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Abstract—Recent breakthroughs suggest that local, approxi-
mate gradient descent learning is compatible with Spiking Neural
Networks (SNNs). Although SNNs can be scalably implemented
using neuromorphic VLSI, an architecture that can learn in
situ as accurately as conventional processors is still missing.
Here, we propose a subthreshold circuit architecture designed
through insights obtained from machine learning and computa-
tional neuroscience that could achieve such accuracy. Using a
surrogate gradient learning framework, we derive local, error-
triggered learning dynamics compatible with crossbar arrays
and the temporal dynamics of SNNs. The derivation reveals
that circuits used for inference and training dynamics can be
shared, which simplifies the circuit and suppresses the effects of
fabrication mismatch. We present SPICE simulations on XFAB
180nm process, as well as large-scale simulations of the spiking
neural networks on event-based benchmarks, including a gesture
recognition task. Our results show that the number of updates
can be reduced hundred-fold compared to the standard rule while
achieving performances that are on par with the state-of-the-art.

I. INTRODUCTION

The implementation of learning dynamics as synaptic plas-
ticity in neuromorphic hardware can lead to highly efficient,
lifelong learning systems [1]. While gradient Backpropagation
(BP) is the workhorse for training nearly all deep neural
network architectures, it is incompatible with neuromorphic
hardware because it is not spatially and temporally local [6].
Recent work addresses this problem using Surrogate Gradient
(SG) learning [2]. SGs use a differentiable surrogate network
to compute weight updates in a local fashion, and formulate
the updates as three-factor synaptic plasticity rules. The SG
approach reveals from first principles the mathematical nature
of the three factors, and a learning dynamic that is continuous
in time. While temporal continuity is a plausible property in
the brain, it leawhile being able tods to a large number of
weight updates (writes) which can be energetically expensive
in hardware [1].

Here, we demonstrate a crossbar based neuromorphic ar-
chitecture that efficiently implements SG learning as a three-
factor plasticity rule. The problem of continuous updates is
solved by triggering weight updates asynchronously when the
error exceeds a threshold. We propose a subthreshold analog
circuit that efficiently implements the neural dynamics and
error-triggered updates. We find that the circuits for learning

and inference can be shared, which further reduces the circuit
complexity, and suppresses mismatch in the peripheral circuits.
Taken together, our results demonstrate that the additional
circuit complexity for efficient learning with spiking neurons
is small compared to a conventional artificial neural network,
and could enable efficient spatiotemporal pattern learning in
memristor-based crossbar arrays.

II. NEURAL NETWORK MODEL

The proposed model consists of networks of plastic
integrate-and-fire neurons. Models here are formalized in
discrete-time to make the equivalence with classical artificial
neural networks more explicit. However, these dynamics can
also be written in continuous-time without any conceptual
changes. The neuron and synapse dynamics are:

U l
i [n] =

∑
j

W l
ijP

l
j [n]− δRl

i[n], Sl
i[n] = Θ(U l

i [n]) (1)

P l
j [n+ 1] = αl

jP
l
j [n] +Ql

j [n],

Ql
j [n+ 1] = βl

jQ
l
j [n] + Sl−1

j [n],

Rl
i[n+ 1] = γliR

l
i[n] + Sl

i[n].

where U l
i [n] is the membrane potential of neuron i at layer

l at time step n, W l is the synaptic weight matrix between
layer l − 1 and l, and Sl

i is the binary output of this neuron.
The step function Θ is the step function, i.e. (Sl

i[n] = 1)
when U l

i [n] = 0. The constants αl
j , γlj and βl

j capture the
decay dynamics of the membrane potential U l

i , the refractory
(resetting) state Rl

i and the synaptic state Ql
i and can be related

to time constants in leaky integrate-and-fire neurons. The
dependency of the time constants on j and l takes into account
the circuit-to-circuit variability due to fabrication mismatch.
States P and Q describe the traces of the membrane and the
current-based synapse, respectively. R is a refractory state that
resets and inhibits the neuron after it has emitted a spike,
and δ is the constant that controls its magnitude. Note that
Eq. (1) is equivalent to a discrete-time version of the Spike
Response Model (SRM)0 with linear filters [4]. This SNN
and the ensuing learning dynamics can be transformed into a
standard binary neural network by setting all α = 0, replacing
all P [n] with S[n− 1] and dropping Q and R.
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III. SURROGATE GRADIENT LEARNING

Assuming a global cost function L, the gradients with
respect to the weights in layer l are formulated as three factors

∂

∂W l
ij

L =
∂

∂Sl
i

L ∂

∂U l
i

Sl
i

∂

∂W l
ij

U l
i (2)

The rightmost factor describes the change of the membrane
potential changes with the weight W l

ij . This term is equal to
P l
j [n]− ∂

∂W l
ij

Rl
i[n] for the neuron defined by Eq. (1). The term

with R involves a dependence of the past spiking activity of the
neuron, which significantly complicates the learning dynamics.
Fortunately, this dependence can be ignored during learning
without empirical loss in performance [5]. The middle factor
is the change in spiking state as a function of the membrane
potential, i.e. the derivative of Θ. Θ is non-differentiable but
can be replaced by a smooth sigmoidal or piecewise constant
function in the learning rule [2]. Our experiments make use of
a piecewise linear function, such that middle factor becomes
the box function: ∂

∂U l
i

Sl
i := B(Ui) = 1 if u− < Ui < u+ and

0 otherwise. The leftmost factor describes how the change in
the spiking state affects the loss. It is commonly called the
local error (or the “delta”) and is typically computed using
gradient BP. We assume for the moment that these local errors
are available and denote them errli, and revisit this point in
Sec. III-B. The weight updates become:

∆W l
ij = −η ∂

∂W l
ij

L = −errliP l
j , if u− < Ui < u+, (3)

where η is the learning rate.

A. Bipolar Error-triggered Learning

For most interesting cost functions, errors must be computed
extrinsically and communicated to the neuron. To make this
communication efficient, we encode errors using bipolar events
as follows:

El
i = sign(errli)[|errli| − θ]+ (4)

where θ ∈ R is a constant or slowly varying error threshold
and [·]+ is the recitifed linear function. Using this encoding,
the parameter update rule becomes:

∆W l
ij = −θEl

iP
l
jB(U l

i ) (5)

where θ is called the stop-learning threshold (η was folded
into θ). Thus, an update takes place on an error of magnitude
θ and if B(U l

i ) = 1. The sign of the weight update is −El
i

and its magnitude θP l
j . Provided that the layer-wide update

magnitude can be modulated proportionally to θ, this learning
rule implies two comparisons and an addition (subtraction).

B. Local Losses and Local Errors

Up to now, we have side-stepped the calculation of err[n]li.
If l is not the output layer, then computing this term requires
solving a deep credit assignment problem. Gradient BP can
solve this, but is not compatible with a physical implementa-
tion of the neural network [6]. Several approximations have
emerged recently to solve this, such as feedback alignment

[7]–[9], and local losses defined for each layer [10]–[12]. For
classification, local losses can be local classifiers (using output
labels) [10], and supervised clustering, which perform on par
and sometimes better than BP in classical ML benchmark tasks
[12]. For all experiments used in this work, we use a layer-
wise local classifier using a mean-squared error loss defined
as Ll

i = ||
∑C

k=1 J
l
ikS

l
k − ŷk||2, where J l

ik is a random, fixed
matrix, ŷk are one-hot encoded labels, and C is the number of
classes. Because the gradients of Ll

i involve backpropagation,
we train through feedback alignment using another random
matrix H l [7] whose elements are equal to H l

ij = J l,T
ij ωl

ij

with Gaussian distributed ωl
ij ∼ N(1, 12 ). Weight updates are

achieved through stochastic gradient descent (SGD). We note
that our approach is agnostic to the used loss function as long
as there is no temporal dependency (i.e. L[n] does not depend
on variables in time step n− 1).

C. Hardware Realization with Memristor Crossbar Arrays

The emerging technologies, such as memristors (or
RRAMs), phase change memory, and spin transfer torque-
RAM in addition to other MOS realizations such as floating
gate transistors, assembled as crossbar array enable the VMM
operation to be completed in a single step. This is unlike other
hardware solutions which requires N ×M steps where N and
M are the size of the weight matrix.

These emerging technologies implement only positive
weight (excitatory connections), however, the negative weights
(inhibitory connections) are needed as well. There are two
ways to realize the positive and negative weights [13]; 1) bal-
anced realization where two devices are needed to implement
the weight value. The weight value is stored in the devices’
conductances where w = G+ −G−. If the G+ is greater/less
than G−, it represents positive/negative weight, respectively. 2)
Unbalanced realization where one device is used to implement
the weight value with a common reference conductance which
is set to the mid value of the conductance range. Thus, the
weight value is represented as w = G − Gref . If the G is
greater/less than Gref , it represents positive/negative weight,
respectively. In this work, we use the unbalanced realization
since it saves the area and power but with half of the dynamic
range. Thus, the memristive SNN can be written as

U l
i [n] =

∑
j

(
Gl

ij −Gref

)
P l
j [n] (6)

By following the same analysis discussed in the previous
section, the conductance update model is the same as (3). The
general architecture of the proposed dynamics is shown in
Fig. 1.

D. Inference and Learning Circuits

Our circuit implementation of the spiking neural network
differs from classical ones. Generally, the rows of crossbar
arrays are driven by (spikes) and integration takes place at each
column [14]. While this is beneficial in reducing read power
and mitigating sneak path problems, it renders learning more
difficult because the variables necessary for learning in SNNs
are not local to the crossbar. Instead, we use the crossbar as a



Figure 1. Architecture of the
Three-Factor Error-Triggered
Rule. Input spikes S are
integrated through P . The
vector P is then multiplied
with W resulting in U . Output
spikes S are then compared
with local targets ŷ and bipolar
error events E are fed back
to each neuron. Updates are
made if u− < U < u+. R is
omitted in this diagram

vector matrix multiplication of pre-synaptic trace vectors P l

and synaptic weight matrices W l. Using this strategy, a single
trace P l

i per neuron supports both inference and learning.
Furthermore, this property means that learning is immune to
the mismatch in P l, and can even exploit this variation for
reducing the loss. Fig. 2 depicts the details of the learning
circuits in a crossbar-like architecture which is compatible with
the address-event representation (AER) as the conventional
scheme for communication between neuronal cores in many
neuromorphic chips [15]. In this circuit, only P is shown
and αQ = 0. This type of architecture includes multi-T/1R
[16]. The traces P are generated through a Differential-Pair
Integrator (DPI) circuit which generates a tunable exponential
response at each input event in the form of a sub-threshold
current [17]. The current is linearly converted to voltage using
pseudo resistors in the I-to-V block highlighted in the red box
in Fig. 2. The exponentially decaying voltage is buffered and
drives the entire crossbar row in accordance with (1).

For every neuron, different voltages (corresponding to Pj)
are applied to the top electrode of the corresponding memris-
tive device whose bottom electrode is pinned by the crossbar
front-end highlighted in yellow (Fig. 2). This block pins the
entire column to a reference voltage (V ref ) and reads out
the sum of the currents generated by the application of P s
across the memristors in the column. As a result, a voltage is
developed on the gate of the M1 connected to a differential pair
which re-normalizes the sum of the currents from the crossbar
to Inorm. This ensures that the currents remain in the sub-
threshold regime for the next-stage of the computation which
is the ternary error generation as is specified in equation (4).
This is done through the Variable Width Bump (VWBump)
circuit that compares Inn to the target ŷ, with a stop region.
Thus, the VWBump circuit output indicates the sign of the
weight update (up or down) or stop-learning (no update). The
circuit (not shown) is based on the bump circuit [18], which
consists of a differential pair for the comparison and a current
correlator for the stop region, and is modified to have a tunable
stop-learning region [19]. The boundaries of this region play
the role of θ in (4). The output of the block is plotted in the
inset of Fig. 2, which shows the Up, Down and STOP outputs.

The Up and Down signals trigger the oscillators highlighted
in blue which generate the bipolar Ei events. According to
Eq. (5), the magnitude of the weight update is Pj , and thus
Pj must be sampled at the onset of Ei. To do so, we regenerate
the exponential current in the entire row by propagating pbias

shown in the DPI circuit block (green) and sample it by
the up and down events. This is done through the sampling
circuit (shown in purple) whose core consists of two PMOS
transistors in series connected to the up/down events and
pbias respectively. An NMOS transistor is biased to generate a
current much smaller than that of the DPI and as a result, the
higher the DPI current, the higher the input of the following
inverter during the event pulse, and thus it takes longer for the
NMOS to discharge that node. This results in a pulse width
which varies linearly with Pj , in agreement with Eq. (5).
The linear pulse width can be approximated with multiple
pulses which results in a linear conductance update (with a
soft bound) in memristive devices [20].
Fig. 3 illustrates the Spectre results of the above circuits
designed in XFAB 180nm process. With every input event, the
DPI current (and therefore EPSP) undergoes a near instanta-
neous jump and decays exponentially. The EPSP is buffered
and applied to the memristive device whose other side is
pinned at vdd/2 (0.9V). V mmr, the voltage drop across
the device, follows the EPSP except for the time it is being
programmed. V Nrn, marked on Fig. 2, is used to mirror the
normalized crossbar current (Inn) to the bump circuit and is
shown in green in Fig. 3. In the beginning, while the EPSP is
low, Inn is lower than the target, therefore, the UP output of
the VWBump circuit is high and the UP events are generated
through the oscillator. As the neuron gets closer to the target
(because of the integrated input events), the STOP output of
VWBump is flipped to high and the event generation stops.
The UP events sample the EPSP to change the synaptic weight
correspondingly. While the EPSP is low, no programming
pulse is generated. For higher values of the EPSP, the pulse
width is higher and it falls as the EPSP decays. This is
highlighted in the inset of the V mmr. Note that the memristor
model (and thus the synaptic update) is not included in the
circuit simulations and we are only showing the programming
conditions which would cause the conductance change based
on the online learning algorithm.

IV. LARGE-SCALE SIMULATION EXPERIMENTS

An important feature of the used learning rule is its scalabil-
ity to multilayer networks with very small loss of performance
compared to a standard deep neural network when using ideal-
ized dynamics. To demonstrate this, we simulate the learning
dynamics for classification in large-scale, multilayer spiking
networks. The GPU simulations focus on event-based datasets
acquired using a neuromorphic sensor, namely the N-MNIST
and DVS Gestures dataset for demonstrating the learning
model. Both datasets were pre-processed as in [11]. The N-
MNIST network is fully connected (1000–1000–1000), while
the DVS Gestures network is convolutional (64c7-128c7-
128c7). For practical reasons, the neural networks were trained
in batches of 72 (DVS Gestures) and 100 (N-MNIST). The
parameters of our model are similar to that of [11] except that
the time constants were randomized. In our experiments, we
used a proportional controller to adjust θ such the average error
spike rate 〈E〉 remains stable. The column writes indicates
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Figure 2. Details of the architecture and learning circuits. Green: DPI circuit generating P in the current form. Red: Pseudo resistors converting input current
into a voltage driving the crossbar array. Pink: Synapse with the controlling switches. Purple: Sampling circuitry generating pulses to program the devices.
Yellow: Crossbar front-end and normalization of the crossbar current. Dark blue: Bump circuit comparing the crossbar current to a target and generating the
direction of the error. Light blue: Bidirectional neuron producing up and down events.
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Figure 3. SPICE simulation results of the learning circuits generating
the appropriate programming pulses across the memristive device (V mmr)
depending on the value of the EPSP at the onset of the error events.

DVSGesture
〈E〉 Error Writes
Cont. 3.82% 1M
50Hz 4.22% 50k
10Hz 6.25% 10k

N-MNIST
〈E〉 Error Write
Cont. 2.3% 1.5M
50Hz 2.31% 75k
10Hz 2.71% 45k

Table I
RECOGNITION ERROR IN IDEALIZED SPIKING NEURAL NETWORK

SIMULATIONS AVERAGED OVER 5 RUNS.

an upper bound on the number of weight writes. It is an
approximate upper boundary, as the effect of B(U) has not
been taken into account. These results in Tab. I demonstrate a
small loss in accuracy across the two tasks when updates are
error-triggered.

V. CONCLUSION

In this article, we demonstrated an error-triggered learning
rule that is particularly well-suited for implementation in
crossbars. Our implementation leverages the linear property
of the subthreshold dynamics, such that the memory required
for computing the gradients (i.e. the synaptic traces) grows
linearly with the neurons (hence one Pj per input neuron).
By updating weights asynchronously (when errors occur), the
number of weight writes can be drastically reduced. Our im-
plementation still requires a programming circuitry (8 transis-
tors) per synapse along with transistors which switch the mem-
ristive device in an out of the network for read/programming.
However, the transistors can take advantage of the technology
scaling (in contrast to the capacitors whose area do not change
as much with the scaling of the nodes).

Alternatively, one can decide to sacrifice the high density
for complex synapses that include multiT-1R , to capitalize on
the many other features of memristive devices (in addition to



their small footprint), such as non-volatility, state-dependence,
complex dynamics, and stochastic switching behavior.

Despite of the huge benefit of the crossbar array structure,
the memristor devices suffer from many challenges that might
affect the performance unless taken into consideration in the
training such as asymmeteric nonlinearity, precision and re-
tention. Fortunately, online learning helps with other problems
such as sneak path (i.e wire resistance) and endurance. With
error-triggered learning rule, only selected devices are updated
which leads to extending the lifetime of the devices and less
write energy consumption. The aforementioned non-idealities
will be considered in our future work.
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