station coverage, 63 

usage of ambient noise data), inversion parameters (e.g., regularization, smoothing), and the 64 

starting model. Although some large-scale features (e.g., major geologic provinces; Fig. 1) are 65 

seen in both models, it is still challenging to determine which model to use in studies that aim at 66 

improving or interpreting the velocity structure in SC. For instance, Qiu et al. (2019) 67 

demonstrated that the synthetic dispersion curves calculated using either CVM-H15.1 or CVM-68 

S4.26 match poorly with the observed dispersion maps. However, through the 1-D Vs inversion 69 

(Herrmann, 2013) at each grid location, the misfit values are significantly reduced to a level 70 

comparable to the estimated uncertainties for both CVMs. This is likely due to the non-71 

uniqueness of the inversion problem, which makes it difficult to evaluate which model is more 72 

realistic through the analysis of data misfit. 73 

One way to assess the quality of a velocity model is through forward 3-D waveform 74 

simulation based on the wave equation. This is usually done by comparing earthquake recordings 75 

or empirical Green’s functions retrieved from ambient noise data with synthetic waveforms 76 

simulated using the same source-receiver configuration (Ma et al., 2008; Imperatori and 77 

Gallovič, 2017). However, the application of such a model validation method is limited by two 78 

main factors: (1) complicated evaluation scheme, i.e., any inaccurate information in the velocity 79 

model along the ray path can contribute to the mismatch between synthetic and observed 80 

waveforms; and (2) intensive computational costs, particularly for observations at high 81 

frequencies (e.g., > 1 Hz).  82 

In recent years, machine learning has become more and more popular in extracting hidden 83 

features from large datasets in seismology (e.g., Bergen et al., 2019; Kong et al., 2018). 84 

Clustering analysis, as an unsupervised learning method, found success in mining different types 85 

of noise sources in continuous seismic recordings (Johnson et al., 2020; Snover et al., 2020). The 86 

nature of dividing data into groups with similar pattern makes clustering analysis suitable in 87 

dealing with large unlabeled datasets, such as seismic waveforms and velocity models. Eymold 88 

and Jordan (2019) applied the K-means clustering algorithm to the 1-D velocity profiles of 89 

CVM-S4.26 and discovered good correlation between surface geology features in SC and the 90 

resulting clustering pattern. However, it is important to note that, by directly clustering the 1-D 91 

velocity profiles, the obtained spatial pattern highly depends on the depth range of the input 92 

model (e.g., 0-50 km in Eymold and Jordan, 2019). Moreover, clustering results of the same 93 

region can also change with different input velocity models, and such difference is often hard to 94 

interpret, as the comparison does not involve data fitting to field measurements. 95 

In this study, we propose a data-driven evaluation scheme for velocity models based on the 96 

K-means clustering method. This is done by first calculating synthetic surface wave velocity 97 

dispersion curves for all 1-D velocity profiles of an input velocity model, and then clustering the 98 

synthetic and observed velocity dispersion curves independently into a certain number of groups 99 

through clustering analysis. The velocity model is rated by estimating the similarity between 100 

spatial patterns obtained from the synthetic and observed dispersion data. The proposed method 101 

is applied to two velocity models in SC (CVM-H15.1 and CVM-S4.26). The two velocity 102 

models and the Rayleigh wave phase velocity dispersion maps measured by Qiu et al. (2019) that 103 

are used to assess the models are described in section 2. The theoretical basis and workflow of 104 

the K-means algorithm are reviewed and illustrated in section 3. In section 4, we show the spatial 105 

patterns of the clustering analysis for CVM-H15.1 and CVM-S4.26, and the evaluation of each 106 

model based on the observed phase velocity maps. 107 
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2 Data 108 

The two community velocity models, CVM-H15.1 and CVM-S4.26, analyzed in this study 109 

cover the SC plate boundary region (Figs. 2a-b). Both models were extracted using the same grid 110 

size (0.05°×0.05°) as the Rayleigh wave phase velocity dispersion maps. Depth of both CVMs 111 

were sampled with an interval of 500 m. Except basin regions, the CVM-H15.1 was built upon 112 

an initial model derived from a local earthquake tomographic inversion (Shaw et al., 2015). The 113 

model in basin areas is derived from more precise studies using borehole measurements and 114 

seismic reflection data (Süss and Shaw, 2003; Tabora et al, 2016), and held fixed during the 115 

wave-equation-based tomographic inversion. The CVM-H15.1 was derived utilizing data from 116 

143 regional earthquakes recorded by 203 seismic stations (Shaw et al., 2015 and references 117 

therein). The CVM-S4.26 was constructed based on a different starting model via a similar 118 

tomographic inversion scheme (Lee et al., 2014) but using more earthquakes (160) and seismic 119 

stations (258). It is important to note that, in addition to earthquake data, ambient noise cross 120 

correlations calculated for pairs of stations are included in the inversion of CVM-S4.26. 121 

The Rayleigh wave phase velocity dispersion maps used to evaluate the CVMs are 122 

discretized on a 0.05°×0.05° grid and derived via Eikonal tomography from Qiu et al. (2019). 123 

The dispersion maps contain a total of 4076 phase velocity dispersion curves ranging from 3s to 124 

16s. Figure 2c shows the phase velocity map at 7s period. Clear phase velocity contrast can be 125 

seen across geologic provinces, such as high velocities in Peninsular Ranges and low velocities 126 

in Salton Trough. In order to evaluate the CVMs via clustering analysis, the theoretical phase 127 

velocity dispersion curves are also calculated for all 1-D velocity profiles using the CPS package 128 

developed by Herrmann (2013). Both the observed and synthetic Rayleigh wave phase velocity 129 

dispersion curves are discretized into 17 data points from 3s to 16s.  130 

3 K-means clustering 131 

In this study, we utilize the K-means clustering method to group a series of 1-D curves into a 132 

predetermined number of clusters. Let n be the number of the input 1-D curves, and K be the 133 

number of clusters. First, K 1-D profiles are randomly chosen from the input dataset as the initial 134 

centroids {µ1, µ2, µ3, … , µ𝑘}. The Euclidean distances between each 1-D curve to all centroids 135 

are then calculated as the L2 norm between the two vectors:  136 

𝐷𝑘 = ||𝑥 −  µ𝑘||2, (1) 

where x is the target velocity profile vector, and D is the distance vector that contains K number 137 

of values. Then, the target profile is assigned to its closest cluster, i.e., the cluster yields the 138 

smallest distance. After all the profiles are assigned to a cluster, the centroid profile of each 139 

cluster is then updated as the average of all the profiles that belong to the cluster:  140 

µ𝑘
′ =

∑ 𝑥𝑖𝑘
𝑁𝑘
𝑖=1

𝑁𝑘
, (2) 

where Nk is the number of profiles in the k-th cluster. If µ𝑘
′ ≠ µ𝑘 for any k-th cluster, a new 141 

iteration of clustering process described by equations (1) and (2) is performed, in which all data 142 

profiles are reassigned based on the updated centroids. 143 

We note that the result of clustering analysis is sensitive to the choice of K value. The Elbow 144 

Method is often used to optimize the determination of K value (Eymold and Jordan 2019). This 145 



Confidential manuscript submitted to Geophysical Research Letters 

 
 

5 

is done by calculating the total distance of all data profiles to the corresponding centroid (of the 146 

cluster they assigned to), which is given by: 147 

𝐽(𝑲) = ∑ ∑ 𝛿𝑖
𝑘||𝑥𝑖  −  µ𝑘||2

𝑲

𝑘=1

𝑛

𝑖=1

 (3a) 

where, 148 

𝛿𝑖
𝑘 = {

1, 𝑖𝑓 min
𝑗

(|𝑥𝑖  −  µ𝑗|)
2

= |𝑥𝑖  −  µ𝑘|2

0,                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (3b) 

The optimal K value is determined as the knee of the objective function J(K), where the gradient 149 

of the total variance flattens, indicating a diminishing return for increasing number of centroids. 150 

The clustering result may also be sensitive to the initial centroids if the objective function J(K) 151 

reaches a local minimum. Here, we run the clustering analysis 10 times using initial centroid 152 

locations generated randomly and keep the result with the lowest J(K). 153 

4 Results 154 

Figure 3 shows results of K-means clustering analysis performed directly on the Vs profiles 155 

of the CVM-H15.1 and CVM-S4.26 with an optimized K value of 3. This is similar to Eymold 156 

and Jordan (2019) but with the K-means clustering applied only to Vs in the top 50 km and grid 157 

cells covered by the phase velocity maps of Qiu et al. (2019). Similar large-scale spatial patterns 158 

can be seen for clustering results of both velocity models (Figs. 3a and 3c). Cluster #1 (colored 159 

in red) covers regions with extremely low velocities at shallow depth, including sedimentary 160 

basins like Salton Trough and LA basin. For Clusters #2 (in blue) and #3 (in green), we overlay 161 

the 31 km Moho depth contour resolved from Tape et al. (2012) onto the clustering maps (Figs. 162 

3a and 3c) and find a good correlation between the contour lines (white dashed curves) and 163 

boundaries between the two clusters.  164 

The contour lines of the Moho interface at 31 km and the boundaries of Cluster #3 matches 165 

particularly well for CVM-H15.1. In this case, the Moho depth variation dominates the clustering 166 

results (Figs. 3b and 3d). This result is different from the more complicated pattern obtained in 167 

Eymold and Jordan (2019), which is likely because the 1-D Vp and Vs profiles at each grid cell 168 

are combined first before clustering and their study area is much larger. We note that the 169 

distribution of clusters could vary significantly if the depth range of the input Vs is changed, as 170 

the result would have no sensitivity to the Moho depth variation if structures only in the top 10 171 

km are analyzed. 172 

Although both models yield similar spatial patterns of the resulting clusters, obvious 173 

differences are still observed and difficult to interpret. In this study, however, we apply the 174 

clustering analysis to the synthetic phase dispersion curves calculated at all available grid cells 175 

for each CVM. Different from clustering of Vs profiles, the resulting spatial pattern of clusters 176 

from the synthetic phase velocity dispersion curves can be evaluated quantitatively using the 177 

observed phase velocity maps. Therefore, we first present the clustering analysis for the phase 178 

velocity maps derived by Qiu et al. (2019) and then evaluate each CVM by comparing the 179 

corresponding clustering result with that of the observed phase velocity maps. 180 

4.1. Clustering of the observed phase velocity maps 181 
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Figures 2c and 2f show a map-view and a 1-D profile of the Rayleigh wave phase velocity 182 

dispersion data obtained from Qiu et al. (2019), respectively. Compared to the Vs model (e.g., 183 

Figs. 2d-e), the phase velocity profile (Figure 2f) is much smoother (e.g., no sharp velocity 184 

gradient due to Moho discontinuity) and sensitive to Vs values in a wide range of depth (Fig. S1). 185 

Since the number of clusters K is a hyperparameter, we apply the Elbow Method and obtain the 186 

optimal K value as 4 (Fig. S2). The clustering result of the observed phase velocity maps (Fig. 4a) 187 

shows that Clusters #1 (in orange) and #2 (in red) mainly occupy the basin areas (e.g., LA basin 188 

and Salton Trough) with a very relatively low phase velocity at short period (3-6s), Cluster #3 (in 189 

blue) appears mostly in the Peninsular Ranges region, and Cluster #4 (in green) covers the 190 

Mojave Desert area.  191 

4.2. Clustering of synthetic phase velocity maps for CVM-H15.1 192 

Similar to section 4.1, we use K = 4 in the clustering analysis of synthetic phase velocity 193 

dispersion curves calculated for CVM-H15.1 and the result is shown in Figure 4b. We note that, 194 

for a direct comparison, only dispersion curves calculated for grid cells covered by the data of 195 

Qiu et al. (2019) are included in the analysis. To ensure the colors assigned to clusters obtained 196 

for the CVM-H15.1 are consistent with those of the observed data, we use the centroid 197 

dispersion curve to label each cluster (Figs. 4d and 4e). Although the resulting spatial pattern 198 

also highlights the Salton Trough, Los Angeles basin, and Ventura basin (i.e., low velocity 199 

anomalies at shallow depth; Fig. 4e) with Clusters #1 and #2, the area is much smaller compared 200 

to those in Figure 4a. For each cluster label, we calculated the Jaccard index (Halkidi et al., 201 

2002), the ratio between the sizes of intersection and union of two datasets, to estimate the 202 

similarity between two datasets and get the overall Jaccard index of 18.6% accounting for all 203 

clusters. We also compute the corresponding true positive rate (TPR) that is adopted in Eymold 204 

& Jordan (2020) for each cluster (Table S1).  205 

4.3. Clustering of synthetic phase velocity maps for CVM-S4.26 206 

Clustering result of CVM-S4.26 using K = 4 is shown in Figure 4c. A good spatial 207 

correlation is observed between Clusters #1 and #2 and basin areas. Moreover, the size of these 208 

two clusters agrees well with those in Figure 4a. Consistent with clustering pattern for the 209 

observed phase velocity maps, majority of the grid cells in Cluster #3 is also well confined 210 

within the Peninsular Ranges region (Fig. 4c). Both Jaccard index and TPR for all clusters 211 

obtained from CVM-S4.26 are significantly higher than (~2-4 times of) those of CVM-H15.1. 212 

More specifically, the overall Jaccard index of CVM-S4.26 is 57.4%, which is ~3 times than that 213 

of CVM-H15.1 (Table S1).   214 

5 Discussion 215 

In this study, we develop an alternative method to rate a velocity model via the K-means 216 

clustering method. This technique is applied to Community Velocity Models (CVMs) in SC 217 

using Rayleigh wave phase velocity maps derived from Qiu et al. (2019). Here, we further 218 

investigate the results by analyzing the K value, depth sensitivity kernel, and data misfit. 219 

5.1. Selection of K value  220 

The K-means clustering analysis assigns similar data samples or profiles into the same 221 

cluster and is effective in extracting grouping features from large unlabeled datasets. However, 222 

the clustering result is dependent on the input number of clusters, i.e., the K value. In section 3, 223 

the optimal K is 3 for clustering of 1-D Vs profiles (Fig. 3), whereas an optimal K = 4 is used in 224 
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clustering of phase velocity dispersion curves in section 4 (Fig. 4). Since the effect of K value on 225 

the clustering result of 1-D Vs profiles is well discussed in Eymold and Jordan (2019), we focus 226 

on how the choice of K value alters the clustering of phase velocity dispersion curves and 227 

illustrate the results using K = 3 in Figure S3 and K = 5 in Figures S4-S6.  228 

For K = 3, the number of extracted features from the clustering analysis is reduced compared 229 

to the case with K = 4. As expected, the spatial pattern shown in Fig. S3a for the observed phase 230 

velocity dispersion curves is almost identical to that shown in Fig. 4a after merging Clusters #1 231 

(center of the basins) and #2 (edge of the basins) together. However, for the clustering of 232 

synthetic phase velocity dispersion curves (Figs. S3b-c), Cluster #3 in Figs. 4a and 4c that 233 

primarily occupies the Peninsular Ranges region is missing from the K = 3 results, indicating the 234 

difference between synthetic dispersion curves in the center and at the edge of basins is much 235 

larger than the difference between basin and non-basin. This may be caused by the anomalously 236 

low phase velocities (< 2 km/s) in the period range of 3-5s within LA basin, Ventura basin, and 237 

Salton Trough (red color areas in Fig. S3b-c), where significantly low Vs (< 1 km/s) at shallow 238 

depth are observed in both CVMs (Figs. S3e-f). 239 

On the other hand, for K = 5, the clustering result of the observed phase velocity is highly 240 

dependent on the initialization, i.e., the choice of starting centroids (section 3). This is illustrated 241 

in Figure S4, where two different clustering patterns are obtained when two different starting 242 

centroids are randomly initialized. Such observed difference is greatly suppressed if we reduce 243 

the number of clusters from 5 to 4 by attributing the cluster in maroon to red and blue in Fig. S4a 244 

and Fig. S4c, respectively. The clustering result for the synthetic phase dispersion curves of 245 

CVMH-15.1 is also dependent on the centroid initialization (Fig. S5), whereas the clustering 246 

result for CVM-S4.26 is less sensitive to the choice of starting centroids (Fig. S6).  247 

In conclusion, clustering results using K = 5 are less stable than those of K = 3 and K = 4, 248 

and the result of K = 3 can be easily reproduced by merging two specific clusters obtained using 249 

K = 4. This likely suggests a maximum number of four dominating groups that can be extracted 250 

from the Rayleigh wave phase velocity dispersion curves between 3-16s in the study area 251 

through clustering analysis, which justifies our choice of K = 4 based on the Elbow Method 252 

result. 253 

5.2. Depth sensitivity 254 

Figures 3a and 3c show the clustering results for 1-D Vs profiles in the top 50 km extracted 255 

from CVM-H15.1 and CVM-S4.26, respectively. The resulting spatial pattern yields two 256 

dominating structural features: basins (in red) with low velocities in the top 10 km and regions 257 

(in green) with a deep (> 31 km) Moho discontinuity. The clusters obtained using the observed 258 

phase velocity dispersion curves between 3s and 16s, on the other hand, exhibit a different 259 

spatial pattern (Figs. 4a and 4d). While the basins still stand out from the clustering results in Fig. 260 

4a, the other dominating structural feature outlined by the clustering analysis of dispersion 261 

curves is the Peninsular Ranges.  262 

Considering Rayleigh wave phase velocities at periods < 16s are most sensitive to structures 263 

in the top 20 km (Fig. S1), the variation in Moho depth likely has little contribution to dispersion 264 

curves between 3s and 16s. This is supported by the observation that the spatial pattern in Fig. S7 265 

derived using 1-D Vs profiles of CVM-S4.26 only in the top 20 km is consistent with that of the 266 

observed dispersion curves (Fig. 4a). Therefore, we mainly evaluate the CVMs only in the top 267 

~20 km via clustering analysis of dispersion curves between 3s and 16s. It is important to note 268 
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that, in addition to extending the period range, we can also evaluate the velocity model at 269 

shallower depth by incorporating H/V ratio measurements from Berg et al. (2018). 270 

5.3. Comparison with data misfit 271 

We compute the data misfit of Rayleigh wave phase velocity for each CVM as the L2 norm 272 

between the observed and synthetic dispersion curves (Fig. S8). The resulting misfit maps show 273 

similar patterns for both CVM-H15.1 and CVM-S4.26 with median values of ~0.5 km/s. In 274 

general, basin regions yield large misfit values (> 0.6 km/s), while smaller values (< 0.3 km/s) 275 

are observed in Mojave Desert and Peninsular Ranges. This suggests both models are similar in 276 

terms of fitting the phase velocity dispersion data. In contrast, our clustering-analysis-based 277 

evaluation method aims at comparing spatial patterns of the dominating structural features 278 

extracted independently from the observed and synthetic datasets, rather than focusing directly 279 

on the difference between them that is predominated by basin areas, and clearly shows that 280 

CVM-S4.26 is a better choice for structures in the top ~20 km. 281 

6 Conclusions 282 

We develop, for the first time, a simple workflow to evaluate velocity model via the K-means 283 

clustering method using observed surface wave phase velocity dispersion maps. This is done by 284 

first applying the K-means clustering analysis to synthetic phase velocity dispersion curves 285 

calculated for CVM-H15.1 and CVM-S4.26, and then validating each synthetic dataset against 286 

the observed phase velocity maps obtained by Qiu et al. (2019). The resulting clustering pattern 287 

of both models is dominated by the distribution of sedimentary basins and major geologic 288 

provinces (e.g., Mojave Desert and Peninsular Ranges). Based on the comparison between 289 

clustering results of synthetic and observed dispersion curves, the Jaccard similarity coefficient 290 

averaged over all clusters is 57.4% for CVM-S4.26, which is more than 3 times higher than that 291 

of CVM-H15.1 (18.6%), suggesting the spatial pattern of clusters obtained from CVM-S4.26 292 

matches much better with that of the observed data than CVM-H15.1. This is consistent with the 293 

fact that ambient noise cross correlation data is included in the inversion of CVM-S4.26 but not 294 

incorporated in the construction of CVM-H15.1.  295 

Since the observed phase velocity maps between 3s and 16s are likely only sensitive to 296 

velocity structures in the top 20 km, other types of seismic data (e.g., H/V ratio, receiver function) 297 

that have higher sensitivity to a different depth range could be incorporated into the evaluation 298 

scheme to assess the part of velocity model at shallower or greater depth. The proposed 299 

clustering-based model evaluation method provides a simple and first-order rating system for any 300 

existing velocity models that complements the more sophisticated model validation studies based 301 

on 3-D full-waveform simulations and can provide crucial information to future development of 302 

tomographic models, such as merging velocity models (e.g., determine the weighting of each 303 

velocity model in overlapping regions). 304 

Data Availability Statement 305 

The Rayleigh wave phase velocity maps are obtained from Qiu et al. (2019) and accessible at 306 

https://doi.org/10.17632/dt9x54dtrr.1. The community velocity models were extracted using 307 

UCVMC (https://github.com/SCECcode/UCVMC). The Python module Scikit-Learn version 308 

1.01 (Pedregosa et al., 2011) is used to perform the K-means clustering. 309 

 310 
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Figure caption 413 

Figure 1. Map of Southern California plate boundary region. Background color indicates the 414 

Moho depth (Tape et al., 2012). Grey dashed line depicts the 31 km Moho depth contour. Grey 415 

triangles are the stations used in Qiu et al. (2019). White solid line outlines the boundaries of 416 

major geological provinces. MD: Mojave Desert, PR: Peninsular Ranges, LAB: LA Basin, VB: 417 

Ventura Basin, SN: Sierra Nevada, ST: Salton Trough. 418 

Figure 2. Vs maps at 8 km extracted from (a) CVM-H15.1 and (b) CVM-S4.26. (c) Phase 419 

velocity map at 7 s from Qiu et al. (2019). Grey square in (a)-(c) indicates the location of the 420 

vertical velocity profile shown in (d)-(f). Grey dashed line in (d)-(f) is the average profile of the 421 

entire study region. 422 

Figure 3. K = 3 clustering results of (a) CVM-H15.1 and (c) CVM-S4.26. White dashed line is 423 

the 31 km Moho depth contour. Average Vs profile of each cluster of (b) CVM-H15.1 and (d) 424 

CVM-S4.26. 425 

Figure 4. K = 4 clustering result computed for (a) observed phase velocity and synthetic phase 426 

velocity of (b) CVM-H15.1 and (c) CVM-S4.26. Corresponding average phase velocity profile 427 

for each cluster (d)-(f). Dashed lines in (e) and (f) are average phase velocity profiles of each 428 

cluster shown in (d). 429 
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