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Abstract  
 

In this paper, we focus on the first significant digit (FSD) distribution of European micro 
income data and use information theoretic-entropy based methods to investigate the 
degree to which Benford’s FSD law is consistent with the nature of these economic 
behavioral systems. We demonstrate that Benford’s law is not an empirical phenomenon 
that occurs only in important distributions in physical statistics, but that it also arises in 
self-organizing dynamic economic behavioral systems. The empirical likelihood member 
of the minimum divergence-entropy family, is used to recover country based income FSD 
probability density functions and to demonstrate the implications of using a Benford prior 
reference distribution in economic behavioral system information recovery. 
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1. Introduction	

 In recent journal articles, Shao and Ma[1,2] investigated three widely used 

distributions in physical statistics and found that the Boltzman-Gibbs, Fermi-Derac and 

Bose-Einstein distributions either conform or fluctuate around the Benford[3] first 

significant digit(FSD) distribution. Since Benford’s law is an empirical phenomenon that 

occurs in a range of data sets, this raises the question as to whether or not the same thing 

might be true in terms of the very important income distribution in behavioral economics. 

To pursue this question, in this paper we use time-dated samples of European micro 

income data to investigate whether in behavioral economics, the FSD income probability 

density function-distribution conforms to Benford’s FSD law. The answer to this question 

is important because country based income data-distributions contains information on 

how the market is functioning, the allocation and distribution system is performing, and 

in terms of dynamics, how the economic system has changed and is changing over time. 

 

1.1 Benford’s Law 

 In 1881 astronomer and mathematician Simon Newcomb[4] conjectured that in 

natural data sets, the first digits did not occur with equal frequency. Instead Newcomb 

suggested that the occurrence of numbers is such that all mantissa of their logarithms are 

equally probable. This led him to suggest the following expression for the empirical 

distribution of first digits,  𝑃 𝑑 = log!"
!!!
!

, with the following probability of the 

digits P(d = 1, 2, ---, 9) =(0.301, 0.176, 0.125, 0.097, 0.790, 0.670. 0.058, 0.051, 0,046). 
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Fifty-seven years later physicist Frank Benford[3], empirically demonstrated that a large 

number of seemingly unrelated data sets provided a good fit to the FSD exponential 

distribution, and gave the FSD exponential distribution law status.  

Since then, others have published studies showing that “Benford’s Law” not only 

applies to a surprisingly large number of natural-behavioral data sets, but also has the 

nice properties of being scale and base invariant (see Varian[5] and Miller[6[. Overviews 

of the history and theoretical explanations include Raimi[7], Diaconis[8], Hill[ 9], Berger 

and Hill[10] Miller and Nigrini[11] and Judge and Scheckter[12]. Even when FSD data 

sets deviate from the Benford pattern, the lower digits are favored and decline 

monotonically. Given the nature of the distribution, it has been suggested that Benford’s 

law is a special case of the power law and thus a way of generalizing FSD distributions 

(see for example, Pietronero, et al., [13]. Furthermore, as noted above, Shao and Ma[1,2] 

demonstrate that in physical statistics, the Boltmann-Gibbs and Fermi-Derac distributions 

with respect to the temperature of the system, fluctuate around the Benford distribution 

and that the Bose-Einstein distribution exactly conforms to it.  

In	statistical	physics	and	behavioral	economics	one	might	naively	expect	that	

outcomes	of	admissible	microstates	of	physical	and	behavioral	systems	are	equally	

probable	over	 long	periods	of	 time.	Alternatively,	Benford’s	 law	suggests	 for	 these	

and	 many	 other	 real	 world	 situations,	 the	 occurrence	 of	 nonzero	 digits	 are	 not	

uniformly	 distributed,	 but	 instead	 favor	 the	 smaller	 digits	 in	 a	 scale	 and	 base	

invariant	 exponential	 way.	 Given	 this	 difference	 in	 the	 digit	 distribution,	 in	 this	

paper	we	consider	 the	question:	 “Does	Benford’s	 exponential	 first	 significant	digit	

(FSD)	law	reflect	a	fundamental	principle	behind	the	complex	and	nondeterministic	
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nature	of	 large	scale	behavioral	systems	such	as	country	based	income	probability	

density	function-distributions?”		

In the sections ahead, we seek an answer to this question by using the FSD of 

country based household micro income data and entropy-based information theoretic 

methods to recover the corresponding exponential Benford’s distribution. In doing so, we  

demonstrate the degree to which the corresponding income FSD are consistent with 

Benford’s law. After introducing the information theoretic conceptual framework and the 

micro samples of income data, we provide behavioral economics empirical examples 

using micro income data over a range of several years and European countries. The paper 

concludes with a summary and the implications of our results.  

 

2.	The	Conceptual	Framework	

In	seeking	a	new	way	to	analyze	the	question	posed	at	the	end	of	Section	1,	

we recognize that economic income-social systems do not evolve in a deterministic or a 

random way, but tend to adapt behavior in line with an optimizing principle. While prior 

research has shown that Benford’s law most commonly holds in large naturally occurring 

numerical datasets, the presence of Benford’s law in samples of data from economic 

behavioral systems is an open question. As we seek a new way to think about Benford’s 

FSD distributional result in large complex and dynamic micro-income systems, we use 

information theory as a recovery method and entropy as the systems optimizing criterion-

status measure.  

2.1 Problem Formulation and Solution  
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 In the introduction, we discussed the Newcomb-Benford approach to determining the 

seemingly general exponential distribution of FSD. Pre analysis knowledge suggests that 

the FSD distribution of a sequence of positive real numbers from scale-independent 

multiplicative data should vary with the phenomena in question. In this context 

information theoretic methods offer a natural way to establish a data based link that 

captures the varying monotonically decreasing nature of the FSD.  

 To use information theoretic methods to recover the FSD distribution from a 

sequence of positive real numbers, we assume for the discrete random variable 𝑑! (for 

𝑖 = 1, 2 ,… , 9), that at each trial, one of nine digits is observed with probability 𝑝!. 

Suppose after 𝑛 trials, we have first-moment information in the form of the average value 

of the FSD:  

 𝑑!

!

!!!

𝑝! = 𝑑. (2.1) 

Based on 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛, 𝑑!!
!!! 𝑝! = 𝑑, 𝑝!!

!!! = 1, and 0 ≤ 𝑝! ≤ 1! , the nine 

digit FSD ill-posed inverse recovery problem cannot be solved for a unique solution. In 

such a situation it seems useful to have an approach that permits the investigator to use 

sample based information recovery methods without having to choose a parametric 

family of probability densities on which to base the FSD probability density function.  

 

2.2 An Information Theoretic Approach 

 One way to solve this ill-posed inverse problem for the unknown 𝑝! without making a 

large number of assumptions or introducing additional information is to formulate it as an 

extremum-optimization problem. In this context a solution is achieved by minimizing the 
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divergence between the two sets of probabilities and an optimizing goodness-of-fit 

criterion, subject to data-moment constraints. One attractive set of divergence measures is 

the Cressie-Read (CR) power divergence family of statistics (Cressie and Read[14], Read 

and Cressie[15], and Judge and Mittelhammer, [16,17]):  

 𝐼(𝒑,𝒒, 𝛾) =
1

𝛾(1+ 𝛾)  𝑝!
𝑝!
𝑞!

!

− 1
!

!!!

 , (2.2) 

where  𝛾 is an arbitrary unspecified parameter. All well known  entropy divergences 

belong to the class of CR functions. In the context of recovering the unknown sample 

information FSD distribution, we make use of the CR criterion (3.2) and seek a solution 

to the following extremum problem: 

 𝒑 = arg min
𝒑

𝐼(𝒑,𝒒, 𝛾) |  𝑝!

!

!!!

𝑑! = 𝑑, 𝑝!

!

!!!

= 1,𝑝! ≥ 0 . (2.3) 

When 𝛾 → −1  and 𝐼(𝒑,𝒒, 𝛾)  converges to an estimation criterion equivalent to the 

empirical likelihood (EL) criterion ln (!
!!! 𝑝!). As γ varies, power law like behavior is 

efficiently described and the resulting estimators that minimize power divergence exhibit 

qualitatively different sampling behavior. Over defined ranges of the divergence 

measures, the CR and entropy families are equivalent.  

 

2.3 CR (gamma->-1) Mean Related FSD Distribution 

In terms of the information-theoretic variants of the CR 𝐼(𝒑,𝒒, 𝛾) we demonstrate 

for the Benford recovery problem the case of the CR 𝛾 → −1 criterion, 𝑤𝑖𝑡ℎ  a uniform 

reference distribution 𝒒 (𝑞! = 1/9,∀𝑗). First moment information 𝑑 is used as a basis for 

recovering discrete FSD probability distributions. As noted above, under the criterion CR 
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𝛾 → −1 , the CR 𝐼(𝒑,𝒒, 𝛾)  converges to the empirical likelihood criterion metric 

9!! (!
!!! 𝑙𝑛𝑝!) and the extremum likelihood function  

 
max
𝒑

9!! ln 𝑝!

!

!!!

 |  𝑝!

!

!!!

𝑑! = 𝑑, 𝑝!
!

!!!
= 1 . 

 

(2.4) 

The corresponding Lagrange function is  

 

𝐿(𝒑, 𝜂, 𝜆) ≡ 9!! ln 𝑝!!
!!! − 𝜂 𝑝!!

!!! − 1 − 𝜆 𝑝!!
!!! 𝑑! − 𝑑      (2.5) 

with the solution  

 𝑝! 𝑑, 𝜆 = 9!! 1+ 𝜆 𝑑! − 𝑑
!!
, (2.6) 

for the 𝑗th FSD outcome. As the mean of the significant first digits varies a family of 

probability density functions-distributions result. For mean FSD values less than 5, the 

resulting estimated FSD distribution reflect the monotonic decreasing FSD probabilities 

exhibited by the Benford distribution. As the FSD mean approaches the Benford mean 

3.44, the CR-EL and FSD distributions are approximately equal. If we use the CR in the 

limit γ→-1 criterion and a Benford reference distribution 𝐼(𝒑,𝒒! , 𝛾) = (!
!!! ln𝑝!/𝑞!"), 

then with the first moment condtion of 3.44, the Benford FSD distribution is exactly  

reproduced. 

 

2.4 Discussion	

The	relationship	between	the	CR-EL	minimum	divergence	entropy	measure	

and	the	Benford	FSD	distribution	provide a basis for recovering information regarding 

the unknown FSD probability density function from samples of micro income behavioral 
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data.	 In	seeking	an	optimizing	criterion	with	the	income	behavioral	data,	we follow 

Wissner-Gross and Freer[18] and recognize the connection between adaptive intelligent 

behavior, causal entropy maximization and self-organized equilibrium seeking behavior. 

As noted early in Section 2, the connection between causal adaptive behavior and entropy 

maximization, based on a causal generalization of entropic forces, suggests that 

behavioral systems do not evolve in a deterministic or a random way, but tend to adapt 

behavior in line with an optimizing principle. As we think about the connection between 

Benford’s FSD distribution and information recovery in the causal adaptive behavior of 

large complex and dynamic micro income-economic systems, entropy emerges as the 

systems status measure and a basis for gauging performance. Given the entropy adaptive 

behavior connection we now turn to an empirical example of European income data and 

the resulting information theoretic FSD income behavioral distributions. 

 

3.	The	Eurostat	Micro	Income	Data	

			Eurostat is a Directorate-General of the European Commission. Its main 

responsibilities are to provide statistical information to the institutions of the European 

Union (EU). Considering data availability and country characteristics, we use income 

household data for the following 13 countries listed in Table 3.1.  
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Table 3. 1	

COUNTRIES AND ABBREVIATIONS AND NUMBER OF OBSERVATIONS	

Abbreviation	 Country	 Number	
Observations	

	   AT	 Austria	 58,669	
BE	 Belgium	 59,053	
CZ	 Czech	republic	 77,726	
DK	 Denmark	 57,735	
EL	 Greece	 45,245	
ES	 Spain	 102,211	
FR	 France	 77,053	
IE	 Ireland	 51,895	
IT	 Italy	 138,943	
PL	 Poland	 124,487	
PT	 Portugal	 37,395	
SK	 Slovakia	 47,166	
UK		 United	Kingdom	 83,797	
Total	in	13	Country	Sample	 961,375	
Total	Negative	

	
804	

Total	Missing	 		 59	
Percent	Data	Used	From	Raw	Data	 99.94%	

Source: EUROSTAT.	

	

Among all income related variables in the Eurostat’s micro survey database, we 

use the variable “Total household gross income” to measure the income level. It measures 

in Euros without an inflation factor the sum of gross personal income components for all 

household members.  The total household gross income variable is a comprehensive and 

well-defined variable for our study and is consistent with income measures used in 

previous studies. In Table 3.2 we specify which countries have data available for each of 

the years from 2004 to 2013.	
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TABLE 3.2	

AVAILABLE YEARLY INCOME DATA SAMPLES BY COUNTRY	

Years	 Countries	

2004	 AT,BE,DK,IE	

2005	 AT,BE,CZ,DK,IE,PL,SK,UK	

2006	 AT,BE,CZ,DK,ES,HU,IE,PL,SK,UK	

2007	 AT,BE,CZ,DK,ES,FR,GR,IE,IT,PL	

2008	 AT,BE,CZ,DK,EL,ES,FR,IE,IT,,PL,PT,SK,UK	

2009	 AT,BE,CZ,DK,EL,ES,FR,IE,IT,PL,PT,SK,UK	

2010	 AT,BE,CZ,DK,EL,ES,FR,IE,IT,PL,PT,SK,UK	

2011	 AT,BE,CZ,DK,EL,ES,FR,IE,IT,PL,PT,SK,UK	

2012	 AT,BE,CZ,DK,EL,ES,FR,IE,IT,PL,PT,SK,UK	

2013	 AT,BE,CZ,DK,EL,ES,FR,IE,IT,PL,PT,SK,UK	
Source: EUROSTAT.	

	

The household level micro income data are in Euros for all of the 13 countries. 

Summary statistics of the household income data by country and by year are reported in 

Villas-Boas, et al[17]. There are a total number of 961,375 data observations by country-

year and the data are quite complete and clean. After removing negative and missing 

entries, we keep 99.94% of the original household sample data. We use the complete 

sample of income data for each country to obtain the FSD distributions by year.  

 

 

4. Information Theoretic European Income FSD distributions 

In this section we compare Benford and the information theoretic FSD income 

distributions for thirteen European countries. We focus on the analysis of the FSD 



	 11	

samples of the micro income data from 13 European countries that range over the years 

2004 to 2013. In the analysis of the samples of FSD income data, we make use of the 

information theoretic methods of Section 2 as a basis for summarizing the country based 

samples of income data in the form of FSD probability density functions so that they can 

be compared to the Benford FSD distribution. 

 

4.1 Entropy FSD Income Measure  

 In order to provide the information that is needed to group  and compare the FSD 

income distributions of the 13 European countries, we make use of the entropy 

measure 𝐸 =  γ → −1 =. 9!! ln 𝑝!!
!!! . Using this entropy criterion-measure we seek a 

FSD probability density function solution for each country for the combined years 2009-

2013.This entropy measure is defned as  a measure of the uncertainty-diversity-

information contained in the  FSD income probability density functions. As a benchmark 

the entropy measure for the Benford probability density function distribution is 

approximately 2.0. Making use of this country based FSD entropy measure for the 

combined sample of years 2009-2013, we are able to produce ranking of the 13 European 

countries as shown in Figure 4.1 below. 
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Figure 4.1. Entropy Measure of the FSDs for 13 European Countries 

          The FSD entropy measures for all the European countries are closely associated 

with the Benford FSD entropy measure-distribution of 1.9938. Additionally, the higher 

the entropy measure, the more uniformly distributed the FSD income distribution. For 

example, Austria’s high entropy measure of 2.06 indicates an FSD income density 

function that is not only more uniform than the Benford FSD distribution, but also the 

most uniform of the 13 European countries studied. On the other hand, the low entropy 

measure of 1.91 for Greece indicates a large departure from the Benford distribution, and 

the least uniform FSD income probability density function-greatest income inequality of 

the European countries studied. It is of interest to note that the three low entropy 

countries Greece, Ireland and Slovakia, are countries that recently have been facing 

economic-financial problems.  

4.2 Income FSD Probability Density functions for Central and Eastern European   

Countries  

 In Figure 4.2, we jointly display for the combined 2009-2013 data, the FSD 

probability density functions for AT- Austria, DE-Germany, FR-France, BE-Belgium and 

1.8	

1.85	

1.9	

1.95	

2	

2.05	

2.1	

Entropy	Measure	for	13	countries,	2009-2013	
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IT-Italy, PL-Poland, CZ-Czech Republic, PT-Portugal, ES-Spain and the UK-United 

Kingdom, SK- Slovakia, IE-Ireland and EL-Greece. 

 

Figure 4.2 Income FSD Probability Density Functions for Central and Eastern    

European countries 

 Like the FSD distributions noted earlier in physical statistics, and the entropy 

measures in Figure 4.1, all the 13 country FSD density functions, 1) closely fluctuate 

around the Benford distribution, 2) have the Benford exponential distribution shape and 

3) share similar features relative to their FSD probability density-income distribution 

functions and entropy measure. Also the first moment information-mean of the 

distributions of the European countries, closely fluctuate around the first moment 

Benford mean 3.4402.  

        For clarification and comparative purposes and to provide some additional 

information for the combined FSD distributions in Figures 4.1 and 4.2, in order to make 

sure the countries are sufficiently differentiated, we break the European countries into the 

following three groups: first the Central European countries AT-Austria, DE-Germany, 

FR-France, BE-Belgium and IT-Italy; second PL-Poland, CZ-Czech Republic, PO-
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Portugal, ES-Spain and the UK-United Kingdom; and third SK-Slovakia, IE-Ireland and 

EL-Greece. As a basis for gauging the goodness of fit when comparing the country 

income FSD data distributions with the Benford distribution, we make use of the 

commonly used Chi Square test statistic. If the counts of the digits are statistically 

independent, then assuming the null hypothesis of Benfords law to hold, the statistic may 

be compared to the chi square distribution with nine degrees of freedom. The goodness of 

fit-Chi Square test statistics comparisons of the empirical income FSD distributions and 

the Benford distribution for the countries in Figure 4.2, are presented in Tables 4.2.1, 

4.2.2 and 4.3.3 of sections 4.2.1, 4.2.2 and 4.2.3 that follow. As will be noted in these 

Tables in the subsections of Section 4.2, all of these countries have income FSD 

probability density functions that are highly correlated with the Benford FSD distribution 

and inference wise relative to the Benford FSD distribution, have very low Chi Square 

values of statistical significance. 

4.2 .1 Central European Countries 

Figure 4.3 permits us to see visually see how closely the EL income FSD 

distributions for Austria (AT), Germany (DE), France (FR), Belgium (BE) and Italy (IT) 

follow the Benford distribution and the chi square goodness of fit test in Table 4.1 

confirms we cannot reject the null hypothesis of equality of the country distributions with 

Benford.  .  
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Figure 4.3 Central European Countries 

  

 

 

Table 4.1 Chi Square and correlation Values for Figure 4.3 

  EL(AT) EL(DE) EL(FR) EL(BE) EL(IT) 
Chi square 0.01411 0.00839 0.00374  0.00130  0.00074  
Correlation 0.99518  0.99712  0.99868  0.99950  0.99969  

 

4.2.2 Central and Eastern European Countries 

 Oce again the visual evidence of distribution compatibility in Figure 4.4 is clear,  

and inference wise the chi square goodness of fit statistic is once again smaller than the 

critical value. Thus we cannot reject the null of equality between Benford and the EL 

distribution of the first significant digits for these countries.  Additionally, the 

correlations between Benford and EL distributions in Table 4.2 are very high for all pair 

wise comparisons. 
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Figure 4.4 Central and Eastern European Countries 

  

 

Table 4.2 Chi Square and Correlation Values for Figure 4.4 

 EL(PL) EL(CZ) EL(PT) EL(ES) EL(UK) 

Chi square 0.01092  0.00039  0.00202  0.01092  0.00282  

Correlation 0.99750  0.99994  0.99958  0.99750  0.99939  

 

4.2.3 Slovakia, Ireland and Greece 

     Again visually and inference wise the compatibility between the income distributions 

and the Benford distribution are demonstrated in Figure 4.5 and Table 4.3. 
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Figure	4.5.	Income	FSD	Density	Functions	and	the	Benford	Distribution	

	

Table 4.3 Chi Square and Correlation Values for Figure 4.5 

 EL(SK) EL(IE) EL(EL) 

Chi square 0.00936 0.01400 0.01092 

Correlation 0.99786 0.99680 0.99750 

 

As an example the time ordered-dynamic characteristics of income FSD 

distributions, annual comparisons between the empirical likelihood(EL) FSD 

distributions and the Benford FSD distribution for Germany, are presented in the 

Appendix A for the years 2005-2013. 

 

	
5. Income	Density	Function	FSDs	With	Benford	PRIOR	Distribution	
	

In estimating the FSD income probability density functions, to acknowledge their 

decreasing monotonic nature, instead of a uniform distribution suppose we follow 

Grendar, et al. [19], and use the Benford distribution, 𝑞!, as the empirical likelihood 

reference distribution in (2.4). Thus, in the CR formulation, 𝛾 → −1 𝑖𝑛 (2.4), Benford 
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reference distribution probabilities 𝑞! replace the uniform reference distribution. This 

leads to the BEL or Benford EL, criterion 

 

lim!→!! I(p, q!, γ) = q!"!
!!! ln (p! q!") = q!"!

!!! ln (p!)− q!"!
!!! ln ( q!").  (5,1) 

 

where 𝑞!"!
!!! ln ( 𝑞!") is an added constant. Using this revised criterion, the data 

constraint 𝑑!!
!!! 𝑝! = 𝑑, and the probabilities adding-up condition, results in   

 

                            p!! d, λ = q!" (1+ λ (d! − d))!! ,                                               (5.2) 

 

where λ is such that p! (d, λ) satisfies the mean FSD constraint. 

As an example of the implications of using Benford as a reference distribution, we 

use of the Central and Eastern European micro income data discussed in Section 4.2.2.  

 

 

 

Figure 5.1 Income FSD Distributions For Central and Eastern European Countries 

with a Benford Reference Prior 
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Table 5.1 Chi Square and Correlations for Figure 5.1 

  BEL(PL) BEL(CZ) BEL(PT) BEL(ES) BEL(UK) 

Chi square 0.00010  0.00034  0.00162  0.00089  0.00223  

Correlation 0.99999  0.99999  0.99999  0.99999  0.99999  
	

 

As indicated in Figure 5.1 and Table 5.1, when a  prior reference distribution is used, the 

FSD income distributions for these countries, almost exactly follow the Benford FSD 

distribution. Similar results follow for the other eight European countries. 

 

6. Some Concluding Remarks 

In this paper we have presented evidence that important economic behavioral 

systems FSD distributions in are closely linked to the Benford’s FSD distribution. Both 

inference and correlation wise  we have noted the close relationship between the income 

FSD distribution of micro data in Europe and Benford’s FSD law. These results that 

relate to important distributions from both the physical and social-behavioral worlds, add 

another bit of evidence in the direction that Benfords’s law is not an artifact but a natural 

law. As we have demonstrated in the CR family of entropic functions, in the limit as 𝛾→-

1, the empirical likelihood distribution with a Benford as the reference distribution 

closely follows the Benford distribution. Although not presented, other members of the 

CR family of entropy distributions also reflect the exponential nature of the distribution 

of income in behavioral systems, and appear to denote when used with income micro data 

the universal nature of Benford’s law. From a methodological standpoint we have 
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demonstrated in a behavioral systems context, how information theoretic methods may be 

used to identify income FSD probability density functions and make distributional 

comparisons with Benford’s law. In the CR family of entropic functions, in the limit as 

𝛾→-1, the empirical likelihood distribution with a known reference distribution provides 

a new basis for combining distributions and possibly introducing a dynamic income 

distribution component. 

 

Appendix: Time Path of Income FSD Probability Density Functions For Germany 

As an example of the time ordered-dynamic characteristics of income FSD 

distributions, annual comparisons between the Empirical Likelihood (EL) FSD 

distributions and the Benford FSD distribution for Germany are presented in Figure A.1 

for the years 2005-2013. As expected the annual income FSDs for Germany fluctuate 

closely around the Benford FSD distribution. As indicated by the Chi-Square and 

correlation values in Table A.1, the annual distributions match with Benford is excellent. 

If we use the Benford distribution as the reference distribution (BEL) in obtaining the 

estimate of the income distribution, the Benford and BEL distributions are almost 

identical. 
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Figure A.1 Annual German  EL distributions and the Benford FSD distribution 

	

 2005EL 2006EL 2007EL 2008EL 2009EL 2010EL 2011EL 2012EL 2013EL 
Chi square 0.0023 0.0012 0.0016 0.0026 0.0062 0.0049 0.0103 0.0134 0.0154 
Correlation 0.9992 0.9995 0.9994 0.9991 0.9978 0.9983 0.9965 0.9954 0.9947 

	

Table A.1 Chi Square values, correlations and significance for yearly EL German 

FSD distributions and the Benford  distribution 
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