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Abstract

Self-Localization and Interpersonal Proximity Detection for Public Transit

Accessibility and Safety

by

Fatemeh Mirzaei

Public transit stations and hubs are difficult to navigate for people with visual

impairments. Moreover, public transit has been affected disproportionately by the

social distancing requirements consequent to the COVID-19 pandemic. It is the

objective of this dissertation to provide a technology for addressing these concerns

in the frame of a mobile app named RouteMe2. The technology provides micro-

routing and guidance to visually impaired travelers through complex routes in

transit hubs. This work also includes the study to monitor the distance between

the travelers inside the bus for social distancing application. Reducing the risk

of air-born viral infections by social distancing can contribute to improving the

overall safety of the public transit.

The key enablers of this technology are sufficiently accurate self-localization

and micro-routing as well as effective communication of the contextual spatiotem-

poral information with the visually impaired users. The accuracy of the self-

localization in the outdoor environments is challenged by poor Global Positioning

System (GPS) reception due to tall nearby buildings that may obscure view of

one or more satellites — a.k.a shading. Shading is very common in urban envi-

ronments, and is a major cause of GPS failure. In order to mitigate the effect of

shading, I statistically fuse the signals received from GPS as well as a small num-

ber of Bluetooth Low Energy (BLE) beacons. I further pair the statistical fusion

with a Bayes discrete filter tracker to increase the self-localization accuracy. Ex-

v



periments were conducted at San Jose Diridon light rail station to quantitatively

assess the performance of the resulting system.

I have designed and implemented certain features and functionalities of RouteMe2

to provide effective communication of the in-context spatio-temporal information

with visually impaired users while they use the app. I leveraged our previously

published focus group study conducted with visually impaired people as well as

reviewing the user interface of the existing related apps to improve the user ex-

perience of RouteMe2 the detail of which is presented.

I further assess the ability of two RSSI-based methods at detecting interper-

sonal distances shorter than 1 or 2 meters. One method uses the power received

from the smartphone carried by another person. The other method measures the

disparity in the power received by the two smartphones from one or more fixed

BLE beacons. The results show that use of the RSSI disparity enables discrim-

ination measures that are as good or better than using the RSSI received from

another smartphone. I demonstrate the potential of a system that uses BLE

beacons, placed inside a vehicle, to localize a passenger within the length of the

vehicle with an accuracy better than 1 meter.
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Chapter 1

Introduction

Public transit, when available, represents a safe, economical, and environmen-

tally responsible way to travel. It is also the preferable, and sometimes the only,

means of transportation for those who cannot drive, and who cannot rely on fam-

ily or friends to be driven to places. These include elderly people or those who

have lost their driver license due to medical reasons; people who are blind or have

severe vision conditions (e.g. low acuity and tunnel vision); and people with a

certain level of cognitive impairment (e.g. early stages of dementia). Although

private transportation, in the form of taxi cabs or ride hailing services such as

Uber and Lyft, is often available at least in urban areas, they may be too expen-

sive for regular use by people with low income. Paratransit is an option for those

who have a disability, but it is not an ideal solution as paratransit service has

limited coverage and requires reservation long in advance of a trip.

In this dissertation, I address three major problems associated with public

transit. First, improving the accessibility of complex public transit hubs for visu-

ally impaired travellers by sensing their location in the transit hub and guiding

them to reach their desired bus or train. Second, I address the safety of the

travellers – challenged by the outbreak of COVID-19 pandemic – inside a bus –
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which is one of the most widely used public transit vehicles – by measuring their

interpersonal distance for social distancing application. Third, improving the con-

venience of trip planing and safety of ticketing by localization of the passengers

inside the bus for crowdedness monitoring and touchless ticketing. In this intro-

ductory chapter, I briefly touch on these problems and the approaches that I have

taken to address them.

1.1 RouteMe2 and self-localization

Traveling by public transit, may be difficult for some people, and especially

for those who need it the most. In many cases, the problem is one of information

access. Managing a trip, especially one that requires one or more transfers, re-

quires prior knowledge of where and when to catch each vehicle. While en route,

travelers must acquire and process different types of information, such as which

platform to stand on while waiting for a train, whether the bus vehicle that just

arrived is the correct one. Travelers must maintain continuous awareness of where

they are in the scheduled itinerary; make timely decisions (e.g. when to exit a

bus); and devise contingency plans when something goes wrong (such as a missed

transfer or a delayed arrival). Much of the information available to a traveler is

in visual form, such as signs or displays, and thus inaccessible to those who are

visually impaired (VI).

We are developing a system, called RouteMe2, that assists travelers with visual

impairments to route between any source and destination points in complex transit

hubs. Realization of this system improves the information accessibility required

for a successful routing in these environment for those travelers.

While a sighted traveler may be able to spot the correct bus slot by looking at

the posted signs, a blind traveler would likely need more directions to navigate the
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platform and find the place where to catch the bus. Indeed, for visually impaired

travelers, who cannot rely on visual landmarks, routes need to be defined at a

much finer scale than for sighted people. This is particularly the case in the open,

when there are no readily available features that can be perceived by touch (such

as a wall, which can be tracked using a long cane) and that can be used to follow

a route. For the same reason, it is critical that users be spatially localized within

a microroute, that is, pedestrian routes at a small spatial scale, with enough

accuracy for the system to produce meaningful directions. I refer to this type of

user localization as self-localization.

The accuracy of the self-localization in the outdoor environments is challenged

by poor GPS reception due to tall nearby buildings that may obscure view of one or

more satellites — a.k.a shading. Shading is very common in urban environments,

and is a major cause of GPS failure. In order to mitigate the effect of shading,

I statistically fuse the signals received from GPS as well as a small number of

Bluetooth Low Energy (BLE) beacons installed in San Jose Diridon station. I

further pair the statistical fusion with a Bayes discrete filter tracker to increase

the self-localization accuracy.

Another challenge is clear and precise communication between the localization

system and a visually impaired user who does not have access to the contextual

spatiotemporal information available solely by the gift of sight. Contextual refers

to the visual information that is available in the surrounding of the user within a

certain area.

To satisfy the preceding demand, I leverage the insight I gained from our

focus group study [3] and researching on the existing solutions. We found two core

categories of issues faced by blind travelers: (1) spatial/location awareness, and (2)

temporal/ time awareness. Configurability and accessibility were the most desired
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features requested for a new transit information system. Then, I follow a user

experience (UX) design process. It is an iterative process that involves sketching

and generating storyboards, wire-framing and prototyping, and developing and

implementing the designs.

1.2 Interpersonal proximity detection for social

distancing

During my study the COVID-19 pandemic has affected virtually all enterprises

in the private and public sector. High risk of contagion put the safety of public

transits in question for everyone. It soon became obvious that there must be some

regulatory mechanisms to increase the safety of the public areas. One of these

regulatory mechanisms was social distancing to reduce the spread of the air-born

virus. The importance of social distancing in the safety of the travellers provoked

my motivation to study interpersonal proximity inside a public transit vehicle.

In particular, I address the specific problem of detecting the presence of another

individual within distance thresholds of 1 meter and of 2 meters, since these are

interpersonal distances usually considered when establishing the risk of contagion

[4,5]. I consider the case in which two individuals are standing or sitting at certain

distance from each other for a period of time. This is representative of typical

contagion scenarios, such as sitting in nearby seats in a bus vehicle. I present an

experimental comparative analysis of mechanisms that use measurement disparity

of the received signal (RSSI) from fixed BLE beacons installed in a vehicle and

viz-a-viz the direct measurement of RSSI from another nearby smartphone. There

are interesting challenges in this problem that makes it more attractive. Buses

are subject to significant signal reflections due to their metal walls and mobility
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and presence of the crowd inside the bus.

1.3 Effortless ticketing and crowdedness moni-

toring

Effortless (or implicit [6]) ticketing, refers to methods that enable payment of

the correct fare as triggered by the mere presence of the user inside the vehicle.

Current touchless fare payment technology still requires travelers to approach a

near-field communication (NFC) reader or possibly a QR reader [7] located in the

vehicle. This creates “accumulation points” of social proximity, which may slow

the flow of passengers entering the vehicle and thus increase boarding times. A

real effortless ticketing system would not require the users to take any actions,

except for starting an app in their smartphone. It would automatically identify

the vehicle boarded by the passenger (Be In/Be Out, or BIBO, modality [6]), and

charge the correct fare. Upon boarding the bus vehicle or train car, the user would

receive a notification (e.g., via a vibration) from the system that the vehicle has

been identified, and that that ticketing is taken care of.

The same mechanism that enables effortless ticketing can be used to assessing

and track the distribution of passengers in a vehicle. Crowdedness monitoring has

received increased recent attention [8]. I envision a system that measures not only

the approximate number of passengers, but also their spatial distribution in the

vehicle. This could be very useful when deciding which door to enter a vehicle

from. For example, if riders in a train cart or bus vehicle are concentrated in the

front half, a passenger waiting at the stop may decide to enter from the back door

(see Fig. 1.1). This information could also be very valuable for transit agencies,

which can put in place provisions to ensure a uniform distribution of passengers
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Figure 1.1: The envisioned system uses RSSI data recorded from the in-vehicle
BLE beacons for passenger positioning, enabling effortless fare payment and
crowdedness assessment.

in their vehicles.

To that end, I use BLE beacons as the underlying technology for both ser-

vices considered (effortless ticketing and crowdedness monitoring). BLE beacons

are inexpensive and unobtrusive. Battery operated models (e.g., Kontakt Tough

Beacon TB18-2) can last up to 80 months on a battery charge, and require no ve-

hicle retrofitting (including wiring) nor maintenance during this period. I present

results from a preliminary study on passenger localization within a bus vehicle

using BLE beacons. I instrumented a campus shuttle bus with four BLE beacons,

and conducted multiple data collection session. RSSI data was collected from all

beacons while the experimenter sat in different location within the vehicle.

The thesis is organized as follows: in chapter 2.4 I review the most current

studies on indoor and if available outdoor localization. In section 2.5, I present

an overview of RouteMe2 app and its architecture. Then I segue to the deter-

ministic models I experimented with that seemed promising for solving the self

localization problem. You will see that these model would not be suitable for a

complex outdoor environment such as VTA Diridon Station’s transit hub. Then,
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I explain the stochastic model that I used to address the challenging problem of

self localization in that environment. Section 2.10 presents the data collections,

results, discussions, and my observations. I conclude this work in section 2.13.

In chapter 3 section 3.3 I briefly review other accessible navigation systems

built for people with visual impairments. In section 3.4 I present the user interface

design thought process. Features and functionalities of the app is presented in

section 3.5. Finally, I conclude the chapter in section 3.6.

Chapter 4 has two sections. Interpersonal proximity detection is presented in

section 4.2. In section 4.2.1 I provide the related work on interpersonal distance

detection studies. Techniques and experiments are presented in sections 4.2.2

and 4.2.3. In section 4.2.4 I provide discussion and conclusions on this work. In

section two of this chapter 4.3 effortless ticketing and crowdedness monitoring

is described. In section 4.3.1 related work is presented. In section 4.3.2 I walk

you through the experiments we run on our collected data in a shuttle bus. The

discussion and conclusions is then presented in section 4.3.3
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Chapter 2

Localization Using BLE in

Diridon Station

2.1 Introduction

I am developing a system, called RouteMe2, that assists travelers with visual

impairments to route between any source and destination points in complex transit

hubs. Realization of this system improves the information accessibility required

for a successful routing in these environment for those travelers.

RouteMe2 is embodied in a smartphone app and a cloud server system. The

software in the app and in the remote server work in tandem to track the traveler,

and to provide trip-specific and location-aware information, in a format that is

convenient for the user. For example, blind users may receive directional guidance

in the form of synthetic speech, with the app guiding them to specific places (e.g.

the location of a bus stop) while leveraging landmarks that may be perceivable

without sight (such as a bench that is known to be located at the bus stop). For

people with cognitive impairment but with usable sight, the app may provide
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simple directions at each step of the way, possibly relying on visible landmarks

(“stand next to the red pole with a bus sign on top"), and allowing them to read

or hear the directions as many times as desired. RouteMe2 uses existing trip

planning APIs (such as Google Directions or OpenTripPlanner) to determine a

route, and tracks the user through the route, re-routing when necessary.

Unlike existing routing and tracking apps already available (e.g. Google Maps,

Apple Maps, Transit, Moovit, Citymapper), RouteMe2 is able to generate micro-

routes, that is, pedestrian routes at a small spatial scale. A typical pedestrian

route (e.g. from Google Map) normally specifies paths on roads or pedestrian

routes to a transit station or bus stop. Sometimes, when this information is avail-

able (from a GTFS or NeTEx file), these routes can even specify the bus slot in a

large transit center. But rarely, if ever, do these generated routes include small-

scale detailed spatial information. For example, Fig. 2.1 shows a pedestrian route

to a bus stop. The route ends at the edge of the multi-slot platform. While a

sighted traveler may be able to spot the correct bus slot by looking at the posted

signs, a blind traveler would likely need more directions to navigate the platform

and find the place where to catch the bus. Indeed, for blind travelers, who cannot

rely on visual landmarks, routes need to be defined at a much finer scale than

for sighted people. This is particularly the case in the open, when there are no

readily available features that can be perceived by touch (such as a wall, which

can be tracked using a long cane) and that can be used to follow a route. For

the same reason, it is critical that users be spatially localized within a microroute

with enough accuracy for the system to produce meaningful directions.

RouteMe2 comprises different components and features including user registra-

tion, route definition, self localization within microroutes, tracking, local routing,

and rerouting when needed. Disabled users or their caregivers can register and
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Figure 2.1: Detail from a route generated by Google Map. A pedestrian route,
shown by blue dots, leads to a bus hub, from which the desired bus line departs
(green line). Finding the route from the edge of the bus hub to the desired bus
slot may be challenging for a blind traveler.

create an account in RouteMe2 system. They define their routes in the system

and they chose their desired route to start. The app uses Google direction API

for routing (i.e. itinerary steps). When the user arrives at the station the app

switches to the local microrouting mode. In this mode, the user is guided through

a sequence of Transit Locations (TL). Each TL is a polygon – represented by

connected geographic points – that specifies a small subspace of the walkable

area in the station. The user receives location updates within each TL as he/she

walks along the route. The self-localization component in the server is respon-

sible for accurately estimating the current location of the user. In this chapter

self-localization component takes advantage of the signals received from a number

of beacons installed in the complex transit hub (Valley Transition Authority VTA

Diridon station in our case) fused with the GPS estimated location. All of these

signals are received by the phone and are sent to self-localization component in

the server. In response, the location of the user in a microroute along with de-

tailed spatial information such as nearby landmarks, kiosks, benches, turns , etc.

are sent back to the phone. The estimated current location is visually shown in

a map and is also provided by means of synthetic speech to guide the users with
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visual or cognitive impairments.

2.2 Contribution

To fully realize the RouteMe2 system I addressed many different challenges

and problems as described herein.

I address the case of an outdoor transit station with poor GPS reception due to

tall nearby buildings. As well known, the presence of tall structures may obscure

the view of one or more satellites (shading, also known as urban canyon effect). If

fewer than 4 satellites are visible, signal from the remaining satellites can only be

received via multipath, generating localization errors. Shading is very common

in urban environments, and is a major cause of GPS failure. My preliminary

experiments showed 10m average distance error if the travelers are to use GPS for

their navigation in the station and the surrounding area. That makes the GPS

navigation inapplicable for even sighted travelers, set the visually impaired people

alone. In order to mitigate the effect of shading, I propose the use of Bluetooth

Low Energy (BLE) beacons. BLE beacons are a popular tool for localization

in indoor, GPS-denied environments. The use of BLE beacons in the outdoors,

for situations with poor GPS reception, has received much less attention by the

research community.

Transmission models are popular for distance estimation. I studied estima-

tion of the distance between beacon and phone to understand the accuracy of

range-based distance estimator model (transmission model). Despite popularity

of transmission model, my experiments with this model in different locations,

weather conditions, angles, heights, beacon orientations proved this model un-

suitable for microrouting visually impaired people. See section 2.8.1 for more

detail.
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Power regression models are another paradigm that has been considered for

indoor self localization. I studied estimation of the distance between beacon and

phone to understand the accuracy of power regression distance estimator model. I

ran the same experiments I did with transmission model to estimate the distance

with the phone in different locations, weather conditions, angles, heights, beacon

orientations. As suggested by my result this model also did not seem to be a

reliable distance estimator. Please see section 2.11 for more detail.

Although, beacons are promising sensors to leverage for realizing the micro-

routing prospect, they deemed challenging due to various types of noises including

weather conditions, direction of the receiver, obstruction of the receiver as the user

carries the receiver device (i.e. mobile phone), and presence of the crowd i.a. I

explore the combination of spatial information from GPS and BLE beacons via

statistical fusion. I show that, with a proper modeling of the error distribution of

the signals involved (spatial location from GPS, RSSI from beacons), it is possible

to achieve substantially lower localization error than when using either modality

in isolation.

My studies on a single beacon model revealed that signal broadcasting pattern

of beacons is subject to change based on the spatial orientation of the beacon.

Peak et al. [9] had the same observation in indoor environment and studies this

behavior on beacons and phones from various vendors.

Another important source of variation is the fact that the person can hold the

phone in different positions including in-hand and in-pocket. Also, the beacon

could be obscured by the persons body depending whether they are facing the

beacon or not as they hold the phone while using the tracking app. To consider

these situations I collected all the mentioned situations and combined in both

transmission and power regression models training and testing phases.
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VTA Diridon station is a complex transit hub with 1750m2 area. A challenge

is to collect enough data for building a model for microrouting due to the size of

the deployment site and presence of travelers in the station. This mandates the

model to be as sample efficient as possible. I collected the time-stamped data for

training and testing the model by walking at an approximately constant velocity

in traversable areas and extracted the locations by knowing the starting point, end

point, and the velocity. The advantage of this type of data collection is its time

efficiency compared to stationary data collection by standing in different points

along the traversable areas in a large environment.

Existence of unsafe areas in the station such as tracks on the railways man-

dates a thoughtful routing calculation to enable a visually impaired user for safely

navigating the area. I defined traversable areas to be the area where the visu-

ally impaired person can safely navigate through. The self-localization algorithm

estimates current location of the user with respect to traversable areas to deter-

ministically avoid guiding the person to unsafe areas. Whereas map applications

such as Google Map or Apple Map simply do not take this scenario into their

consideration.

I observed sporadic jumps in the estimated location due to multimodality of

the posterior probability of location based on BLE beacons and GPS data. To that

end, I implemented a spatial tracker based on discrete Bayes filtering. The tracker

updates a posterior probability distribution of the user’s location over a grid of

traversable (walkable) locations. I used this tracker to circumvent the problem

of multimodal probability distribution of the location state solely estimated by

means of maximum log likelihood.
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2.3 Chapter Organization

In chapter 2.4 I review the most current studies on indoor and if available

outdoor localization. In section 2.5, I present an overview of RouteMe2 app and

its architecture. Then I segue to the deterministic models I experimented with

that seemed promising for solving the self localization problem. You will see that

these model would not be suitable for a complex outdoor environment such as VTA

Diridon Station’s transit hub. Then, I explain the stochastic model that I used to

address the challenging problem of self localization in that environment. Section

2.10 presents the data collections, results, discussions, and my observations. I

conclude my work in section 2.13.

2.4 Background and Related Works

Riding public transit can be confusing for everyone, especially in an unfamiliar

environment. One needs to figure out which transportation lines to take to reach

a destination, when and where to catch a bus or a train, when to exit, and how

to negotiate transfers. For those with sensorial or cognitive disabilities, these

problems become even more daunting. Several technological approaches have

been proposed to facilitate the use of public transit for people with visual and

cognitive impairments.

Previous studies have shown that people with visual impairment experience

difficulties at determining the route and schedule information, purchasing fare,

finding the correct bus-stop location, getting on the correct bus, and getting off

at the right stop [10–14] focused on identifying the correct bus to board when

waiting at a bus stop, while the systems described in [15–17] provided alerts for

an upcoming stop while riding the bus. Hara et al. [18] proposed gathering spatial
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and temporal information from different patterns of mobility and travel time using

smart card and GSM data. They aimed at building a public transportation system

that could adapt to different travel patterns for different situations. Tribby et al.

[19] proposed a high resolution spatio-temporal, Geographic Information System

(GIS) based public transit network model to measure different models of travel

time, such as waiting time at bus stop and transfer times between routes. A

variety of solutions have been proposed to help people with blindness and with

limited vision, including providing non-visual information about the location of

bus stops. For example, Azenkot et al. [12] developed GoBraille, a system that

uses crowdsourcing to gather detailed information about the location of stops

(a similar system is StopInfo [20]). This prior work shows that there is a need

for people with limited or no vision to be constantly aware of where they are

in reference to their travel goals, as well as to obtain the information that is

necessary to utilize public transit effectively. However, these prior studies do not

offer in-depth knowledge and detail to the level that is necessary to make correct

design decisions on the best tool for accessible public transit. Motivated by this

observation, a focus group study was conducted to observe group dynamics of

several participants with blindness and visual impairments [3]. Location and time

awareness were the two core themes emerged from the grounded theory analysis

of the issues faced by blind travelers. Location awareness deals with being aware

of one’s geographical position in reference to the public transport throughout the

entire trip. Most participants reported situations with loss of location awareness

due to multiple reasons, such as knowing whether or not they are in the right

vehicle, whether they are waiting for a bus at the right stop, whether the bus

vehicle they are waiting for is close or far, and whether they stand next to the

entrance door of the bus vehicle or train car. Some of the main themes that
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emerged during the focus group study proceed as follows. Some participants

complained that routes (including the list of stops) and schedules are not clearly

communicated. Finding the exact location of bus stops and train platforms was

one of the main challenges for the five participants who were completely blind.

This includes understanding which side of the street the bus stop is located at,

and whether one needs to cross the street to reach it. Finding the correct train

platform is also challenging. In addition, knowledge of the layout of a stop is

important when one needs to negotiate a transfer. Participants mentioned that

in these situations they often rely on sighted travelers, when available. Locating

doors of buses or trains with multiple units was mentioned as a challenging task,

especially for the local subway system (BART). Maintaining awareness of one’s

surroundings is particularly important. Participants shared experiences of walking

in the wrong direction after leaving a train or a bus, as they had no clear idea of

the surrounding area. Catching the right bus or train and knowing they are in

the right one was an issue mentioned multiple times in the discussion. Excessive

ambient noise, and wrong or incomplete announcement from the vehicle’s speakers,

may cause loss of state awareness in these situations.

As mentioned earlier in the introduction chapter, in order to provide such

detailed spatial information microrouting is necessary for people with visual and

cognitive impairments. A visually impaired person would have detailed location

awareness if we had enough knowledge about his/her surrounding. This may not

be accomplished without knowing the location of the person. It is critical that

users be spatially localized within a microroute with enough accuracy for the

system to produce meaningful directions.

Self localization problem constitutes a major problem in solving the blind

travelers issue. With the growth of smart cities and Internet of Things (IoT)
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applications, development of accurate, scalable, and reliable outdoor localization

systems is one of the recent years’ challenges for many scientists and engineers [21].

Global Position System (GPS) is widely used for outdoor positioning systems

[22, 23]. However, GPS is prone to error due to different factors including signal

blockage, atmospheric conditions, and multi-path interference which occurs in the

presence of tall buildings and mountains.

There is increasing interest in systems that enable self-localization in GPS-

denied environments (e.g. indoors). While in principle it could be possible to use

power decay models [24,25] to estimate the distance to a beacon from the measured

RSSI from that beacon, then self-localize via multilateration, in practice this is

extremely challenging [9] due to issues such as multipath fading (an effect of signal

reflection from nearby surfaces) and variations in time of the signal power. For

this reason, it is customary to instead “learn" a mapping from the set of received

RSSI signal from one or more beacons, to the user’s location. This mapping is

learned from measurements taken at multiple, known locations, a process called

fingerprinting [26–29].

Localization using RSSI value from Wi-Fi access points (AP) has been widely

studied [26–28,30,31]. This approach leverages the widespread availability of Wi-

Fi APs in public environments. However, one generally has no control on the

actual density of placements of APs (meaning that some areas of interest may not

be covered), or on other factors such as APs being disconnected or moved after

fingerprinting. BLE beacons represent a popular alternative to Wi-Fi APs [32–36].

BLE beacons are generally inexpensive, and being battery-operated they can be

placed where desired without wiring concerns.

Parameswaran et al. [37] ran different experiments with the aim to prove or

disprove that RSSI can be used as an indicator of distance between motes in a
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sensor network. They collected 30 measurements at different distances/angles

between receiver and sender. One of their findings was lack of reliability when

tested in different directions. Another finding was error in measured RSSI value

increases when distance increases. They state that Gaussianity assumption does

not necessarily hold. Despite these challenges that RSSI approach encounters,

researchers improved the accuracy of localization by proposing new algorithms

or/and combination of different approaches in a multi-sensor environment to de-

sign more robust systems [38]. Next, I explored the studies used BLE beacons

and their suggestions of deployment settings.

Faragher et al. [32] compared BLE and WiFi for indoor positioning. They

postulate that fast-fading effect is more significant in BLE sensors compared to

WiFi. Kriz et al. [39] showed that the higher advertisement frequency and denser

beacon deployments yield higher positioning accuracy. Budina et al. [35] proposed

a method of iBeacon optimal distribution for indoor localization. Their study

suggested that full coverage of the space and detecting enough devices with enough

signal intensity improve the localization accuracy. Castillo-Cara et al. [36] studied

some of the beacon parameters, such as transmission power, density, and topology.

They made the following recommendations: setting transmission powers to low

or medium, avoiding positions near windows, enough gaps between beacons, and

distance of at least 6m between beacons, being aware that the material composing

the walls affect the signal propagation. Rezazadeh et al. [40] showed that vertical

and horizontal positions of beacons affect their broadcasting range of the beacons.

By alternating the positioning of the beacons they were able to increase the overall

coverage in the region of interest.

Here, I mention couple of the studies and systems that use BLE beacons and

WiFi sensors for indoor/outdoor localization. NavCog3 [41, 42] is a turn by turn
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navigation system for people with visual impairments for indoor environment.

They use inertial sensors (accelerometers and gyroscopes) on a mobile device and

RSSIs from Bluetooth Low Energy (BLE) beacons for localization. They use

two models for localization and particle filter for tracking. A motion model uses

inertial sensors to detect a location and observation model that computes the

likelihood of the sensor measurements given the location or state. They pro-

posed Localization Integrity Monitoring (LIM) module to efficiently evaluate the

estimated localization by detecting unreliable state and restarting the system to

initialization state. The mean localization error was between 3.0m to 1.6m when

tested on 5 floor shopping mall. Zafari et al. [34] used cascaded Kalman Filter

– Particle Filter (KFPF) algorithm for indoor localization using iBeacons. Their

model outperformed their previous work [43] of proximity detection using only

particle filter by 28.16% and 25.59% in 2D and 3D environment respectively. Use

of particle filter comes with the cost of higher computational complexity. For that

reason they proposed two Server-side Running Average (SRA) and Server-side

Kalman Filter (SKF) algorithms. They improved proximity detection of iBea-

cons by 29% and 32% compared to Apple’s Core Location framework. Jeba et

al. [44] developed a monitoring system for elderly people inside a smart home en-

vironment. They proposed 2-dimensional tracking system. They use RSSI-based

localization to estimate the location of movable objects in an equipped space with

no obstacles. Then, movement of the receiver node with different speed is judged

with a Markov model. They deployed two sensor nodes in two fixed locations

(0, 0)m and (0, 12)m in 12 × 12m Region of Interest (ROI) which is classified into

(3 × 3)m shells. A receiver sensor is installed on a small robot that can move

randomly with constant speeds.

Ran et al. [45] built navigation system for indoor/outdoor localization. It is de-
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signed for people with visual impairments. Their outdoor localization uses DGPS.

For indoor positioning they use ultrasound positioning service. They communicate

with visually impaired person via voice commands generated based on spatial in-

formation obtained from their testing site. User need to carry the wireless sensors

during the testing.

My work uses BLE beacons for localization in an environment in which GPS

data is unreliably available. I am not aware of prior work that leverages both

sources of information (GPS and BLE beacons) to improve self-localization in

these scenarios, even though similar situations are relatively frequent in urban

environments. The self-localization algorithm estimates and track the user’s lo-

cation with respect to safe walkable areas to deterministically avoid guiding the

person to unsafe areas. RouteMe2 is able to generate microroutes and provides

detailed spatial information in complex transit hubs by microrouting. The pro-

posed model can be deployed on commercial personal mobile phones and in any

complex transit hub with such dynamicity and noise.

2.5 Model

In this chapter, I first walk you through the overview of RouteMe2 system in

section 2.6. Detail of the GPS and beacon sensors that I used to predict the loca-

tion of the phone is provided in section 2.7. My first attempt was to understand

whether I can use the deterministic RSSI-based models of beacon to estimate the

location. These models are described in section 2.8. I show that they are not

quite reliable estimators of location in outdoor environments as demonstrated in

results chapter (ch. 2.10). Finally, I introduce the stochastic model that I used

for location estimation in section 2.9 by providing all the background and mathe-

matical derivation of the model along with my rationale behind why it is a good
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model for self localization.

2.6 RouteMe2 Architecture Overview

RouteMe2 comprises different components including user registration, route

definition, self localization within microroutes, tracking, local routing, and rerout-

ing when needed. Figure 2.3 shows the overview of the current version of RouteMe2

app. User logs in into RouteMe2 app using the required credentials (fig. 2.3, a).

RouteMe2 app sends the credentials to the server and retrieves predefined trips

from database and send them to the app. Next, user can select a trip (fig. 2.3, b),

then app sends the trip information to the server and the server communicates

with Google Direction API to get the itinerary. Server sends the itinerary to the

app. App shows the route information on the map (fig. 2.3, c). When the user

arrives at the station, the app switches to local microrouting mode (fig. 2.3, e).

As mentioned earlier, microroute is a pedestrian route at a small spatial scale.

A typical pedestrian route may specify paths on roads or pedestrian routes to a

transit station, bus stop, or bus slot in a large transit center.

A traversable area is a safe walkable area in a continuous location space that

is segmentized with transit locations. A transit location (TL) is a polygon –

represented by geographic points – that specifies a small subspace of traversable

area. Figure 2.2 shows an example of microroute, TL, and traversable area in the

iPhone app.
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Figure 2.2: Route, transit location, microroute, and traversable area are anno-
tated. Red polygons represent TLs. Each TL is a segment of traversable area –
safe walkable area. Green line represents a microroute. A microroute is a pedes-
trian route at a small spatial scale.

Throughout microrouting, user receives location updates as he/she walks along

the route. Figure 2.4 shows the self-localization component of the system. The

self-localization component in the server is responsible for accurately estimating

the current location of the user. This component takes advantage of the signals

received from a number of beacons installed in the complex transit hub – Valley

Transition Authority (VTA) Diridon station in this study – fused with the GPS

estimated location. All of these signals are received by the phone and are sent to

self-localization component in the server. In response, the location of the user in

a microroute along with detailed spatial information such as nearby landmarks,

kiosks, benches, turns , etc. are sent back to the phone. The estimated current

location is visually shown in a map and is also provided by means of synthetic

speech to guide the users with visual or cognitive impairments.
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(a) (b) (c) (d) (e)

Figure 2.3: User interface of the RouteMe2 app is demonstrated. a) User logs
in into RouteMe2 app using the required credentials. RouteMe2 app sends the
credentials to the server and retrieves predefined trips from database and send
them to the app. b) Next, users can select a trip, then app sends the trip infor-
mation to the server and the server communicates with Google Direction API to
get the itinerary. Server sends the itinerary to the app. c) App shows the route
information in the form of map. d) Source (starting point) of the itinerary route
is shown by zooming into the source of the itinerary route. The source shown here
is what is returned by Google Direction API and is not the exact source. e) When
the user arrives at the station, the app switches to the local microrouting mode.
In this mode, the user is guided through a sequence of microroutes to catch the
train or bus at the exact desired location.

Figure 2.4 shows the architectural overview of the current version of RouteMe2

app and flow of information throughout the routing. The self-localization compo-

nent resides in the remote server in IBM cloud. User’s phone receives GPS and

beacons’ data and sends them to the server. The server computes the estimated

location. Then, it checks the estimated location against the current route. If

estimated location was not on route, the route gets updated. The server returns

the estimated location along with microrouting information to the user’s phone.

Location and route are displayed on the app’s map.
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Google Direction API
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Figure 2.4: Architectural overview of the current version of RouteMe2 app and
flow of information throughout the routing. User’s phone receives GPS and bea-
cons’ data and sends them to the server. The server computes the estimated
location. Then, it checks the estimated location against the current route. If
estimated location was not on route, the route gets updated. The server returns
the estimated location along with microrouting information to the user’s phone.
Location and route are displayed on the app’s map.

2.7 Sensors Considered

I considered using GPS and BLE beacons as the source of information required

for self localization. Sections 2.7.1 and 2.7.2 present a background about GPS

and BLE beacon and the rationale behind using them for estimating the location.

describes how the Geographic Coordinate Systems is projected onto a Cartesian

coordinate in order to show the location on the phone’s map.

2.7.1 Global Positioning System (GPS)

GPS is a satellite navigation system developed and maintained by the United

States Department of Defense. It includes 24 satellites in semi-geosynchronous

orbit providing continuous global coverage [46].

GPS receivers can generally be classified into one of three categories: sur-
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vey, mapping, and consumer grade. Survey-grade GPS is capable of determin-

ing locations to within 1cm of true position [47], but requires operator expertise

and a substantial operating budget because instrument costs can exceed $25, 000.

Survey-grade GPS also requires satellite signal reception that is often unattainable

in the receiver site. Mapping-grade GPS receivers can return accuracies typically

within 2˘5m of true position, depending on the quality of the equipment and

operator skill, with instrument costs ranging from $2, 000 to $12, 000. Although

mapping-grade GPS can be somewhat more forgiving than survey grade in terms

of acceptable satellite reception and required operator skill, the price of these units

is still prohibitive to many potential users. In contrast, consumer-grade GPS re-

ceivers are now available at a very low price and ubiquitous in consumer mobile

phones. Consumer-grade GPS manufacturers commonly assert that measurement

accuracies of this equipment should be within 15˘20m of true position [48]. Wing

et al.tested the accuracy and reliability of consumer-grade GPS receivers in a vari-

ety of landscape settings. Among the top GPS performers, they determined that

users could expect positional accuracies within approximately 5m of true posi-

tion in open sky settings, 7m in young forest conditions, and 10m under closed

canopies [48]. Consumer-grade GPS receivers that are available in phones typ-

ically provides latitude, longitude, altitude, and radius of accuracy. Latitude,

longitude, and altitude are described in the next section (2.7.1). Section 2.9.3

describes the detail of how the radius of accuracy is used in this study.

From Geographic Coordinate to Cartesian

On geographic coordinate system, every location on earth can be specified by

latitude, longitude and altitude. Map-makers choose a reference ellipsoid with

a given origin and orientation to disambiguate the direction of vertical and the
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horizontal surface according to their need for the area to be mapped. Geodetic

datum (a.k.a. terrestrial reference system) is the mapping between the spherical

geographic coordinate system onto that reference ellipsoid. Datums may be global,

meaning that they represent the whole Earth, or they may be local, meaning

that they represent an ellipsoid best-fit to only a portion of the Earth. Although

datums are subject to errors over time due to continental plate motion, subsidence,

and diurnal Earth tidal movement caused by the Moon and the Sun. These

changes are insignificant if a local datum is used, but are statistically significant if

a global datum is used [49]. Different datums have been defined including World

Geodetic System (WGS84, a.k.a. EPSG:4326) which is the default datum used

for the GPS and is used in iPhone devices which is of my concern in this study.

The latitude and longitude provided on iPhone is defined on WGS84 datum

and I refer to it as GPS coordinate system. The reader shall notice that this is

not equivalent to the real spherical geographic coordinate of the Earth. Instead,

it is a geographic coordinate on WGS84 datum provided by GPS on the phone

(iPhone in this study).

The points on GPS coordinate system are represented by latitude ϕ ), lon-

gitude λ, and height(h). In order to transform GPS coordinates to the local

Cartesian coordinate system with an origin, I employ East, North and Up (ENU)

transformation. ENU is in fact a Cartesian coordinate system. ENU is the most

common transformation in the tracking and targeting application. First, I trans-

form geodetic coordinate system to Earth-Centered, Earth-Fixed (ECEF). Then,

I transform ECEF to ENU coordinate system. ECEF, is a geographic and Carte-

sian coordinate system that represents positions as X, Y, and Z coordinates. The

point (0, 0, 0) is defined as the center of mass of Earth. Figure 2.5 shows the

coordinates of ECEF axis and ENU axis [1].
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Figure 2.5: WGS84, ECEF, and ENU coordinate systems for the Earth and their
transformation relationships (PM line is the Prime Meridian; and are latitude
and longitude in WGS84; X,Y,Z for ECEF; and E,N,U for ENU [1].

Geodetic coordinates (ϕ, λ, ) can be converted into ECEF coordinates using

the following equation:

p

cos (ϕ) − Z

sin (ϕ) − e2N(ϕ) = 0 (2.1)

where p =
√

X2 + Y 2, e2 = 1 − b2

a2 ,

N(ϕ) = a√
1 − e2 sin2(ϕ)

(2.2)

where a, b are equatorial radius, polar radius respectively. WGS-84 datum uses

a = 6378137.0 m and b = 6356752.314245 m values.

ENU is one of the Local tangent plane coordinates (LTP) variation. LTP, is the

coordinate system that consists of three coordinates. A local plane is tangent to

the earth’s surface where its origin located at local origin I define. East coordinate

is along the local eastern axis, North axis is along the northern axis, and Up

represents the vertical position. Vertical position can be up or down.

The relation between ECEF and ENU and rotation matrix is defined as below.

pENU = R(pECEF − pRef ) (2.3)
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Where

R =


− sin (λ) cos (λ) 0

− sin (ϕ) cos (λ) − sin (ϕ) sin (λ) cos (ϕ)

cos (ϕ) cos (λ) cos (ϕ) sin (λ) sin (ϕ)


and pECEF is the coordinates of ECEF of a point in WGS84 coordinate system

which can be obtained from eq. (2.1). pref is the local reference (origin) point in

ECEF coordinate system.

2.7.2 Bluetooth Low Energy (BLE) Beacon

GPS is widely used for outdoor positioning systems [22, 23]. However, GPS

itself has error due to different factors including signal blockage, atmospheric

conditions, and multi-path interference which occurs in the presence of tall build-

ings and mountains. I investigate whether fusing GPS data with other sensors

would improve localization. Range-based are the most common approaches for

self-localization. The range-based schemes are defined by the protocols that use

distance estimates for location computation. Recently, Bluetooth Low Energy

(BLE) protocol sensors grabbed scholars’ attention for development of low cost,

energy efficient, precise and accurate indoor positioning system. Ranged-based

location estimation approaches are further explained in the following sections.

BLE beacons use radio propagation model that use Receive Strength Signal

(RSS) and the known location of beacons to estimate the location of sensor node

which is a phone in this study.
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2.8 Deterministic RSSI Models Investigated

I first investigated two important deterministic RSSI models – namely trans-

mission model and power regression model – proposed in literature that are pro-

vided in this section. The results of my investigation are presented in section

2.11

2.8.1 Transmission Model

The goal of this model is to estimate the distance between a beacon and a

receiver. A receiver can be incorporated in a phone. A phone at position (x, y)

receives broadcasted RSSI from a beacon at (xi, yi) position and estimates its

location using the received power (RSSI). Transmission model is a widely accepted

model in the literature [50]. Despite that, as I will show in section section 2.11.4,

it is not a reliable model for distance estimation in Diridon outdoor environment.

The estimation error increases when the distance increases. Also, my observation

on the distribution of RSSIs in various distances suggests that due to the presence

of noise or inner beacon signal interference one path-loss coefficient (described

here) is not enough for reliably estimating the distance.

Transmission model is also called path loss model. In this model, the received

power pi (dBm) is explained as in eq. (2.4).

pi = p0 − 10n log(ri/r0) (2.4)

where n is a path loss or transmission constant that varies based on transmission

environment. Papamanthou et al. [50] claimed that for outdoor environment the

value of n is between 2 and 4. r0 is the reference distance and p0 is the received

power at reference distance. The power is measured by means of RSSI. p0 can be
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obtained by taking the average of RSSI values collected at reference distance. For

instance, 1 or 2 meters away from a beacon. Alternatively, p0 can be obtained

by factory’s default received power which changes by altering the transmission

power of the beacon. pi is the ideal received power and ri is the distance from the

beacon. I replace pi with p̂i and ri with r̂i in eq. (2.4) which yields eq. (2.5).

p̂i = p0 − 10n log(r̂i/r0) (2.5)

p̂i is estimated received power that accounts for channel fading due to the noise

imposed in a real world environment. Fading in this wireless communication

channel is mostly referred to a random process [50] represented by random variable

x in

p̂i = pi + x (2.6)

where random variable x represents the medium-scale channel fading and is typi-

cally modelled as Gaussian zero-mean with variance σ2 (in dBm) [50]. x is inde-

pendent from distance. r̂i is the estimated distance I describe later in eq (2.8). I

can derive the relationship between estimated distance r̂i and real distance ri by

combining the equations (2.4), (2.5), (2.6) and get

r̂i = r10x/10n

i (2.7)

By using (2.7) and inverting (2.5) I can compute estimated distance as

r̂i = 10
p0−p̂i

10n .r0 (2.8)

I can calculate the relative error Ei by eq. (2.9), where r̂i is the measured distance,
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and ri is actual distance.

Ei = r̂i

ri

− 1 ∈ [1, +∞). (2.9)

by inserting r̂i from eq. (2.7) into eq. (2.9) I also get

Ei = 10x/10n − 1. (2.10)

2.8.2 Power Regression Model

A distance calculation equation proposed by AltBeacon Android library [51,

52] has the advantage of considering every factor that influence the radio wave

propagation on a given context (i.e. environment) [53]. I call this model power

regression model hereafter.

r̂i = A.( p̂i

p0
)B + C (2.11)

where r̂i is estimated distance, p̂i is received power, p0 is reference received power

at reference distance. A, B, and C are environment coefficients that vary based

on different medium. The coefficients need to be trained every time the medium

and device changes. If the ratio of RSSI over reference RSSI is less than one, then

the distance is the ratio to the power of 10, otherwise the equation 2.11 holds.

Path loss n varies in different conditions such as holding phone on hand or

in pocket. Power regression model needs a lot of data from the environment to

obtain the A, B, and C coefficients. This model is also not applicable in this study

as the coefficients need to be trained every time the medium and device changes.

Outdoor environment is dynamic and it changes constantly due to different factors

including weather conditions, movement of buses and trains, people, etc. Hence,

obtaining the coefficients is not feasible as a fixed coefficient would not fit for too
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many environmental conditions in the complex outdoor setting of Diridon station.

2.9 Proposing Stochastic Model

The objective of self-localization is to estimate the phone’s location state from

sensor measurements (i.e. beacon RSSIs and GPS data) as well as all past sensor

measurements and location changes of the phone from one location to another

(i.e. tracking).

As I explained in the previous two sections and backed by my experiments

and results in section 2.11, these two models (i.e. transmission model and power

regression model) cannot be used reliably for location estimation in the presence

of various noises in a complex transit hub such as Diridon station. What is needed,

is a model that can tolerate all kinds of environmental noises and uncertainties to

reliably serve people with special needs.

For that reasons, a stochastic model turns out to be a more appropriate model

to solve the self-localization problem in a complex transit hub. In this section,

I fully describe this model in detail. The model needs to be precise enough to

accommodate for local microrouting the visually impaired people and at the same

time be computationally efficient. Discretizing the location state space in the

station by defining a grid with granularity of 1m would meet my objective (see

section 2.9.1 for details of the grid). In sections 2.9.2 and 2.9.3, I describe how

the RSSI and GPS are modeled and, then, I explain the mechanics of fusing the

two in section 2.9.4. As you will see in section 2.12 fusing the GPS information

can improve the overall performance of the location estimation. All of these

components are used in the Discrete Bayes Tracker – described in section 2.9.5 –

to compute the final location estimation.
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2.9.1 Grid Definition

I define a grid over the traversable area in the entire station. Generally speak-

ing, traversable area is a subarea of the station where people and specially those

with visual impairment can safely walk. Traversable area in the Diridon station is

shown in Fig. 2.6. On the left side image you can see that there are two long and

parallel pathways where the East pathway extends North to connect with a pedes-

trian tunnel under the main station. Travelers can cross the light rail tracks on

two “crosswalks", with spring-operated gates. The grid is defined on East, North,

Up (ENU) local tangent plane coordinates and has 440 × 153 cells that covers the

whole Diridon station. The whole traversable area has been quantiszed with bin

size of 1m. The origin of the grid is in ENU coordinate and is located at far south

west side of the VTA Diridon station. I obtained the geodetic coordinates of the

grid’s origin from Google Maps and transformed it to ENU coordinate. If a point

in geodetic coordinate is to be represented in this grid, it must be transformed

to ENU coordinate based on this origin and its corresponding cell is identified.

Please refer to 2.7.1 section for more detail on the transformation methodology.

X and y axes are oriented toward east and north respectively.

2.9.2 BLE Beacons RSSI Modeling

At the core of the self-localization problem is the idea of estimating state from

sensor data (i.e. beacon RSSIs). For this specific problem, the state is the loca-

tion of the phone in the transit station which is a set of quantities from beacons’

data that are not accurately observable due to the noise in the RSSIs, but can be

indirectly inferred. Probabilistic state estimation algorithms compute posterior

distributions (a.k.a. belief distributions) over possible world states. This posterior

is the probability distribution over the state x(t) at time t, conditioned on mea-
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surements (z(t). Biswas et al. [31] use the same approach for robot localization

using WiFi strength signals in indoor environment. I model the received power

from various beacons at each location xj in the grid as a normally distributed

random vector with independent entries (diagonal covariance). The mean of this

random vector is set equal to the average signal vector {RSSI i
j} computed from

the measurements received within a square region with side of 5 meters (25 cells)

centered at xj (where i indexes the beacons). The entries of the diagonal co-

variance matrix are set to a constant value σB, as this was found to give more

stable results than using the empirical variance values. (σB was set to 8 dBm in

the experiments.) Thus, the conditional likelihood of the received signal can be

expressed as:

p({RSSI i}|xj) =
∏

i

1√
2πσB

e
−

(RSSIi−RSSIi
j

)2

2σ2
B (2.12)

Given a measured vector {RSSI i}, one can easily compute the posterior distri-

bution over locations under uniform prior: p(xj|{RSSI i}) ∝ p({RSSI i}|xj). The

most likely location is computed as the cell xj that maximizes this posterior dis-

tribution. Note that this approach involves computing p(xj|{RSSI i}) for all grid

cells xj.

In general, signal from only a limited set of beacons (B(xj)) will be received

at a given location xj during fingerprinting. (Note that only if I receive at least 3

measurements from the same beacon within the region used to compute the aver-

age RSSI, will the beacon be included in Bxj.) Let B be the set of beacons whose

signal is received at run time. Care must be taken when computing p(xj|{RSSI i})

for any locations xj such that the set of beacons with signal received during fin-

gerprinting, Bxj, does not match B. In this case, I adopt the following simple

strategy: for each beacon in Bxj that is not in B, the missing RSSI value in (2.12)

is set to a small value (-95 dBm). Likewise, for each beacon in B that is not in
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Bxj, I add a “fake" beacon with the same small value for RSSI i
xj

in (2.12).

2.9.3 GPS Error Modeling

Modern smartphones provide APIs that produce an estimate of the accuracy of

GPS data in the form of radius of uncertainty. For example, in iOS, objects of the

CLLocation class have a property named horizontalAccuracy, that represents

the radius of uncertainty of the GPS measurements. In first approximation, this

could be taken as the standard deviation σGP S of the GPS localization error. Root

Mean Square (RMS), Distance Root Mean Square (DRMS), Twice Distance Root

Mean Square (2DRMS), Circular Error Probability (CEP), 95% radius (R95), and

Spherical Error Probable (SEP) are among the most common GPS error models

used in navigation. These models assume that the distribution of GPS error is

Gaussian. The GPS returns a location (x, y)GP S with a certain accuracy (radius

of uncertainty). I assumed that, radius of uncertainty refers to the circular error

probable, which is the radius of the circle where 50% of the mass is located. DMSE,

2DRMS, and R95 assume 63.213%, 98.169% and 95% as a percentile of the mass

located in the circle. I assume that p((x, y)|GPS) is an isotropic Gaussian (i.e.

with co-variance matrix equal to diag(σGP S, σGP S)), with mean value at (x, y)GP S.

Let r(x, y) is the distance of a point (x, y) to (x, y)GP S, and let p(r|GPS) be its

pdf. p(r|GPS) turns out to be a Rayleigh density. The value of CEP is thus the

median of p(r|GPS), which is related to the σGP S of p((x, y)|GPS) as by:

CEP = σGP S.
√

2 log(2) ≈ σGP S.1.18 (2.13)

Hence, I can assume that σGP S = uncertainty radius/1.18. DMSE, 2DRMS, and

R95 have the same rationale and their values can be calculated using
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σGP S.
√

−2 ln (1 − (F/100), F is between 0% to 100%.

At this point p((x, y)|GPS) is fully characterized and it is proportional to the

likelihood p(GPS|(x, y)) under uniform prior on (x, y):

p(GPS|(x, y)) = R.p((x, y)|GPS) = R.
1

2πσ2
GP S

e
||(x,y)−(x,y)GP S ||2

2σ2
GP S (2.14)

where R is a constant that depends on σ. I observed, however, that the uncertainty

radius produced by the API is not always reliable. Specifically, there are situations

(like the one shown in Fig. 2.6, right), where the location provided by GPS

may have a consistent bias that is poorly modeled by white additive Gaussian

noise. For this reason, I decided to use a mixture model instead. Specifically, the

probability p(xj|GPS) of being at a certain location xj, where xj is a cell in the

grid, is modeled as a convex combination of a normal distribution, centered at the

location reported by GPS and with a standard deviation equal to the uncertainty

radius, and of a uniform distribution (the latter accounting for large deviations

that may occasionally be expected) 2.15.

p(GPS|(x, y)) = γGP S .p(GPS|(x, y)) + (1 − γGP S).K (2.15)

where

p(GPS|(x, y)) = 1
2πσ2

GP S
e

||(x,y)−(x,y)GP S ||2

2σ2
GP S

and K is a constant small number. I set γGP S to 0.5, σGP S to uncertainty radius,

and K to 10−4 in the mixture model.
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Figure 2.6: Left: An aerial picture of the San Jose Diridon light rail station, with
the walkable areas highlighted. Right: A GPS track measured while walking on
the East platform. Each point is shown with its uncertainty radius (displayed as
a green transparent circle). Note the large localization error in the northernmost
part of the track.

2.9.4 GPS and BLE Beacons Data Fusion

Let p(RSSI|(xj)) or p(GPS|xj) the conditional density function (likelihood)

of the received signal (RSSI or GPS) at a certain location xj. The posterior

probability p(xj|RSSI) or p(xj|GPS) represents the probability of being at a

location xj given the received signal. These quantities are related by the Bayes

rule. E.g.,

p(xj|RSSI) = p(RSSI|xj).p(xj)
p(RSSI) (2.16)

where p(xj) is the prior probability of being at location xj, which I assume to be

uniform. p(RSSI) is the prior probability of receiving a certain value of RSSI. As-

suming conditional independence, the conditional density for both received signals

can be expressed as follows:

pfus(RSSI, GPS|xj) = p(RSSI|xj)p(GPS|xj) (2.17)
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pfus(xj|RSSI, GPS) = p(RSSI|xj, GPS).p(xj|GPS)
p(RSSI|GPS)

Since RSSI and GPS are independent then:

pfus(xj|RSSI, GPS) = p(RSSI|xj).p(xj|GPS)
p(RSSI)

By expanding p(RSSI|xj) we get:

pfus(xj|RSSI, GPS) = p(xj|RSSI).p(RSSI).p(xj|GPS)
p(xj)p(RSSI)

under uniform prior p(xj), the posterior factorization will become:

pfus(xj|RSSI, GPS) = K.p(xj|RSSI).p(xj|GPS) (2.18)

where K is a “normalizing” factor (which depends on RSSI and GPS) For multiple

beacons I will also assume conditional independence:

p(RSSI1, RSSI2, ..., RSSI i, GPS|xj) =
∏

i

p(RSSI i|xj).p(GPS|xj) (2.19)

Where i indexes the beacons. It is sometimes useful to allocate different “weights"

to the two measurements being combined together. I enable this by expressing
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(2.18) in the log domain and changing it to a convex combination:

log pfus(xj|{RSSI i}, GPS) (2.20)

= (1 − α) log p(xj|{RSSI i}) + α log p(xj|GPS) + K

where 0 ≤ α ≤ 1 and K is a normalization constant. Note that smaller values

of α assign more weight to the localization estimate from the BLE beacons, and

vice-versa. In my experiments, I set α = 0.2. my goal is to estimate the user’s

location xj based on the received data (GPS and one or more RSSI values). I use

the Maximum a posteriori (MAP) approach: by selecting the xj that maximize

the posterior probability:

xjMAP = argmax p(xj|RSSI, GPS) = argmax p(RSSI, GPS|xj) (2.21)

where the second equality holds under the uniform prior assumption. This shows

that, under uniform prior, finding the MAP solution is equivalent to finding the

maximum likelihood solution, i.e. argmax p(RSSI, GPS|xj).

2.9.5 Discrete Bayes Tracker

At the core of the self-localization problem is the idea of estimating state from

sensor data (i.e. beacon RSSIs). For this specific problem, the state is the location

of the phone in the transit station. The sensor data is a set of quantities from

beacons’ data that are not accurately observable due to the noise in the RSSIs,

but can be indirectly inferred. Probabilistic state estimation algorithms compute

posterior distributions (a.k.a. belief distributions) over possible world states. This

posterior is the probability distribution over the state x(t) at time t, conditioned
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on all past measurements (z(t :) and all past actions v(t :) that are displacements

of the phone from one location state to another.

Various types of Bayes Filters have been introduced in the literature that are

worth considering to solve the state estimation problem. The taxonomy of the

important Bayes Filters follows:

• Bayes Filters:

– Parametric:

∗ Gaussian Filters:

· Kalman Filter

· Extended Kalman Filter

· Information Filter

– Nonparametric:

∗ Histogram Filter:

· Discrete Bayes Filter

∗ Particle Filter

Gaussian Filters is a family of recursive state estimators. Gaussian Filters are

categorized in the parametric filters, since they use parametric (moments or canon-

ical) representation of Gaussian distribution to represent the belief distribution.

All Gaussian Filters assume that the transition function and measurement (sen-

sor observation or data) function are known. Kalman Filter(KL) and Extended

Kalman Filter (EKF) are Gaussian Filters that represent the belief distribution by

mean and covariance of the Gaussian distribution. The former assumes that the

transition function and measurement functions are linear and the latter extends

that to nonlinear transition and measurement functions by doing an approximate
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linearization technique using first order Taylor expansion. Information Filter is

the same as KL and EKF except it represents the belief distribution by canonical

representation of the Gaussian Filter thereby decreasing the computation cost.

One drawback of Gaussian Filter for the self-localization problem is that one has

to know the transition and measurement (beacon’s RSSI behavior) models. In sec-

tion 2.11.4, I show that range-based and power regression models do not provide

a reliable model of RSSI behavior in noisy environments such as open area due

to multipath fading and signal power variation over time. The other drawback is

that the belief distribution is unimodal as it is finally represented by a Gaussian

distribution. Since I am dealing with multiple RSSIs all over the deployment site,

it would be unacceptable to obtain a peak of belief probability close the center of

the site.

A popular alternative to Gaussian techniques are nonparametric filters. Non-

parametric filters do not rely on a fixed functional form of the posterior, such

as Gaussians. Instead, they approximate belief posteriors by a finite number of

values, each roughly corresponding to a region in state space. Contrary to Gaus-

sian Filters, nonparametric filters do not make strong parametric assumptions on

the posterior distribution. They are well-suited to represent complex multimodal

beliefs. For this reason, they are often the method of choice when one has to deal

with global uncertainty, and when it faces hard data association problems that

yield separate, distinct hypotheses.

Histogram filter is a nonparametric filter that first decomposes the state space

into finitely many regions, and represents the belief posterior by a histogram. A

histogram assigns to each region a single cumulative probability; they are best

thought of as piecewise constant approximations to a continuous belief density.

Discrete Bayes filters apply to problems with finite state spaces. That is, where
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the random variable X(t) can take a finite number of values. Histogram filter can

be used to discretize the state space thereby approximating the posterior for the

original continuous state space. However, doing so imposes more computations

and it is not of my interest as a discrete approximation of the belief distribution

with some level of granularity (1m2 in my case) suffices. That makes Discrete

Bayes filters a suitable algorithm for solving the self-localization problem in my

model.

In particle filter, on the other hand, the posteriors are represented by finitely

many samples. The samples of a posterior distribution are called particles. There

is no notion of belief update in particle filter. Particle filter is of the type of explo-

ration and sampling techniques that samples the state space by certain sampling

distribution so as to estimate the belief posterior distribution. The belief function

from the previous time step or some combination of transition and measurement

distributions may be used as sampling distribution.

In practice, the number of particles M is often a large number, e.g., M = 1, 000.

In some implementations M is a function of t or of other quantities related to the

belief posterior at time t. The intuition behind particle filters is to approximate

the belief posterior by the set of particles. Ideally, the likelihood for a state hy-

pothesis x(t) to be included in the particle set shall be proportional to its Bayes

filter belief posterior. As a consequence, the denser a sub-region of the state

space is populated by samples, the more likely it is that the true state falls into

this region. This property holds only asymptotically for M → ∞ for the stan-

dard particle filter algorithm. For finite M , particles are drawn from a slightly

different distribution. In practice, this difference is negligible as long as the num-

ber of particles is not too small (e.g. M100) [54]. Hence, using particle filter

would make sense if the sample size can justify the computation cost saving by
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avoiding to compute the posterior for all the state space. As I will show later in

this section, by knowing the characteristics of the beacons’ RSSIs, a good pro-

portion of the beacons are not required to be computed in many of the states.

So I do not calculate the belief posterior for location states in the nontravesable

area. It turns out that the discrete Bayes filter is my best estimator among the

mentioned state estimation techniques which possess an acceptable computational

complexity. Later in chapter 3.1 particle filter is used. Another possible problem

associated with particle filer is that the model shall be able to recover from errors

induced from GPS and RSSIs as the estimated state may be far off the ground

truth at time t but I need to give a chance to the model to correct itself soon

afterwards. However, due to the constraints imposed by sampling distribution,

the algorithm may get stuck in sampling from certain area that does not account

for the location states where the corrected belief distribution has a higher proba-

bility. It turns out that the discrete Bayes filter is my best estimator among the

mentioned state estimation techniques which possess an acceptable computational

complexity. Nevertheless, that would not completely rule out the particle filter

and its effectiveness on localization problem is worth a thorough investigation.

Due to noise and ambiguity (the same RSSI vector may be measured at differ-

ent locations with similar likelihood), the distribution p(xj|{RSSI i}) (as well as

the fused distribution) is often multimodal, with competing peaks that may lead

to possibly large “jumps" in the estimated location. 2.7 shows the peaks (darker

colors) in the two sides of the Diridon station while the actual location is on the

west side (black circle).
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Figure 2.7: Example of posterior probability distributions of location over
the grid at time t. Left: p(xj(t)|{RSSI i(t)}) (beacons only). Center:
p(xj(t)|{RSSI i(t)}, GPS(t)) (GPS/beacons fusion). Right: p(xj(t)|{RSSI i(t :
)}) (beacons with Bayesian tracker). Black circle is the actual location and red
circle is the estimated location.

In order to overcome this effect, I employed a tracker, which smooths the

computed trajectory based on a suitable dynamic prior. (Note that I don’t apply

the tracker to the location data from GPS, as it is normally already smoothed by

the smartphone’s API.) Although most recent work in the localization literature

uses particle filtering trackers, I opted for a Discrete Bayesian Filter (sometime

called Histogram Filter [54]) instead. This is a deterministic algorithm that is

appropriate when the spatial domain is discrete (such as a grid) and the dynamic

model is also discrete. In my case, I augment the “state" xj(t), representing the

location of a person at time t, with the person’s velocity v(t). The velocity (more

precisely, the displacement within one unit of time, which is assumed to be 1

second) can only take one of a small set of values. More specifically, I assume

that from time t − 1 to time t the user either remains within the same grid cell

xj(t−1), or moves to one of the 8 neighboring cells. With some abuse of notation,

I will write xj(t) = xj(t − 1) + v(t − 1). The algorithm recursively recomputes

the posterior distribution of location and velocity at each time under standard
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Markovian assumptions as follows:

p(xj(t), vk(t)|{RSSI i(t :)}) ∝ p({RSSI i(t)}|xj(t), vk(t))·∑
j̄,k̄

p(xj(t), vk(t)|xj̄(t − 1), vk̄(t − 1))p(xj̄(t − 1), vk̄(t − 1)|{RSSI i(t − 1 :)})

where k indicates one of the possible 9 values of velocity, and RSSI i(t :) represents

all RSSI readings up to and including time t.

I will assume that the RSSI readings are independent of the user’s velocity,

and that the user’s velocity is independent of his or her location. Under these

assumptions, the recursion becomes:

p(xj(t), vk(t)|{RSSI i(t :)}) ∝ p({RSSI i(t)}|xj(t))·∑
j̄,k̄

δ(xj(t) − (xj̄(t − 1) + vk̄(t − 1))p(vk(t)|vk̄(t − 1))

p(xj̄(t − 1), vk̄(t − 1)|{RSSI i(t − 1 :)})

where δ(·) is 1 when its argument is 0, 0 otherwise. For what concerns term

p(vk(t)|vk̄(t − 1)), I will assume that with probability 1 − ϵ the velocity remains

the same (k = k̄), while with probability ϵ/8 it may take any one of the other 8

possible values (where 0 ≤ ϵ ≤ 1 is a design parameter that was set to 0.2 in the

experiments.) Note that, for each location xj, the recursion only involves a small

amount of operations, which are well manageable on a smartphone platform. The

algorithm can be easily extended to the case of fused localization from GPS and

BLE beacons.
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2.10 Experiments and Results

The first section (2.11) of this chapter is dedicated to data collection, exper-

iments, and results conducted with the goal of understanding the signal propa-

gation behavior of the beacons in outdoor environment. Most studies used BLE

beacons in indoor medium. I experimented with transmission and power regres-

sion models to test their capability of location estimation in Diridon station. The

experiments were run in different conditions such as weather condition, presence

or absence of crowd, beacon’s orientation, beacon’s height, angles between phone

and beacon, etc. to find out the models’ reliability in predicting the distance in

the aforementioned conditions. My finding suggests that these models are not

robust for a noisy and complex setup as is the case for Diridon station.

In the second section 2.12 of this chapter, I present the experiments I conducted

at Diridon station to evaluate the stochastic model explained in section 2.9. The

objective of these experiments are to understand to what extent the model can

estimate the location when GPS and beacons are used in isolation as well as when

their data are statistically fused.

I further investigated the possibility of reducing the number of beacons in

Diridon station as proceeds in section 2.12.2.

2.11 Deterministic RSSI Models Evaluation

In this section I, first, examine the RSSI values collected for four different

orientations over four hours total. Second, I explore the transmission and power

regression model to obtain the distance of a phone with respect to a beacon to

which I refer as distance throughout the text. Third, I investigate the relation

between the orientation of the beacon and the received RSSIs. Lastly, I examine
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the proposed grid based fusion model tested at Diridon station. Receiver in this

study is an iPhone 7 and transmitters are tough iBeacons from Kontakt com-

pany [55]. The transmission (TX) power of the beacons is set to 3 – ranging up

to 20m – and the advertisement interval is set to 350 ms for the whole study.

An iOS application was developed for data collection. RSSIs, time-stamps, and

iPhone estimations at different positions and locations collected in an outdoor

environment. The environment is subject to various noises due to radio frequency

interference caused by surrounding people’s phones or due to people who cross

the space between the receiver and beacon among other reasons.

2.11.1 Analyzing RSSI Variations over Time and Space

In this section I examine how RSSIs vary at different angles and distances from

beacon over an hour of data collection at 4 locations. Figure 2.8 shows schematic

view of the data collection setup.

Figure 2.8: A schematic view of the data collection setup. The beacon is shown
as a red diamond attached to a wall at 2.5m height. The receiver is located at 1m
height on angle-distance combinations of {0◦, 45◦} and {2m, 5m} shown in blue
circles.
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Figure 2.9: RSSIs collected over 1 hour at different locations of receiver as shown
in figure 2.8.

Figure 2.9 shows 4 hours of RSSI collected at different locations of receiver as

shown in figure 2.8. I did not observe a large variance in RSSI values over time

(1 hour in this case). Furthermore, I found that there is a noticeable difference

between receiving signal from beacon in different angles. For instance, at distance

2m I observed ∼ 12dBm RSSI difference between 0◦ and 45◦ angles which is well

above the variance I get at one location over time.

2.11.2 Comparison of the Models in Distance Estimation

In this section, I examine the transmission and power regression model to

estimate the distance between a receiver and beacon(s). I compare the resulting

estimated distance with estimated distance that iPhone provides. iPhone can

detect beacon(s) and provides a proximity estimation to detected beacon. The

accuracy of the proximity value, measured in meters from the beacon, is what I

call iPhone estimation hereafter. The goal of this experiment is to investigate the

accuracy of transmission and power regression model in an outdoor environment

and their robustness against different noises.
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In this setup, I define (O, B, L, r) as a setup combination where

• O is the orientation angle with respect to beacon and O ∈ {180◦, 225◦, 270◦},

• B is body orientation with respect to beacon and B ∈ {facing, non −

facing},

• L is the receiver location and L ∈ {hand, pocket},

• r (m) is distance and r ∈ {1, 2, 5, 10m}.

Figure 2.10 is a schematic view of the data collection setup.

Figure 2.10: A schematic view of the data collection setup. The beacon is shown
as a red diamond attached to a a concrete column at 2m height. The receiver is
located at 1m height on all setup combinations of (O, B, L, r).

I collected ∼180 measurements of RSSIs in 3 minutes for each setup combina-

tion (O, B, L, r). Then, I categorized the data based on L and into three groups

of holding the receiver in hand, putting the receiver in pocket, and hand-pocket

(i.e. both). For each group, I compute the parameters n and x of the transmis-

sion model preceded in chapter 2.5 eq. (2.5). Measurements for n are shown in

table 2.1. The noise parameter x is additive and its variance is independent of

the distance [50]. To obtain the value of x, the variance of collected RSSIs, i.e. p̂i
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, for each group is computed. I adopted power regression model to estimate the

distance between the receiver and the beacon using eq. 2.11 described in chapter

2.5. I.e. r̂i = A.( p̂i

p0
)B + C.

I obtained three path loss components n and three constants of power regres-

sion for each group hand, pocket, and hand-pocket. There are 4229, 2032, and 6261

records in the 1st, 2nd and 3rd set, respectively. Table 2.2 shows the constant

values A, B, and C for each group.

Path Loss Hand-Pocket Hand Pocket
n 1.62 1.53 1.84

Table 2.1: Three path losses obtained for hand, pocket, and hand-pocket groups.

Constants Hand-Pocket Hand Pocket
A 1.33582513 1.9445 0.5131481
B 9.14734297 7.75377406 14.0193339
C 0.65804331 0.03366047 1.23774671

Table 2.2: Three constants obtained for hand, pocket, and hand-pocket groups.

By knowing these parameters, one can compute path loss theoretical curves of

transmission model and theoretical curves of power regression model. Theoretical

curves of both transmission and power regression model are computed by incor-

porating the obtained path losses and constants into eqs. 2.5, 2.11. Figure 2.11

shows the distribution of RSSIs over computed real distances – distance between

the receiver and beacon.
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Figure 2.11: Comparison of theoretical curves of transmission model and power
regression model, and empirical data. Colored dots and error bars showing the
mean and standard deviation of RSSIs respectively vs. distance.

I use eq. (2.8) r̂i = 10
p0−p̂i

10n .r0 where r0 is 1 meter and p0 is average of collected

RSSIs at r0 = 1m. p̂i is received RSSI It is worth mentioning that the data I

used for obtaining the path losses and constants are identical to the data I used

for distance estimations. This makes the results very optimistic. Figures 2.12

and 2.13 show the mean and standard deviation of estimated distances, i.e. r̂i,

compared to iPhone’s estimations.
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Figure 2.12: Comparison of estimated distances by means of transmission model
and iPhone’s estimations. Blue and Red colored dots and error bars show the
mean and standard deviation of estimated distances for hand and pocket groups
respectively. Blue and red circles show the iPhone’s estimations. Gray line is the
ground truth.

Figure 2.13: Comparison of estimated distances by means of power regression
model and iPhone’s estimations. Blue and Red colored dots and error bars show
the mean and standard deviation of estimated distances for hand and pocket
groups respectively. Blue and red circles show the iPhone’s estimations. Gray
line is the ground truth.

Notice that both transmission and power regression models yield estimated
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distances that are closer to the ground truth compared to iPhone estimations.

Also, it turns out that the transmission model estimates the distances slightly

better than the power regression model in this setting. However, I observed that,

unlike Papamanthou et al. [50] observation, n were not in range of 2 to 4 for the

outdoor mediums where I deployed the beacon in. I speculate that this is because

of reflections, noises, and orientation of the beacon. I further explored how a

beacon broadcasts signals based on its deployment orientation. I will discuss this

later in this section.

2.11.3 Analyzing RSSI Variations based on Beacon’s Ori-

entation

Rezazadeh et al. [40] showed that vertical and horizontal positions of beacons

affect their broadcasting range of the beacons in indoor environment. Here I study

the positioning of a beacon to increase the overall coverage of the beacons in out-

door environment. To investigate the relation between RSSIs and the orientation

of the beacon I collected ∼ 600 measurements of RSSIs in 10 minutes for each

setup combination of (O, B, L, r). I define (O, B, L, r) as a setup combination

where

• O is the orientation angle with respect to beacon and O ∈ {0◦, 90◦, 180◦, 270◦},

• B is the body orientation with respect to beacon and B ∈ {facing},

• L is the receiver location and L ∈ {hand, pocket},

• r (m) is distance and r ∈ {1, 2, 4, 6m}.

Figure 2.14 shows a schematic view of the data collection setup over 10 minutes

at specified locations.
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Figure 2.14: A schematic view of the data collection setup. The beacon is shown
as a red diamond attached to a carton box at 1m height. The receiver is located
at 1m height on all setup combinations of (O, B, L, r) shown as blue and yellow
circles. Antenna orientation was fixed to be horizontal. I.e. it is along the 0◦/180◦

line. [2]

First, I obtained path loss n of transmission model and three constants of

power regression model for the whole data-set. Notice that I have not categorized

the data at this time.

I categorized the whole data based on O and into two groups of horizontal

and vertical. Let’s define the distance line as a line that crosses the centers of the

receiver and the beacon and the antenna line as the line over which the beacon’s

omnidirectional antenna lays. The orientation is said to be horizontal if the dis-

tance line and the antenna line are the same. Whereas, the orientation is said to

be vertical if the distance line is perpendicular to the antenna line [2].

Similar to previous experiment, I compute the theoretical curves of both trans-

mission and power regression models. Figure 2.15 shows the distribution of RSSIs

over computed real distances.
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Figure 2.15: Comparison of theoretical curves of transmission model and power
regression model, and empirical data. Colored dots and error bars show the mean
and standard deviation of RSSIs respectively vs. distance

As I expected, I observed that the mean values of collected RSSIs in vertical

group are 10dBm higher than collected RSSIs in horizontal group. I use eq. (2.8)

r̂i = 10
p0−p̂i

10n .r0 where r0 is 1 meter and p0 is average of collected RSSIs at r0 = 1m

meter. p̂i is received RSSI. Figures 2.16 and 2.17 show the mean and standard

deviation of estimated distances, i.e. r̂i, compared to iPhone’s estimations.
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Figure 2.16: Comparison of transmission model estimated distances and
iPhone’s estimations. Blue and Red colored dots and error bars show the mean
and standard deviation of estimated distances for horizontal and vertical groups
respectively. Blue and red circles show the iPhone’s estimations. Gray line is the
ground truth.

Figure 2.17: Comparison of power regression model estimated distances and
iPhone’s estimations. Blue and Red colored dots and error bars show the mean
and standard deviation of estimated distances for horizontal and vertical groups
respectively. Blue and red circles show the iPhone’s estimations. Gray line is the
ground truth.

Notice that both transmission and power regression models yield estimated
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distances that are closer to the ground truth compared to iPhone estimations.

Also, it turns out that the transmission model estimates the distances slightly

better than the power regression model.

2.11.4 Data Collection from two Beacons at Diridon Sta-

tion

In this section, I conducted preliminary data collection at Diridon station.

With the help of IBM and VTA we deployed 21 iBeacons at VTA Diridon station.

The goal of this data collection is to investigate the accuracy of distance estima-

tion using the two transmission and power regression models in the presence of

the environmental noise in the station. I collected data from 2 beacons with ∼ 8m

distance from one another to investigate the RSSIs and noise in the environment

when estimating the distance of a receiver from the beacons. Figure 2.18 shows

a schematic view of data collection setup. I collected data for each setup combi-

nation of (L, r) from two beacons. Here, I define (L, r) as a setup combination

where

• P is the data collection path and L ∈ {path0, path1, path2},

• r (m) is the distance between the receiver and a beacon. r ∈ {0, 2, 4, 8m}

is the distance between receiver and beacon 1, and r ∈ {8, 10, 12, 16m} is

the distance between receiver and beacon 2. The receiver was held in hand

and the body orientation of the receiver was facing towards the beacon 1 or

2 throughout the data collection.
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Figure 2.18: A schematic view of the data collection setup. The beacons are
shown as a red diamond attached to the lamps at 3.56m height. The receiver is
located at 1m height on all setup combinations of (L, r) shown as yellow circles.

First, I obtained path loss n of transmission model and three constants of power

regression model for the whole dataset. Notice that I have not categorized the

data at this time.

Then, I categorized the data based on P and into three groups of collected

data in path 0, path 1, and path 2. Similar to previous experiments I compute the

theoretical curves of both transmission and power regression models. Figure 2.19

shows the distribution of RSSIs over computed real distances.

58



Figure 2.19: Comparison of theoretical curves of transmission model and power
regression model, and empirical data collected at Diridon station (all three paths
included). Colored dots and error bars show the mean and standard deviation of
RSSIs respectively vs. distance

I observe that the mean values of collected RSSIs do not quite follow the

theoretical curves of transmission model and power regression model. Another

observation was that mean RSSIs increase as I move further away from the beacons

in distances more than 15m contrary to my expectation to receive lower RSSIs in

higher distances. Perhaps, this is because of the reflection of the beacons’ signals

when they hit the ground which manifests itself in larger distances. I also observed

that at 8m distance from the 1st and the 2nd beacons, I received mean RSSI of

−85dBm and −75dBm respectively despite the fact that the distances are the

same. This suggests the presence of noise in the environment that arises from

environmental noises or inter-beacons signal interference.

I use eq. (2.8). To recall

r̂i = 10
p0−p̂i

10n .r0

where r0 is 2.16m and p0 is the average of collected RSSIs at r0 = 2.16m meter.
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p̂i is the received RSSI. Figure 2.21 shows the comparison between estimated

distances, i.e. r̂i, using transmission and power regression models, and iPhone

estimation.

Figure 2.20: Comparison of transmission model estimated distances and
iPhone’s estimations. Blue, red, and green colored dots and error bars show-
ing the mean and standard deviation of estimated distances for path 0, path 1,
and path 2 groups respectively. Blue, red, and green circles show the iPhone’s
estimations. Gray line is the ground truth.
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Figure 2.21: Comparison of power regression model estimated distances and
iPhone’s estimations. Blue, red, and green colored dots and error bars showing
the mean and standard deviation of estimated distances for path 0, path 1, and path
2 groups respectively. Blue, red, and green circles show the iPhone’s estimations.
Gray line is the ground truth.

Notice that both transmission and power regression models yield estimated

distances that are closer to the ground truth compared to iPhone estimations.

The standard deviation of estimated distance using transmission model is higher

than power regression model. Also, it turns out that the power regression model

estimates the distances slightly better than the transmission model. Recall that

data I used for obtaining the path losses and constants are identical to the data I

used for distance estimations. This makes the results very optimistic. I observed

that to obtain the coefficients of both transmission and power regression models,

one need to train the model based with enough samples at one position. This is

not feasible in large outdoor environment with the presence of dynamic changes

(i.e weather condition, signal reflections, presence of travelers and trains).
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2.12 Proposed Stochastic Model Experiments

The idea of this proposed model is to deal with all the uncertainties I mentioned

earlier using the two deterministic models. The proposed stochastic model fuses

data from GPS and beacons and estimate the location of the user in a discrete

state space – grid over traversable area. Earlier in section 2.9.3 I briefly mentioned

that GPS error in Diridon station is not precise enough to route a person with

visual impairments. Figure 2.22 is the aerial image from Google map. I walked

on a path toward south and recorded the actual and GPS locations. Collected

GPS shows how inaccurate the GPS is at the station.

Figure 2.22: Received GPS locations at the station. Each green circle shows the
ground truth location at time t along a path. Each red circle is the GPS location
at time t. Each transparent purple circle shows the GPS location uncertainty
at time t that ranges from 10 to 65 meters. Each white line shows the distance
between a ground truth location and GPS estimated location at time t. The aerial
image of the station has been taken from Google Map.

To improve the GPS location estimation we deployed 21 tough iBeacons at the

station above the ground. TX power of each beacon is set to 3(−12dBm) that

can transmit signals up to 20 meters. Advertisement interval is set to 350ms that

broadcasts ∼ 3 signals every second. Beacons are deployed on each lamp located
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at the station. The height of lamps are ∼ 3.8m. The distance between lamps

vary.

2.12.1 Data Collection

I collected data from 21 BLE beacons and GPS. The beacon dataset is a set of

records each comprises time-stamp, beacon’s minor ID, and RSSIs at time t. The

GPS dataset is a set of records each comprises time-stamp, latitude, longitude,

altitude, and GPS location uncertainty at time t. I collected the mentioned dataset

for each setup combination of (L, D, V ) where

• P is the path along which I walked and L ∈ {path0, path1, path2, path3,

path4, path5, path6, path7, path8, path9, path10},

• D is the moving direction and D ∈ {north, south} for path 0 to 4, and

D ∈ {east, west} for path 5 to 10,

• V is the velocity of walking along a path and V ∈ {∼ 0.5m/s, ∼ 1m/s}.

The phone was held 1m high in my hand throughout the data collection. Fin-

gerprinting was performed in January of 2019 from RSSI data collected with an

iPhone 7. I walked each path P towards D = north and D = south with an

approximate constant velocity of V =∼ 0.5m/s. The geodesic coordinates of the

endpoint locations of each path were measured using Google Maps, and trans-

formed to grid coordinates. By timestamping the start and end of the walk, the

walking velocity was measured, which allowed me to assign a timestamp to each

cell in the grid overlapping with the path, and thus to record RSSI measurements

for that cell. Overall, data was collected from walking over 22 paths (including

walking on the same path in opposite directions). Figure 2.23 shows the image of

the station and the paths along which I walked for the data collection. There are 3
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paths in the east side, 2 paths in the west side, 3 paths in the north cross walk, and

3 paths in the south cross walk of the platform. I used the (L, D, V =∼ 0.5m/s)

data for training. It is worth mentioning that, in figure 2.23 blue circles show the

21 beacons locations, deployed at Diridon station. Two red circles are defective

beacons that stopped working. The one that is closer to the north stopped work-

ing before the first data collection and the one that is closer to the south stopped

working after first trial of data collection.

In addition, I mimicked a case with fewer (8) BLE beacons available (see

layout of this subset of beacons in Fig. 2.27, last two plots), by considering data

measured only from these beacons.

I tested the performance of the model over three different sets of trials to

account for different weather conditions in the dataset. The first set (Trial Set

1) was collected on the same day of fingerprinting. For trial 1 data collection

I used the (L, D, V=1m/s) setup. Similar setup to training data with velocity

of ∼ 1m. Overall, data was collected from walking over 10 paths (path 0 to 5

toward north and south directions). This trial set represents an “ideal" situation,

as fingerprinting and data collection were conducted under identical conditions.

Timestamped RSSI data was collected during the trials. By measuring the

location of the endpoints of these paths, and recording the start and end time

of each walk, I was able to estimate the “ground truth" location at all times

and thus to precisely measure the localization error. Ground truth locations

are calculated as follows: Given the length of each path, the velocity V , the

starting and ending geodetic location of the walking path, and time stamps, I

compute the ground truth location (xGT , yGT ) at each time-stamp t. First I convert

geodetic coordinates (latitude and longitude) of starting and ending points to

ENU coordinate system with respect to the grid origin I call them (x, y)s and
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(x, y)e respectively. Then the angle (angle) between (x, y)s and (x, y)e is measured

by calculating the arctan (ye − ys)/(xe − xs) between two points. Knowing time-

stamp (t), velocity (V ), I can compute the distance via dist = V × t. Given dist,

angle, and ((x, y)s), ground truth location at time t on the grid is calculated using

yGT = (sin(angle).dist) + ys and

xGT = (cos(angle).dist) + xs.

A second smaller set (Trial Set 2) was collected in May of 2019, 4 months after

fingerprinting. Of note, all beacons were turned off for a period of time (using the

Kontact’s beacon management app) between Trial Set 1 and 2, then turned on

again before the data collection for Trial Set 2 began. One of the beacons (located

on the East platform) stopped working in the process, and thus only 20 beacons

were available for Trial Set 2. 4 trials were conducted in an identical fashion as

for the previous case, with me walking over straight paths with known endpoints.

Path reconstruction was also conducted with the reduced set of beacons (only 7

beacons, due to the aforementioned beacon failure).

The last set (Trial Set 3, collected in July of 2019) is comprised of 3 trials with

me walking through paths that included multiple turns (crossing the crosswalks

and walking in two east and west side of the platform). For these trials I don’t

have ground truth measurements of the experiment’s location at all times, and

thus cannot compute the localization error. I walked with different speeds from

0m/sto1.5m/s However, I recorded the times at which I took each turn, which

allowed me to associate each data point with the segment (between two consecutive

turns) when that data was collected. Based on this information, I was able to

compute all “jumps" – situations in which the system returns a location that is in

an incorrect path segment. The error metric in this case is the proportion of the

“jump" events within a path.
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th

East

Figure 2.23: Circles show the 21 beacons locations, deployed at Diridon station.
path 0 is shown in red and is very close to a thick wall. Path 0 is also under the
lamps on the east side of the platform (see figure 2.18). Path 1 is shown in green
and is in the middle of the east side of the platform. Path 2 is shown in purple
and is very close to the track on the east side. Path 3 is shown in pink and is
very close to the track on the west side of the platform. Path 4 is shown in light
blue color and is in the middle of west side of the platform. Paths 5 ,6, 7 is on
the north crosswalk and paths 8, 9, 10 are on the south crosswalk. The distance
between each path is approximately 1m

Figure 2.24 visualizes the RSSI signatures based on the data collected in path

1 on the east side. Each column corresponds to one beacon. Each row represents

a location at which I collected the beacons’ RSSI. I.e, a row at, say, y = 25 in

the graph contains the RSSI of all beacons received at X = 25 meters. Higher

RSSIs are darker. In other words, each row is a RSSI signature. Each column

66



represents the RSSI measured from that beacon. Walking down a column from

0m to 175m, we see the RSSI values measured from that beacon as I walk from

X = 0 to X = 175.
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Figure 2.24: RSSI signatures on the east side of the platform. Each column
corresponds to one beacon. Each row represents a location at which I collected
the beacons’ RSSI. Green rectangles are RSSIs received on the east side from
beacons from the west side of the platform.

The process for location estimation starts with training the model as defined

in eq. 2.19 with the training dataset and testing the model with testing dataset.

In training phase, I calculate the RSSI i
mean(x, y) for each cell in the grid with

respect to each beacon i over all the RSSI values in the cell and its surrounding

cells. That is, for each cell x, y I calculate RSSImean(x, y) based on RSSIs in cells
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(i, j) where i ∈ {x−2, x−1, x, x+1, x+2} and j ∈ {y−2, y−1, y, y+1, y+2} if

such cell exists in travesrable area. In other words, RSSImean(x, y) computed from

the measurements received within a square region with side of 5 meters (25 cells).

Figure 2.25 illustrates how RSSImean(x, y) is calculated from 25 surrounding cells.

Figure 2.25: An illustration of calculating RSSI i
mean(x, y). Grey cells are 25

surrounding cells around (x, y) cell (shown with a thicker border). Each symbol
(star, square, ...) corresponds to the beacon source of a received RSSI. RSSI
values have not been represented in the illustration. Cell (x, y) received 3 RSSIs
from 3 beacons during training data collection. 3 RSSIs are visualized as star,
square, and triangle in the cell. In order to compute RSSI i

mean(x, y) I check the
25 surrounding cells and count the star, square, and triangle. If there are more
than 3 of that shape in the surrounding cells, then I add them to cell (x, y). At
the end we have 5 stars and 4 squares. Say the 5 star RSSIs have been received
from beacon b1 and 4 square RSSIs from another beacon b2. Now, mean value of
b1, and b2 RSSIs can be calculated for cell (x, y). Cell (x, y) consists of two mean
values, RSSI1

mean and RSSI2
mean.

Figure 2.26 reads similar to figure 2.24, but visualizes the calculated RSSI i
mean(x, y)

instead of RSSIs. Each row is the computed RSSI i
mean of RSSIs I received from

beacons during training phase. Each column represents the RSSImean measured

from that beacon. Walking down a column from 0m to 175m, we see the RSSImean

values measured from that beacon as I walk from X = 0 to X = 175.
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Figure 2.26: RSSI i
mean on the east side of the platform based on walking on

path 1. Each column corresponds to one beacon. Each row represents a location
at which I measured RSSI i

mean. Green rectangles are computed RSSI i
mean during

training phase on the east side from beacons from the west side of the platform.

2.12.2 Results

I tested multiple configurations of the system: GPS tracks, BLE beacons tracks

(Sec. 2.9.2), and GPS/BLE beacon fused tracks (Sec. 2.9.4). In addition, for

the last two modalities, I experimented with the use of the Bayes discrete filter

tracker (Sec. 2.9.5). I experimented with all 21 beacons, as well as with the

reduced set of 8 beacons. I have run the model 13860 (5 × 9 × 4 × 11 × 7) times

by using all possible combinations of the following parameters’ value sets. α ∈

{0, 0.2, 0.5, 0.7, 1.0}. σ ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}. N/A−RSSImean(x, y) ∈
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{−95, −100, −115, −130} (dBm).

ϵ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

γ ∈ {0.001, 0.01, 0.1, .2, .3, .4, .5}. I observed that the combination of α = 0.2,

σ = 8.0, ϵ = 0.2, γ = 0.3 and N/A − RSSImean(x, y) = −95dBm results in more

accurate location estimations. I report the root mean square distance between

the ground truth location at time t and the estimated location as reported by the

system based on the RSSI vector and GPS location collected at that point. Root

mean squared distance error eq. 2.22 is used to compute the error of the model

for trail set 1 and 2. For trial set 3 due to in availability of ground truth locations

I report proportion of the “jump" events within a path.

rmse =
√

(yest. − yGT )2 + (xest. − xGT )2 (2.22)
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Figure 2.27: Experiments with a sample path (East platform) from Trial Set 1.
The left plot shows the actual path taken (black) with the track estimated from
GPS (light blue) and the average error computed for this path. The next two
plots show results using all 21 beacons (whose locations are shown on the map),
while the last two plots only 8 beacons are used (locations also shown).
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Figure 2.28: Experiments with a sample path (West platform) from Trial Set 1.
See caption of Fig. 2.27.

Localization errors, averaged over all trials for each trial set, are shown in

Tab. 2.3 using the chosen metrics. Figs. 2.27–2.31 show tracks computed for
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representative individual paths. A common characteristic of all trial sets is that

the GPS tracks were for the most part correct while walking on the West platform,

but grossly incorrect when walking on the East platform. This results in the large

measured average error reported for the GPS tracks. Localization using only

BLE beacons also produces substantial error, especially for the portion of the

platforms facing each other. This is due to the fact that, when standing on one

platform, the distance to one or more beacons in the other platform is often shorter

than the distance to the nearest beacons on the same platform. This generates

a multimodal posterior distribution, which results in frequent “jumps" from one

platform to the other. In fact, beacon-based localization generates errors also

when walking on the West platform, where GPS produces very good results. The

situation was aggravated by the fact that, as noted above, one beacon on the

East platform stopped functioning after Trial Set 1. In general, when using fewer

beacons (see Fig. 2.30), the error increases, as expected.

Full set GPS BLE Fusion BLE+tracker Fusion+tracker
Trial Set 1 10.38 4.36 3.83 2.72 2.55
Trial Set 2 7.61 6.65 5.18 6.33 5.81
Trial Set 3 29% 17% 19% 9% 14%

Reduced set GPS BLE Fusion BLE+tracker Fusion+tracker
Trial Set 1 10.38 8.10 5.40 5.37 4.24
Trial Set 2 7.61 11.04 6.01 8.72 6.83
Trial Set 3 29% 24% 25% 11% 21%

Table 2.3: Error computed over all trials in each trial set. The error is expressed
as root mean square distance between estimated and actual location for Trial Sets
1 and 2, and as the “jump proportion" for Trial Set 3. Top: all available beacons
used (21 for Trial Set 1, 20 for Trial Sets 2 and 3). Bottom: reduced set of beacons
used (8 for Trial Set 1, 7 for Trial Sets 2 and 3).
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Figure 2.29: Experiments with a sample path (East platform) from Trial Set 2.
See caption of Fig. 2.27. Note that, due to a beacon failure, there were only 20
beacons available, of which a subset of 7 beacons was used for the last two plots.

74



0 10 20 30 40
90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

B

B

B

B

B

B

B

B

B

B

B
B

B

B

B

BB

B

B

B

Actual path
GPS: E=4.38 m

0 10 20 30 40
90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

B

B

B

B

B

B

B

B

B

B

B
B

B

B

B

BB

B

B

B

BLE+tracker: E=5.41 m
Fused+tracker: E=3.21 m

0 10 20 30 40
90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

B

B

B

B

B

B

B

B

B

B

B
B

B

B

B

BB

B

B

B

BLE: E=7.99 m
Fusion: E=4.83 m

0 10 20 30 40
90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

B

B

B

B

B

B

B

BLE+tracker: E=9.93 m
Fused+tracker: E=4.86 m

0 10 20 30 40
90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

B

B

B

B

B

B

B

BLE: E=13.43 m
Fusion: E=4.88 m

Figure 2.30: Experiments with a sample path (West platform) from Trial Set 2.
See caption of Fig. 2.27.

GPS/beacon fusion results in substantially lower overall localization error than

with either modality alone, especially when fewer beacons are used. Careful anal-

75



ysis shows that, in this case, fusion mostly contributes to reducing the extent of

vertical (North-South) jumps from beacon-based localization. This may be the

reason why no apparent benefit is observed from fusion with GPS with respect

to using beacons alone in the “jump proportion" metric used for Trial Set 3. Ver-

tical errors within the same segment do not constitute a jump, and are thus not

penalized by this metric. In addition, fusion contributes to reducing East-West

platform jumps when walking on the West platform.
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Figure 2.31: Experiments with a sample path from Trial Set 3. See caption of
Fig. 2.27.

As expected, the general effect of the tracker is to “stabilize" and smooth the

computed paths. Quantitatively, use of the tracker always reduces localization
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error, although in the case of Trial Set 2, the error reduction is less dramatic

than that achieved by GPS/beacon fusion. Only for Trial Set 1 does use of the

tracker on GPS/beacon fused data result in the best results. Some insight on

why use of the tracker may not be as effective as expected in Trial Set 2 can be

obtained by observation of Fig.2.29, which shows a case with me walking on the

East platform. In this case, the tracker generates a piecewise smooth trajectory

which sometimes places the user on the West platform, amplifying (rather than

reducing) the localization error from the beacons. In this particular case, fusion

with GPS may even worsen the situation, as seen in the case with 7 beacons.

2.13 Conclusion

I described a system for self-localization in an outdoor location (a light rail

station) where GPS signal is available, but often unreliable. This situation is

representative of many urban environments, where shading effects reduce the ac-

curacy of GPS-based localization. A set of BLE beacons were installed, with

the purpose to enhance self-localization through measurement of the RSSI from

these beacons, using a mapping that was learned with a standard fingerprinting

phase. Due to the open nature of the place, localization from BLE beacons alone

is generally poor, especially when a low density subset of beacons is considered.

Statistical fusion of data from GPS and beacons is shown to improve the accuracy

in most situations, as does the use of a Bayes discrete filter tracker with a simple

motion model.
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Chapter 3

RouteMe2 at Palo Alto Station:

User Experience Design

3.1 Introduction

In this chapter, I primarily focus on the experience of a visually impaired

person who is using RouteMe2 mobile app to navigate in a complex transit hub.

The main challenge is clear and precise communication between the localization

system and a visually impaired user who does not have access to the contextual

spatiotemporal information available solely by the gift of sight. Contextual refers

to the visual information that is available in the surrounding of the user within

a certain area such as a TL. The communication complexity becomes more chal-

lenging considering the inaccuracies and imperfections of the localization system

in the open area, ramps, and tunnels.

For instance, in Palo Alto transit station, travelers have to navigate through

underground tunnels, ramps, stairs, and outdoor areas to catch the train where

there are possibilities for the user to fall off the track along the way. Designing
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a communication interface to communicate the spatiotemporal information along

this kind of complex routes needs special care. A good user experience design shall

be as simple as possible. It shall enable the visually impaired travelers to perceive

their position, gain enough knowledge about their surroundings, and get notified

of the upcoming actions to be taken. It also needs to consider the amount of

the communicated information with respect to the cognitive load of the user [56].

Simply put, it must not overwhelm the user with too much information while

she/he is busy with figuring out her/his way to the destination.

Fig. 3.1 shows a pedestrian route to Palo Alto Station. The route starts at

Palo Alto transit center and ends at northbound train stop. A sighted traveler

may be able to spot the correct bus slot by looking at the posted signs. However,

a visually impaired traveler would likely need more directions to navigate the

platform, find the place to get on the bus, and where and when to make turns for

entering or exiting a ramp or an underground tunnel. All these adds complexity

to the users’ journey since they cannot rely on visual landmarks. Also, routes

need to be defined at a much finer scale for visually impaired people. This is

particularly the case in the open, when there are no readily available features that

can be perceived by touch – such as a wall, which can be tracked using a long

cane – to follow a route.

3.2 Chapter Organization

In section 3.3 I briefly review other accessible navigation systems built for

people with visual impairments. In section 3.4 I present the user interface design

thought process. Features and functionalities of the app is presented in section

3.5. Finally, I conclude the chapter in section 3.6.
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Figure 3.1: Detail from a route generated by Google Map. A pedestrian route,
shown by blue dots, leads to a train stop from which the desired train departs
(red destination icon). Finding where and when crossing the street, making correct
turns to enter or exit a ramp or an underground tunnel are challenging for visually
impaired.
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3.3 Related Works

Here, I mention several existing navigation systems by concentrating on their

user experience and app functionalities. The goal of this short review is to learn

about the state-of-the-art and find out about the design limitations of these pro-

posed systems and the areas of improvements. Table 3.1 summarizes these sys-

tems according to their user interface and functionalities and compares them with

RouteMe2. A brief description of these system follows.

NavCog3 [41, 42] is a turn by turn navigation system for people with visual

impairments for indoor environment. The app has plenty of adjustable settings

that allow users to define their preferred route that may or may not include

elevators, stairs, tactile pavement, etc.

Sightless Helper [57] uses footstep counting and GPS for indoor and outdoor

navigation. It can detect unsafe areas to ensure safe navigation. It allows users

to define unsafe areas by finding them on Google Maps. They evaluated the

usability of the system using System Usability Scale (SUS) score proposed in [58]

and reported 72.2% as their score. It provides general guidance toward point of

interests defined by users. It lacks detailed contextual information and proper

instructions from user experience perspective. For example, it does not provide

orientation and heading direction which is essential for visually impaired users.

BlindSquare [59] is a commercial accessible GPS-app developed for the blind,

deafblind and partially sighted. It pairs with third-party navigation systems such

as Google Maps, Apple Maps, and Moovit for navgation. It uses Foursquare

database to find nearby point of interests. It is more of an exploratory app. It has

plenty of adjustable settings. However, it does not provide turn by turn navigation

required for people with visual impairments.

Blindways [60] guides users within a cane’s distance of an outdoor bus stop
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sign using permanent landmark clues contributed by volunteers. Dependency of

the model to the volunteers contributions may decrease the usability of the app

in every stop.

[41, 42] [57] [59] [60] [61]
Name NavCog3 Sightless Helper Blindsquare Blindways RouteMe2
Indoor

Outdoor Indoor Both Outdoor Outdoor Outdoor

Localization BLE
GP S,

footstep
counting

GP S GP S, Clues
GP S,

BLE / IMU

Heading
direction
detection

No No No No Y es

Turn
by turn

instruction
Y es No No No Y es

Safe
Traversable

Area
No Y es No No Y es

Supports
public
transit

No No No

voluntarily
landmarked

bus stops
only

Y es

Voice
output Y es Y es Y es Y es Y es

Vibration
feedback Y es Y es Y es No Y es

Interaction
style Conversational Instruction Instruction Instruction Instruction

POI and
Landmark

announcement
Y es Y es Y es Y es Y es

Table 3.1: Summarizes accessible navigation apps functionalities and compares
them with RouteMe2.

My investigation on these apps resulted in the following conclusions. 1. Main

page of most successful systems shows a map and routing, 2. voice output and

vibration feedback are common features that users expect, 3. None of the current

systems are useful for complex transit hubs, 4. There is lack of step by step

routing or turn by turn navigation app for outdoor complex transit centers where

GPS is not accurate, 5. Simple graphical user interface is lacking.

3.4 User Interface Design

The first and foremost step toward designing a user interface that leads to

better user experience for visually impaired users is to acknowledge the fact that
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they cannot see. Despite the simplicity of this fact, it is surprisingly a challenging

task for a sighted designer to put herself in the shoes of a visually impaired

person and truly feels what her/his experience is while using the app. Also,

there are different scenarios some of which may misleadingly seem trivial but each

have its own complications. For instance, when the visually impaired user is off

track, is near stairs, or has to take consecutive turns. On top of that, there

must be a medium for the designing team to communicate the user experience

with one another and imagine the experience of the visually impaired user as

they collaborate on the designs. In attempt to meet the preceding demands, I

resorted to a some storytelling techniques by developing personas and scenarios

which resulted in a set of storyboards. These storyboards provided us a medium

to communicate among our team in the lab and helped us to imagine the situation

where the visually impaired user may encounter during their journey in the transit

hub.

A persona is a description of a fictitious user, based on data from user research

[62]. Scenarios are the stories that we tell while we have the persona of our users

in mind. Storyboards provide a common visual ‘language’ that enables people

from different backgrounds to communicate on aspects of design [63].

I define a persona called Julia who is 53 years old and she is blind. She travels

from Palo Alto transit center to Northbound Palo Alto station once a week. Figures

3.2 - 3.11 show the scenes of a storyboard about her journey from Palo Alto transit

center to Northbound Palo Alto station I refer to it as PA:TC-NB which is listed

below. It is worth noting that the TL numbers in the route descriptions in those

figures are replaced with actual TL names. For example, underground south tunnel

or south cross walk.

• When the user gets lost,
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• When the user wants to know where she/ he is?,

• When the user wants to learn what is around her/ him?,

• When the user wants to learn direction toward desired distal landmark,

• When the user wants to know her/ his current location and orientation,

• When the user wants to know about upcoming turns,

• When the user wants to know about the distance left to the destination,

• When the user wants to know about the details of the route either before

starting the route or somewhere in the middle of the route.

• When the user is walking in a wrong direction and not toward the next tile,

• When the user is not in traversable area and off route.

How can I go to 
Palo Alto 

northbound 
train station?

Figure 3.2: start scene of PA:TC-NB storyboard is demonstrated. Julia (the
hypothetical user) is at a bus stop at Palo Alto transit center and does not know
how to get to the northbound train station.
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Opens 
RouteMe2 

app

RouteMe2

Figure 3.3: open RouteMe2 scene of PA:TC-NB storyboard is demonstrated.
Julia (the hypothetical user) opens the app and logs in with her credentials.

Selects the trip to 
northbound train 

station

Figure 3.4: select a trip scene of PA:TC-NB storyboard is demonstrated. Julia
(the hypothetical user) selects her trip which was defined by herself or her care
giver in RouteMe2 web application
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Brief route 
description Total travel time is 5 minutes to the 

boarding stop,

Or Total walking distance is: ~ 300 meters

# of the tiles: 13

# of crosswalks: 2

# tunnels: 3 

Figure 3.5: brief route description scene of PA:TC-NB storyboard is demon-
strated. Julia (the hypothetical user) wants to hear a brief route description
before staring the route.

What is the 
route?

Go straight to tile 2. 

Go straight to tile 3, Tile 3 is a crosswalk. 

Go straight to tile 4. 

Make a left turn and go straight to tile 5, tile 5 is a 
crosswalk.

Make a right turn, staircases are at the beginning of the 
next tile.

Go straight to tile 6 and take the ramp. 

Go  straight to tile 7.

Make a left turn and go straight to tile 8. 

Make a right turn and go straight to tile 9 , Tile 9 is a 
tunnel, Rail track is on the left side.

Make a left turn and go straight to tile 10,  Tile 10 is a 
tunnel.

Make a left turn  and go straight to tile 11. 

Tile 11 is a tunnel. 

Go straight to tile 12, rail track is on the left side.  
Go straight to tile 13. Tile 13 is the boarding tile. 

Figure 3.6: complete route description scene of PA:TC-NB storyboard is demon-
strated. Julia (the hypothetical user) wants to hear more about the details of the
route such as upcoming turns where she expects to enter to a tunnel, etc.
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You are in the tile 2,


This tile contains a tactile strip, tactile 
pavement, and a bench,


You are heading in the right direction,


Walk 15 meters toward the next tile,


Next tile is a crosswalk, It is forward-
straight

Where 
am I?

Figure 3.7: where am I scene of PA:TC-NB storyboard is demonstrated. Julia
(the hypothetical user) is confused and wants to hear where she is.

You are approaching tile 3, next 
tile is a crosswalk, 


Next tile is in forward straight.

Do you want to hear your current 

tile description?
Where 
am I?

Figure 3.8: approaching crosswalk scene of PA:TC-NB storyboard is demon-
strated. Julia (the hypothetical user) is confused and wants to hear where she is.
She is about to cross the crosswalk.
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You are approaching tile 5, tile 5 is a 
crosswalk, It is in forward left ,walk for 2 
meters toward the next tile.


Do you want to hear your current tile 
description?

Where am 
I? 

Figure 3.9: where am I scene of PA:TC-NB storyboard is demonstrated. Julia
(the hypothetical user) is confused and wants to hear where she is. She is about
to turn left to cross the crosswalk.

Notification: You are off route, 
turn 6 o’clock and head back to 

tile 2. Tile 2 has a bench and 
tactile pavement

Off tile 
notification

Figure 3.10: off route scene of PA:TC-NB storyboard is demonstrated. Julia
(the hypothetical user) is off route and the app notifies her. The app provides
instructions to return to the route.
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Notification: You are in a 
wrong direction. Turn 6 
o’clock and go to tile 8.   

Wrong 
direction 

notification 

Figure 3.11: wrong direction scene of PA:TC-NB storyboard is demonstrated.
Julia (the hypothetical user) walks in an opposite direction. The app identifies it
and notifies her. The app provides direction instructions to correct her heading
direction.

The design process included building storyboards, wireframing, and mock-

ups. After collaboratively working on the scenes of a storyboard, wireframing was

the second step toward the app user interface design. The design process is an

interactive and iterative process in which I circle back and update the scenes and

the design based on the feedback received from our team, identifying new user’s

needs, and new features.

3.5 RouteMe2 app Functionality

Based on the storyboard presented in section 3.4 and our findings from our

previous focus group study [3], I prioritized four main functionalities that cover

some of the challenges people with visual impairments might have in outdoor

places such as a complex transit hub. The notion of tile or TL may be used

interchangeably. Those functionalities are as follows:
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• Brief route description,

• Route description,

• Where am I?,

• What is around me?

These functionalities are state dependent and they provide different outcomes

based on the user’s state. I defer the description of these functionalities to after

I describe the states below since these functionalities are state dependent. The

system state diagram 3.12 is created to consider all the states that our user-centric

app should handle for different functionalities.

Figure 3.12: System states diagram that shows the change of the states based
on user location, heading direction, and route information.

The user can be in either of on Tile or off Route state. The app detects the

location and heading direction of the user. It checks them against the routing

information that includes list of TLs on the route. List of TLs are generated

in sequential order from user’s location toward the destination. The app detects
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whether the user is on any TL in a route or is completely off route and needs

instructions to get back to the route.

on Tile state itself has its own sub states. Still on tile state happens when the

user is on route and in correct tile toward next tile. It is worth mentioning that

every time the app detects the tile that the user is within (current active tile),

the system finds the next and previous tiles to provide correct instructions. When

user approaches the next tile in the route, the state of the system changes to close

to next tile. Here the app vibrates once to let users get updates about their current

location along the route. Then, user enters the next tile and app vibrates twice

and changes its state to new tile – i.e. next tile. The app constantly computes the

heading direction of the users and compares it with the correct heading direction

toward next tile. Correct direction state is for when the user walks in the correct

direction toward next tile and wrong direction state happens when a user walks

in a correct tile but wrong direction. When this situation happens, the app state

changes to wrong direction state. The app looks for a new route if available to

update the route based on current location and orientation of the user. If not, it

generates new direction instructions and asks the user to change her/ his heading

direction toward next correct tile.

As mentioned earlier off route state happens when user is completely off route

and not detected in any tile. The user might have been in a correct tile and

walked out of the tile and not being on the route anymore. In this situation

the heading direction is checked. The user either can be in a correct direction

toward closest tile in the route or completely in a wrong direction. The state of

the system changes to off route - correct direction in the former situation and off

route - wrong direction in later case. In both case the app generates navigation

instructions to help the user to successfully get back to the previous tile or closest
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tile in the route. In off route - wrong direction situation the app vibrations four

times to alert the user. The system stays in still off route state until the traveler

enters the correct tile in the route.

Now back to the functionalities of the app. Brief route description provides

important information that user may wants to know either before starting the

route or along the route. Information such as number of tiles (TLs), number of

tunnels, number of crosswalks, duration of the route, and total time takes from

the staring point to the destination (Fig. 3.13, b)). Route description lists step

by step routing guidance from the current location of the user to the destination.

Route description provides walking direction toward next tile, walking distance

toward next tile, heads up about important tiles such as a cross walk, stair cases,

ramps, and tunnels (Fig. 3.13, c)). Where am I? feature can be used anytime

including being on tile or on route or being off route. It returns the current tile

that the user is in and a direction instruction toward the next tile when system

state is on tile. On off route state it generates walking and direction instructions

toward correct tile. It also provides whether next tile is an important tile such

as a tunnel, cross walk, or staircase (Fig. 3.14, b)). What is around me? feature

returns list of important points of interest and landmarks based on the current

location of the user along with routing information such as distance and direction

toward them (Fig. 3.14, c)).
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Figure 3.13: User interface of the RouteMe2 app is demonstrated. a) user selects
either brief route description or route description. b) App shows the brief route
information. c) App shows the route description.

Figure 3.14: User interface of the RouteMe2 app is demonstrated. a) user
selects either where am I? or what is around me?. b) App shows the current
location information along with direction toward next tile. c) App shows the list
of landmarks ordered by their vicinity to the current location of the user. It also
provides direction information toward them.
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3.6 Conclusion

In this chapter I presented my design philosophy and the thought process be-

hind the user experience and interface designs. My goal was to provide an effective

medium for communicating the spatiotemporal information of the surrounding en-

vironment, the state of user in that environment, and navigation and guidance to

the visually impaired user. The user interface is designed having the simplicity of

the graphical interface and the requirements that we identified in our focus group

study [3] in mind.

I strived to put the user at the center of my designs by creating storyboards

to cover important real world scenarios in different situations that the user may

encounter during an actual journey from a source to a destination in an actual

complex transit hub. Then, I deduced the required functionalities to cover those

scenarios depending on the user’s state. Each step of the design required consid-

erable amount of brainstorming and back and forth with the team.

Due to time and resource constraints, we were not able to involve actual users

in the design process which would be ideal if we could have afforded to do so. For

the same reason, I was not able to assess the success of the designs in meeting

the mentioned objectives by means of user study, usability testing, focus group,

or other feedbback methods.
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Chapter 4

Interpersonal Proximity

Detection and In-Vehicle

Localization Using BLE

4.1 Introduction

The COVID-19 pandemic has affected virtually all enterprises in the private

and public sector. In particular, public transit has suffered disproportionally

from loss of ridership [64, 65]. As a consequences of shelter-in-place ordinances,

and with remote working becoming accepted and even encouraged in many lines

of business, the commuting needs of many habitual bus or train riders have rad-

ically reduced. In order to enforce social distancing, transit operators have been

forced to dramatically reduce the capacity of vehicles. Many potential riders are

choosing not to use public transit for fear of contagion, even though there is scant

evidence that, with appropriate precautions in place, transit poses serious risks of

coronavirus outbreaks [66].
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Yet, many people (in particular, essential workers who cannot afford private

transportation) are still riding busses and trains. And once the pandemic will

be under control, it is expected that ridership will increase again. Indeed, public

transit has a critical role for sustainable, affordable, and accessible mobility [67].

Even in the era of autonomous vehicles, mass transit will be necessary to manage

traffic congestion [68]. In the words of Jeff Tumlin, Director of Transportation at

San Francisco Municipal Transportation Agency (SFMTA): “Transit remains the

most energy and space efficient way to move large numbers of people over long

distances in and around cities” [69].

However, transit riders in the post-pandemic world will have increased expecta-

tions. Prophylactic measures, such as maintaining social distancing and avoiding

touching surface in common places, are likely to remain on the mind of travelers.

Agencies will need to put policies and infrastructure in place that make riders feel

safe and comfortable while using public transit [70,71].

In this chapter I addresses three interconnected services contributing to a

safe travel experience: interpersonal proximity detection, effortless ticketing, and

crowdedness monitoring.

4.2 Interpersonal Proximity Detection

Interpersonal proximity detection techniques, once confined to applications

such as crowd monitoring [72] and social interaction analysis [73], have received

substantial recent attention due to their potential for COVID-19 contagion trac-

ing. Contact tracing may help understand the genesis of a local outbreak of the

disease, and could be used to warn subscribers about a potential contagion event

due to proximity with an infected person [74].

The most common approach for interpersonal proximity detection relies on
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measurement of the received signal (RSSI) from a radio source, such as a Wi-

Fi transmitter [73] or a Bluetooth Low Energy (BLE) beacon [75–79]. Since

all modern smartphones contain a BLE transceiver, this approach has enabled

widespread adoption without the need for expensive external infrastructure (e.g.

cameras equipped with embedded computers for visual people tracking.) The

power of the received signal decreases quadratically with the distance D to the

source, and thus the received strength could, in principle, be used to estimate D

when the emission power is known. For example, the Exposure Notification (EN)

API produced by Google and Apple [80] uses this mechanism to support contact

tracing.

A different approach to proximity detection is based on the disparity of a

measured signal, typically an electromagnetic field generated by a transmitted

(e.g., a Wi-Fi [81–83] or BLE [84, 85]), although magnetic field measurements

have also been considered [86, 87]. When two identical receivers are placed in

the same or similar location, measurements are expected to be similar (i.e., their

disparity, as defined, for example, by the magnitude of their difference, is expected

to be small).

I present an experimental comparative analysis of mechanisms that use mea-

surement disparity (of the RSSI from fixed BLE beacons) for proximity detection,

viz-a-viz the direct measurement of RSSI from another nearby smartphone. In

particular, I address the specific problem of detecting the presence of another in-

dividual within distance thresholds of 1 meter and of 2 meters, since these are

the interpersonal distances usually considered when establishing the risk of con-

tagion [4, 5]. Unlike other work on proximity detection, where traces of moving

individuals are analyzed to identify possible overlaps, I consider the case in which

two individuals are standing or sitting at certain distance from each other for a
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period of time. This is representative of typical contagion scenarios, such as sitting

at nearby tables at a restaurant, or in nearby seats in a bus vehicle. I focus solely

on RSSI data here. Although data from other sensors (e.g. inertial [84, 85]) can

be leveraged to reduce false positives, I believe that it is important to precisely

assess the contribution of each modality.

The principal contributions of my work flows:

1. I collected representative data sets from two different environments: a living

room, instrumented with three BLE beacons, and a campus shuttle bus with

four BLE beacons. Within each environment, multiple data collection sessions

separated by long periods of time were conducted in order to assess repeatability.

2. I present an in-depth statistical analysis of the data collected, and of its ability

to discriminate interpersonal distance using a threshold of 1 meter and of 2 meters.

3. I compare the system performance using different features (including RSSI

from another phone, individual and average RSSI disparities from multiple BLE

beacons), as well as of a simple additive combination of RSSI received from another

phone and of mean RSSI disparity.

4.2.1 Related Work

Two approaches for contact tracing systems have been proposed in literature.

1) Network-based sensing approach that requires no client-side involvement and

uses WiFi infrastructure to passively monitor the flow and mobility of people in

a region equipped with WiFi Access Points (AP). WiFi networks log the con-

nections of mobile devices to APs and infers crowd movement patterns across a

region along with occupancy levels in different buildings by analyzing the number

of smartphones connecting to each AP [72, 81, 88, 89]. However, there are some

issues associated with network-based systems. First, one generally has no control
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on the actual density of AP placements that results in lack of coverage for some

areas of interest. Second, the long range coverage of WiFi APs are not helpful

for contact tracing purposes when higher positional resolution is required [82].

Lohan et al. [90] reported that the short operating range technologies such as

BLE typically provides better performance than WiFi positioning in terms of the

estimated distance/ranging error. 2) Client-based sensing that requires users to

install an app and uses smartphone sensors and BLE data to perform sensing mea-

surements. BLE technology is well justified to be used in contact tracing systems

due to its availability on most smartphones, low cost, and energy efficient [91].

In the context of social interaction measurement previous studies [75, 77, 84, 92]

used Bluetooth RSSI either from smartphones or wearable sensors (such as smart-

watches or coin beacons) by mapping RSSI to distance via propagation model. [76]

and [91] employed wearable devices to simulate smartphone BLE measurements

in order to circumvent the iOS limitations in BLE scanning when the app is in

background mode.

In principle, it could be possible to use power decay models (a.k.a. propagation

models) [24, 25] to estimate the interpersonal distance from the measured RSSI

received from the other device. However, in practice, this is extremely challeng-

ing [9] due to issues such as multipath fading – an effect of signal reflection from

nearby surfaces, time dependent signal power variations, and diversity of smart-

phones/environment in the contact tracing context. Power decay models require

calibration for each environment to identify a path loss coefficient for each device.

This is not practical in contact tracing systems. [75] studied face-to-face proximity

estimation using power decay models based on Bluetooth in smartphones. They

showed that even in ideal situations (indoors, same antenna orientation), the RSSI

signals measured within 1.5 meters to 3.5 meters are practically indistinguishable.
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[82, 84, 93, 94] combined different modalities such as Ultrasound, Radio fre-

quency identification (RFID), Quick Response (QR) codes, short range Wifi APs,

and external BLE beacons to improve the accuracy of the inter-personal distance

detection. Along the same lines, Shankar et al. and Trivedi et al. [85,88] leveraged

BLE beacons, WiFi, and Ultrasound co-location technologies, but in the context

of social interaction detection.

To the best of my knowledge no one has studied the use of external beacons

along with smartphone BLE RSSI data in the context of interpersonal distance

estimation for contact tracing purposes in a bus. Leith et al. [95] ran experiments

on a commuter bus and analysed the phone BLE signals provide by EN API.

They observed that increasing the exposure duration improves the accuracy of

their model at the cost of reducing the time resolution of the distance detection

system. They hypothesised that the sample rate provided by EN API is not suf-

ficient for a practical interpersonal distance detection in the bus where the signal

propagation is under the influence of disturbances that arise from metal-rich en-

vironments. Hence, further studying the problem in this challenging environment

by considering higher phone BLE sample rates as well as combining that with

other modalities such as external BLE beacons will get us closer to a practical

solution.

4.2.2 Interpersonal Proximity Detection Techniques

In this experiment, I considered two approaches to interpersonal proximity

detection. Phone RSSI uses the strength of the BLE signal received from another

persons’ smartphone. RSSI disparity compares the signal strength received at the

same time and from the same BLE beacon by the smartphone carried by two

individuals.
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Phone RSSI

In principle, one could use power decay models to measure the distance to a

transmitter from the measured RSSI [24,25]. For example, a distance–dependent

threshold could be devised as a function of the transmitter’s characteristics. In

practice multiple factors (including signal absorption from human bodies, reflec-

tion from walls and other obstacles and the orientation of the receiving antenna)

cause substantial deviations from the model. This especially the case for indoor

environments [78].

RSSI Disparity

BLE beacons are often installed in public spaces such as airports and shopping

malls, for applications such as mobile advertising or to enable self-localization [34,

41,42]. This existing infrastructure can be leveraged for proximity detection. One

approach could be to use the RSSI from multiple beacons to localize the user

via fingerprinting techniques [26–29, 32], then using this data to verify whether

two users where in nearby locations at the same time. However, fingerprinting

information is not normally available, and accuracy of localization may be poor.

A simpler approach can be used based on the notion that if two persons are

co-located, the power received from a beacon should be similar for both users

[81–83]. Thus, by comparing the RSSI from multiple beacons for two (or more)

users, one could devise a disparity index that measures the pairwise difference

in received RSSI. This disparity index could be associated with the likelihood of

these individuals being within a certain distance to each other.

It is important to note, though, that a small value of disparity does not nec-

essarily mean that the individuals are co-located. Ambiguity may arise when the

same signal power is measured in different locations. In order to illustrate how
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this can happen, consider the ideal case of isotropic signal loss, whereby the mea-

sured signal power is only a function of the distance to the beacon. Two different

locations may result in the same measured power from a beacon when they are

at the same distance to the beacon. In the case of a single beacon, all locations

within the same circle around the beacon are ambiguous (Fig.4.1 (a)). Ambiguity

can be reduced or eliminated by using more beacons. In the case of two beacons,

for a given the location of one person, there is exactly one other location from

which the same signal strength is received (i.e., that is whose distance to each

beacon is the same as for the first person; Fig.4.1 (b)). Using more beacons, the

ambiguity is resolved (i.e., two persons in different locations will receive a different

signal strength from at least one beacon; Fig.4.1 (c)), unless the beacons’ loca-

tions are collinear (Fig.4.1 (d)). In practice, the relationship between distance to

a beacon and received signal strength is affected by the same factors mentioned

in Sec. 4.2.2, which may contributes to the inherent ambiguity of this method for

proximity detection.

In the experiments, I use as disparity index the absolute value of the difference

dj = |RSSIj(1)−RSSIj(2)| of the received strength from the j-the beacon by the

two smartphones. In the case of signal received from multiple beacons, I simply

consider a one-dimensional feature formed by the average value the individual

disparity (akin to the Manhattan distance considered in [81]). This is a reasonable

choice, considering that all individual disparity values (and thus their mean) are

expected to be small at small interpersonal distances. Other choices (e.g., taking

the max value of the disparities) did not give good results in the preliminary tests.
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(a) (b)

(c) (d)

Figure 4.1: Examples of ambiguous zero RSSI disparity situations using one
beacon (a), two beacons (b), and three or more collinear beacons (d). Ambiguity
can be avoided by using three or more non-collinear beacons (c). These examples
assume isotropic signal loss and uniform emission power.

4.2.3 Experiments

A Toy Case: Instrumented Living Room

In order to evaluate the considered proximity detection techniques in a simple,

controlled scenario, I instrumented a living room with three BLE beacons (Kon-

takt Tough Beacon TB15-1) configured as iBeacons and set to the power level 2

(RSSI of -81 dBm at 1 meter) and advertisement interval of 350 ms. The beacons

were placed at a height of 2.5 meters, at the locations shown in Fig. 4.2. One

iPhone 7 and one iPhone 8 were used in the study. An app was installed in each

phone, designed to record time stamped RSSI data from the other phone’s BLE

beacons, as well as from the external BLE beacons. Phone RSSI and BLE bea-

cons reading rate were 40 and 3 samples per second respectively. I scanned Phone

RSSI and BLE beacons measurements using Core Bluetooth and Core Location

frameworks respectively. Data was collected while two experimenters, carrying

one iPhone each, stood at different locations as shown in Fig.4.2, with interper-

sonal distance of 1, 2, 3, and 4 meters. For each location pair, the experimenters
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first collected data for two minutes while holding the smartphones in their hand;

then they placed their iPhones in their front pants pocket and collected data for

two more minutes. The experimenters faced each other at all times. This data

collection was repeated three times: in May of 2020 (Set 1), in December of 2020

(Set 2), and in April of 2021 (Set 3). Data sets from each location pair and each

phone placement were compiled together into a single sequence (Combined set).

Figure 4.2: Home data collection layout: Set 1 data collection at (A1, F1), (A2,
F2), (A3, F3), (A, F) location pairs at 1, 2, 3, and 4 meters interpersonal distance
respectively. Set 2 and Set 3 data collection at (A, B), (A, C), (A, D), (A, E)
location pairs at 1, 2, 3, and 4 meters interpersonal distance respectively. For Set
2 and 3, one experimenter stood still in position A, while the second experimenter
moved in turn on the other locations.

The data collected at each location pair and for each phone placement was pre-

processed as following. Missing RSSI measurements were replaced with a small

value (-100 dBm). The resulting sequence was run through median filter of length

15, in order to reduce the variance of noise.

In order to analyze the statistical characteristics of the various indicators con-

sidered, I plotted the probability density function (pdf) of the associated mea-

surements conditioned on the interpersonal distance in Figs. 4.3–4.4 (Combined

set). I used Matlab’s ksdensity function to generate these plots. In the case
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Figure 4.3: The pdf of the Phone RSSI, conditioned on the four different inter-
personal distances considered (Home data collection).

of the Phone RSSI indicator, one would expect the mode of the conditional pdf

to move leftwards (smaller RSSI values) for larger distances. From the plots in

Fig. 4.3, it can be seen that the distributions of the Phone RSSI indicator at each

distance are actually multimodal. As expected, the distributions allocate more

mass towards lower RSSI values as the interpersonal distance increases, although

a large overlap can be noticed for the pdf conditioned on distances of 2 and 3

meters.

In the case of individual RSSI disparity indices (Fig. 4.4), one can notice

that the conditional pdf are relatively narrow and centered around small values

for distances of 1 and 2 meters, while they become broader (larger variance) for

distances of 3 and 4 meters. Indeed, only the disparity from Beacon 2 appears

to be useful for discrimination between distances of 1 and 2 meters. The mean

RSSI disparity index reflects this overall behavior, with the pdf conditioned on

distances at 1 and 2 meters fairly well separated from those at 3 and 4 meters.

Given that both the phone RSSI index and the RSSI disparity index have

distributions that correlate, to some extent, with interpersonal distances, it can

be of interest to analyze the joint statistics of these two features. Specifically, I
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(a) Beacon 1
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(b) Beacon 2
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(c) Beacon 3
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Figure 4.4: The pdf of the measured RSSI disparity, conditioned on the four
different interpersonal distances considered (Home data collection). The last plot
refers to the mean of the RSSI disparity over the three beacons.
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consider the vector formed by phone RSSI and mean RSSI disparity, and study

how the distribution of this vector conditioned on distances larger or smaller than

a given threshold D0. Fig. 4.5 displays the logarithm of the ratio of the joint

pdf of this vector, conditioned on D ≤ D0 and on D > D0, respectively with

D0 equal to 1 or 2 meters. Region with large positive or negative values of this

quantity indicate good discriminability. These figures suggest that discrimination

using individual indicators may be challenging, and that a 2-D classifier with non-

separable boundaries may be called for. In this study, I considered a very simple

linear classifier that assigns equal weights to the two features. In other words, this

classifier applies a threshold to an index equal to the mean RSSI disparity minus

the phone RSSI index (indicated as Phone + RSSI disp. in the figures). Large

values of this index are likely to indicate large interpersonal distance.

ROC curves (plotting true positive rate, TPR, against false positive rate, FPR)

are shown in Fig. 4.6. Each curve is obtained by varying a threshold on the

considered measurements, where a value larger than the thresholds (or smaller,

in the case of phone RSSI) indicates a distance D > D0, for D0 equal to 1 or 2

meters. The values of the area under the curve (AUC) for the relevant features

are shown in Tab. 4.3, 4.4.

From Fig. 4.6, it is seen that the mean RSSI disparity performs better than

individual RSSI disparities, at least for small values of FPR. The mean RSSI dis-

parity index proved largely superior to the phone RSSI index in terms of distance

discrimination for this data set. Depending on the distance threshold, the best

results (in terms of AUC) are obtained by either by the mean RSSI disparity or

by the phone+RSSI disparity feature. The effect of the distance threshold D0 was

relatively minor, with the best value at D0= 1 meter obtained with the phone +

RSSI disparity feature (AUC=0.86), and the best value at D0= 2 meter obtained
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Figure 4.5: The log likelihood ratio of the vector formed by phone RSSI and
mean RSSI disparity, conditioned on the interpersonal distances being smaller
(null hypothesis) or larger (alternative hypothesis) than the considered threshold
of 1 m or 2 m (Home data collection).
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with the mean RSSI disparity feature (AUC=0.886).

It is important to note that I observed a large variance across data sets, even

though all three data sets were acquired using similar modalities. For example, as

shown in Tab. 4.4, data from Set 1 gave substantially worse discrimination results

than for the other sets, especially when the distance threshold was set to D0= 2

meters.
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Figure 4.6: ROC curves using the considered measurements for proximity de-
tection at distance thresholds of 1 m and 2 m (Home data collection).

A Realistic Case: Campus Shuttle Bus

Public transit is arguably one of the most appealing application scenarios for

proximity detection. Social distancing may be difficult to observe inside a bus

vehicle or a train car, which calls for mitigation measures based, among other

things, on contact tracing. In addition, proximity measurements may be used to

generate a crowdedness index, which could be broadcast to passengers waiting at

bus stops or train stations. Passengers can then decide whether to board that bus

vehicle or wait for the next one, or board a less crowded train car.

In order to evaluate the different considered features for proximity detection,

I instrumented a bus shuttle vehicle in the campus with four BLE beacons, of
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the same type and with the same advertisement rate as in the previous case (see

Fig. 4.7). Signal propagation is known to be complex in buses due to the existence

of a strong radio signal reflector such as metal [95]. I conducted two data collection

exercises, the first with the Power level of the beacons set to 1 (October 2020), the

second, with power level set to 2 (February 2020). Power level is the strength of

the signal that a beacon broadcasts. Signal strength (RSSI) is in decibels relative

to a milliwatt (dBm). The maximum power that is available in iBeacons is 7

(4 dBm) that can be ranged up to 70 m. I set the power level to 1 (-20 dBm)

and 2 (-16 dBm) that can be ranged approximately up to 4 m and 10 m. Note

that while a higher emission power enables longer transmission distances, it also

reduces the life time of a battery-operated beacon. With default power settings

(power level equal to 3 or -20 dBM and advertisement interval set to 350ms )

the battery can last up to 2 years. Two experimenters used an iPhone 7 and an

iPhone 8 for data collection from the sequence of seat pairs described in Tab. 4.1

and 4.2. Note that these sets contain a larger variety of interpersonal distances

than for the Home data set, and that data for the same distance could come from

multiple location pairs.

For each seat pair, both experimenters first collected data for two minutes while

holding their phone in their hand, then for two minutes while keeping their phone

in their front pants pocket. Data was collected while the vehicle was driven along

its route, with passengers occasionally boarding and leaving the bus. At most

three passengers were in the bus at the same time during data collection (note

that, due to social distancing restrictions, at most six passengers were allowed in

the vehicle at the same time.)

The log ratio of the joint pdf of the vector formed by phone RSSI and mean

RSSI disparity, conditioned on distances larger and smaller, respectively, of a
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Figure 4.7: Shuttle data collection layout representing the location of the bea-
cons deployed on the shuttle ceiling and seat numbers. Right of the figure is the
front of the shuttle. Crossed red circle seats are blocked seats for COVID-19 dis-
tancing.

Distance (m) Seat pairs
0.5 (4, 3), (7a, 8), (19b, 19a), (18, 19a)
1.0 (4, 2)
1.8 (7a, 19a), (4, 21)
2.5 (4, 20a), (4, 25), (5a, 19a)
3.28 (7a, 15)
4.0 (4, 19a)

Table 4.1: Power level 1 data collection seat pairs

Distance (m) Seat pairs

0.5 (4,3), (7a, 7b), (20b, 20a), (18, 19a),
(5a, 6a)

1.0 (4, 2)
1.5 (7a, 19b), (11, 9)

1.8 (7a, 19a), (11, 15), (4, 21), (4, 5a),
(21, 25), (5a, 7a), (5a, 20a)

2.5 (4, 20a), (4, 25), (7a, 20a), (7a, 11)
3.28 (7a, 15)
4.0 (4, 19a)
4.88 (11, 20a)
6.0 (4, 11)

Table 4.2: Power level 2 data collection seat pairs
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threshold D0, are shown shown in Fig. 4.8 for D0=1 meter and 2 meters. As in

the Home data collection case, I compiled data at identical interpersonal distance

into the same set (Combined). I should note that, unlike the House data collection,

various occluding surfaces (such as the backs of the vehicle seats) affected signal

transmission even for small interpersonal distances (except when the participants

were sitting next to each other.) This may be one of the reasons for the broad

distribution of the phone RSSI values when D ≤ D0 (ranging from -80 dBm to

-35 dBm).

ROC curves for the considered features are shown in Fig. 4.9 for the Combined

set and D0=1 meter and 2 meters. AUC values for the individuals sets (at different

BLE power level) as well for the combined case are shown in Tab. 4.5 and 4.6.

Performances were substantially inferior to the those obtained with the Home

data set, especially for D0 = 1 meter. In all cases, the best results were seen using

either mean RSSI disparity, or the phone + RSSI disparity feature. However, the

improvement with respect to the phone RSSI was relatively marginal.

As in the case of the Home data collection, I observed a large variation of

performance using phone RSSI for the two individual sets at different BLE power

levels. This is somewhat baffling, considering that the BLE power from the bea-

cons level should not affect the received RSSI from another phone. It may be

that other uncontrolled factors (e.g., the presence of other passengers) may have

contributed to this discrepancy. Interestingly, better results were obtained for the

mean RSSI disparity feature using power level 1 than for power level 2 (see also

the ROCs shown in Fig. 4.10.)
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Figure 4.8: The log likelihood ratio of the vector formed by phone RSSI and
mean RSSI disparity, conditioned on the interpersonal distances being smaller
(null hypothesis) or larger (alternative hypothesis) than the considered threshold
of 1 m or 2 m (Shuttle data collection at BLE power level 1 and 2).
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Figure 4.9: ROC curves using the considered measurements for proximity detec-
tion at distance thresholds of 1 m and 2 m (Shuttle data collection at BLE power
level 1 and 2).
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Figure 4.10: ROC curves using mean RSSI disparity for proximity detection at
distance thresholds of 1 m and 2 m. Shuttle data collection at BLE power level 1
(blue curve) and at BLE power level 2 (red curve).

AUC (D=1m) Set 1 Set 2 Set 3 Combined
Phone RSSI 0.680 0.793 0.783 0.770

Mean RSSI Disp. 0.605 0.883 0.733 0.805
Phone + RSSI Disp. 0.708 0.915 0.876 0.860

Table 4.3: AUC results for Home data sets when the distance threshold was set
to D0= 1 meter. Best results for each column are shown in boldface.

AUC (D=2m) Set 1 Set 2 Set 3 Combined
Phone RSSI 0.588 0.72 0.834 0.735

Mean RSSI Disp. 0.689 0.987 0.755 0.886
Phone + RSSI Disp. 0.648 0.909 0.923 0.872

Table 4.4: AUC results for Home data sets when the distance threshold was set
to D0= 2 meters.
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AUC (D=1m) Pwr. level 1 Pwr. level 2 Combined
Phone RSSI 0.492 0.720 0.626

Mean RSSI Disp. 0.670 0.653 0.652
Phone + RSSI Disp. 0.568 0.727 0.646

Table 4.5: AUC results for Shuttle data sets when the distance threshold was
set to D0= 1 meter.

AUC (D=2m) Pwr. level 1 Pwr. level 2 Combined
Phone RSSI 0.595 0.772 0.720

Mean RSSI Disp. 0.831 0.760 0.783
Phone + RSSI Disp. 0.698 0.782 0.754

Table 4.6: AUC results for Shuttle data sets when the distance threshold was
set to D0= 2 meters.

4.2.4 Discussion and Conclusions

I have presented a comparative analysis of RSSI–based techniques for proxim-

ity detection in different environments. My goal was to assess how well different

types of measurements (namely, direct RSSI measurement from another user’s

phone, and disparity of RSSI signals received from multiple BLE beacons) can

discriminate between interpersonal distances of 1 meter and 2 meters. The results

show that the mean RSSI disparity index performs as well or better than the di-

rect phone RSSI index for these tasks, and that a simple combination of the two

indices often produces the best results.

While the experimental setups were effective for data collection (and, in the

case of the Shuttle data set, representative of real-world conditions), this study

has a number of limitations. I only used two models of one smartphone brand

(iPhone). It is well known [96] that different smartphones have different character-

istics in terms of the received signals from a BLE beacon, and a more exhaustive

study with multiple smartphone brands would be necessary before these results
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can be generalized. My “toy case" of an instrumented living room may not be

representative of a more complex and crowded environment such as a shopping

mall or an office building. It is likely that different BLE beacon placements would

result in widely different performances, and I plan to experiment with different

placement layouts in the future. Only few passengers were present during the

study, and I am planning for a more extensive data gathering once social distanc-

ing rules are relaxed and more students will be using my campus transportation

system. The use of more sophisticated mechanisms than the linear classifier used

in the tests (see e.g. [84, 89]) could be considered, provided that enough data is

collected to enable good generalization.

4.3 Effortless Ticketing and Crowdedness Mon-

itoring

Effortless (or implicit [6]) ticketing, refers to methods that enable payment of

the correct fare as triggered by the mere presence of the user inside the vehicle.

Current touchless fare payment technology still requires travelers to approach a

near-field communication (NFC) reader or possibly a QR reader [7] located in

the vehicle. This creates “accumulation points” of social proximity, which may

slow the flow of passengers entering the vehicle and thus increase boarding times.

Increasingly, agencies are offering the possibility to purchase tickets through an

app (e.g., Transit, or Google Maps). Although this obviates crowding near card

readers in the vehicle, it requires travelers to identify the correct fare (e.g., if the

cost depends on the fare zones traversed), or to input the intended route in the app.

A real effortless ticketing system would not require the users to take any actions,

except for starting an app in their smartphone. It would automatically identify
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the vehicle boarded by the passenger (Be In/Be Out, or BIBO, modality [6]), and

charge the correct fare. Users would not need to input information such as their

itinerary or the specific bus or train line they are going to use. Upon boarding the

bus vehicle or train car, the user would receive a notification (e.g., via a vibration)

from the system that the vehicle has been identified, and that that ticketing is

taken care of.

Figure 4.11: Our envisioned system uses RSSI data recorded from the in-
vehicle BLE beacons for passenger positioning, enabling effortless fare payment
and crowdedness assessment.

The same mechanism that enables effortless ticketing can be used to assessing

and track the distribution of passengers in a vehicle. Crowdedness monitoring has

received increased recent attention [8]. I envision a system that measures not only

the approximate number of passengers, but also their spatial distribution in the

vehicle. This could be very useful when deciding which door to enter a vehicle

from. For example, if riders in a train cart or bus vehicle are concentrated in the

front half, a passenger waiting at the stop may decide to enter from the back door

(see Fig. 4.11). This information could also be very valuable for transit agencies,

which can put in place provisions to ensure a uniform distribution of passengers

in their vehicles. A few transit apps provide this occupancy information (when
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available) to passengers awaiting at a bus stop. Passengers can then choose, based

on this information, whether to board the upcoming vehicle, or, if they determine

that the vehicle is too crowded for their comfort level, wait for the next one, or

use a different means of transportation. Crowdedness can be measured using spe-

cialized sensors (e.g., seat sensors or cameras ), or through crowdsourcing [97,98].

Occupancy sensors, however, are generally expensive, involve some form of vehi-

cle retrofitting, entail maintenance costs, and typically require an additional data

communication channel. Crowdsourcing approaches are attractive because they

require no instrumentation, but they depend on the willingness of passengers to

input data during a trip. It has been observed that contributors to crowdsourcing

projects (e.g., OpenStreetMap) tend to belong to the more affluent and educated

portion of the society [99], which may not be representative of large swaths of the

population riding public transit.

I propose to use Bluetooth Low Energy (BLE) beacons as the underlying tech-

nology for both services considered (effortless ticketing and crowdedness monitor-

ing). BLE beacons are inexpensive and unobtrusive. Battery operated models

(e.g., Kontakt Tough Beacon TB18-2) can last up to 80 months on a battery

charge, and require no vehicle retrofitting (including wiring) nor maintenance

during this period. These factors are critically important, given the tremendous

budget constraints that agencies are experiencing due to recent loss of ridership.

Our concept is very simple. Passengers start an app on their phone; once they

board the bus, light rail, or train vehicle, the app detects the ID of the onboard

BLE beacons, as well as the Received Signal Strength Indicator (RSSI) from each

beacon. This information is transmitted (by the user’s phone) to a cloud server,

which is cognizant of the association between beacon ID and specific trip in the

agency’s General Transit Feed Specification (GTFS) table [100]. The system can
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then charge the user the appropriate fare, and also (based on the received RSSI),

determine the location of the user in the vehicle. By aggregating information from

multiple users in the same vehicle, a measure of crowdedness and of its spatial

distribution is generated, which can be advertised through standard mechanism,

such as GTFS Real Time [101], for other online transit services or apps to be

picked up.

In this contribution, I present results from a preliminary study on passenger

localization within a bus vehicle using BLE beacons. I instrumented a campus

shuttle bus with four BLE beacons, and conducted multiple data collection ses-

sion. RSSI data was collected from all beacons while the experimenter sat in

different location within the vehicle. Analysis of this data confirms that localiza-

tion accuracy of up to 1 meter (along the length of the bus) can be achieved using

BLE beacons in realistic conditions.

4.3.1 Related Work

The potential of BLE beacons for effortless/implicit ticketing using the BIBO

paradigm was first demonstrated by Narzt and colleagues in 2015 [6]. In their pro-

totype, the passengers’ smartphones were tasked with sending (via BLE) an ID

that was received and processed by a system within the vehicle. This approach,

however, requires some level of retrofitting (including wiring and Internet con-

nectivity) that may discourage adoption by cash-strapped agencies. The system

recently proposed by Ferreira et al. [102] (developed through a participatory co-

design cycle involving potential customers [103]) is closer to this envisioned BLE

beacon placement scenario. This system, however, was only tested with a single

beacon placed in one bus vehicle.

While BLE beacons, as well as NFC or QR code readers, can be used to
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monitor the presence of passengers in a vehicle, other mechanisms have been

explored that don’t require such sensors. For example, by matching the GPS

tracks [104] or the time series from inertial or barometric sensors collected by the

user’s smartphones [105–107] with those recorded by a sensor in the bus vehicle, it

is possible to determine whether the user is on a certain bus route. However, GPS-

denied environments, or spurious motion of the smartphone, can generate errors.

None of these methods can provide information about the location of the user in

the vehicle, which is necessary to compute the spatial distribution of passengers.

The use of BLE beacons for localization has been well studied. In ideal con-

ditions, power decay models [108] could be used in a multilateration scheme to

precisely compute the location of the receiver (the user’s smartphone). In prac-

tice, researchers have found that power decay models cannot be relied on, due

to a multiplicity of reasons including multi-path fading and variations in time of

the signal power [109]. The standard approach is based on fingerprinting [110],

whereby RSSI data is collected from a dense set of known locations, and the user’s

location is then regressed from the received RSSI vector.

4.3.2 In–Vehicle Positioning

The goal of this study was to assess the performance of a positioning system

based on the RSSI from multiple BLE beacons placed in a bus vehicle. Note that

various factors could complicate the location inference problem, such as multiple

reflections, occlusions by obstacles (e.g. the seat backs) or other passengers, as

well as self-occlusions (e.g., the user keeping the smartphone tucked in a pocket.)

In order to ascertain whether localization in a bus vehicle is even possible with

data from BLE beacons, I conducted several data collection sessions in a campus

shuttle bus. The vehicle (8.3 meters long, 2.6 meters wide) was equipped with
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four Kontakt Tough TB15-1 BLE beacons, configured as iBeacons with an adver-

tisement interval of 350 ms (see Fig. 4.12.) I created an iPhone app that collects

timestamped RSSI data from the different beacons. During each data collection

session, an experimenter sat on different seats as the vehicle drove through its

regular route, while collecting data from the BLE beacons using either an iPhone

7 or an iPhone 8. At each seat, the experimenter first recorded data for two min-

utes while holding the phone in their hand, then for two minutes while keeping

the phone in their front pant pocket. The vehicle was empty for most of the

time, except for a few occasional passengers (at most three passengers besides the

experimenter at a time).

I first ran three data collection sessions with the BLE beacons set to Power

level 1. With this setting, the RSSI at 1 meter of distance is of -84 dBm, and

the nominal range is of approximately 4 meters. I then conducted one session at

Power level set to 2 (RSSI of -81dBm at 1 meter, nominal range of approximately

10 meters). Figs. 4.13 and 4.14 show the layout of the beacons in the bus, as well

as the seats considered for data collection for each power level. This data set was

used to ascertain whether it would be possible to estimate, based on the RSSI

received from different beacons, the location of a user across the length of the

bus (i.e., to determine, at least approximately, the seat row in which the user was

positioned.) I did not attempt to estimate the user’s position across the width of

the vehicle, given the vehicle’s relatively narrow geometry.

The RSSI collected at each seat, averaged over time, over the two phone place-

ments (in hand and in pocket), and, for the case of Power level 1, over the three

sessions, is presented in the top plot of the figures. In this plot, the horizontal

axis represents the seat row position along the length of the bus. For each seat,

I show the average RSSI received from each BLE beacon. As expected, the RSSI
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from beacon B1 (in front of the vehicle) was generally higher for seats in the front

half of the vehicle. The opposite behavior can be observed for the data received

from beacon B4, at the back of the vehicle. The RSSI data collected from B2

and B3 had a less clear dependence on the seat location. Interestingly, signal was

received even at seats that were at about 7 meters of distance from a beacon even

when the BLE power level was set to 1 (with a nominal 4 meter range). This is

likely due to reflection from the metallic surfaces of the vehicle.

To verify whether the vector of RSSI data collected from the different beacons

could be used to accurately measure the seat row location of the user, I trained a

simple linear predictor of seat row position from data collected in half of the seats

(shown with a dark contour in the figures.) I then used this predictor to estimate

the row location of the remaining seats, based on the recorded average RSSI data.

Here is the model assuming using two beacons data. Bi = [B1(i), B2(i)] is the

RSSI from the two beacons at seat i. I(i) is the true 1-D position of seat i. The

model is Iest(i) = Alpha+Beta∗B(i)T , where Beta = [Beta1, Beta2]. I find Alpha

and Beta by least squares regression from half of the seats, and apply it to the

B(i) of the other half to compute their Iest. Then I compare Iest for test seats

with the ground-truth I to get the error.

The results are shown in the lower row of Figs. 4.13 and 4.14, with seat iden-

tified by their color. Using data collected from all four beacons, the root mean

square error (RMSE) of estimated row position was of 0.57 meters (max error: 1.1

m) when using Power level 1, and of 0.33 meters using Power level 2 (max error:

0.62 meters).

As noted earlier, the plot of the RSSI values in Figs. 4.13 and 4.14 suggests that

while data from beacons B1 and B4 clearly correlates with the seat row location,

the remaining beacons appear to be less informative. Based on this observation, I
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repeated the same test, but only considering RSSI data collected from B1 and B4.

In this case, the RMSE of estimated row position was of 0.50 meters (max error:

0.93 m) when using Power level 1, and 0.30 meters using Power level 2 (max error:

0.66 meters).

From this preliminary analysis, I can draw the following observations:

1. Localization of a passenger within the length of the bus vehicle is possible

using BLE beacons, to at least 1 meter accuracy. This information could

be used to derive a coarse–scale crowdedness index. For example, one could

divide the length of the bus into 3 or 4 section, and count the number of

passengers in each section (where, as in the system envisioned in Sec. 4.1, the

RSSI data would be transmitted from the users’ phones to a cloud server,

e.g. as part of an effortless payment app.)

2. Setting the beacons at power level 2 appears to produce better localization

accuracy. It should be noted, though, that a higher transmission power

directly affects the lifetime of the beacon when battery operated. The trade-

off between accuracy and system lifetime needs to be carefully considered

when designing a real-world BLE beacons system.

3. Using two beacons (one in front of the bus, and one in the back) appears to

give similar (or better) results than using data from four beacons, distributed

along the length of the bus. This somewhat surprising results suggests that

data from beacons B2 and B3, which were placed in the middle of the

bus, contributed little (and possibly noisy) information for the purpose of

positioning.
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4.3.3 Discussion and Conclusions

The data collection and analysis described in the previous section has shown

promising results for the use of BLE beacons in measuring the position of a pas-

senger along the length of the vehicle. However, more research work is needed

to obtain a system that is robust and reliable in the face of multiple adversarial

situations. For example, while the radio signal from one or multiple beacons can

almost certainly be detected once one has boarded the vehicle, the same signal

could potentially be detected also outside the vehicle. This could create false

alarms, for example when a passenger is waiting at a stop, and a bus or train

the passenger is not planning to board is coasting to the stop. These situations

could be managed by looking at the time series of RSSI measurements, possibly

combined with information from the inertial sensors in the user’s smartphone. For

example, if the sensors detect that the user is moving of motion that is consistent

with that of a vehicle [111], and connection with the beacons remains stable, it

could be safely assumed that the user has boarded the departed bus. Although a

similar result could be obtained by matching the GPS track of the user’s smart-

phone with that of the bus, although this would not be an option in a GPS-denied

environment (e.g., in a subway).

Another situation that could potentially generate errors is one with multiple

bus vehicles arriving at the stop at the same time. In this case, it could be

possible that the user’s smartphone, even after boarding, may receive radio signal

from beacons in other nearby vehicles, potentially triggering an erroneous system

response. Even in this case, joint analysis of inertial and RSSI measurements

could break the ambiguity and assign the passenger to the correct vehicle.

Standard fingerprinting procedures are unlikely to produce reliable results un-

less confounding factors such as the presence of nearby travelers, whether the user
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is standing or sitting, and whether the user is holding the phone in their hand

or tucked in a pocket, are taken into account. I believe that addressing the open

problems mentioned above is only possible if a representative data set, collected

in realistic situations, and adequately annotated, is made available. A number of

open access data sets containing data from BLE beacons (for indoor localization

applications; e.g., [112, 113]) or from inertial sensors (e.g., [114–117]) already ex-

ist. However, none of these data sets would be representative of the situations

considered here. What is needed is a collection of synchronized measurements of

RSSI, inertial data, and GPS tracks, collected from passengers’ smartphones, that

could be analyzed viz-a-viz the known trajectory of the transit vehicle that was

boarded by these users. This data must be recorded by multiple different users,

using different types of smartphones, and in various different conditions (location

in the vehicle, crowdedness level, atmospheric conditions).

I have presented results from a preliminary study of a system that can localize

passengers in a bus vehicle from the RSSI signal received from multiple BLE bea-

cons placed in the vehicle. In spite of the non-ideal conditions of this environment

(with multiple reflections and occlusions), a simple linear predictor was shown

to produce better than 1 meter accuracy. This simple experiment suggests that

coarse-scale localization within the length of the bus is possible using BLE bea-

cons. This localization system could be used in the context of effortless ticketing

and crowdedness assessment applications.
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Figure 4.12: Example of placement of a BLE beacon (Kontakt Tough TB15-1)
on the ceiling of the shuttle bus.

Figure 4.13: Layout of BLE beacons in shuttle bus (the front of the vehicle is
to the right of the figure.) The seats from which RSSI data was collected are
marked with distinctive colors. The linear prediction model was trained from
data collected at the seats marked by a dark contour. The average RSSI values
received at each seat are displayed in the top plot for each BLE beacon. The
horizontal axis represents the seat row location along the length of the bus. The
bottom row shows the seat row location estimated from RSSI data using the linear
predictor (only seats that were not used in training are shown.) Errors (estimated
vs. actual seat row location) are shown by gray segments. The power level of the
BLE beacons was set to 1.
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Figure 4.14: See caption of Fig. 4.13. The power level of the BLE beacons was
set to 2.
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