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Visual stream connectivity predicts assessments of image
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Damian R. Sowinski
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Despite extensive study of early vision, new and
unexpected mechanisms continue to be identified. We
introduce a novel formal treatment of the psychophysics
of image similarity, derived directly from straightforward
connectivity patterns in early visual pathways. The
resulting differential geometry formulation is shown to
provide accurate and explanatory accounts of human
perceptual similarity judgments. The direct formal
predictions are then shown to be further improved via
simple regression on human behavioral reports, which in
turn are used to construct more elaborate hypothesized
neural connectivity patterns. It is shown that the
predictive approaches introduced here outperform a
standard successful published measure of perceived
image fidelity; moreover, the approach provides clear
explanatory principles of these similarity findings.

Introduction

To a human observer, two different images, warped by
the same means (e.g., degraded by JPEG compression,
ISO-10918) (Pennebaker & Mitchell, 1992; Wallace,
1992), may appear to have changed different amounts.
In fact, prior work has shown that the perception
of a warped image ⇀s does not cohere to any linear
or univariate function of the mean change to pixel
luminance (Dzhafarov &Colonius, 1999; Fechner, 1860;
Fernandez & Farell, 2009; Georgiev, 2006; Itti & Koch,
2001; Oliva, Samengo, Leutgeb, & Mizumori, 2005;
Petitot, 2003; Pons, Malo, Artigas, & Capilla, 1999;
Sarti, Citti, & Petitot, 2008; Seung & Lee, 2000; Wang &
Bovik, 2009). Figure 1 illustrates a sample discrepancy
between the perceived change to an image and simple

pixelwise vector distances. This neatly demonstrates
the need for further accounting beyond a linear model.
Elements of the image content interact within the
visual system. The provocative question remains: What
properties of percepts drive these interactions? A closer
examination of such properties may help us to describe
the underlying perceptual processes. Despite extensive
study, the underlying perceptual mechanisms by which
pixels give rise to similarity judgments remain unclear.

The field of full-reference image quality assessment
(IQA) has endeavored to account for the perceived
similarity of degraded images to their originals.
Models of the psychophysics of just-noticeable
differences and luminance masking describe perceived
image degradation in terms of pixels (Daly, 1992;
Damera-Venkata, Kite, Geisler, Evans, & Bovik, 2000;
Egiazarian, Astola, Ponomarenko, Lukin, Battisti,
& Carli, 2006; Larson & Chandler, 2010; Lukas &
Budrikis, 1982; Ponomarenko, Silvestri, Egiazarian,
Carli, Astola, & Lukin, 2007; Teo & Heeger, 1994;
Wang & Bovik, 2002). Alternatively, models of saliency
or attention have been used to weight perceptually
important image regions (Farias & Akamine, 2012; Gu
et al., 2016; Itti & Koch, 2001; Kuo, Su, & Tsai, 2016;
Li & Bovik, 2010; Moorthy & Bovik, 2009; Moorthy &
Bovik, 2011; Wang & Li, 2011; Wang & Shang, 2006;
Xue, Zhang, Mou, & Bovik, 2014; Zhang, Shen, &
Li, 2014). Among the most frequently cited works in
this area, the Structural Similarity (SSIM) measure
(Wang, Bovik, Sheikh, & Simoncelli, 2004; Wang,
Simoncelli, & Bovik, 2003) combines metrics of pixel
luminance, local contrast, and local correlation in
normalized images. A commonality of these approaches
is that each tests existing psychological principles using
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Figure 1. (a) As an original (non-degraded) image (⇀s) becomes
increasingly compressed (via a lossy method such as JPEG), how
dissimilar are the images judged to be? Equal physical changes,
in terms of average luminance, will not be perceived as equal to
humans. (b) A reduced example of three pixels in isolation (⇀sa)
with degraded counterpart ⇀s′

a; for comparison, an alternate
example (⇀sb) with degraded counterpart

⇀s′
b. (c) We can convert

each image into a pixel vector of luminances (zero for black,
one for white), as is often done. Euclidean distances can be
computed between a pair of such image vectors by measuring
luminance differences across each row and then combining the
results. (d) The Euclidean distance between original and
degraded images in both images is 0.1; however, humans
overwhelmingly perceive change to be greater in the second
(⇀sb→⇀s′

b) case, presumably due to the context of surrounding
pixels.

task-specific formulas. By contrast, this study seeks new,
task-general pathways through which to link biology
and psychophysics. We see degraded image perception
as a question of perceptual geometry, which allows
for the quantification of interactions between pixels.
In other words, we seek to use perceptual geometry to
compare the space of image stimuli (bitmaps) with the
space of human image percepts in order to understand
perception’s mapping between the two.

Many tools from differential geometry can naturally
capture the context-dependent processing of visual
features (e.g., an individual pixel relative to its
neighbors) (Figure 1). From the perspective of a simple
and principle-agnostic parameterization—conditional
relationships among pixels—one can quantify existing
neural (Petitot, 2003) or psychophysical (Dzhafarov
& Colonius, 1999; Georgiev, 2006; Sarti et al., 2008)
principles. Such quantifications in the framework of

perceptual geometry are indeed predictive of behavior.
Consider, for example, Pons and colleagues (1999), who
quantified local contrast geometrically and successfully
used the resultant model in IQA. The formalism
that Pons and colleagues and Malo, Ferri, Albert,
Soret, and Artigas (2000) pioneered in IQA has been
extended by others. Laparra, Muñoz-Marı,́ and Malo
(2010) introduced modeling mechanisms for the use of
divisive normalization in perceptual geometry. Others
have fused perceptual geometry with the geometry
of natural image statistics, modeling both jointly
(Epifanio, Gutierrez, & Malo, 2003; Malo, Epifanio,
Navarro, & Simoncelli, 2005). Others have proposed
metrics derived from natural image statistics instead
of biology or psychophysics (Berardino, Laparra,
Ballé, & Simoncelli, 2017; da Fonseca & Samengo,
2016). Although the objective of these metrics diverges
slightly, the underlying mathematics is related (da
Fonseca & Samengo, 2018). Perceptual spaces are often
surprisingly accessible to inference. One can use the
same geometric tools to compare multiple hypotheses
(e.g., Georgiev, 2006; Petitot, 2003), as in this paper;
generate new hypotheses (e.g., Dzhafarov & Colonius,
1999); and even integrate disparate hypotheses into
a single underlying principle (Rodriguez & Granger,
2021).

We construct a first-principles framework based
upon similarity spaces and data-driven modeling.
A similarity space quantifies an item based on
its similarity to other items, eschewing positional
coordinate systems. This framework has proven
crucial to illuminating underlying processes in human
perception. For example, neural codes have been shown
to form similarity spaces, in which the similarity among
population activity patterns is more interpretable
than any individual pattern (de Beeck, Wagemans, &
Vogels, 2001; Haushofer, Livingstone, & Kanwisher,
2008; Kriegeskorte & Kievit, 2013; Oliva et al., 2005).
Similarity spaces have proved a valuable way to quantify
hypotheses of visual object and shape perception
(Ashby & Perrin, 1988; Edelman, 1998; Edelman &
Shahbazi, 2012; Ehm &Wackermann, 2012; Goldstone,
1994; Unzicker, Jüttner, & Rentschler, 1998). In fact,
it has been posited that similarity spaces may even
be a primary product of perception (Edelman, 1998;
Shahbazi, Raizada, & Edelman, 2016).

Presumably, human judgments of visual similarity
among images approximate samples from a perceiver’s
internal similarity space (de Beeck et al., 2001;
Medin, Goldstone, & Gentner, 1993). Treating human
behavioral judgments as such, we construct a model of
the strain (as used in physics) involved in converting
Euclidean image similarity into perceptual image
similarity. We then derive an image-space similarity
measure that matches. We show that straightforward
properties of circuitry in the early visual pathway
directly give rise to derived non-Euclidean similarity
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measures. These similarity measures are predictive
of human behavioral responses, providing a link
between early visual circuitry and behavior. The results
are compatible with findings in the literatures of
psychophysics (e.g., Oliva et al., 2005; Yue, Biederman,
Mangini, von der Malsburg, & Amir, 2012) and IQA
(e.g., Pons et al., 1999). Moreover, the formulation
has already been shown to account for a seemingly
unrelated set of visual psychophysics phenomena (i.e.,
crowding) (Rodriguez & Granger, 2021). We believe
that this formalism is the first to use strain to directly
approach the possible causal relationships between
biological connectivity and psychophysics. In summary,
this formalism may be used to refine our understanding
of the unseen processes that give way to the quirks of
human visual perception and ultimately prove useful
to future applications in predicting judgments and
behavior.

Theoretical treatment

A differential geometry of image perception

Bitmaps, like photoreceptors in the eye, simplistically
encode images onto Cartesian coordinates of pixels.
Each axis can denote one (independent) pixel in an
image, and the value along an axis is the luminance of
that pixel. To calculate the dissimilarity between two
image stimuli, ⇀s and ⇀s′, a straw-man approach is to
simply assume that the change in each bitmap pixel is
independently processed and then averaged (as in mean
squared error [MSE]):

1
D

D∑
d=1

(
s′d − sd

) (
s′d − sd

)
(1)

where D is the number of pixels in the image. This can
be rewritten, in linear algebra terms, as the dot product
of the vector between ⇀s and ⇀s′. Dropping the 1/D term
(which is constant in each dataset) yields a measure
of image difference which is the (squared) Euclidean
distance:

d2
E

(
⇀s, ⇀s′

)
=

(
⇀s′ − ⇀s

)T (
⇀s′ − ⇀s

)
(2)

Perceptual similarity is best described by
image-space metrics that are non-Euclidean
(Oliva et al., 2005; Petitot, 2003; Resnikoff, 1974;
Sarti et al., 2008). In psychophysics, the relationship
between Euclidean and perceived distance is often
reliable (if complicated). This affords an opportunity to
model similarity judgments as a structured deviation
from Euclidean distance (Oliva et al., 2005; Petitot,
2003; Pons et al., 1999; Resnikoff, 1974; Sarti et al.,
2008; Seung & Lee, 2000). We present an analysis in

Figure 2. Vector space account of perceptual strain. Each
possible image can be considered a point (i.e., a vector from
the origin; black arrows) in pixelated image space, where each
Cartesian coordinate is the luminance of one pixel. Here, we
plot only two such coordinate axes for simplicity. When humans
perceive images, cells form population codes that change the
representations of the light patterns. Therefore, an image ⇀s and
its degraded counterpart ⇀s ′ are displaced to new coordinates
⇀sP and ⇀s ′P . This perceptual strain is quantified as a vector field
⇀u(⇀s ) that can be evaluated at any image (green arrows).
Approach I defines ⇀u(⇀s ) in terms of biological connectivity
patterns. Approach II triangulates the vector field of perceptual
strain from Euclidean (dE ) and perceived (dP ) distance
measurements. Crucially, in our hands, perceived distance is
Euclidean after the correct perceptual displacement field is
applied to images. The new image positions (⇀sP ) are left as an
internal property of neural representations.

which this neural transformation is modeled under
continuum mechanics (Landau & Lifshitz, 1986)—in
this framework, a displacement of images ⇀s to new
“perceived” positions ⇀sP within an image space. Each
new position differs from the original via a displacement
field, ⇀u(⇀s ):

⇀sP = ⇀s + ⇀u
(

⇀s
)

(3)

Perception strains the image space, which changes
the Euclidean distances between stimuli. Figure 2 lays
out the problem in pixelated image space. The perceived
difference between ⇀s and ⇀s′ (the Euclidean distance
between ⇀sP and ⇀s′P ) is

d2
P

(
⇀s, ⇀s ′

)
=

(
⇀s ′P − ⇀sP

)T (
⇀s ′P − ⇀sP

)
(4)

We seek to formalize the geometry of perceptual
space—how points compare to one another. Geometry
is agnostic to the exact value of this new position, ⇀sP .
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Therefore, we will focus on constructing a new measure
of image difference that is a function of the original
images (not of ⇀sP ). We now show that the displacement
in Equation 3 can be reinterpreted as distortions of
the metric of the space in which the images live. Each
difference vector between a perceived image and a
perceived degraded copy is defined as

⇀s′P − ⇀sP = ⇀s′ + ⇀u
(

⇀s′
)

− ⇀s − ⇀u
(

⇀s
)

(5)

Taylor expanding to first order, Equation 5 reads as
a function of how the displacement field has changed
between ⇀s and ⇀s ′ (how strain changes as images change,
⇀∇s

⇀u):

⇀s′P − ⇀sP =
(

⇀s′ − ⇀s
)

+
(

⇀∇s
⇀u
T)T (

⇀s′ − ⇀s
)

(6)

A first-order Taylor polynomial models the
displacement field between ⇀s and ⇀s′ as a linear function.
This first-order approximation does not account for
how the gradient of strain changes along the path from
⇀s to ⇀s′. The approximation will be poor if the path
from ⇀s to ⇀s′ is sufficiently nonlinear. Two conditions
can guarantee an accurate approximation. First, the
displacement field can have little curvature relative
to the distance between images. Second, the distance
between images can be sufficiently small to make any
curvature irrelevant. Although the degradations that we
evaluate (see Methods) are at times obvious to subjects,
they are miniscule on the scale of image space. That is,
degradations never transform one reference image into
another one, or make nonlocal changes. In the IQA
task, we believe that both conditions can be taken as
reasonable assumptions, at the cost of some modeling
error. Per the results, even an imprecise first-order
approximation appears to capture valuable patterns. An
important next step will be to utilize highly nonlinear
models of perceptual strain, building on important
prior work (Epifanio et al., 2003; Laparra et al., 2010;
Malo et al., 2000; Malo et al., 2005; Pons et al., 1999).

Equation 6 can be factored as

⇀s ′P − ⇀sP =
(
I +

(
⇀∇s

⇀u
T)T

) (
⇀s ′ − ⇀s

)
(7)

where I is the identity matrix (the tensor of Cartesian
coordinates in Euclidean space);

⇀∇s
⇀u
T
is a matrix

where the value in the ith row and jth column and
∂ui/∂sj, describe how much additional displacement
the luminance change to pixel j contributes to the
perceptual displacement of pixel i:

(
⇀∇s

⇀u
T)T

≡

⎡
⎢⎣

∂u1
∂s1

· · · ∂u1
∂sD... . . . ...

∂uD
∂s1

· · · ∂uD
∂sD

⎤
⎥⎦ (8)

A high value of ∂ui/∂sj suggests a strong connection
between pixels i and j. The Euclidean distance metric
in Cartesian coordinates of pixels (e.g., Equations 2
and 4) has the identity matrix as its tensor. Now that
we understand Equation 7, we can compute perceived
distance (Equation 4) without reference to ⇀sP :

d2
P

(
⇀s, ⇀s ′

)
=

(
⇀s ′ − ⇀s

)T
(
I +

(
⇀∇s

⇀u
T)T

)T

I

×
(
I +

(
⇀∇s

⇀u
T)T

) (
⇀s ′ − ⇀s

)
(9)

See Derivation of perceptual distance for a
derivation. Equation 9 can be found in other works
of perceptual geometry, each of which defines the
non-Euclidean metric in terms of what an expert
will recognize as a Jacobian (defined in the following
sections) that models stimulus response. Here, the
Jacobian represents how strain changes across images.
See, for example, Pons and colleagues (1999, equations
4 and 16); Malo and colleagues (2000, equation
1); Epifanio and colleagues (2003, equations 2 and
9); Malo and colleagues (2005, equations 5 and
6); and Laparra and colleagues (2005, equations 8
and 10).

The transition from Equation 4 to Equation 9
is a crucial step, because it alleviates the need for
⇀sP , which

⇀sP is the observer’s internal percept and
the object of study but not directly measurable.
So far, the perceptual displacement field has been
equally immeasurable. In the next section, we will
discuss how the perceptual displacement field (our
central quantification of perceptual strain) can be
related to biological connectivity and psychophysical
measurements.

Mathematical relationship between biological
projection patterns and perceptual strain

We define perception P as an operation that changes
each bitmap image stimulus ⇀s (a point on Cartesian
coordinates of pixels) to a perceived vector ⇀sP :

⇀sP = P⇀s (10)
Let us say that P is a locally multilinear operator—a

D × D matrix for each stimulus. The main diagonal
represents 1:1 topographic connectivity among neurons,
or an unmodified percept. Each off-diagonal describes
an additional biological connection or perceptual
interaction (that may strain image space). This matrix
is a simple way to quantify connectomes and local
projection patterns like those in Figure 3. Here, each
element of P is a scalar function describing how a
pair of neurons, receptive fields, concepts, or brain
regions relate. This concept of connectivity is believed
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Figure 3. Principles formalized from neural connectivity. (a) Caricature of neural projections from cells in the lower population (where
each cell represents light at one location, much like pixels) to downstream cells, with a topographic connectivity pattern. Neighboring
cells represent neighboring pixels. These cells connect with their neighbors (solid arrows). Downstream, cells again receive
projections from neighbors (dashed arrows). See text. (b) A Gaussian connectivity function (see text). Such connectivity is often found
in (left to right) retinal ganglion cells (De Monasterio, 1978; Young, 1987) and visual cortex (Young & Lesperance, 2001). (c) A
difference-of-Gaussian connectivity function (see text). Such connectivity is found in, for example, OFF-center retinal bipolar cells (i,
midget; ii, diffuse (Dacey et al., 2000)). Similar connectivity is also found in retinal ganglion cells that project to the parvocellular (iii,
0°–5°; iv, 10°–20° from visual center) (Croner & Kaplan, 1995) or magnocellular (v, 0°–10°; vi, 10°–20° from visual center) (Croner &
Kaplan, 1995) pathways, across the visual field: vii, peripheral (Dacey, 1996; Dacey, 2000) and viii < 10° from fixation (Rodieck, 1965).
(d) Instead of drawing connectivity patterns from documented biology, we can use tools such as regression to find the pattern of
connectivity that, given simplicity assumptions, best explains the relationship between images and human ratings.

to be equivalent to some quantifications of linear cell
receptive fields (Chichilnisky, 2001). Qualitatively, the
incoming connectivity to a neuron defines its receptive
field.

In the retina, image pixels are topographically
mapped to photoreceptors—adjacent pixels are
processed by adjacent photoreceptors. In turn,
neighboring photoreceptors project to neighboring
retinal cells, with some lateral excitation and inhibition
(Figure 3a). Thus, a given retinal cell receives
information from a small contiguous region of an
image (Dacey, Packer, Diller, Brainard, Peterson, &
Lee, 2000). The resulting receptive fields are typically

fit by a Gaussian function of relative retinotopic
position between points i and j on an image (retinal
distance, dret(i, j) (Dacey et al., 2000; De Monasterio,
1978; Sincich & Blasdel, 2001; Young, 1987; Young &
Lesperance, 2001); for electrophysiological examples,
see Figure 3b:

Gauss (dret (i, j)) = exp

(
−dret (i, j)2

2σ 2

)
(11)

The early visual stream conserves this topographic
connectivity (Croner & Kaplan, 1995; Dacey, 1996;
Dacey, 2000; Dacey & Petersen, 1992; Dacey et al.,
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2000; Hubel & Wiesel, 1962; Martinez & Alonso, 2003;
Olshausen, 2003; Rodieck, 1965; Von der Malsburg,
1973). This preserved topography may be expressed
using Gaussian and center-surround connectivity. The
latter can be approximated as the difference between
two concentric Gaussian functions of distance—a
narrow center and broad surround (difference of
Gaussians [DOG]) (Figure 3c):

DOG (dret (i, j)) = 1
1 + α

exp

(
−dret (i, j)2

2σ 2
center

)

− α

1 + α
exp

(
−dret (i, j)2

2σ 2
surround

)
(12)

Equations 11 and 12 describe how pixels will be com-
bined when these cells process an image. Equation 12 is
the last biological function that we require.

By connecting neuroscience to psychophysics, we can
begin to generate new predictions and understandings
of how the underlying biology explains behavior.
We are ready to specify how perceptual strain links
these two bodies of knowledge. We set the biological
projection in Equation 10 equal to continuum
mechanics Equation 3 (and rearrange), yielding:

⇀u
(

⇀s
)

= P⇀s − ⇀s (13)

However, to measure distance, we wish to relate P to
the gradient of ⇀u:

⇀∇s
⇀u
T = ⇀∇s

(
⇀s
T
PT − ⇀s

T)
(14)

The gradient of ⇀s with respect to itself is simply I. We
make this replacement and apply a transpose, returning
the left side to something more simply expressed:(

⇀∇s
⇀u
T)T

= P − I (15)

Equation 15 shows that any known perceptual
operator P can be written in terms of the derivative of
the displacement field. We can say that the displacement
field is generated by the perceptual operator.

Psychophysicists often measure scalar differences
between end percepts. To relate these difference
measures to biology, we need a formula for difference
as a function of P. Using Equation 15, we can insert P
into Equation 9. The perceived difference between ⇀s
and ⇀s ′ is simply

d2
P

(
⇀s, ⇀s ′

)
=

(
⇀s ′ − ⇀s

)T
PTI P

(
⇀s ′ − ⇀s

)
(16)

where image difference has been distorted by perceptual
strain. In terms of differential geometry, P is the
Jacobian of the perceptual distortion. If there exists no
perceptual strain, P = I, and d2

P (
⇀s, ⇀s ′) = d2

E (
⇀s, ⇀s ′).

Given P, Equation 16 can be used to calculate the
perceived difference without direct measurement of
the displacement field. Instead, Equation 16 predicts
perceived difference using a perceptual strain that has
been inferred from biological projection patterns. In
the next section, we will introduce two approaches for
selecting P.

Predicting perceived distance

Equation 15 is a simple way to generate the
perceptual displacement field from P. We evaluate
several possible forms of P herein. The first is Gaussian
connectivity between the cells that favor pixels i and j
(as described earlier and in Figure 3b):

pi, jGauss = Gauss (dret (i, j)) (17)

For a perceptual operator using difference of
Gaussians, a simple change to Equation 17 suffices:

pi, jDOG = DOG (dret (i, j)) (18)

For convenience, we designed the Gaussian form
in Equation 11 to provide Gauss(0) = 1. In fact, when
choosing our units, we set all perceptual relations
relative to the center of the receptive field. EachP has 1’s
along the diagonal. When we subtract I in Equation 15,

we zero the diagonal elements of (
⇀∇s

⇀u
T
)
T
(and thus

the strain tensor; see Derivation of strain tensor).
Together, these components account for image space
dilation, which cannot be measured using relative
psychophysical distances. (Diagonal connectivity, the
Euclidean component of perception, is separately
represented by I in Equation 15.)

It will be seen in the Results and predictive capacity
section that both Gaussian and DOG versions of
this equation, with no further modifications, provide
unexpectedly accurate predictions of human image
similarity judgments. In fact, these very surprisingly
outperform an approach that is designed specifically for
the task (Figure 7, Table 1).

PGauss (Equation 17) and PDOG (Equation 18) are
used as examples of “approach I” herein. This simple
approach produces a Jacobian from the displacement
field, which lets us measure the perceived distance
between two stimuli. The resulting Jacobians are of
course unlikely to be perfectly accurate representations
of the actual connectivity patterns in early visual
pathways, which are shaped by development and
learning.

Thus, in a second approach (“approach II”), we
regress on pairs of image change (⇀s ′ − ⇀s) and human
evaluations of dissimilarity. We vary each cell of the
perceptual Jacobian until the resulting tensor produces
image dissimilarities that are locally maximally
Pearson-correlated with human ratings. The resulting
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CSIQ TID2013 SceneIQ Online

JPEG Revised JPEG Mean Toyama JPEG All C F H IC M OC S TB SceneIQ Lab all

Correlation on log–log axes
Approach I
Gaussian σ = 0.6 px (0.0310°) 0.93 0.76 0.79 0.71 0.42 0.63 0.63 0.75 0.61 0.79 0.67 0.63 0.79 0.67 0.67
Gaussian σ = 2 px (0.1238°) 0.95 0.92 0.49 0.53 0.32 0.56 0.54 0.68 0.52 0.69 0.55 0.51 0.68 0.50 0.55
Center surround (DOG) 0.95 0.92 0.96 0.81 0.52 0.83 0.85 0.85 0.85 0.86 0.84 0.85 0.85 0.83 0.87

Approach II
SceneIQ Online 0.94 0.91 0.95 0.82 0.76 0.84 0.86 0.86 0.86 0.87 0.86 0.86 0.87 0.83 0.89
SceneIQ Lab 0.94 0.90 0.95 0.82 0.76 — — — — — — — — — 0.88

Euclidean (MSE) 0.87 0.55 0.86 0.78 0.41 0.45 0.54 0.51 0.57 0.71 0.54 0.49 0.73 0.63 0.52
SSIM 0.86 0.78 0.88 0.72 0.61 0.65 0.68 0.81 0.64 0.80 0.75 0.75 0.82 0.75 0.70
MS-SSIM 0.86 0.88 0.89 0.70 0.78 0.77 0.78 0.80 0.81 0.82 0.82 0.81 0.83 0.79 0.80
IWSSIM 0.86 0.89 0.86 0.68 0.82 0.75 0.75 0.78 0.81 0.81 0.82 0.79 0.83 0.77 0.77
VSNR 0.88 0.76 0.92 0.71 0.80 0.68 0.65 0.71 0.75 0.80 0.69 0.62 0.76 0.75 0.73
VIF 0.96 0.96 0.94 0.77 0.88 0.85 0.85 0.87 0.87 0.88 0.88 0.86 0.88 0.85 0.89
VIFP 0.95 0.89 0.92 0.76 0.75 0.78 0.77 0.83 0.84 0.84 0.84 0.81 0.86 0.81 0.83
IFC 0.87 0.79 0.82 0.60 0.82 0.71 0.75 0.81 0.78 0.80 0.78 0.77 0.84 0.74 0.72
GMSD 0.94 0.94 0.96 0.82 0.79 0.86 0.86 0.86 0.87 0.87 0.88 0.86 0.86 0.85 0.89
PerceptNet 0.88 0.71 0.66 0.64 0.33 0.41 0.44 0.48 0.49 0.55 0.35 0.35 0.64 0.42 0.46
BioMultilayer 0.93 0.85 0.93 0.77 0.73 0.76 0.75 0.81 0.79 0.81 0.77 0.81 0.84 0.77 0.79

Correlation on linear axes
Approach I
Gaussian σ = 0.6 px (0.0310°) 0.93 0.76 0.80 0.72 0.42 0.63 0.63 0.75 0.61 0.79 0.67 0.64 0.80 0.67 0.66
Gaussian σ = 2 px (0.1238°) 0.94 0.92 0.45 0.51 0.31 0.50 0.50 0.65 0.46 0.66 0.49 0.46 0.65 0.45 0.48
Center surround (DOG) 0.93 0.91 0.96 0.82 0.50 0.83 0.84 0.86 0.85 0.86 0.84 0.85 0.85 0.83 0.87

Approach II
SceneIQ Online 0.76 0.81 0.90 0.74 0.70 0.76 0.75 0.81 0.75 0.81 0.78 0.80 0.80 0.77 0.79
SceneIQ Lab 0.76 0.80 0.90 0.75 0.70 — — — — — — — — — 0.79

Euclidean (MSE) 0.86 0.55 0.86 0.78 0.40 0.45 0.54 0.51 0.58 0.71 0.54 0.50 0.74 0.63 0.51
SSIM 0.84 0.78 0.87 0.70 0.60 0.63 0.67 0.80 0.64 0.80 0.75 0.74 0.82 0.75 0.69
MS-SSIM 0.87 0.89 0.91 0.71 0.79 0.79 0.79 0.82 0.83 0.83 0.83 0.82 0.84 0.80 0.81
IWSSIM 0.87 0.90 0.87 0.69 0.84 0.76 0.75 0.79 0.82 0.82 0.83 0.80 0.84 0.78 0.77
VSNR 0.88 0.76 0.92 0.72 0.80 0.68 0.66 0.72 0.76 0.80 0.69 0.62 0.76 0.76 0.73
VIF 0.90 0.94 0.88 0.71 0.88 0.80 0.78 0.84 0.84 0.86 0.85 0.82 0.87 0.83 0.83
VIFP 0.91 0.88 0.88 0.72 0.74 0.75 0.72 0.80 0.82 0.84 0.82 0.79 0.85 0.80 0.79
IFC 0.79 0.73 0.76 0.57 0.82 0.65 0.69 0.78 0.76 0.79 0.75 0.72 0.83 0.73 0.67
GMSD 0.94 0.94 0.97 0.83 0.81 0.87 0.87 0.87 0.88 0.88 0.88 0.87 0.87 0.86 0.90
PerceptNet 0.80 0.66 0.60 0.62 0.28 0.36 0.39 0.51 0.41 0.48 0.31 0.31 0.61 0.37 0.39
BioMultilayer 0.93 0.85 0.94 0.78 0.74 0.77 0.76 0.82 0.80 0.82 0.78 0.82 0.85 0.78 0.79

Table 1. Pearson correlation with humans. Pearson correlation with humans (DMOS) on log–log axes for the presented models (rows)
on several datasets (columns). Euclidean distance (MSE) between images and models from the literature (e.g., SSIM) are included for
comparison. Except for SceneIQ, correlations were calculated on entire datasets. SceneIQ Online and SceneIQ Lab correlations
represent the mean across two random folds of original (non-degraded) images (see Methods). Approach II SceneIQ Online was
trained on each fold of SceneIQ Online and tested on the other fold. On other datasets, the reported correlation represents approach
II fitted to all SceneIQ Online and tests the generalization of approach II trained on SceneIQ Online to a different dataset. For each
dataset, the highest-performing model is indicated in bold and the second highest with an underline. All correlations were found to
differ from zero with p << 0.001 via permutation test (after Bonferroni correction for 100 comparisons). C = coast, F = forest, H =
highway, IC= inside city, M=mountain, OC= open country, S= street, TB= tall building, MS-SSIM=multi-scale structural similarity,
IW-SSIM = image content weighted structural similarity, VSNR = visual signal-to-noise ratio, VIF = visual information fidelity, VIFP =
pixel-based visual information fidelity, IFC = information fidelity criterion, GMSD = gradient magnitude similarity deviation.

Jacobian may be hypothesized to more accurately
correspond to the transforms that may be taking place
along the connections in the early visual pathway,
as in Figure 3d. This approach may be considered
roughly accordant with methods in the IQA literature
that attempt to learn optimal predictors of human
judgments (e.g., Narwaria & Lin, 2010; Shnayderman,
Gusev, & Eskicioglu, 2006). Using approach II, we can

model the pattern of connectivity that, given simplicity
assumptions, best explains how images relate to human
ratings. Our objective is a Jacobian P that causes
maximal correlation between perceptual dissimilarity
(computed between each ⇀s and ⇀s ′ using Equation 16)
and human difference ratings.

Approaches I and II will both be evaluated in the
following sections.
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Methods

Derivation of perceptual distance

In this paper, we defined ⇀u(⇀s ) as the distortion field
which places images ⇀s in new locations ⇀sP where, locally,
perceived difference matches Euclidean distance. We
wrote that Equation 2, d2

E (
⇀s, ⇀s ′) = (⇀s ′ − ⇀s )

T
(⇀s ′ − ⇀s ),

can be meaningfully converted into Equation 9,

d2
P (

⇀s, ⇀s ′) = (⇀s ′ − ⇀s )
T
(I + ⇀∇s

⇀u
T
)I(I + (

⇀∇s
⇀u
T
)
T
)(⇀s ′ − ⇀s ).

Let us derive this using Figure 2. The difference
between perceptual image coordinates is given
by Equation 4, d2

P (
⇀s, ⇀s ′) = (⇀s ′P − ⇀sP )

T
(⇀s ′P − ⇀sP ). By

applying Equation 3 (or by using a little trigonometry
on Figure 2):

d2
P

(
⇀s, ⇀s ′

)
=

(
⇀s ′ + ⇀u

(
⇀s′

)
− ⇀s − ⇀u

(
⇀s
))T

×
(

⇀s ′ + ⇀u
(

⇀s′
)

− ⇀s − ⇀u
(

⇀s
))

(19)

Importantly, we can replace ⇀u(⇀s′) with ⇀u(⇀s ) plus the
degree to which ⇀u(⇀s′) differs from ⇀u(⇀s ) as we move from
⇀s to ⇀s′:

⇀u
(

⇀s′
)

= ⇀u
(

⇀s
)

+
(

⇀∇s
⇀u
T)T (

⇀s ′ − ⇀s
)

(20)

We apply this replacement to Equation 19, then
cancel the ⇀u(⇀s ) − ⇀u(⇀s ) terms. This yields a function only
of images and changes to ⇀u as a function of changes to
pixel intensity:

d2
P

(
⇀s, ⇀s ′

)
=

(
⇀s ′ +

(
⇀∇s

⇀u
T)T (

⇀s ′ − ⇀s
)

− ⇀s
)T

×
(

⇀s ′ +
(

⇀∇s
⇀u
T)T (

⇀s ′ − ⇀s
)

− ⇀s
)

(21)

We reorder this equation and then distribute the
outer transpose:

d2
P

(
⇀s, ⇀s ′

)
=

((
⇀s ′ − ⇀s

)T
+

(
⇀s ′ − ⇀s

)T ⇀∇s
⇀u
T
)

×
((

⇀s ′ − ⇀s
)

+
(

⇀∇s
⇀u
T)T (

⇀s ′ − ⇀s
))

(22)

Next, we factor each half of the formula, returning
the equation to a form we recognize as equivalent
to Equation 9:

d2
P

(
⇀s, ⇀s ′

)
=

(
⇀s ′ − ⇀s

)T (
I + ⇀∇s

⇀u
T )

I

×
(
I +

(
⇀∇s

⇀u
T)T

) (
⇀s ′ − ⇀s

)
(23)

We started with a simple difference measure in
terms of unknown perceptual/neural representations,
(⇀s ′P − ⇀sP )

T
(⇀s ′P − ⇀sP ). Equation 23 looks somewhat like

the equations that Pons and colleagues (1999, equation
18) and Laparra and colleagues (2010, equation 11)
used to construct their nonlinear perceptual metrics.
This equation has now been converted into a strained
difference measure in terms of image pixels.

Derivation of strain tensor

In the previous subsection, we could have
replaced Equation 9 with the inner multiplication:

d2
P

(
⇀s, ⇀s ′

)
=

(
⇀s ′ − ⇀s

)T
(
I + ⇀∇s

⇀u
T +

(
⇀∇s

⇀u
T)T

+ ⇀∇s
⇀u
T(

⇀∇s
⇀u
T)T

) (
⇀s ′ − ⇀s

)
(24)

The last term in the middle is an order smaller than
the other terms. If we assume that it is vanishingly
small, we reach a new equation:

d2
P

(
⇀s, ⇀s ′

)
=

(
⇀s ′ − ⇀s

)T
(
I + ⇀∇s

⇀u
T +

(
⇀∇s

⇀u
T)T

)

×
(

⇀s ′ − ⇀s
)

(25)

We define the strain tensor based on the above
equation:

d2
P

(
⇀s, ⇀s ′

)
=

(
⇀s ′ − ⇀s

)T
(I + 2ε)

(
⇀s ′ − ⇀s

)
(26)

where ε is the strain tensor and I, the identity matrix,
was the original tensor. By distribution of the previous
equation, we can create an alternative definition of
perceptual distance (not required herein):

d2
P

(
⇀s, ⇀s ′

)
→ d2

E

(
⇀s, ⇀s ′

)
+ 2

(
d⇀s

)T
εd⇀s (27)

where 2(d⇀s )
T
εd⇀s is the change in distance caused by

perceptual strain.

Published datasets

We evaluate our perceptual model on three industry-
standard datasets. The Categorical Subjective Image
Quality (CSIQ) dataset (Larson & Chandler, 2010)
contains 30 hand-selected color 512 × 512 pixel images
of animals, landscapes, people, plants, and urban
scenes. The images were degraded to five different levels
of JPEG fidelity, which human subjects (N < 35, precise
count unknown) placed together on a linear scale such
that pairwise distances between the images matched
perceived difference. The TID 2013 (Ponomarenko
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Figure 4. Characteristics of the SceneIQ dataset. (a) Example images. (b) Layout of the experimental paradigm. (c) Mean of the
subject-wise standard deviation across all images and quality levels for three sets of data (left to right): the CSIQ (JPEG) dataset’s
original DMOS scores, DMOS scores for CSIQ non-degraded images degraded at the same quality levels used on the SceneIQ dataset
and scored on MTurk, and the SceneIQ scores. (d) SceneIQ Online dataset. Mean DMOS score increased as the JPEG quality decreased
(humans rate lower fidelity images as being lower fidelity). Bars are standard error across images (N = 2080).

et al., 2015) and Toyama (Tourancheau, Autrusseau,
Sazzad, & Horita, 2008) datasets were also utilized
for breadth. These datasets contain similar imagery,
with slightly varying image sizes and measures. Each
of these datasets contains subsets with different image
degradation methods (see citations). Regardless of
dataset, all human ratings reported here are normalized
to a range of [0, 1], where 0 is no perceived distance
(perfect fidelity).

Preexisting datasets have been shown to be
inconsistent benchmarks, even when datasets contain
almost the exact same images. CSIQ, TID 2013, and
Toyama share many images but prefer different IQA
measures (Lin & Kuo, 2011; Winkler, 2012). Our work
also raises the possibility of comparing natural image
statistics with perceptual geometry. Such comparisons
would require more plentiful imagery to overcome
natural image variability and a more targeted set of
natural scenes, known to vary in image statistics. We
therefore introduce the new Scene Image Quality
(SceneIQ) dataset, based on reference images with
well-characterized statistics (Oliva & Torralba, 2001).
Whereas CSIQ, TID 2013, and Toyama each contains

less than 50 original (non-degraded) images, SceneIQ
contains 2080 original images.

Newly acquired sceneIQ dataset

We acquired human fidelity ratings for a public set
of 256 × 256 pixel color images (Oliva & Torralba,
2001), split into eight scene categories: seacoast, forest,
highway, inside city, mountain, open country, street,
and tall building (for examples, see Figure 4a). The
images were randomly subsetted from the original
publication to equalize N across categories. We used
260 images per category, the number of images in the
rarest category. Each image in the dataset was degraded
into four JPEG quality levels: 30%, 20%, 10%, and 5%
using ImageJ (National Institutes of Health, Bethesda,
MD) (Schneider, Rasband, & Eliceiri, 2012).

The dataset contains 260 × 8 = 2080 non-degraded
images and 8320 degraded images. This high count is
important to reduce regression overfitting and evaluate
higher order statistics but poses a problem because no
single subject can rate this many images. Although
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other assignment strategies were evaluated, we decided
to split the subjects into groups. Each subject was
randomly assigned to a set of 40 images, without
replacement, such that every image is seen exactly once
within one group of 52 people. We collected enough
data for five groups, or 260 subjects from (primarily)
American humans on Amazon Mechanical Turk
(MTurk). Each image was seen by five people, yielding
a total of 41,600 ratings. Although human ratings
were based on color JPEGs, all IQA algorithms used
grayscaled versions. This is the standard procedure
in the field of IQA—measures such as SSIM cannot
be computed on multispectral data. For all computer
IQA measures, images were normalized (luminance
stretched) to a range of 0 to 255.

In each randomly shuffled trial, one non-degraded
image was presented per screen, along with the four
degraded versions of the same image in random order.
To make a series of pairwise comparisons, subjects
could left click to magnify any thumbnail in the left
box and right click to magnify it in the right box
(screenshot in Figure 4b). Subjects were instructed to
rate each degraded image based on how different it was
from the original, on an integer scale from 0 to 100
(instructions are available in Supplementary Figure
S1). These ratings were converted to a difference mean
opinion score (DMOS, a standardized measure) by
the equation DMOS = 1 – (rating/100). A DMOS of
1 rates two images as 100% different (an undefined
concept). A DMOS of 0 indicates that images have
no perceptible difference. When subjects were satisfied
with the correctness of all four ratings (without time
constraint), they clicked “Accept” to advance to the
next trial.

Ratings obtained via MTurk involve everyday
viewing conditions and thus are less controlled for
viewing parameters. So, to validate/baseline these
SceneIQ Online DMOS ratings obtained via MTurk,
we compared them with the commonly accepted
DMOS scores of CSIQ. As indicated by Figure 4c, the
original DMOS scores for the CSIQ dataset, collected
in a controlled environment, have on average half the
variance of those collected using our online paradigm.
However, online data collection yielded data with more
subjects and more images. More data reduces standard
error and enhances power (indeed, Figure 4d indicates
small standard error bars in one simple analysis).
This approach has been shown to improve statistical
significance in unrelated work (Buhrmester, Kwang, &
Gosling, 2011). Perhaps, the ecological validity of real,
variable viewing conditions makes these ratings an even
more reliable benchmark than scores collected under
highly controlled conditions.

Five subjects were discarded and replaced with new
ones. Two were discarded because their data became
corrupted during collection, two were discarded
because they self-reported as having poor vision, and

one was discarded for disregarding task instructions,
almost always responding with the maximum rating
value. To avoid biasing the dataset, we chose liberal
inclusion criteria. To enable more strict exclusion
of subjects that poorly adhered to the task, future
iterations of this dataset would benefit from catch trials
or measures of task performance orthogonal to the
dependent variables.

The paradigm and stimuli were replicated in a
controlled laboratory setting at Dartmouth (SceneIQ
Lab dataset). All subjects used the same high-quality
screen (U28D590; Samsung, Seoul, South Korea), same
private viewing room, and similar viewing distance
(50.8 cm, 20 inches). Forty-nine subjects (18–22
years old; 35 females) participated in rating degraded
versions of 600 original (non-degraded) images (75
per semantic category), extracted from the same
image source as SceneIQ (Oliva & Torralba, 2001) and
degraded identically. Four participants were discarded
for incomplete data.

To eliminate uncontrolled inconsistencies between
the CSIQ and SceneIQ datasets, we will also report a
dataset (CSIQ Revised) collected using CSIQ original
(non-degraded) images but SceneIQ image degradation
and methodology. Consistently with SceneIQ, we
degraded each CSIQ image to four JPEG quality levels:
30%, 20%, 10%, and 5% using ImageJ (Schneider et
al., 2012). Forty subjects each rated all images via
MTurk using the same paradigm as SceneIQ Online.
No subjects were discarded.

All human studies were approved by the
Dartmouth institutional review board. Additional
summary statistics are visible in Supplementary
Figure S2. SceneIQ can be acquired online at
https://github.com/DartmouthGrangerLab/SceneIQ or
by contacting the authors. Additional methodological
details can also be found online.

Approach I

The human perceptual operator was first described
by a Gaussian function with a standard deviation of
σ . Only the SceneIQ Lab dataset contains the viewing
parameters needed to convert our stimulus model
in units of pixels (px) into degrees visual angle (°).
Therefore, we present all models in terms of pixels, and
approximate degrees visual angle for all datasets based
on the SceneIQ Lab viewing parameters. For SceneIQ
Lab, the center pixel was 0.0619°. Given the Gaussian
hypothesis, we seek the optimal parameterization of σ
and judge the hypothesis on its best parameterization.
(Prior works have similarly optimized hypothesis
parameters using real data; see Wang et al., 2003; Wu,
Lin, Shi, & Liu, 2013). The model was evaluated with
σ in the range [0.4, 3.0] px, or [0.0247, 0.1857]°, by
increments of 0.1 px (0.0062°). Across five random folds

https://github.com/DartmouthGrangerLab/SceneIQ
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Figure 5. Determination of an approach II Jacobian by way of regression. A Jacobian is initialized. Second, the Jacobian is used to
measure the distance between each image pair. Third, the error of this Jacobian is computed based on how well its distances
correlate with human subject ratings. If this Jacobian produces reduced error, it is marked as the best working hypothesis. Finally, new
Jacobians are generated with slight deviations from the best working hypothesis.

of the original (non-degraded) images, we recorded the
σ of the highest correlations (minimum error) with
DMOS.

The perceptual operation was next described by a
difference between two concentric Gaussian functions.
We evaluated a range of values for center Gaussian
width by increments of 0.2 px (0.0124°) on the range
[0.6, 5.0] px ([0.0371, 0.3095]°); surround (negative)
Gaussian width in increments of 0.2 px (0.0124°) on
the range [0.6, 5.6] px ([0.0371, 0.3466]°) (larger values
become slow to compute); and the ratio of maximum
heights between the two Gaussians, α (increments of
0.1 px (0.0062°), range [0.5,1.5] px ([0.0310,0.0929]°).
Using the same cross validation procedure as before,
we recorded Pearson correlations with SceneIQ Online
DMOS for each possible parameter combination.

Both connectivity patterns described in this
section were derived from biology. However, their
parameterizations were derived by model fit. This yields
a high-performing hybrid Jacobian but does not fully
evaluate the relative contributions of actual Gaussian
and difference-of-Gaussians connectivity profiles in
the human. We look forward to further evaluations
of approach I with stimulus-independent, biologically
derived Gaussian widths.

Approach II

Our second approach uses regression to find a
perceptual Jacobian that measures the distance between
image pairs (⇀s ′ − ⇀s) in a humanlike way—in correlation
with DMOS scores. Treating our regression as an
optimization problem, we performed random walk
gradient descent on the set of all possible combinations
of values for the cells of the Jacobian. The Jacobian
was initialized to the identity matrix (the initial
distance measure was Euclidean). At each iteration,
the algorithm randomly selected a cell of the Jacobian.

This corresponded to a particular dimension of the
error surface. The algorithm then evaluated the error
of the Jacobian with this cell increased by 0.1 and
the error of the Jacobian with this cell decreased by
0.1. Error was defined as 1 − Pearson correlation
between the DMOS scores for all training images and
the distance scores provided by the new Jacobian. If
either modified Jacobian caused error to be reduced,
the evaluated Jacobian with the smallest error was
chosen as the new Jacobian. The algorithm iterated for
10,000 steps, which we subjectively determined to be
the point at which error plateaued (a minimum was
found; see Supplementary Figure S10). This algorithm
is visualized in Figure 5. Approach II succeeds despite
the extreme simplicity of its optimization algorithm,
which we find to be an argument for the power of
the general approach. Regularization was avoided
because it would be difficult to interpret the resultant
Jacobian if its values are attributed to an unknown
combination of correctness and regularization terms
(e.g., sparsity).

In order to more easily interpret these results, we
make the limiting assumption for approach II that a
single Jacobian is applicable across the set of all images
(or all examples of a scene category). Because this
Jacobian is nonspecific to a particular type of image,
we will be extracting only those perceptual components
applicable to all images. Several formalizations of
perceptual geometry in the literature (Epifanio et al.,
2003; Laparra et al., 2010; Malo et al., 2000; Malo et
al., 2005; Pons et al., 1999) offer hints at the potential of
a future “approach III” capable of constructing highly
signal-dependent Jacobians. Work remains to be done
to generalize this biological connectivity approach to
situations in which perceptual strain is highly variable.

For efficiency and because the Jacobian must be
a symmetric matrix to guarantee that the tensor will
fulfill the desirable property of symmetry, the upper
diagonal of the Jacobian is dependent only on the lower
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triangle. The diagonal is fixed to ones, accounting for
the identity matrix in Equation 15. Therefore, the error
surface is D × (D−1)

2 dimensional. Cells of the Jacobian
were limited to the range [−1, 1].

For the sake of computational complexity, we
assume for approach II that P is local and uniform
across the image (see Discussion for a simple relief
from this extension). This assumption is congruent
with the low-level visual system, wherein relations
between representations of topographical neighbors
are one dominant component (Dacey et al., 2000; De
Monasterio, 1978; Hubel & Wiesel, 1962; Martinez
& Alonso, 2003; Sincich & Blasdel, 2001; Von der
Malsburg, 1973; Young, 1987; Young & Lesperance,
2001). It is also approximately true for the radial basis
functions explored in approach I. Images were split
into 8 × 8-pixel tiles. This enabled us to optimize a
single 64 × 64 Jacobian (rather than a 65,536 × 65,536
Jacobian that has an untenable billion-dimensional
error surface). The 64 × 64 Jacobian was used to
compare each tile of an image, after which the tile
distances were summed. This tiling approach is
consistent with JPEG (Pennebaker & Mitchell, 1992;
Wallace, 1992), related compression methods (Bowen,
Felch, Granger, & Rodriguez, 2018), and other IQA
measures (e.g., SSIM; Wang et al., 2004). Sub-imaging
greatly increased the number of data points used for
training while simplifying the task.

Several considerations are relevant to this regression.
We present results using a regression that allowed
cells of the Jacobian to be negative. Negative cells in
the Jacobian indicate that certain features contradict
one another. Anecdotally, we found these results to
be superior to non-negative regressions. Second, the
solution of a gradient descent optimization may not
be unique (the regression may find one of many local
optima). Normally, researchers can find the global
optimum by performing multiple regressions with
different randomly initialized Jacobians. However,
the high dimensionality of the error space means
that it cannot be sufficiently sampled in a reasonable
amount of time, so it is not naïvely practical to find a
global minimum. We make an anecdotal report that
different random regressions (although all starting from
the identity matrix) produce nearly identical results.
This is likely because the implicit dimensionality of
natural images is low (Seung & Lee, 2000; Simoncelli
& Olshausen, 2001; Torralba & Oliva, 2003), as most
regions of image space are unpopulated.

Analysis

Models were evaluated by measuring the Pearson
correlations between model predictions and human
DMOS ratings, in log–log coordinates. We have found
that the relationship between human ratings and
model predictions is often clearer in log–log space.

We want to measure the statistical significance of
pairwise differences between correlations with DMOS
for competing models. One option is to perform
X-fold cross validation of the original (non-degraded)
images and measure the significance across folds of the
difference between two models. Due to the regression
runtime for approach II, we can at most acquire five
folds. Five pairs is too few for the nonparametric
Wilcoxon signed-rank test or Fisher–Pitman exact
permutation test—the minimum possible p value is not
significant. By contrast, the paired t-test (on Fisher
z-transformed correlations) can yield any p value but
will be sensitive to outliers and variability in the results.
Instead, we measured, for each of the two folds reported
in Table 1, a two-tailed Fisher r-to-z transformation,
then took the mean across folds.

For within-dataset analyses, the training set of
original images was randomly halved (preserving equal
N among semantic categories), and two approach II
Jacobians were independently optimized in a two-fold
cross validation. Each Jacobian was only used to predict
images uninvolved in its training, and the two sets of
test scores were pooled (without modification) for
comparison with DMOS.

For across-dataset analyses, an approach II Jacobian
was optimized on one entire dataset (e.g., SceneIQ Lab)
and then used to predict the mean subject’s DMOS
score for each image of a separate dataset.

Results and predictive capacity

The question asked is do the tensors produced by
approaches I and II explain most of the variance in
human ratings not already explained by Euclidean
measures? To test the ability of each connectivity
pattern to predict human similarity judgments,
we compared correlation with human ratings. The
outcomes of these analyses are apparent in Table 1. In
correlation with human ratings, Pearson’s r = 0.45 for
Euclidean (MSE); r = 0.63 for approach I Gaussian
σ = 0.6 px (0.0310°); r = 0.83 for approach I DOG;
and r = 0.76 for approach II (SceneIQ Online, linear
axes, mean across two folds of data) all differ from
chance (p << 0.001) (Table 1). Comparisons in terms
of rank-order correlation and logistic regression are
included in Supplementary Materials.

Error curves for approach I Gaussians of various
widths are compared in Figure 6. We present further
analyses using two parameters, σ = 2.0 px (0.1238°) for
CSIQ Revised and σ = 0.6 px (0.0310°) for SceneIQ,
found by taking the mean of the minimum-error σ
across folds (rounded to 0.1). We did not select a
parameter from CSIQ (JPEG) due to high variance
in the minimum-error σ across folds. We did not note
at the time that there may be some similarity between
these values and the correlation among pixels recorded



Journal of Vision (2022) 22(11):4, 1–22 Bowen, Rodriguez, Sowinski, & Granger 13

Figure 6. Approach I optimality with various Gaussian widths. A
range of Gaussian widths (σ ) was evaluated for each of five
random folds of the (a) CSIQ (JPEG) dataset, (b) CSIQ Revised
dataset, and (c) SceneIQ Online dataset using Pearson
correlation. Dashed lines mark the global minima of each fold.
(d) Difference-of-Gaussians training error as a combined
function of σ center and σ surround, on SceneIQ Online fold 1 of 2.

→

in the image dataset itself (see Supplementary Figure
S9b).

Figure 6d reports the two-dimensional error curve
for difference-of-Gaussians models on one fold of the
SceneIQ Online dataset. All folds reported the same
local maximum: σ center = 3.6 px (0.2228°), σ surround =
5.2 px (0.3219°), α = 0.7. In comparison with neuronal
response profiles (available for visualization in Figure
3), these parameters appear intermediate: More broad
profiles have been found in retinal ganglion cells (Dacey,
1996; Dacey, 2000; Rodieck, 1965). More narrow
and Gaussian-like profiles have been found by others
(Croner & Kaplan, 1995; Dacey et al., 2000). From this
DOG parameterization and the equation for DOG(x)
in Equation 12, we can compute the contrast sensitivity
function (CSF) that these parameters hypothesize
(Wandell, 1995):

yi = DOG(i)/DOG(0)∀i ∈ {−128..128}
⇀z = f f t(

⇀y)
zi = (2/257) z2i ∀i ∈ {2..129}

(28)

The result is depicted in Figure 6e in terms of
decibels, where zi = 10 log10(1 + zi). The shape of
this CSF is similar to those computed from DOG
parameters in other works. For example, Wuerger,
Watson, and Ahumada (2002) fit difference-of-
Gaussians parameters to human behavioral responses.
The authors used these parameters as the basis of
a spatial luminance CSF. In visual crowding, it was
recently found that a novel measure of contrast, capable
of relating DOG parameters to contrast sensitivity,
accounts for a substantial amount of data (Rodriguez
& Granger, 2021).

This CSF peaks at 0.56 cycles per degree. Unlike
CSFs found by some Gabor-based approaches
(Chandler, 2013; Dacey, 2000), its shape hints at
a bandpass (vs. lowpass) CSF. We note that CSFs
have been used directly in many measures of image
quality. Li, Lu, Tao, and Gao (2008) acquired a
bandpass CSF from prior experimentation (Mannos
& Sakrison, 1974), then applied it as a mask on the
wavelet-transformed image to enhance SSIM. However,
this CSF peaks drastically earlier (0.56 vs. 8 cycles per
degree). The peak of our CSF is more comparable
with those computed from difference-of-Gaussians
luminance models by Wuerger and colleagues (2002).
Still, the peak of this CSF is low by human standards
(Souza, Gomes, & Silveira, 2011), perhaps hinting that
subjects viewed the images peripherally.

←
For visualization, the third parameter (α) was eliminated by
selecting its optimal value for each combination of σ center and
σ surround. (e) Contrast sensitivity function computed from the
best difference-of-Gaussians parameters (see text).
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Figure 7. Correlation of Euclidean and approach II with DMOS. Half (first fold) of the full SceneIQ Online dataset. Machine ratings are
on the x-axis, and human DMOS ratings are on the y-axis. We have plotted lines of best fit. (a) Pearson’s correlation: Euclidean r =
0.44; approach II r = 0.76. Euclidean and approach II ratings were z-scored separately so they could be more usefully superimposed.
(b) Approach II against human ratings, reproduced on log–log axes. Pearson’s correlation on these axes was r = 0.85. Logistic fits and
comparisons with SSIM are available in Supplementary Materials.

It is important that the relationship between
predictions and behavior be simple. Complicated
relationships (e.g., logistic fits used in many IQA
methods) or those with many parameters require
further explanation. Figure 7a illustrates empirical
DMOS scores from SceneIQ Online as predicted by
Euclidean and approach II. In this case, the fit between
approach II and empirical human ratings (DMOS)
appears linear when plotted on log–log axes (Figure
7b). In Figure 7, the four groupings of approach II
ratings roughly correspond to the four JPEG quality
levels in the dataset.

We compare the predictive capacity of approaches
I and II against performance-driven IQA measures
from the literature: SSIM, MS-SSIM (Wang et al.,
2003), IWSSIM (Wang & Li, 2011), VSNR (Chandler
& Hemami, 2007), VIF (Sheikh & Bovik, 2006),
VIFP (Sheikh & Bovik, 2006), IFC (Sheikh, Bovik,
& De Veciana, 2005), and GMSD (Xue et al., 2014).
Table 2 compares these machine rating measures
with one another, depicting significant differences in
performance.

The above methods do not attempt to directly
capture biological connectivity patterns nor link
those to psychophysics—a central aim of this
work. For this reason, we compare against two
biologically relatable, shallow-layered, connectionist
approaches nicknamed PerceptNet (Hepburn,
Laparra, Malo, McConville, & Santos-Rodriguez,
2020) and BioMultilayer (Martinez-Garcia, Cyriac,
Batard, Bertalmío, & Malo, 2018). BioMultilayer is of

particular interest. Martinez-Garcia and colleagues
(2018) decomposed the stimulus–response map
into multiple successive sub-maps, each containing
a nonlinear operator. Like our strain model,
each of these operators constructs Jacobians to
determine how the value of each feature (e.g., pixel)
affects others. Unlike our approach, BioMultilayer
directly utilizes psychophysical masking and divisive
normalization.

SceneIQ is evenly divided across eight semantic
categories of visual scene. For approaches I and II,
a single Jacobian was identified for the set of all
images. Nonetheless, static transforms are consistently
performant psychophysical predictors across individual
image categories (Table 1). They also can be seen to
transfer well to the CSIQ dataset, where they remain
among the best predictors. Unexpectedly, perception
is easier to predict with this approach across scene
categories than within them.

In Table 1, we highlight results on the JPEG
degradation, because it is the same type used in the
SceneIQ dataset. To evaluate the presented approaches
in the broadest possible range of scenarios, we
also evaluate results on other degradation types.
Results on the “TID2013 Mean” contain the mean
correlation across 23 degradation types (source data
in Supplementary Table S5). To determine whether
approaches I and II generalize across degradation
methods, we measured correlations between model
and human ratings for each of the five degradation
types in the CSIQ dataset (Table 3). Although CSIQ
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Gaussian
σ = 0.6 px (0.0310°)

Gaussian
σ = 2 px (0.1238°)

Center surround
(DOG)

Approach II
SceneIQ Online

On log–log axes
Euclidean (MSE) 0* 0* 0* 0*
SSIM >0.3 0* 0* 0*
MS-SSIM 0* 0* 0* 0*
IWSSIM 0* 0* 0* 0*
VSNR >0.01 0* 0* 0*
VIF 0* 0* >0.007 >0.2
VIFP 0* 0* 0* 0*
IFC 0* 0* 0* 0*
GMSD 0* 0* >0.0002* >0.02
PerceptNet 0* 0* 0* 0*
BioMultilayer 0* 0* 0* 0*
Gaussian σ = 0.6 px (0.0310°) 1 >0.000001* 0* 0*
Gaussian σ = 2 px (0.1238°) >0.000001* 1 0* 0*
Center surround (DOG) 0* 0* 1 >0.1
Approach II SceneIQ Online 0* 0* >0.1 1

On linear axes
Euclidean (MSE) 0* >0.01 0* 0*
SSIM >0.3 0* 0* 0*
MS-SSIM 0* 0* 0* >0.001*
IWSSIM 0* 0* 0* >0.6
VSNR >0.006 0* 0* 0
VIF 0* 0* >0.0006* >0.000003*
VIFP 0* 0* 0* >0.4
IFC >0.1 0* 0* 0*
GMSD 0* 0* 0* 0*
PerceptNet 0* 0* 0* 0*
BioMultilayer 0* 0* 0* >0.3
Gaussian σ = 0.6 px (0.0310°) 1 0* 0* 0*
Gaussian σ = 2 px (0.1238°) 0* 1 0* 0*
Center surround (DOG) 0* 0* 1 0*
Approach II SceneIQ Online 0* 0* 0* 1

Table 2. Differences among Pearson’s r. Entries in this table indicate the probability that the proposed models (columns) and
alternative models (rows) correlate equally with humans on SceneIQ Online (all). The p values were determined by two-tailed Fisher
r-to-z transformation of Pearson correlations (as measured for each of two folds, then meaned; unadjusted). *Indicates values below
conservative Bonferroni thresholds for 28 comparisons at 0.05 (28 comparisons per proposed model/column).

is an unusually Euclidean-biased dataset, we find
that approach II and approach I, to a lesser extent,
generalize well to other degradation methods. We
fit an approach II model to each CSIQ degradation
method independently, then tested them on the same
degradation using two-fold cross-validation and the
same methodology as other approach II models. These
models performed well but were generally outperformed
by SceneIQ-fit models (possibly due to limited and
noisy data).

Approach I with a Gaussian hypothesis improves
drastically on the Euclidean null hypothesis, indicating
that Gaussian connectivity plays a role; for the
Euclidean versus approach I, Gaussian σ = 0.6 px

(0.0310°), p < 0.001 (SceneIQ Online, two-tailed Fisher
r-to-z; see Methods). However, the DOG hypothesis
outperforms the Gaussian hypotheses; for approach
I, Gaussian σ = 0.6 px (0.0310°) versus DOG, p <
0.001 (SceneIQ Online, two-tailed Fisher r-to-z). In
predicting perceived distance judgments, supplementing
Euclidean with approach I DOG scores, linear fit
log(DMOS) ∼ log(Euclidean distance) + log(approach
I DOG score) (adjusted R2 = 0.7166), is better than the
Euclidean measure alone, with linear fit log(DMOS) ∼
log(Euclidean distance) (adjusted R2 = 0.1989; SceneIQ
Online). More surprisingly, both approach I DOG
and approach II tensors reliably outperform several
performance-driven IQA algorithms (Table 1).
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CSIQ on log–log axes CSIQ on linear axes

JPEG JP2K fnoise blur awgn JPEG JP2K fnoise blur awgn

Approach I
Gaussian σ = 0.6 px (0.0310°) 0.93 0.93 0.90 0.92 0.94 0.93 0.94 0.92 0.92 0.94
Gaussian σ = 2 px (0.1238°) 0.95 0.90 0.92 0.89 0.84 0.94 0.86 0.91 0.85 0.82
Center surround (DOG) 0.95 0.93 0.93 0.90 0.93 0.93 0.91 0.92 0.89 0.93

Approach II
SceneIQ Online 0.94 0.97 0.95 0.97 0.95 0.77 0.84 0.85 0.82 0.89
SceneIQ Lab 0.94 0.97 0.95 0.97 0.95 0.77 0.84 0.85 0.82 0.89
CSIQ same degradation 0.89 0.94 0.95 0.93 0.95 0.88 0.78 0.85 0.78 0.89
Euclidean (MSE) 0.87 0.92 0.90 0.91 0.94 0.87 0.93 0.92 0.91 0.94
SSIM 0.86 0.81 0.73 0.79 0.80 0.84 0.78 0.72 0.76 0.74
MS-SSIM 0.86 0.81 0.71 0.80 0.79 0.87 0.82 0.71 0.81 0.79
IWSSIM 0.86 0.79 0.66 0.80 0.74 0.87 0.80 0.66 0.81 0.75
VSNR 0.88 0.87 0.84 0.82 0.90 0.88 0.88 0.85 0.83 0.90
VIF 0.96 0.92 0.91 0.89 0.95 0.90 0.72 0.89 0.73 0.94
VIFP 0.95 0.93 0.91 0.91 0.95 0.91 0.81 0.89 0.79 0.93
IFC 0.87 0.84 0.67 0.84 0.72 0.81 0.77 0.63 0.78 0.67
GMSD 0.94 0.96 0.89 0.94 0.92 0.95 0.96 0.90 0.95 0.92
PerceptNet 0.88 0.92 0.89 0.81 0.89 0.84 0.88 0.82 0.79 0.81
BioMultilayer 0.93 0.90 0.81 0.89 0.79 0.94 0.92 0.83 0.91 0.79

Table 3. Pearson correlation with DMOS on CSIQ subsets. Pearson correlation with humans (DMOS) on log–log axes for the presented
models (columns) on several datasets (rows). All values are calculated as the mean of two cross-validation folds of images. JP2K =
jpeg2000 distortion, awgn = additive white gaussian noise. See text. For each dataset, the highest-performing model is indicated in
bold and the second highest with an underline.

Discussion

To the extent that the newly introduced perceptual
displacement field does strain stimuli toward their
relative perceived locations, we directly predict that this
will explain effects in other perceptual domains such
as color constancy, visual filling-in, category-specific
connectivity, change blindness, and visual illusions.
We are actively investigating some of these domains
in our lab. For example, many disparate findings in
visual crowding can unexpectedly be explained by a
simple model that is almost identical to approach I,
simply adding connectivity corresponding to increasing
receptive field size that differs by degrees from fixation
(Rodriguez & Granger, 2021).

It should be emphasized that the IQA tasks and
corresponding datasets such as CSIQ and SceneIQ are
unlikely to capture higher level aspects of perception.
The approach presented here contains only simple
connectivity profiles, speculated to be akin to early
pathways, and cannot account for, for example,
nonlinearities in categorical perception, top-down
mechanisms in attention, or temporal dynamics in
motion processing. Like the early visual stream (Dill &
Fahle, 1998; Foster & Kahn, 1985; Nazir & O’Regan,
1990) but unlike higher level vision, such as face
perception (Rolls, 2012; Wallis & Rolls, 1997), our

approaches are not invariant to translation and scaling
(Supplementary Materials).

Those higher level processes sit downstream from
early vision. In the future, hierarchical and recurrent
tensors may be important for capturing the above
behavior. Approaches I and II may serve as valuable
representations of the early visual pipeline, from
which these more advanced models may draw. Human
percepts are unlikely to derive from evenly weighted
image regions, although weighting schemes have been
previously proposed (e.g., Wang & Shang, 2006) and
could eventually be applied here. Importantly, the
brain may process distinct image regions differently
depending on their content. Therefore, strain that is
defined not as constant but as a function of the input
may become an even more important extension.

These extensions will pose new challenges. The
computational complexity of fitting these models is
substantial, and differential geometric approaches
will eventually suffer from being under-constrained,
so methods must be devised to reduce the degrees
of freedom. However, many popular approaches
to gradient descent, evolution, sampling, and
back-propagation take the Euclidean assumption—that
optimization parameters can be evaluated in isolation.
In the non-Euclidean case, motion along one dimension
of the error manifold changes the shape of the
manifold in all directions. One interesting path of future



Journal of Vision (2022) 22(11):4, 1–22 Bowen, Rodriguez, Sowinski, & Granger 17

investigation will be to revise optimization algorithms
to account for the interrelations among features being
modeled. For example, under certain conditions, we
believe that the optimization problem can be re-cast as
a system of simple linear equations.

The underlying framework presented here also
may be considered for a broader set of objectives.
Models of perceived image quality are useful as
error measures in an algorithmic search for superior
image compression formulae (e.g., Romano, Isidoro,
& Milanfar, 2017; Toderici et al., 2017), and reduce
the need (in psychology, neuroscience, and software
design) for high-volume human data collection
(e.g., International Telecommunication Union, 1999;
International Telecommunication Union, 2006). In
machine learning, artificial networks are seldom
designed with predetermined connectivity, although
biologically informed connectivity in such networks has
been advantageous (LeCun et al., 1989). In the future, a
Jacobian can be cast as a predetermined weight matrix
of an artificial network. The approaches of this paper
may assist in further engineering solutions to analyses
of multivariate data containing spatially or functionally
related features. Examples include the decoding
of signals from brain electrode data, functional
magnetic resonance imaging, electrocorticography,
computer vision, weather stations, or collaborative
filtering.

We pose the IQA problem as one of perceptually
deforming image space, using Cartesian coordinates of
pixels (bitmaps) as the axes—the units of association.
It is entirely possible that this projection from image
to percept is more difficult than from other input
feature spaces or coordinate axes. Discrete cosine style
transforms have performed well in other IQA measures
(e.g., Bradley, 1999; Lai & Kuo, 2000; Sampat, Wang,
Gupta, Bovik, & Markey, 2009) but in our case were
found to be inferior (Supplementary Figure S11).
One explanation is that there are fewer neighborhood
relations among features in those spaces, making them
suboptimal for approaches based on feature–feature
associations. Other coordinate axes (e.g., Narwaria &
Lin, 2010; Sheikh & Bovik, 2006; Shnayderman, Gusev,
& Eskicioglu, 2006; Zhang, Zhang, Mou, & Zhang,
2011) may consist of features whose relations more
simply and consistently predict behavior. Ideally, it
may be possible to find an embedding of the images in
which feature relations strain to explain perception in
an optimal or parsimonious way.

Conclusions

Using well-known data from neural connectivity
in the early visual pathway, we showed the ability
to predict simple human similarity judgments (IQA
fidelity), suggesting that much of the variance in

these psychophysical judgments may be explained
by surprisingly simple neural principles. Moreover,
the predictions routinely rivaled or outperformed
those of a standard approach in the field. It is also
noteworthy that the formulations have been shown to
also provide explanatory accounts of a broad range of
psychophysical phenomena in the seemingly unrelated
subfield of visual crowding (Rodriguez & Granger,
2021).

Neural representations are non-Euclidean; relations
among neighboring features distort image geometry.
Approach I explicitly replicates two non-Euclidean
connectivity patterns within the visual system. Despite
incorporating only quite simple neural principles,
analyses indicate that approach I alone can equal
or outperform industry-standard IQA measures at
predicting human behavior.

Approach II further added the (still simple)
refinement of data-driven regression. It should be
emphasized that the regression was accomplished with
a very small body of empirical measures (a regression
fit to just 80 images generalizes nearly as well as one fit
to 2080; see Supplementary Materials), as opposed to
typical big-data methods. The regression found a set of
pixel–pixel relations that perceptually strained images
such that comparison between them was humanlike; the
results are shown in Table 1 (see also Supplementary
Materials).

The Jacobian matrices that result are directly
interpretable in terms of connections among stimulus
features. A given Jacobian directly represents hypotheses
about connectivity in the early visual path, either from
straightforward principled models (approach I) or
derived from simply regressed behavioral data (approach
II). The framework is therefore flexible, and many IQA
approaches might be shown to be special cases when
the restrictions of approaches I and II are lifted.

The more complex the relationship between
predictions and empirical behavior, the more difficult it
may be to unearth explanatory principles underlying
predictive performance. It is hoped that the relatively
straightforward methods forwarded here assist in
the simplification of our understanding of similarity
judgments.

We sought a formalism that quantifies connectivity
in units of input–input relations (∂ui/∂sj), rather
than input–output relations, y = f (⇀s ), as is more
typical in artificial neural network approaches. The
findings suggest the potential of such formalisms
to help us understand how patterns of individual
associations yield the gestalt of an image percept,
which is composed of many outputs working together
rather than in isolation. Such a formalism is aligned
with many insights neuroscientists have acquired about
connectivity. Further characterization of the types of
candidate hypotheses is in progress.

SceneIQ presents a new scale of dataset for IQA.
It contains 69 times as many original (non-degraded)
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images as CSIQ, making analyses with higher order
statistics or high-degree-of-freedom regressions reliable.
Images in SceneIQ are evenly distributed among
eight semantic categories, enabling future semantic
analyses. The original images are well characterized
in terms of image statistics and perception (e.g.,
Oliva & Torralba, 2001), and these characterizations
are available to future study in IQA. The viewing
conditions and subject pool are naturalistically variable,
yet have been validated in a more controlled laboratory
setting. Perhaps, the ecological validity of real, variable
viewing conditions makes these ratings an even more
reliable benchmark than scores collected under highly
controlled conditions. We hope the depth of this dataset
makes it a valuable benchmark for the field.

Keywords: visual perception, similarity metrics,
differential geometry, gestalt, scenes

Acknowledgments

The authors thank James V. Haxby, JeremyManning,
and Josh Bongard for valuable discussions.

Supported in part by grants from the Office of Naval
Research (N00014-15-1-2132 and N00014-16-1-2359)
and the Defense Advanced Research Projects Agency
(N00014-15-1-2823).

The code for this paper is available at: https:
//github.com/DartmouthGrangerLab/IQA.

Commercial relationships: none.
Corresponding author: Richard Granger.
Email: richard.granger@gmail.com;
mail@elibowen.net.
Address: Brain Engineering Laboratory, Department
of Psychological and Brain Sciences, Dartmouth,
Hanover, NH, USA.

References

Ashby, F. G., & Perrin, N. A. (1988). Toward a unified
theory of similarity and recognition. Psychological
Review, 95, 124.

Berardino, A., Laparra, V., Ballé, J., & Simoncelli,
E. (2017). Eigen-distortions of hierarchical
representations. Advances in Neural Information
Processing Systems, 2017-December, 3531–3540.

Bowen, E. F., Felch, A., Granger, R., & Rodriguez, A.
(2018) Computer-implemented perceptual apparatus.
U.S. Patent No. PCT/US18/43963.

Bradley, A. P. (1999). A wavelet visible difference
predictor. IEEE Transactions on Image Processing,
8, 717–730.

Buhrmester, M., Kwang, T., & Gosling, S. D. (2011).
Amazon’s Mechanical Turk a new source of
inexpensive, yet high-quality, data? Perspectives on
Psychological Science, 6, 3–5.

Chandler, D. M. (2013). Seven challenges in image
quality assessment: past, present, and future
research. International Scholarly Research Notices,
2013, 1–53.

Chandler, D. M., & Hemami, S. S. (2007). VSNR: A
wavelet-based visual signal-to-noise ratio for natural
images. IEEE Transactions on Image Processing, 16,
2284–2298.

Chichilnisky, E. J. (2001). A simple white noise analysis
of neuronal light responses. Network: Computation
in Neural Systems, 12, 199.

Croner, L. J., & Kaplan, E. (1995). Receptive fields of
P and M ganglion cells across the primate retina.
Vision Research, 35, 7–24.

da Fonseca, M., & Samengo, I. (2016). Derivation
of human chromatic discrimination ability
from an information-theoretical notion of
distance in color space. Neural Computation, 28,
2628–2655.

da Fonseca, M., & Samengo, I. (2018). Novel
perceptually uniform chromatic space. Neural
Computation, 30, 1612–1623.

Dacey, D. M. (1996). Circuitry for color coding in
the primate retina. Proceedings of the National
Academy of Sciences, USA, 93, 582–588.

Dacey, D. M. (2000). Parallel pathways for spectral
coding in primate retina. Annual Review of
Neuroscience, 23, 743–775.

Dacey, D., Packer, O. S., Diller, L., Brainard, D.,
Peterson, B., & Lee, B. (2000). Center surround
receptive field structure of cone bipolar cells
in primate retina. Vision Research, 40, 1801–
1811.

Dacey, D. M., & Petersen, M. R. (1992). Dendritic
field size and morphology of midget and parasol
ganglion cells of the human retina. Proceedings
of the National Academy of Sciences, USA, 89,
9666–9670.

Daly, S. J. (1992). Visible differences predictor: an
algorithm for the assessment of image fidelity. In:
Proceedings Volume 1666, Human Vision, Visual
Processing, and Digital Display III (pp. 2–16).
Bellingham, WA: SPIE.

Damera-Venkata, N., Kite, T. D., Geisler, W. S.,
Evans, B. L., & Bovik, A. C. (2000). Image
quality assessment based on a degradation
model. IEEE Transactions on Image Processing, 9,
636–650.

de Beeck, H. O., Wagemans, J., & Vogels, R. (2001).
Inferotemporal neurons represent low-dimensional

https://github.com/DartmouthGrangerLab/IQA


Journal of Vision (2022) 22(11):4, 1–22 Bowen, Rodriguez, Sowinski, & Granger 19

configurations of parameterized shapes. Nature
Neuroscience, 4, 1244–1252.

De Monasterio, F. M. (1978). Center and surround
mechanisms of opponent-color X and Y
ganglion cells of retina of macaques. Journal of
Neurophysiology, 41, 1418–1434.

Dill, M., & Fahle, M. (1998). Limited translation
invariance of human visual pattern recognition.
Perception & Psychophysics, 60, 65–81.

Dzhafarov, E. N., & Colonius, H. (1999). Fechnerian
metrics in unidimensional and multidimensional
stimulus spaces. Psychonomic Bulletin & Review, 6,
239–268.

Edelman, S. (1998). Representation is representation
of similarities. Behavioral and Brain Sciences, 21,
449–498.

Edelman, S., & Shahbazi, R. (2012). Renewing the
respect for similarity. Frontiers in Computational
Neuroscience, 6, 45.

Egiazarian, K., Astola, J., Ponomarenko, N., Lukin,
V., Battisti, J., & Carli, M. (2006). Two new
full-reference quality metrics based on HVS. In:
Proceedings of the Second International Workshop
on Video Processing and Quality Metrics for
Consumer Electronics, VPQM 2006 (pp. 1–4). New
York: Springer.

Ehm, W., & Wackermann, J. (2012). Modeling
geometric–optical illusions: A variational
approach. Journal of Mathematical Psychology, 56,
404–416.

Epifanio, I., Gutierrez, J., & Malo, J. (2003). Linear
transform for simultaneous diagonalization
of covariance and perceptual metric matrix
in image coding. Pattern Recognition, 36,
1799–1811.

Farias, M. C. Q., & Akamine, W. Y. L. (2012). On
performance of image quality metrics enhanced
with visual attention computational models.
Electronics Letters, 48, 631–633.

Fechner, G. T. (1860). Elemente der psychophysik.
Leipzig: Breitkopf und Härtel.

Fernandez, J. M., & Farell, B. (2009). Is perceptual
space inherently non-Euclidean? Journal of
Mathematical Psychology, 53, 86–91.

Foster, D. H., & Kahn, J. I. (1985). Internal
representations and operations in the visual
comparison of transformed patterns: Effects of
pattern point-inversion, positional symmetry, and
separation. Biological Cybernetics, 51, 305–312.

Georgiev, T. (2006). Covariant derivatives and vision.
In: A. Leonardis, H. Bischof, & A. Pinz (Eds.),
Computer Vision–ECCV 2006 (pp. 56–69). Berlin:
Springer.

Goldstone, R. L. (1994). The role of similarity in
categorization: Providing a groundwork. Cognition,
52, 125–157.

Gu, K., Wang, S., Yang, H., Lin, W., Zhai, G., Yang,
X., . . . Zhang, W. (2016). Saliency-guided quality
assessment of screen content images. IEEE
Transactions on Multimedia, 18, 1098–1110.

Haushofer, J., Livingstone, M. S., & Kanwisher, N.
(2008). Multivariate patterns in object-selective
cortex dissociate perceptual and physical shape
similarity. PLoS Biology, 6, e187.

Hepburn, A., Laparra, V., Malo, J., McConville, R., &
Santos-Rodriguez, R. (2020). Perceptnet: A human
visual system inspired neural network for estimating
perceptual distance. In: 2020 IEEE International
Conference on Image Processing (ICIP) (pp.
121–125). Piscataway, NJ: Institute of Electrical
and Electronics Engineers.

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields,
binocular interaction and functional architecture in
the cat’s visual cortex. The Journal of Physiology,
160, 106–154.

International Telecommunication Union. (1999).
ITU-T recommendation P.910: Subjective video
quality assessment methods for multimedia
applications. Geneva, Switzerland: International
Telecommunication Union Standardization Sector.

International Telecommunication Union. (2006).
ITU-T recommendation P.800.1: Mean opinion score
terminology. Geneva, Switzerland: International
Telecommunication Union Standardization Sector.

Itti, L., & Koch, C. (2001). Computational modelling
of visual attention. Nature Reviews Neuroscience, 2,
194.

Kriegeskorte, N., & Kievit, R. A. (2013). Repre-
sentational geometry: Integrating cognition,
computation, and the brain. Trends in Cognitive
Sciences, 17, 401–412.

Kuo, T.-Y., Su, P.-C., & Tsai, C.-M. (2016). Improved
visual information fidelity based on sensitivity
characteristics of digital images. Journal of Visual
Communication and Image Representation, 40,
76–84.

Lai, Y.-K., & Kuo, C.-C. J. (2000). A Haar
wavelet approach to compressed image quality
measurement. Journal of Visual Communication and
Image Representation, 11, 17–40.

Landau, L. D., & Lifshitz, E. M. (1986). Theory of
elasticity. Oxford, UK: Butterworth.

Laparra, V., Muñoz-Marı,́ J., &Malo, J. (2010). Divisive
normalization image quality metric revisited.
Journal of the Optical Society of America. A, Optics,
Image Science, and Vision, 27, 852–864.



Journal of Vision (2022) 22(11):4, 1–22 Bowen, Rodriguez, Sowinski, & Granger 20

Larson, E. C., & Chandler, D. M. (2010). Most
apparent distortion: full-reference image quality
assessment and the role of strategy. Journal of
Electronic Imaging, 19, 11006–11006.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D.,
Howard, R. E., Hubbard, W., . . . Jackel, L. D.
(1989). Backpropagation applied to handwritten
Zip Code recognition. Neural Computation, 1,
541–551.

Li, C., & Bovik, A. C. (2010). Content-partitioned
structural similarity index for image quality assess-
ment. Signal Processing: Image Communication, 25,
517–526.

Lin, W., &Kuo, C.-C. J. (2011). Perceptual visual quality
metrics: A survey. Journal of Visual Communication
and Image Representation, 22, 297–312.

Li, X., Lu, W., Tao, D., & Gao, X. (2008). Frequency
structure analysis for IQA. In: 2008 IEEE
International Conference on Systems, Man, and
Cybernetics (pp. 2246–2251). Piscataway, NJ:
Institute of Electrical and Electronics Engineers.

Lukas, F. X. J., & Budrikis, Z. L. (1982). Picture
quality prediction based on a visual model.
IEEE Transactions on Communications, 30, 1679–
1692.

Malo, J., Epifanio, I., Navarro, R., & Simoncelli, E. P.
(2005). Nonlinear image representation for efficient
perceptual coding. IEEE Transactions on Image
Processing, 15, 68–80.

Malo, J., Ferri, F., Albert, J., Soret, J., & Artigas,
J. M. (2000). The role of perceptual contrast
non-linearities in image transform quantization.
Image and Vision Computing, 18, 233–246.

Mannos, J., & Sakrison, D. (1974). The effects of a
visual fidelity criterion of the encoding of images.
IEEE Transactions on Information Theory, 20,
525–536.

Martinez, L. M., & Alonso, J.-M. (2003). Complex
receptive fields in primary visual cortex. The
Neuroscientist, 9, 317–331.

Martinez-Garcia, M., Cyriac, P., Batard, T., Bertalmío,
M., & Malo, J. (2018). Derivatives and inverse of
cascaded linear+nonlinear neural models. PLoS
One, 13, e0201326.

Medin, D. L., Goldstone, R. L., & Gentner, D. (1993).
Respects for similarity. Psychological Review, 100,
254.

Moorthy, A. K., & Bovik, A. C. (2009). Visual
importance pooling for image quality assessment.
IEEE Journal of Selected Topics in Signal
Processing, 3, 193–201.

Moorthy, A. K., & Bovik, A. C. (2011). Blind image
quality assessment: From natural scene statistics to

perceptual quality. IEEE Transactions on Image
Processing, 20, 3350–3364.

Narwaria, M., & Lin, W. (2010). Objective image
quality assessment based on support vector
regression. IEEE Transactions on Neural Networks,
21, 515–519.

Nazir, T. A., & O’Regan, J. K. (1990). Some results on
translation invariance in the human visual system.
Spatial Vision, 5, 81–100.

Oliva, A., & Torralba, A. (2001). Modeling the shape
of the scene: A holistic representation of the spatial
envelope. International Journal of Computer Vision,
42, 145–175.

Oliva, D., Samengo, I., Leutgeb, S., & Mizumori,
S. (2005). A subjective distance between stimuli:
quantifying the metric structure of representations.
Neural Computation, 17, 969–990.

Olshausen, B. A. (2003). Principles of image
representation in visual cortex. The Visual
Neurosciences, 2, 1603–1615.

Pennebaker, W. B., & Mitchell, J. L. (1992). JPEG: Still
image data compression standard. Berlin: Springer
Science & Business Media.

Petitot, J. (2003). The neurogeometry of pinwheels as
a sub-Riemannian contact structure. Journal of
Physiology (Paris), 97, 265–309.

Ponomarenko, N., Jin, L., Ieremeiev, O., Lukin,
V., Egiazarian, K., & Astola, J., …Kuo, C.-C.J.
(2015). Image database TID2013: Peculiarities,
results and perspectives. Signal Processing: Image
Communication, 30, 57–77.

Ponomarenko, N., Silvestri, L., Egiazarian, L.,
Carli, M., Astola, L., & Lukin, L. (2007). On
between-coefficient contrast masking of DCT basis
functions. In: Proceedings of the Third International
Workshop on Video Processing and Quality Metrics
for Consumer Electronics, VPQM 07 (pp. 1–4). New
York: Springer.

Pons, A. M., Malo, J., Artigas, J. M., & Capilla,
P. (1999). Image quality metric based on
multidimensional contrast perception models.
Displays, 20, 93–110.

Resnikoff, H. I. (1974). On the geometry of color
perception. AMS Lectures on Mathematics in the
Life Sciences, 7, 217–232.

Rodieck, R. W. (1965). Quantitative analysis of cat
retinal ganglion cell response to visual stimuli.
Vision Research, 5, 583–601.

Rodriguez, A., & Granger, R. (2021). On the contrast
dependence of crowding. Journal of Vision, 21(1):4,
1–19, https://doi.org/10.1167/jov.21.1.4.

Rolls, E. T. (2012). Invariant visual object and face
recognition: neural and computational bases,

https://doi.org/10.1167/jov.21.1.4


Journal of Vision (2022) 22(11):4, 1–22 Bowen, Rodriguez, Sowinski, & Granger 21

and a model, VisNet. Frontiers in Computational
Neuroscience, 6, 35.

Romano, Y., Isidoro, J., & Milanfar, P. (2017). RAISR:
Rapid and accurate image super resolution. IEEE
Transactions on Computational Imaging, 3, 110–125.

Sampat, M. P., Wang, Z., Gupta, S., Bovik, A. C., &
Markey, M. K. (2009). Complex wavelet structural
similarity: A new image similarity index. IEEE
Transactions on Image Processing, 18, 2385–2401.

Sarti, A., Citti, G., & Petitot, J. (2008). The symplectic
structure of the primary visual cortex. Biological
Cybernetics, 98, 33–48.

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W.
(2012). NIH Image to ImageJ: 25 years of image
analysis. Nature Methods, 9, 671.

Seung, H. S., & Lee, D. D. (2000). The manifold ways
of perception. Science, 290, 2268–2269.

Shahbazi, R., Raizada, R., & Edelman, S. (2016).
Similarity, kernels, and the fundamental constraints
on cognition. Journal of Mathematical Psychology,
70, 21–34.

Sheikh, H. R., & Bovik, A. C. (2006). Image
information and visual quality. IEEE Transactions
on Image Processing, 15, 430–444.

Sheikh, H. R., Bovik, A. C., & De Veciana, G. (2005).
An information fidelity criterion for image quality
assessment using natural scene statistics. IEEE
Transactions on Image Processing, 14, 2117–
2128.

Shnayderman, A., Gusev, A., & Eskicioglu, A. M.
(2006). An SVD-based grayscale image quality
measure for local and global assessment. IEEE
Transactions on Image Processing, 15, 422–429.

Simoncelli, E. P., & Olshausen, B. A. (2001). Natural
image statistics and neural representation. Annual
Review of Neuroscience, 24, 1193–1216.

Sincich, L. C., & Blasdel, G. G. (2001). Oriented axon
projections in primary visual cortex of the monkey.
Journal of Neuroscience, 21, 4416–4426.

Souza, G. d. S., Gomes, B. D., & Silveira, L. C. L.
(2011). Comparative neurophysiology of spatial
luminance contrast sensitivity. Psychology &
Neuroscience, 4, 29–48.

Teo, P. C., & Heeger, D. J. (1994). Perceptual image
distortion. In: Proceedings of 1st International
Conference on Image Processing (pp. 982–986).
Piscataway, NJ: Institute of Electrical and
Electronics Engineers.

Toderici, G., Vincent, D., Johnston, N., Hwang, S.
J., Minnen, D., Shor, J., . . . Covell, M. (2017).
Full resolution image compression with recurrent
neural networks. In: IEEE Conference on Computer
Vision and Pattern Recognition (pp. 5306–5314).

Piscataway, NJ: Institute of Electrical and
Electronics Engineers.

Torralba, A., & Oliva, A. (2003). Statistics of natural
image categories. Network: Computation in Neural
Systems, 14, 391–412.

Tourancheau, S., Autrusseau, F., Sazzad, Z. M. P., &
Horita, Y. (2008). Impact of subjective dataset on
the performance of image quality metrics. In: 2008
15th IEEE Conference on Image Processing (pp.
365–368). Piscataway, NJ: Institute of Electrical
and Electronics Engineers.

Unzicker, A., Jüttner, M., & Rentschler, I. (1998).
Similarity-based models of human visual
recognition. Vision Research, 38, 2289–2305.

Von der Malsburg, C. (1973). Self-organization of
orientation sensitive cells in the striate cortex.
Kybernetik, 14, 85–100.

Wallace, G. K. (1992). The JPEG still picture
compression standard. IEEE Transactions on
Consumer Electronics, 38, xviii–xxxiv.

Wallis, G., & Rolls, E. T. (1997). Invariant face and
object recognition in the visual system. Progress in
Neurobiology, 51, 167–194.

Wandell, B. A. (1995). Foundations of vision.
Sunderland, MD: Sinauer Associates.

Wang, Z., & Bovik, A. C. (2002). A universal image
quality index. IEEE Signal Processing Letters, 9,
81–84.

Wang, Z., & Bovik, A. C. (2009). Mean squared error:
love it or leave it? IEEE Signal ProcessingMagazine,
98–117.

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli,
E. P. (2004). Image quality assessment: from error
visibility to structural similarity. IEEE Transactions
on Image Processing, 13, 600–612.

Wang, Z., & Li, Q. (2011). Information content
weighting for perceptual image quality assessment.
IEEE Transactions on Image Processing, 20,
1185–1198.

Wang, Z., & Shang, X. (2006). Spatial pooling strategies
for perceptual image quality assessment. In: 2006
International Conference on Image Processing (pp.
2945–2948). Piscataway, NJ: Institute of Electrical
and Electronics Engineers.

Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003).
Multiscale structural similarity for image quality
assessment. In: The Thirty-Seventh Asilomar
Conference on Signals, Systems, & Computers (pp.
1398–1402). Piscataway, NJ: Institute of Electrical
and Electronics Engineers.

Winkler, S. (2012). Analysis of public image and video
databases for quality assessment. IEEE Journal of
Selected Topics in Signal Processing, 6, 616–625.



Journal of Vision (2022) 22(11):4, 1–22 Bowen, Rodriguez, Sowinski, & Granger 22

Wu, J., Lin, W., Shi, G., & Liu, A. (2013). Perceptual
quality metric with internal generative mechanism.
IEEE Transactions on Image Processing, 22,
43–54.

Wuerger, S. M., Watson, A. B., & Ahumada, A. J.,
Jr. (2002). Towards a spatio-chromatic standard
observer for detection. In: Human Vision and
Electronic Imaging VII (pp. 159–172). Bellingham,
WA: SPIE.

Xue, W., Zhang, L., Mou, X., & Bovik, A. C. (2014).
Gradient magnitude similarity deviation: A highly
efficient perceptual image quality index. IEEE
Transactions on Image Processing, 23, 684–695.

Young, R. A. (1987). The Gaussian derivative model
for spatial vision: I. Retinal mechanisms. Spatial
Vision, 2, 273–293.

Young, R. A., & Lesperance, R. M. (2001). The
Gaussian derivative model for spatial-temporal
vision: II. Cortical data. Spatial Vision, 14, 321–389.

Yue, X., Biederman, I., Mangini, M. C., von der
Malsburg, C., & Amir, O. (2012). Predicting the
psychophysical similarity of faces and non-face
complex shapes by image-based measures. Vision
Research, 55, 41–46.

Zhang, L., Shen, Y., & Li, H. (2014). VSI: A visual
saliency-induced index for perceptual image
quality assessment. IEEE Transactions on Image
Processing, 23, 4270–4281.

Zhang, L., Zhang, L., Mou, X., & Zhang, D. (2011).
FSIM: A feature similarity index for image
quality assessment. IEEE Transactions on Image
Processing, 20, 2378–2386.




