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In 1972 Barton and McIntosh reported the results of low-temperatur~ 

trapping experiments designed to analyze the pyrolysis products of 

1,l-dimethy1-l-silacyclobutane. Among the products they observed are 

-1 unstable species possessing a sharp infrared band at 1407 cm • This 

band was assigned to the l,l-dimethyl-l-silaethylene molecule (CH3)2Si=CH2, 

which had previously been identified as an unstable intermediate by 

Flowers and Gusel'nikov. 2 During the past two years there have been at 

1 f " b""" h "1 d" 3-7 f h d H S" CH east 1ve a 1n1t1o t eoret1ca stu 1es 0 t e parent compoun 2 1= 2' 

designed to test the assignment of Barton and McIntoshl and to investigate 

the delicate question8 of whether or not silaethylene is adiradical 

species. 8 Available experimental data has been interpreted to imply that 

while the Si=C double bond is dipolar, silaethylene is a Pn-Pn 

bonded species and not a diradical. 

Among the previous theoretical studies, Strausz, et al., 4,6 were the first 

to examine both the lowest singlet and triplet states of silaethy1ene. 

They carried out complete structural predictions at the minimum basis set 

(MBS) se1f-consistent-fie1d level of theory. Using a much larger sp basis, 

single calculations at the two equilibrium geometries predict the singlet 

state to lie lower by 9.6 kcal/mole. Finally, Strausz, Robb, Theodorakopoulos, 

Mezey, and Csizmadia6 estimated that correlation energy corrections would 
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7 The most recent theoretical study, that of Ahlrichs and Heinzmann, 

should be the most reliable. Using a double zeta (DZ) basis set, the 

geometry of singlet H2Si~CH2 was fully optimized. Assuming several 

parameters to be unchanged, the structure of triplet silaethylene was 

subsequently predicted. With the geometries thus obtained a larger basis 

set (including polarization functions) was used for Ahlrichs and Heinzmann's 

final calculations. In these a single-configuration SCF description of 

the triplet state was adopted and a two-configuration' SCF approximation 

assumed for the singlet. In this manner the triplet state was predicted 

to lie 27.9 kcal above the singlet ground state. 

Recent ab initio studies9- l2 of the methylene molecule, another system 

where the lowest singlet and triplet states are quite close energetically, 

have shown that such singlet-triplet separations are very sensitive to 

both basis set and correlation corrections. In light of the critical 

role of silaethylene in silicon-carbon chemistry, we decided to push this / 

molecule to the current theoretical state of the art. 

4 Beginning with the minimum basis SCF structure of Csizmadia and co-workers, 

the singlet and triplet equilibrium geometries were redone using a standard 

13 double zeta basis: Si{lls 7p/6s 4p), C{9s 5p/4s 2p), H{4s/2s). The 

predicted structures are seen in the Figure. Our singlet equilibrium 

geometry is similar to that predicted by Ahlrichs with a slightly 
000 

smaller basis: re{Si-C) = 1.69 A, re{Si-H) = 1.48 A, re{C-H) = 1.08 A, 

e(HSiH) = 115°, e{HCH) = 112°. The largest difference is for the HCH 

angle, which we predict to be 115°, or 3° larger than Ahlrichs. For the 
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triplet state, the only previous nearly complete structural determination 

is that of Strausz, Gammie, Theodorakopoulos, Mezey, and Csizmadia. 

Their structure agrees quite well with ours except for the SiH2 rocking 

angle, which they apparently assumed to be 30°. We predict 49.7° for 

this angle, in good agreement with Ahlrichs value of 45°. Thus we can 

conclude that the structures of singlet and triplet silaethylene are now 

well-characterized from theory, 

At the DZ SCF level of theory the triplet state of silaethylene is 

predicted to lie 13.7 kcal above the singlet. This agrees rather well 

with the value 12.4 kcal reported by Ahlrichs and Heinzmann. When we 

add to the DZ basis d functions centered on C (orbital exponent a = 0.75) 

and SiCa = 0.6), the SCF ~E(TI-SO) value increases somewhat, to 16.7 kcal. 

The most unique feature of the present paper is our nearly complete 

variational treatment of the valence shell correlation energy of H2Si=CH2 • 

This was accomplished using the direct CI method
14 

developed by Lucchese15 

as a part of the BERKELEY systeml6 of minicomputer-based programs. In 

all calculations the six lowest occupied SCF orbitals (corresponding to 

Si Is, 2s and 2p and C Is) were "frozen", 1. e., held doubly-occupied in 

all configurations. With this restriction, the DZ calculations included 

all single and double excitations relative to the respective SCF reference 

configurations. 1 This amounts to a total of 3284 Al configurations and 

3 " 7394 A configurations. When the DZbasis was augmented with d functions on 
, 

, carbon and silicon, it was necessary to delete the six highest virtual 

orbitals from the CI. This is a reasonable approximation, since these six 

highest virtual orbitals are localized in the core regions of the molecule. 

In this way the Clls of all single and double excitations include 4097 lAl 
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3 " configurations and 9759 A configurations. 

The DZ CI value of 6E(T
l
-S

O
) is seen in the Table to be 31.6 kcal. 

After the addition of d functions, the singlet-triplet separation increases 

again, to 34.7 kcal. However the true 6E(TI -SO) will be even larger 

since unlinked cluster effects (arising from higher than double excitations) 

1 3 " will be greater for the Al state than the A state. Using Davidson's 

correctionl7 this difference is predicted to be 3.8 kcal, yielding a final 

3 " 1 theoretical 6E( A - AI) of 38.5 kcal. Assigning an uncertainty of 5 kcal/mole 

to this prediction, it is seen that all previous theoretical studies have 

placed the lowest triplet state of silaethylene too low in energy. 
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Figure Caption 

.Predicted equilibrium geometries for triplet and singlet silaethylene. 

For the former, the rocking angle, 49.7° is defined as the angle between 

the C-Si axis and the HSiH plane. 
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Table. Absolute and relative energies of singlet and triplet silaethylene. 

Level of Theory 

Double zeta (DZ) 
Self-cons is tent-field 

Double zeta (DZ) 
Configuration interaction 

DZ + d (C,Si) 
Self-cons is tent-field 

DZ + d (C,Si) 
Configuration interaction 

Singlet Energy, 

hartrees 

-328.99730 

-329.16408 

-329.04356 

-329.26117 

hartrees kcal/mole 

-328.97551 13.7 

-329.11367 31. 6 

-329.01690 16.7 

-329.20581 34.7 
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