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Role of adipose tissue in body-weight regulation: mechanisms regulating 
leptin production and energy balance

Peter J. Havel
Department of Nutrition, University of California, Davis, CA 95616, USA

Dr Peter J. Havel, fax +1 530 752–1297, email pjhavel@ucdavis.edu

Adipose tissue performs complex metabolic and endocrine functions. Among the endocrine
products produced by adipose tissue are tumour necrosis factor α, interleukin 6, acylation-
stimulating protein and leptin. The present review will focus primarily on mechanisms regulating
leptin production and leptin action, and the implications of this regulation in the control of energy
balance. Leptin acts in the central nervous system where it interacts with a number of
hypothalamic neuropeptide systems to regulate feeding behaviour and energy expenditure. The
presence of extreme obesity in animals and human subjects with mutations of the leptin gene or
the leptin receptor demonstrates that normal leptin production and action are critical for
maintaining energy balance. Insulin is the major regulator of leptin production by adipose tissue.
Insulin infusions increase circulating leptin concentrations in human subjects. Plasma leptin levels
are markedly decreased in insulin-deficient diabetic rodents, and the low leptin levels contribute
to diabetic hyperphagia. Based on in vitro studies, the effect of insulin to stimulate leptin
production appears to involve increased glucose metabolism. Blockade of glucose transport or
glycolysis inhibits leptin expression and secretion in isolated adipocytes. Evidence suggests that
anaerobic metabolism of glucose to lactate does not stimulate leptin production. Alterations in
insulin-mediated glucose metabolism in adipose tissue are likely to mediate the effects of energy
restriction to decrease, and refeeding to increase, circulating leptin levels. Changes in glucose
metabolism may also explain the observation that high-fat meals lower 24 h circulating leptin
levels relative to high-carbohydrate meals in human subjects, suggesting a mechanism that may
contribute to the effects that high-fat diets have in promoting increased energy intake, weight gain
and obesity. The decreased circulating leptin observed during energy restriction is related to
increased sensations of hunger in human subjects. Thus, decreases in leptin during energy-
restricted weight-loss regimens may contribute to the strong propensity for weight regain. A better
understanding of the precise mechanisms regulating leptin production and leptin action may lead
to new approaches for managing obesity.

Leptin: Adipose tissue: Obesity: Food intake: Energy expenditure: Glucose metabolism

CNS, central nervous system

Endocrine and metabolic functions of adipose tissue

Adipose tissue, once considered to be a relatively passive
site of lipid storage is now known to carry out a number of
complex metabolic and endocrine functions. For example,
fatty acids released from adipose tissue contribute to the
regulation of hepatic glucose production (Rebrin et al. 1995;
Sindelar et al. 1997) and to changes in uncoupling protein 3
expression in skeletal muscle (Weigle et al. 1998b). The
endocrine products produced by adipose tissue include
cytokines, such as tumour necrosis factor α and interleukin
6, acylation-stimulating protein, and aromatized steroid

hormones (for review, see Mohamed-Ali et al. 1998), as
well as plasminogen activator inhibitor-1 (Wiman &
Hamsten, 1990) and adiponectin (Funahashi et al. 1999),
which are thought to have a role in the pathogenesis of
atherosclerosis. These adipocyte-derived factors can have a
number of significant metabolic effects. For example,
tumour necrosis factor α has been implicated in the insulin
resistance associated with obesity and type 2 diabetes
(Hotamisligil, 1999), and has been shown to influence
adipocyte glucose and lipid metabolism as well as to directly
inhibit leptin expression and secretion in isolated adipocytes
(Medina et al. 1999). Acylation-stimulating protein which is



360 P. J. Havel

released from adipose tissue in the postprandial state
appears to primarily exert paracrine and autocrine effects on
adipocytes, in which it increases glucose transport and
stimulates triacylglycerol synthesis (Cianflone et al. 1999).
Among the known endocrine products produced by
adipocytes, the strongest evidence exists for leptin to have a
critical role in regulating energy balance via its actions on
food intake and energy expenditure. Thus, the primary focus
of the present review will be to discuss the mechanisms
regulating leptin production and leptin action, and the
implications for leptin production and action in the control
of energy balance and body weight.

Evidence that body weight (adiposity) is regulated

Several lines of evidence have led to the idea that body
weight and energy stored as body fat content are tightly
regulated. First, in most adult human subjects and animals
body adiposity remains relatively constant over prolonged
periods of time, despite large short-term fluctuations in food
intake. Although marked increases or decreases in body
weight can be induced in human subjects or animals by
forced overfeeding or energy restriction, body weight
returns very close to preintervention levels when ad libitum
feeding is resumed. Kennedy (1953) proposed that body
weight is regulated over long periods of time by a factor
produced by adipocytes, and that production of this factor is
proportional to the triacylglycerol content of adipose tissue.
In a series of elegant parabiosis experiments conducted by
Coleman and colleagues (Coleman & Hummel, 1969;
Coleman, 1973), it was discovered that a genetically-obese
rodent model, the ob/ob mouse, failed to produce a humoral
factor that inhibits food intake, whereas another obese
mouse model, the db/db mouse, produces this factor but
failed to respond to it. In non-obese rats forced overfeeding
of one member of a parabiotic pair led to decreased
voluntary food intake by its pair-mate (Harris & Martin,
1984), again suggesting a role for a humoral factor in the
regulation of feeding. However, until quite recently, identi-
fication of the humoral signal of body adiposity and energy
status remained elusive.

Discovery of leptin and effects on food intake

In an attempt to identify an adipose tissue factor regulating
food intake, Wilson et al. (1990) utilized a subtraction
cDNA cloning strategy to identify cDNA segments
coding for RNA that is overexpressed in adipose tissue
from chronically-overfed pig-tailed macaques (Maccaca
nemestrina). A partial cDNA for a sequence with enhanced
expression was isolated; however, the putative protein was
not ultimately identified using this technique. In December
1994 a landmark paper from Jeffrey Friedman’s laboratory
(Zhang et al. 1994) was published in Nature, reporting the
cloning of the gene which, when defective, leads to the
obesity phenotype observed in the ob/ob mouse. The
ob gene is expressed in adipose tissue and codes for a
16 kDa protein product that was given the name leptin, from
the Greek word ‘leptos’ for thin. In June 1995 it was
reported that administration of recombinant leptin to ob/ob
mice reduced food intake and body weight in ob/ob and

wild-type mice, but not in db/db mice (Campfield et al.
1995; Halaas et al. 1995; Pelleymounter et al. 1995), which
were later shown to have a defect in the leptin receptor
(Chen et al. 1996a). The leptin receptor is expressed in
several regions of the central nervous system (CNS),
including the hypothalamus (Tartaglia et al. 1995), as well
as in a number of peripheral tissues, and has been shown to
signal via a JAK-STAT second messenger transduction
pathway common to other cytokine receptors (Tartaglia,
1997). The efficacy of leptin to inhibit food intake when
administered into the CNS of rodents (Campfield et al.
1995) and non-human primates (Tang-Christensen et al.
1999a) at doses which are ineffective when given
peripherally, demonstrates that the brain is an important site
of leptin’s actions to regulate energy balance. The hypo-
thalamus is considered to be the primary central location
where leptin acts to inhibit feeding (Jacob et al. 1997;
Satohet al. 1997; Tang-Christensen et al. 1999b). However,
leptin receptors are present in brain areas outside the
hypothalamus (Schwartz et al. 1996b), and direct admin-
istration of leptin into at least one other brain area, the
prepiriform cortex, inhibits food intake in rats (Blevins et al.
1999). A large body of work is emerging that is defining the
central mechanisms by which leptin exerts its actions on
food intake and energy expenditure. These effects of leptin
are thought to be largely mediated by hypothalamic
neuropeptide systems regulating energy balance (Woods
et al. 1998; Schwartz et al. 1999). Thus, leptin, along with
insulin which also has direct actions in the CNS to regulate
food intake and energy expenditure (Schwartz et al. 1994;
Woods et al. 1996), functions as a negative feedback signal
to the CNS to regulate energy balance (Fig. 1). It should be
noted that leptin and insulin act as medium- to long-term
regulators of energy balance, and not as short-term satiety
signals. In fact, short-term satiety signals such as chole-
cystokinin regulate the amount of food consumed in a single
meal, but are not by themselves sufficient to alter long-term
energy intake and body weight (West et al. 1984). Rather, it
appears more likely that the short-term and long-term
signals interact in an integrated manner to regulate energy
intake and expenditure such that energy balance is achieved.
For example, leptin has been shown to increase the
sensitivity to the satiety-producing effects of exogenous
cholecystokinin (Matson et al. 1997; Emond et al. 1999).
The possibility that there may be other, as yet unidentified,
factors produced by adipose tissue (Weigle et al. 1998a) that
are involved in the regulation of energy balance is also
worthy of consideration.

Leptin and energy expenditure

In addition to its well-characterized effect to inhibit food
intake, there is also evidence that leptin can regulate energy
balance by influencing energy expenditure. Early studies
reported that leptin administration in ob/ob mice increased
body temperature and physical activity (Pelleymounter et al.
1995). Studies performed with groups of animals that were
pair-fed to the leptin-treated animals showed that decreases
in body weight induced by chronic leptin administration
were larger than could be explained by the reduction of food
intake alone (Levin et al. 1996). It appears that the role of
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leptin in regulating energy expenditure may be more to
prevent the fall in energy expenditure associated with
energy restriction rather than to induce an increase above
basal rates of energy expenditure (Scarpace et al. 1997;
Doring et al. 1998). Further results from studies in rodents
suggest that the effects of leptin on energy expenditure are
mediated by activation of sympathetic nerves innervating
thermogenically-active brown adipose tissue (Scarpace &
Matheny, 1998), which results in the dissipation of
energy as heat. Thus, the sympathetic nervous system
appears to be involved in the effects of leptin to regulate
energy expenditure. Accordingly, leptin administration
increases the firing rate of sympathetic nerves innervating
several tissues in rodents (Haynes et al. 1997) and increases
circulating noradrenaline concentrations in non-human
primates (Tang-Christensen et al. 1999a). Furthermore, the

metabolic effects of leptin in increasing circulating glucose
and lactate levels in monkeys can be blocked by the
administration of adrenergic receptor antagonists (Havel &
Pelleymounter, 1997). In addition, leptin attenuates
decreases in glucose, insulin and glucagon during fasting in
mice, and this effect is prevented by sympathectomy with
6-hydroxydopamine (Ahren & Havel, 1999a). Together
these results provide evidence that sympathetic mechanisms
are involved in mediating some of the metabolic effects of
leptin.

Relationship of circulating leptin to adiposity and
gender differences

Numerous studies have reported that circulating leptin
concentrations are highly correlated with indices of

Fig. 1. Long-term signals regulating energy balance. Insulin and leptin are the two hormones that act as long-term regulators of food intake and
energy balance. Both insulin and leptin act in the central nervous system to inhibit food intake and to increase energy expenditure. Activation of
the sympathetic nervous system (SNS) is likely to contribute to the increase in energy expenditure. Insulin is secreted from β-cells in the endo-
crine pancreas in response to circulating nutrients (glucose and amino acids) and to the incretin hormones, glucose-dependent insulinotropic
polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) which are released during meal ingestion and absorption. Insulin stimulates leptin
production from adipose tissue, most probably by increasing glucose uptake and metabolism. There is also evidence that leptin can act to inhibit
insulin secretion. (Reproduced with permission from Havel et al. 2000.)
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adiposity, such as BMI, percentage body fat and total fat
mass in human subjects (Maffei et al. 1995; Considine et al.
1996b; Havel et al. 1996c), and in animals (Maffei et al.
1995; Ahren et al. 1997). The presence of high plasma leptin
concentrations in most obese subjects has been interpreted
to suggest that human obesity is most often associated with
resistance to the actions of leptin (Caro et al. 1996b).
Circulating leptin levels are higher in women than in men,
even after correcting for the greater extent of adiposity in
women (Havel et al. 1996b; Rosenbaum et al. 1996). In
addition, in a study utilizing frequent blood sampling and
pulse analysis, it was reported that the amplitude of leptin
pulses is larger in women than in men (Saad et al. 1998b).
Absolute and adiposity-corrected leptin levels are similar in
pre- and post-menopausal women and in post-menopausal
women who are either receiving or not receiving hormone-
replacement therapy (Havel et al. 1996b), indicating that it
is unlikely that the gender difference is due to an effect of
female reproductive hormones. It is possible that the gender
difference is a result of an inhibitory effect of androgens
and/or differences in body fat distribution between men and
women. The gender difference is reversed in rats, with male
rats having higher leptin concentrations than female rats
(Landt et al. 1998). This difference is likely to be due to the
greater amount of body fat in male rats (Havel et al. 1996a).

Regulation of leptin production

As previously discussed, circulating leptin concentrations
are closely related to adipose tissue mass in both human
subjects (Maffei et al. 1995; Havel et al. 1996c) and animals
(Maffei et al. 1995; Ahren et al. 1997). However, adipose
tissue mass is not the only determinant of circulating leptin
concentrations. Recent energy intake also has a major
influence on plasma leptin levels. Plasma leptin decreases
acutely during fasting (Boden et al. 1996; Weigle et al.
1997) or energy restriction (Dubuc et al. 1998; Keim et al.
1998; Wisse et al. 1999), whereas refeeding (Kolaczynski
et al. 1996a; Weigle et al. 1997) and overfeeding
(Kolaczynski et al. 1996c) acutely increase leptin. These
changes are disproportionate to the relatively small changes
in body fat induced by these short-term interventions
(Dubuc et al. 1998; Wisse et al. 1999). Like leptin, insulin
secretion is also decreased by fasting and energy restriction,
and is increased during refeeding. The increased insulin
secretion is mediated by stimulatory effects on the β-cell of
ingested glucose and amino acids, and insulinotropic
gastrointestinal hormones (Fig. 1). Since insulin responses
to energy intake precede changes in circulating leptin,
insulin is a good candidate hormone to act as a regulator of
changes in leptin secretion resulting from alterations in
energy intake.

A number of early experiments showed that insulin
increases ob gene expression and leptin secretion in vitro
(Hardie et al. 1996a; Leroy et al. 1996; Rentsch & Chiesi,
1996; Wabitsch et al. 1996) and in vivo (Cusin et al. 1995;
Saladin et al. 1995; Hardie et al. 1996b). Infusions of insulin
in human subjects at rates producing supraphysiological
(Malmstrom et al. 1996; Utriainen et al. 1996) or physio-
logical (Saad et al. 1998a) increases in circulating insulin
concentrations result in an increase in circulating leptin

concentrations. This increase in leptin is detectable approx-
imately 4 h after the start of the insulin infusions, suggesting
that these effects may be mediated at the level of
transcription and translation. This time-course is likely to
explain why changes in circulating leptin were not seen
during more short-term insulin infusions (Dagogo-Jack
et al. 1996; Kolaczynski et al. 1996b). Glucose infusions
which increase endogenous insulin secretion have also been
shown to increase plasma leptin in human subjects
(Sonnenberg et al. 1996; Grinspoon et al. 1997) and in non-
human primates (Havel, 1997). Furthermore, ob gene
expression and circulating leptin levels are decreased in
rodents with insulin-deficient diabetes (Havel et al.
1998; Sivitz et al. 1998), and the low levels are restored by
administration of insulin in proportion to the extent of
glucose lowering (Havel et al. 1998). Infusion of small
amounts of glucose, sufficient to prevent the decline of
glycaemia and insulinaemia during fasting in human
subjects prevents the decrease in plasma leptin (Boden et al.
1996). In addition, decreases in circulating leptin during
periods of energy restriction in human subjects are related
to the decreases in plasma glucose (Dubuc et al. 1998; Keim
et al. 1998).

Together, these results suggest that the effects of insulin
which increase leptin production could be mediated through
increased glucose utilization by adipocytes. Results from
in vitro experiments have provided evidence for this
hypothesis. Inhibition of glucose transport with 2-deoxy-
D-glucose (Fig. 2A) or phloretin, or glycolysis with NaF
(Fig. 2B) or iodoacetate, reduces leptin secretion in
proportion to the reduction in glucose utilization in isolated
rat adipocytes (Mueller et al. 1998). Both 2-deoxy-D-
glucose and NaF inhibited insulin-mediated ob gene
expression in isolated adipocytes (Fig. 2C). The reductions
in ob gene expression and leptin secretion are observed even
in the presence of high concentrations of insulin, suggesting
that glucose utilization, rather than a direct effect of insulin
per se, is an important determinant of insulin-mediated
production. Thus, shifts in adipose tissue glucose metab-
olism resulting from changes of insulin secretion and
plasma glucose levels are likely to be involved in the effects
of fasting and refeeding on circulating leptin concentrations
in vivo (Havel, 1998, 1999). Glucose transport alone does
not appear to be the regulatory step by which insulin-
mediated glucose metabolism stimulates leptin production.
The uptake of glucose does not increase leptin secretion if
the glucose is metabolized anaerobically and released as
lactate (Mueller et al. 1998). Accordingly, leptin secretion is
inversely related to the proportion of glucose metabolized to
lactate (Fig. 2D). Thus, it appears that glucose must be
metabolized beyond pyruvate, to a metabolic fate other than
lactate, in order to increase leptin production. One study
(Wang et al. 1998) has suggested that the flux of glucose
into the hexosamine biosynthetic pathway (Fig. 3) is
involved in stimulating leptin production; however, other
metabolic fates of glucose in adipocytes such as de novo
lipogenesis and/or glucose oxidation may also be involved
(Fig. 3).

Input from the sympathetic nervous system is considered
to have an inhibitory influence on leptin production
(Hardie et al. 1996a; Trayhurn et al. 1998). Although
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glucocorticoids have been reported to stimulate leptin
production in some studies (Hardie et al. 1996a; Rentsch
& Chiesi, 1996), it would seem unlikely that endogenous
glucocorticoids would have a physiological role in
increasing leptin production, since in conditions in which
glucocorticoid levels are increased, e.g. fasting and uncon-
trolled diabetes, leptin production and circulating leptin
concentrations are decreased (Ahren et al. 1997; Weigle
et al. 1997; Dubuc et al. 1998; Havel et al. 1998).

Diurnal pattern of circulating leptin and effects
of macronutrients

Circulating leptin concentrations are not constant over the
course of 1 d, and in human subjects exhibit a diurnal pattern
with a nocturnal peak that typically occurs after midnight
(Sinha et al. 1996). This nocturnal peak is not due to a true

circadian rhythm, since it does not occur when subjects are
fasted (Boden et al. 1996) and is related to meal-induced
insulin secretion (Laughlin & Yen, 1997; Saad et al. 1998b)
The diurnal pattern can be entrained to meal timing such that
shifting the time at which meals are consumed forward by
5–6 h delays the timing of the nocturnal peak by a similar
amount of time (Schoeller et al. 1997). Some studies which
examined fasting morning leptin concentrations did not
find an effect on circulating leptin levels of altering the
macronutrient content of the diet with respect to the
fat : carbohydrate ratio (Havel et al. 1996b; Weigle et al.
1997). However, in a more recent study it was reported that
human subjects consuming low-fat high-carbohydrate
meals, which induce large variations in insulin (Fig. 4A) and
glucose (Fig. 4B), produced postprandial increases in leptin
(Fig. 4C) occurring 4–6 h after meals and a 24 h leptin
profile that was 40 % greater than when the same subjects

Fig. 2. Effects of inhibiting glucose transport and metabolism with 2-deoxy-D-glucose (2-DG; insulin alone (r1r; n 13), insulin + 2-DG (mg/l; 2
(q1q; n 8), 10 (w– –w; n 12), 50 (y– –y; n 10); A) or glycolysis with NaF (insulin alone (r1r; n 6), insulin + NaF (mM; 0·5 (q1q; n 3), 1·0       (w–
–w; n 6), 5·0 (y– –y; n 6); B) on leptin concentrations from 0 to 96 h in media from isolated rat adipocytes incubated in primary culture with 1·6
nM-insulin. (C) Effects of 1·6 nM-insulin and 1·6 nM-insulin + 100 mg 2-DG/l or 1·0 mM-NaF on leptin (ob) mRNA after 48 h of incubation, as as-
sessed by Northern blots. For A-C values are means with their standard errors represented by vertical bars. (D) Relationship between the
proportion of glucose converted to lactate and leptin secretion over 96 h during incubation of adipocytes with 0·16 nM-insulin (n 32; r −0·73;
P < 0·001). (Reproduced with permission from Mueller et al. 1998.)
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consumed high-fat low-carbohydrate meals (Havel et al.
1999). Thus, leptin is acutely regulated by the macronutrient
content of meals in proportion to their ability to stimulate
insulin secretion. Consequently, energy consumed as fat
which does not directly stimulate insulin secretion, and
therefore does not indirectly stimulate leptin production,
does not signal the CNS via either of these long-term
hormonal regulators of energy balance (Fig. 1). Decreased
leptin production may contribute to the effects of high-fat
diets in promoting increased energy intake, weight gain and
obesity in human subjects and animals (Hill et al. 1992;
Horton et al. 1995; Tataranni & Ravussin, 1997; Tremblay

et al. 1998; Bray & Popkin, 1999). There is evidence that
the regulated level of adiposity is influenced by the macro-
nutrient content of the diet. For example, in a weight
clamp study, subjects needed to be fed an average of
502 (SE 126) kJ (120 (SE 30) kcal)/d more in order to
maintain their body weight when the percentage of energy
provided as fat was reduced from approximately 30 %
to approximately 15 % (Havel et al. 1996c). It is possible
that augmentation of 24 h leptin production induced by
carbohydrate ingestion may have increased energy require-
ments for weight maintenance by increasing energy
expenditure.

Fig. 3. Insulin-mediated glucose metabolism in adipocytes: insulin stimulates glucose uptake by increasing glucose transporter (GLUT4)
translocation to the adipocyte membrane. Insulin also stimulates glycolysis, and via its actions on pyruvate dehydrogenase (PDH) kinase to
activate PDH, increases glucose oxidation, and thereby reduces the proportion of glucose-C that is converted to lactate. Insulin stimulates
lipogenesis and increases the incorporation of glucose-C from glycerol and fatty acids into triacylglycerol. Blockade of glucose uptake and
phosphorylation by glucokinase by 2-deoxy-D-glucose, or inhibition of glycolysis with NaF, inhibit insulin-stimulated leptin expression and
secretion (Mueller et al. 1998). Anaerobic metabolism of glucose to lactate does not stimulate leptin secretion. The effects of insulin to increase
leptin production may involve stimulation of glucose entry into the hexosamine (glucosamine-6-phosphate; glucosamine-6-P) biosynthetic
pathway, lipogenesis, or oxidative metabolism in the TCA cycle. G6P, glucose-6-phosphate; GFA, glutamine: fructose-6-phosphate amido-
transferase Ox Phos, oxidative phosphorylation; m+ , stimulation by insulin.
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Consequences of decreased leptin production

The importance of normal leptin production and signalling
in regulating energy balance is clearly demonstrated by the
hyperphagia, reduced energy expenditure and marked
obesity that accompanies genetic leptin deficiency in ob/ob
mice, or leptin receptor defects in db/db mice or fatty
Zucker rats. Normal leptin production and action are also
critical for the long-term regulation of energy balance in
humans subjects, as was convincingly demonstrated by the
hyperphagia and obesity in human subjects with mutations
in the genes encoding leptin (Montague et al. 1997; Strobel
et al. 1998) or the leptin receptor (Clement et al. 1998).
Relative deficiency of leptin has been suggested to predict
future weight gain in human subjects (Ravussin et al. 1996;
Matkovic et al. 1997) and rodents (Surwit et al. 1997;
Ahren, 1999); however, such a predictive value has not been
observed in all populations examined (Chessler et al. 1998;
Haffner et al. 1998). Ahima et al. (1996) reported that leptin
administration in mice prevented the decreases in repro-
ductive and thyroid hormones and the activation of the
hypothalamic–pituitary–adrenal axis observed in response
to fasting. Thus, low leptin levels appear to be involved in
the overall neuroendocrine adaptive response to decreased

energy availability. Furthermore, leptin administration also
prevents the decrease in plasma glucose, insulin and
glucagon levels observed in response to fasting in mice
(Ahren & Havel, 1999a), suggesting that the decrease in
leptin is also involved in the metabolic adaptation to
restricted energy intake. Less-marked leptin deficiency also
has consequences with regard to energy intake. Leptin
replacement using osmotic minipumps at a very low rate of
delivery, in order to prevent the decrease in leptin after the
induction by streptozotocin of diabetes in rats, also prevents
the increase in food intake that was observed in untreated
animals (Sindelar et al. 1999). These results provide
evidence that low leptin levels mediate the hyperphagia long
known to be a characteristic of insulin-deficient diabetes
mellitus.

Decreases in circulating leptin during a prolonged
moderate energy deficit are correlated with increased
sensation of hunger in women, and this relationship was
independent of the changes in body fat content or the extent
of reduction in energy intake (Keim et al. 1998), further
suggesting that leptin also has a role in the regulation of
appetite in human subjects. Thus, lowered levels of
circulating leptin are likely to function as a signal to the
CNS of low energy intake as well as of decreased energy

Fig. 4. Plasma insulin (A) and glucose (B) concentrations, and (C)
the changes in plasma leptin concentrations above baseline levels
(i.e. increase above morning nadir; p leptin) during a 24 h period
(08·00 hours – 08·00 hours) in nineteen women consuming three
high-fat low-carbohydrate (CHO) meals m4m, or on a separate day
three low-fat high-CHO meals o4o. Values are means with their
standard errors represented by vertical bars. Areas under the curve
(24 h) above baseline concentrations for insulin (+142 (SE 21) %,
P < 0·0001) and glucose (+159 (SE 38) %, (P < 0·0005) were in-
creased, and 24 h leptin profile was 38 (SE 12) % greater (P < 0·0025)
when low-fat high-CHO meals were consumed compared with high-
fat low-CHO meals. (Reproduced with permission from Havel et al.
1999.)



366 P. J. Havel

stores in adipose tissue. The acute reduction in leptin
production in response to decreased energy intake before
significant decreases in body fat content is likely to have an
important adaptive value, in that it would promote
compensatory corrections of energy intake and/or expend-
iture before there are major deviations in body energy
stores. This idea is supported by demonstration that leptin
replacement prevents the decline in energy expenditure
associated with acute fasting in rodents (Scarpace et al.
1997; Doring et al. 1998).

Leptin in the management of obesity

A salient question is: what is the therapeutic potential
of leptin and the leptin system in treating obesity? In
one young leptin-deficient individual daily subcutaneous
administration of exogenous leptin has reduced food intake
and reversed an almost exponential rate of weight gain
into a substantial (approximately 15 kg) extent of weight
loss after 9 months (Greenberg et al. 1999; see also Farooqi
et al. 1999). Subcutaneous administration of recombinant
methionyl human leptin for 24 weeks has been reported to
induce a significant (P< 0·02), but variable, degree of
weight loss (−0·7 to −7·1 kg) in normal-weight and obese
human subjects in a double-blind placebo-controlled trial
(Greenberg et al. 1999; Heymsfield et al. 1999). The weight
loss was primarily due to reductions in body fat mass. The
variability in the extent of the weight loss suggests that there
are unknown factors which influence the effectiveness of
exogenous leptin treatment. Based on the observation that
the majority of obese subjects have high circulating leptin
levels, it has been hypothesized that obese subjects are
resistant to the actions of leptin which normally promote a
state of negative energy balance.

One possibility is that the baseline leptin level at the time
of treatment may influence sensitivity to exogenous leptin.
It seems plausible that the brain would be more sensitive to
decreases in circulating leptin than to increases above the
levels to which it is normally exposed. If this is the case,
leptin may be relatively more effective in subjects in whom
endogenous leptin production has first been decreased by
dieting. Significant weight loss can be induced in most
obese individuals with an energy-restricted diet and
exercise. However, the rate of successfully maintaining
weight loss is poor at best. Decreases in leptin secondary to
reduced adiposity and energy intake during energy-
restricted weight-loss regimens may contribute to the strong
propensity for weight regain via increased appetite (hunger)
(Keim et al. 1998) and decreased energy expenditure. Thus,
leptin, leptin agonists or leptin secretagogues could
potentially help maintain weight loss after successful dieting
by decreasing hunger and subsequent food intake, and
preventing or reversing the decrease in energy expenditure
known to occur during restricted energy intake (Doring
et al. 1998; Wisse et al. 1999).

While profound defects in the leptin receptor are
associated with massive obesity in a few individuals
(Clement et al. 1998), several studies have failed to
associate more subtle leptin receptor polymorphisms with
an obesity phenotype in human subjects (Considine et al.
1996a; Echwald et al. 1997; Matsuoka et al. 1997). It is

possible that post-receptor defects in the leptin signal
transduction pathway, or a failure of leptin to fully act on
its hypothalamic targets such as neuropeptide Y and
melanocortin neurons, or other neuropeptide systems
involved in regulating energy balance (Woods et al. 1998;
Schwartz et al. 1999), could result in an apparent resistance
to leptin. It has been reported that rodents with diet-induced
obesity (Halaas et al. 1997; Van Heek et al. 1997) and poly-
genic obesity (Halaas et al. 1997) reduce their food intake in
response to the administration of leptin into the CNS, but
not to peripheral injection of leptin. These results suggest
that under some conditions the ability of leptin to reach its
targets in the CNS may be impaired. Accordingly, it has
been reported that the cerebrospinal fluid: plasma leptin
ratio is reduced in obese subjects (Schwartz et al. 1996a;
Caro et al. 1996a) and that increases in cerebrospinal-fluid
leptin levels after leptin administration in human subjects
are smaller than would be predicted by the increase in
peripheral circulating leptin concentrations (Fujioka et al.
1999; Greenberg et al. 1999).

An additional possibility is that the leptin signal to the
brain can be overcome by the availability of highly-
palatable foods. For example, in rats with diet-induced
obesity central administration of leptin reduced the
consumption of the normal rodent diet, but not consumption
of a high-energy high-sucrose diet (Widdowson et al. 1997).
This observation is likely to be relevant to the aetiology
of obesity in human subjects, since palatable high-fat
high-energy foods contribute, along with inactivity, to
obesity in individuals consuming Western diets (Tataranni
& Ravussin, 1997; Tremblay et al. 1998; Bray & Popkin,
1998). It is possible from an evolutionary point of view that
the ability to override the leptin signal at times when food
supplies are readily available would have an adaptive value,
in that excess energy could be more readily stored as fat.
Nonetheless, the leptin system remains an attractive target
for obesity treatment. New strategies which enhance leptin
action or leptin transport into the brain may be required to
fully realize the clinical potential of this approach for
treating obesity.

Other actions of leptin

Leptin has a number of effects other than its central actions
causing reduced food intake and increased energy expend-
iture. There are leptin receptors in many peripheral tissues
(for review, see Tartaglia, 1997), including the liver, kidney,
adipose tissue, ovary and gastrointestinal tract. Leptin
appears to have peripheral actions on fuel metabolism and
substrate flux (Barzilai et al. 1997; Rossetti et al. 1997).
These actions may have profound long-term effects, as
suggested by studies which showed that 2 weeks of hyper-
leptinaemia after leptin gene transfection (Chen et al.
1996b) or during leptin infusion from osmotic minipumps
(Barzilai et al. 1997) led to a marked loss of body fat in rats,
whereas pair-fed animals exhibited much more modest
reductions of body fat.

Leptin is also involved in regulating reproductive
function (for review, see Cunningham et al. 1999), since
ob/ob mice lacking leptin are infertile, but fertility is
restored by leptin treatment (Chehab et al. 1996). Obese
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human patients with leptin deficiency exhibit hypogonadism
(Strobel et al. 1998). Furthermore, leptin administration has
been shown to accelerate the onset of puberty in rodents
(Barash et al. 1996; Chehab et al. 1997; Cheung et al. 1997).
It has been proposed that leptin acts as a general signal of
low energy status to the neuroendocrine axes; leptin admin-
istration reverses the changes in levels of thyrotropin,
adrenocorticotrophic hormone, and gonadotropins caused
by fasting in mice (Ahima et al. 1996). In agreement with
this idea, human subjects with leptin receptor defects are not
only obese, but have impaired growth hormone and thyro-
tropin secretion (Clement et al. 1998). It is possible that low
leptin levels, resulting from very low amounts of body fat
and decreased food intake, may contribute to amenorrhoea
in women athletes (Laughlin & Yen 1997) or anorexic
patients (Kopp et al. 1998). Other potential functions of
leptin include direct inhibitory effects on insulin secretion
(Kieffer et al. 1997; Emilsson et al. 1997; Ahren & Havel,
1999b), actions affecting adrenal function (Bornstein et al.
1997; Cao et al. 1997), angiogenesis (Bouloumie et al.
1998; Sierra-Honigmann et al. 1998), haematopoiesis
(Gainsford et al. 1996), pulmonary function (O’donnell
et al. 1999) and immune function (Loffreda et al. 1998;
Lord et al. 1998).

Summary and conclusions

Adipose tissue produces a number of endocrine products,
including tumour necrosis factor α, acylation-stimulating
protein and leptin. Normal production of leptin and leptin
action are critical for the long-term regulation of energy
balance in animals and human subjects. Circulating leptin
concentrations decrease acutely during fasting or energy
restriction, and the decreases are proportionally much larger
than changes in body adiposity. Leptin production is regu-
lated by insulin responses to meals, and therefore by dietary
macronutrient composition. The effects of insulin which
stimulate leptin production are likely to involve changes in
adipocyte carbohydrate metabolism. Decreases in leptin
production contribute to increased hunger and decreased
energy expenditure, as well as to hyperphagia in insulin-
deficient  diabetes. A better understanding of the precise
mechanisms regulating leptin production and action is likely
to lead new approaches for managing obesity. For example,
significant weight loss can usually be achieved in obese
patients with energy-restricted diets and exercise; however,
the success rate of maintaining weight loss is poor at best.
Preventing the decline in circulating leptin during an energy
deficit by providing exogenous leptin, a leptin agonist or a
leptin secretagogue may attenuate the increased hunger and
decreased energy expenditure and help to maintain weight
loss.
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