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Effects of Nonuniform Potential and Current
Distributions in Electrochemical Systems

Alan C. West

Abstract

We examine the effects that nonuniform current and potential
distributions have on electrochemical systems. Chapter 1 provides
definitions used by researchers studying these phenomena. In chapter
2, we discuss boundary integral techniques, which are powerful numer-
ical methods used in such studies. In chapters 3 and 4, an asymp-
totic solution is developed that shows explicitly how the extreme
characteristics of a primary current distribution are approached when
the ohmic resistance of the cell becomes large compared to the resis-
tance of the faradaic reaction. It is shown how these results can be
used to complement and verify more common numerical analyses.
Chapters 5 and 6 show how to determine exchange'current densities and
transfer coefficients when the reaction rate along the electrode 1is
nonuniform. The r;sults can be used to design experiments that pro-
vide for a more straightforward interpretation of data. The ohmic
resistance and current distribution for a recessed disk e}ectrode are
given in chapter 7. Chaéter 8 discusses briefly experimental work
intended to elucidate whether the dissolution kinetics of ferrous-

sulfate. films must be included in mathematical descriptions of the

b

complicated dynamic behavior of iron dissolution in sulfuric acid.
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CHAPTER 1
Introduction

This chapter defines terms that are used by researchers studying
how reaction rates, electrochemical potentials, and surface concen-

trations are distributed along an electrode.

The best known parameter used in characterizing current distri-
butions is the Wagner number. Its importance was established by Hoar
énd Agar [l] and was clarified by Wagner in 1951 [2]. 1In general,
the Wagner number does not ;haracterize completely the current and
potential distributions in the solution. 1In 1966, Newman [3] showed
for the rotating disk electrode which parameters are important for
the various limiting cases and for the general problem. With his
1966 paper, the study of nthe distribution of current density on
planar electrodes becomes a well-defined science. The study of

current distributions in porous electrodes is also understood (4].

Wagner Number

The Wagner number represents the ratio of the kinetic to ohmic
resistances to the flow of current. As the Wagner number approaches
zero, the current approaches a "primary current distribution." When
the kinetic resistance dominates, the distribution of current density
is uniform. Since the Wagner number is defined by different vari-
ables for different reaction regimes, Newman does not explicitly use

2
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Mass-Transfer Controlled Current Distributions

An important limiting case is the mass-transfer controlled (lim-
iting) current distribution. In the absence of migration, the limit-
ing current density is determined by procedures that are common in
the heat and mass-transfer literature [5,6,7]. Newman showed [8]
that, for boundary-layer flows, migration at the limiting current
does not affect the distribution of current but does change its mag-

nitude.

Primary Current Distributions

In the absence of concentration variations, Laplace’s equation
determines the current distribution. When the kigetic resistance of
the interfacial reaction-is zero compared to the ohmic resistance,
the current distribution is known as primary. This case is important
because it may be desirable to compare different cell designs to
minimize the ohmic resistance. The ohmic potential drop increases
with the size of an electrochemical system; therefore the primary
current distribution is approached as a system 1is scaled-up. The
primary current distribution is also approximately valid, for exam-

ple, for-short times after a step change in the electrode potential.

Secondary Current Distributions

In practical situations, the kinetics of a reaction are impor-
tant. When an interfacial resistance is included but mass-transfer
effects are neglected, the current distribution is known as secon-

dary. To study the effects of finite kinetics, it is instructive to



study the two limiting cases of the Butler-Volmer equation, known as
linear and Tafel kinetics. The behavior of a system, for a given
Wagner number, depends on which reaction regime is applicable. A
dimensionless exchange current density is the important parameter for
linear kinetics, and a dimensionless average current density 1is

important in characterizing the distribution for Tafel kinetics.

For linear kinetics, analogous boundary conditions are found in
heat-transfer problems,‘and experience obtained from these studies
can provide insight into the behavior of current distributions. For
Tafel kineties, analogous boundary conditions do not exist, and it is
necessary to develop intuition specifically for this important limit-
ing éase. For example, Smyrl and Newman [9] show that, under certain
well-defined conaitions, the current density at the edge of an elec-

trode is proportional to the square of the average current density.

Tertiary Current Distributions

Below the limiting current, when both ohmic potential drop and
convective diffusion are important, the problem is complicated. New-
man discussed this class of problems [10]. Complete characterization

of a tertiary current distribution can require many parameters.

Porous Electrodes

Newman and Tiedemann [4] reviewed the solution procedure for the
determination of current distributions in porous electrodes. The
same limiting cases discussed above are important. Intuition

developed from studying planar electrodes aids in understanding the



current distribution in porous electrodes.

Summary

Significant progress in studying current distributions requires
useful numerical procedures. Chapter 2 discusses a numerical method
that we have used for studying primary and secondary current distri-
butions. Chapters 3 through 7 present results that are obtained with
this method. It is hoped that these results are directly useful to
the reader. If not, they elucidate behavior that is helpful in
understanding phenomena observed in other current distribution stu-

dies.

Chapter’ 8 discussés experimental observations of the Fe/HZSOa
system. The complicated behavior that is observed for this system
is, in part, a result of nonuniform potential and current distribu-
tions. This is a passivating system,.  which makes it quite sensitive

to the potential distribution along the electrode.

To allow for leisurely reading, the chapters have been largely
written so that they can be read independently. Particularly, the
details of the numerical method given in chapter 2 are unnecessary

for the rest of the thesis.
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CHAPTER 2
An Iterative, Boundary Integral Technique

Laplace’s equation often arises in mathematical descriptions of
electrochemical systems. This chapter discusses the use of boundary
integral methods for solving it. For a more general discussion of
numerical methods used in current distribution problehs, see refer-
ences [1], [2], (3], and [4]. Greenberg [5] and Ramkrishna and
Amundson [6] gave details pertaining to the application of boundary

integral techniques to other linear operators.

Boundary-elements have become increasingly popular since the
mid-1970's [7]), ([8], [9]. Also becoming popular are ‘the finite-
e}ement methods. Comparisons of these methods are found in papers by
Hume et al. [10] and by Dukovic and Tobias [1l]. Most of the advan-
tages and disadvantages of boundary integral techniques apply regard-

less of how the equations are formulated or solved.

Boundary-element methods require fewer nodes, at which the
finite-difference approximations to the equations are solved, than
finite-element methods. However, the resulting equations form a
dense matrix (as opposed to a banded matrix). -Therefore, computation
time is not greatly reduced, even though the number of unknowns can

be considerably less.

Contrary to many techniques [7], [8], [9], the solution pro-
cedure that we discuss does not pose the problem as one to be solved

by the method of weighted residuals. The method permits any type of

-~



basis function' and allows for the form of the basis function to vary
with position. This is particularly important for primary current

distributions.

Although the formalism of certain boundary-element methods is
relatively new, boundary integral methods have existed for a long
time [12]. Wagner ([13] wused integral equations for the analytic
solution of current distribution problems. Newman {3] and Cahan et
al. [14] discussed the use of boundary integral equations to calcu-

late current distributions numerically.

The technique of Cahan et al. discretizes the boundary condi-
tions and solves for the potential near, but not on, the boundary.
In this manner, the method avoids evaluating the singularities that
arise in equations (5), (12), and (14). We prefer handling directly
these singularities because errors that arise from their procedure
are ;voided. This becomes particularly important in the calculation

of primary current distributions.

Green's Theorem

Boundary integral methods are based on the second form of

Green's theorem (see [15], for example),

£ [gv24> - <:>v2g] av = afv n- [qu> - Wg] dA. (1)

t Basis functions is a term borrowed from traditional finite and
boundary-element methods. It describes the manner in which a
function is interpolated between nodes.



If ¢ satisfies Laplace’s equation, equation (1) becomes
- f ¢V2g dvV = J~ n-[gVQ - @Vg]dA. (2)
1% av
A clever choice of g greatly facilitates the determination of

the potential. Specifically, g is chosen to satisfy
V2g = §(X=-Xx_,y-y ,2=-2z ), (3)
q q q
where 6§ is the three-dimensional Dirac delta function, x, y, and z
are the Cartesian coordinates, and xq,yq,zq specifies a point. One

: AP : . 1
Green’s function g that satisfies equation (3) is g = <—, where

€3
2 2 2) % (4)
- ~X + (y- + (z- .
€3 [(x g T }'q) (z zq) ]
Physically, g can be thought of as the potential at xq,yq,zq due to a

point source of current at x,y,z.

Substituting g into equation (2) gives

1 1
- == P - IV —
~a3¢(xq,yq,zq) JV n [53 d L+ 53]dA' (5)

where aq is 4x for a point, xq,yq,zq, in the domain of the problem,
2n for a point on a smooth boundary, and zero for a point outside the

domain. 1In general,

im (6)

3 R2

o
where ‘As is the surface area of the portion of a sphere around
xq,yq,zq which falls within the domain of the problem [7]. Figure 1

shows the two-dimensional analog to « Equation (5) shows that the

3-

solution for ¢ is reduced to a problem on the boundary of the domain.



Three Dimensions Two Dimensions

lim A

2 Uy = —_2
Ro'_)o Ro 2 Ro_)O(RO)

Figure 1. Schematic showing the coefficient given in equation (6) for two-
dimensional geometries. Ag is the surface area of the portion of the sphere

that falls within the domain of the problem, and Cg is the arc length of the
portion of a circle that falls within the domain.
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Once the potential and current density are known everywhere on the

boundary, the potential can be found anywhere in the domain.

Since equation (3) is linear, solutions for g can be superposed.

Specifically, if = satisfies Laplace’s equation, ?L + 8 satisfies
3

1 + gh) = 0 everywhere along

equation (3). Choosing 8 s° that n-V(6
3

the boundary of the domain can reduce greatly the numerical computa-
tion necessary for a solution since equation (5) becomes

1 ,
_a3¢(xq,yq,zq) - g; n-[(zg + gh)VQ]dA. (7)

This approach is taken, for example, by Alkire and Mirarefi [16] and
has been used extensively by mathematical physicists [17]. A good

discussion of these methods is given by Greenberg [5].

Many electrochemical cells are approximated as two dimensional
or axisymmetric. The next two sections give boundary integral equa-

tions that are more conveniently used for these cases.

Two-Dimensional Geometries

If the geometry of interest contains no z dependence, equation

(2) can be written as

A dA

where df is a differential line element. If g 1is now chosen to

- [f <I>V2gdxdy]Az - [ Jn [gv<1> - <I>Vg] dl}Az, (8)

satisfy
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32 a2 -
—§+—§=5(x—x Y=y ), (9)
ax dy q 9

then equation (8) reduces to

- dg _ 8% |

azé(xq,yq) J'{Q 3n g a0 ds, (10)
A

where §/8n implies the component of the gradient that is normal to

the boundary. a, is 2n for a point inside the domain, zero for a

2
point outside the domain, and n for a point on a smooth boundary.

Figure 1 shows a, for a point where the slope of the line drawn

2

tangent to the boundary is discontinuous.
The two-dimensional Green’s function g is g ==ln€2, where
2 2]% (11)
- | (x—=x + (y- .
€ [( 7 64 yq)
g is the potential at xq,yq due to a line source of current that is

perpendicular to the ;; plane and passes through the point x,y. Sub-

stituting g into equation (10) gives

a¢ i

¢ 2 ad

azé(xq,yq) - g;[€2 Fralie 1n€2 an]dﬂ. (12)
Axisymmetric Geometries

For axisymmetric geometries, equation (5) can be written as

1 1
d - = v - v—
—ay (r ,z) l n [ g d d ; ]rdﬁdl, (13)

where r,f,z are the cylindrical coordinates, rq,zq specifies a loca-

tion, and rdfdf is the differential surface area.
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Since by assumption the problem is axisymmetric, the § depen-

dence of equation (13) can be eliminated to give

3 _ . og
-a3¢(rq,zq) - g; [g in d an]rdz, (14)
where we now set
4K (m)
& N (15)

2 2]
r+r + (z-z
[( q) ( q)
g can be thought of as the potential at rq,zq due to a ring of point
sources of current at r,z. K(m) is the complete elliptic integral of

the first kind,

n/2
K@ = f @ — (16)
0 (1 -msin™§)

and the ‘modulus m is given by

4rr

- )2+ﬂ< y2 a7
l'rq qu

Approximate forms of K(m) are given in Abramowitz and Stegun [18].
After integration over 4, df signifies the length element for the
path enclosing the region in the r,z half plane and n signifies a
direction normal to this path. Where the path coincides with the 2z-

axis, the integrand of equation (1l4) is zero.

Wrobel and Brebbia gavev[19]

2 2 2
r -r - (z-z)
K(m) + : i Emle, (18)
[(r+rq)2 + (z+zq)2];2 (r—rq) + (z—zq)

dg

-2/r
an :
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_ AE(m)(z—zq) .

2 2)% 2 2
[(r+rq) + (z+zq) ] {(r—rq) + (z—zq) ]

Z

where er and ez are the unit vectors in the r and z directions,T and

E(m) is the complete elliptic integral_of the second kind,

n/2 9
E(m) = [ (1 - m sin“4) dog. (19)
0

Approximations of E(m) are also given in Abramowitz and Stegun [18].

Interpolation Methods

-The numerical solution of differential (or integral) equations
requires finite-difference approximations. 1It, therefore, is impor-
tant to interpolate accurately between nodes. In .modern texts con-
cerned with boundary-element or finite-element methods some discus-
sion of interpolation methods is found under the discussion of basis
functions [20]. Popular (local) basis functions are known as qua-
dratic or linear. These terms indicate the order of the interpolat-
ing polynomial. For example, a linear basis function varies linearly
between two successive nodes. Quadratic basis functions, then, fit a

quadratic equation between three successive nodes.

t Useful relations for deriving these and similar equations are:

dK(m) o _ K(m) E(m)
dm 2m 2m(1l-m)

and

dE(m) - L [E(m) - K(m)]

dm 2m
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Many textbooks give few details on interpolating functions that
vary in a strongly nonlinear manner. For example, one might try to
interpolate the primary current density near the edge of a disk elec-

trode, where [21]

i(r) _ 0.5

lavg (1 - r2/r§)8 . (20)

It is proper to interpolate the primary current density on a disk by
assuming that it wvaries linearly with respect to (1 - rz/ri)—k. 0f
course, for problems to be solved numerically, the exact functional
relation 1is not known a priori. Asymbtétic solutions, though,
predict the manner in which the current density varies, and can be
used to avoid numerical errors (such as an artificial wiggle in the
current distribution near the edge of an electrode) that commonly
occur in the solution of primary current distributions. The interpo-

lation procedures that we use assume a linear wvariation in the

appropriately stretched coordinates between two succesive nodes.

Away from insulator/electrode interfaces, variations in current
density and potential are sufficiently mild that special interpola-
tion procedures are unnecessary, glthough they may still improve
accuracy and computational efficiency. Near an electrode edge, vari-
ations may be large. For primary current distributions, the current
density is infinite at the edge of the electrode if the interior

angle of intersection between the insulator and electrode is obtuse

[22].
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In reality, kinetic resistances become important, and the
current density-at the edge remains finite. 1If the kinetic resis-
tances ' are included, .it, therefore, is less important to know a
priori how the current density varies. Nevertheless, asymptotic

equations are useful for understanding and verifying results.

Smyrl and Newman (23] described current distributions for large,
finite ohmic resistances for a coplanar electrode and insulator.
Previously, Nisancioglu and Newman [24] showed the behavior for large
ohmic resistances for linear kinetics on a disk electrode. Chapter 3

generalizes these results.

Integration Procedures-

For two-dimensional geometries, when the potential or current
density is interpolated linearly with respect to Cartesian coordi-
nates, the integrals (between two successive nodes) resulting from

equation (12) can be evaluated analytically.

The integrals appearing in the axisymmetric equations must be
solved numerically. Standard integration methods are used for well-
behaved functions. Functions containing singularities are handled by
the subtraction and addition of a similarly behaved singularity or by
changing the variable of integration. Edwards [25] discussed these
procedures. For primary distributions, accurate solutions require

knowledge of the asymptotic behavior of the current distribution.

In addition to the numerical difficulties that arise because of

singularities in the. current distribution, the: axisymmetric Green’'s
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function is singular as r,z — rq,zq since [18]

lin K(m) = 3 1n[1 1_6m] . (21)
m—1

This logarithmic singularity is integrated numerically by the addi-

tion and subtraction of a similarly behaved singularity.

When knowledge of the correct asymptotic behavior is used,
interpolation and integration methodslcan yield highly accurate solu-
tions. For the calcﬁlation of the primary current distribution on a
disk electrode, the igtegration techniques can give solutions accu-

c 1 s . -8
rate to within a relative error of 10 .

As a concrete example of these methods, it is instructive to
look at the integral equations written for the disk geometry. The
potential distribution on the disk electrode and insulating élane is
given by [3] |

o in(r)K(m)r

- B £ 22
oy = o f T (22)

where r, is the radius of the disk electrode. For a primary current
distribution, the potential Qo is specified on the electrode, and the

current density, if it were unknown, can be described by

o (&(r) - ® YE(m)r
in(r ) = ~ %? f 5 2 dr . (23)
q r (r-=r ) (r+r )
° q q

For secondary current distributions, equation (23) 1is unnecessary

since a kinetic rate equation relates Qo(rq) and in(rq).

Equation (22) contains examples of integrable singularities.

For primary distributions, equation (5) of chapter 3 suggests that
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in x (ro-r)—k, which suggests changing the variable of integration to
X = (ro-r)%. After substituting for the exact form of in’ as given

by equation (20), equation (22) becomes

r i Jro K(m)(ro—xz)dx

2
o) - o avg (24)

nK !

2.3 2

0 (2ro—x ) (rq+ro—x )
which eliminates the singularity caused by the current density.

K(m), though, still presents a problem because it contains a

logarithmic singularity when r — rq. To handle this singularity, if

rq -r,, the integral could be written as

r i /ro ‘(ro-xz)K(m) 2roln(x)

25
2,3/ + 32| 9% (23)

(2r )

0 (2r -x
o o

jzroiavg — — -
- —=—= (Jr  In(Jr)) - Jr )
Logarithmic singularities can also be handled by a special Gaussian

quadrature procedure {26].

To handle some of the singularities that arise in these prob-
lems, Brebbia [27] suggests a device in which the evaluation of the
integrals near some of the singular points is avoided. His trick
recognizes that a system with constant potential everywhere has no

current flowing. Therefore, equation (14), for example, becomes

ag |
a, = f rdl. (26)
3 34 on

In his method, this integral is split into the regions between node
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points, and the region containing the singularity is evaluated by
difference so that the above equation is satisfied. This does not
seem like a good idea because all of the numerical errors arising
through the evaluation of the other elements of the integral are
incorporated into the term that is the largest contributor. His
idea, though, is useful Because equation (26) provides a test on the
accuracy of the integration procedures. Another approach that can
test the accuracy of a solution is to evaluate equation (5), (12), or

(14) at points outside the domain, where ay = 0.

Solution Method

As was stated earlier, equation (12) or equation (1l4), when
written for each node on the boundary, results in a "dense" matrix.
This matrix equation is often solved by Gaussian elimination, but can
also be solved by the method of successive substitutions. Edwards
[25] discussed these two approaches. She concluded that tbe method
of successive subsfitutions works well if a good initial guess is
provided and a reasonable damping factor is used. The savings in
computation time can be substantial for a large matrix. The disad-
vantage is that it is often more difficult to make the method of suc-

cessive substitutions converge.

Despite her reported problems, we used this method. We also
found that convergence depends on the value of the damping factor.
With a proper choice and a good initial guess, the method of succes-
sive substitutions requires fewer calculations ~than a Gaussian-

elimination procedure. For example, substantial savings can be
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obtained if the results from a run with fewer node points is used as

the initial guess.

To make the method of successive substitutions an attractive
alternative to a Gaussian-elimination/Newton-Raphson procedure, an
efficient algorithm to determine the optimum damping factor must be
developed. This was not pursued since computer costs continue to
decrease, and thus, for many applications, speed can be sacrificed

for robustness.

Summary -

A rigid method is not presented in this chapter. In fact, we
purposely .avoid the formalism of other methods in favor of tailoring
the #rocedure to the particular problem. By using asymptgtic solu-
tions to guide the development of a method, greater accuraéy, lower
computation costs, and greater physical insight are possible. Using
asymptotic results with more formal methods is possible, although
this may require sacrificing generality, which is a major advantage

to such procedures.

List of Symbols

A indicates integration over the boundary, cm2
As surface area shown in figure 1, cm
Cs arc shown in figure 1, cm

E(m) complete elliptic integral of the second kind



X,y,2

%21 %3

avg

edge

20

unit normal vectors

Green's function, cm

normal component of the current density, A/cm2
variable of integration in two dimensions, cm
complete elliptic integral of the first kind
radial position coordinate, cm

radius of the disk, cm

radius shown in figure 1, cm

in%icates integration over the entire domain,
cm

Cartesian €oordinates, cm
coefficients shown in figure 1

interior angle of intersection between electrode
and insulator, radians

Dirac delta function

variable of integration in cylindrical
coordinates, cm

cylindrical coordinate, radians
solution conductivity, S/cm
distance for two-dimensional geometries, cm
distance for three-dimensional geometries, cm
3.141592654
potential of the solution, V
Subscripts
average
electrode/insulator interface

coordinate at which the potential is being solved
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CHAPTER 3
Current Distribution near an Electrode Edge
as a Primary Distribution is Approached

It is well known [1l] that the primary current density is infin-
ite at an edge of an electrode if the angle of intersection between
the electrode and insulator is obtuse. Also, the primary current
density at the edge is zero for an acute angle. In all practical
cases, the kinetics of the interf;cial reaction enters, and these

extreme values do not occur.

This chapter demonstrates how the potential and current approach

a primary distribution as the kinetic resistance becomes negligible

(comparéd to the ohmic resistance). ' The analysis 1is wvalid in the

edge region of an electrode and insulator, is a fuqction of the
angle, B, shown in figure 1, and is independent of the geometric
details of the rest of the electrochemical cell. Results from this
abstract geometry can be use to verify numerical investigations of
actual geometries. Additionally, an a priori estimate of the
behavior in an edge region can aid in the development of more effi-

cient and more accurate numerical procedures.

Nisancioglu and Newman [2] solved this problem for linear kinet-
ics in the edge region of a disk electrode. Smyrl and Newman [3]
extended the results for the linear kinetics case and gave results

for Tafel kinetics. Their results are valid when § =~ =.

In both of these papers, it was recognized that, for high ohmic

resistances, the current distribution could be described adequately
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r =0 ‘ electrode

Figure 1. Primary current distribution in the edge region of an electrode and insulator.
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by the primary distribution away from the edge region but showed
large deviations from this distribution near the edge. Stated
another way, the resistance of the faradaic reaction is important
only in the edge region. They realized that this suggests that the

problem is treated properly by a singular-perturbation analysis.

Primary Current: Distribution

The primary current distribution in the edge region shown in
figure 1 can be determined by Laplace’s equation in cylindrical coor-
dinates,.which reduces to

2
1 af_ 8] . 1ls%e
rar[r ar] * 32| T O (1)
‘ r- (a4

The boundary conditions are

3

55 = 0 at 6 =48 (2)
and

=0 at 4 =20. (3)

The solution (for small r) to equations (1) through (3) is

__28, m/28 _, (x8
&P p— Po r sin 28] (4)
where Po relates to the magnitude of the primary current distribu-
tion:
Py _ K3 (n/2-1) (5)
() r 44 Po d '

It is necessary to introduce Po because equations (1) through

(3) do not completely specify the solution, and the magnitude of the
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current can be changed by changing the cell potential. The placement
of the counterelectrode and the geometric details of the working
electrode in the region away from the corner region are not given.
To do so would eliminate the possibility of a general analysis. 1In a
region sufficiently close to the corner, the distribution of current
density behaves in a manner independent of these details. 1In gen-
eral, the details of the geometry away from the edge region are
incorporated into Po, which is determined through comparisons of
equation (4) with the primary current distribution valid for the
entire geometry. Smyrl and Newman [3] showed that Po - iavg/;;7§ for
the rotating disk electrode. They also gave Po for the flow-channei

geometry.

Linear Kinetics

For linear kinetics, the boundary condition along the working

electrode becomes

(a +a YFi
_ﬁaﬁ_i?_c__g(v_d>o)’ (6)

r a4 RT
where V is the potential of the electrode and 00 is the potential of
the solution adjacent to the electrode. For large values of the
exchange current density, the current is given adequately by equation
(5) for large (but not too large) values of r. Near the corner,
though, kinetics is important, and the current deviates from the pri-

mary distribution. To emphasize this corner region, a stretched

radial distance should be defined by
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_ (a_+a )Fi
T =25 =p—2_SC ° 7
L RTx ’
and a stretched potential by
_ ,csz/Zﬂ
$=(@-V) —5— . (8)
o
The problem, in terms of these variables, is given by
- 2_
1378, L1280, (9)
rdr| ar -2 (a4 -
r
with the boundary conditions,
2 _ - (10
T, O at ¢4 B
and
%go';o at § = 0. (11)
r .

Finally, for large T (but small r) ¢ must satisfy the condition that

; — - %? ;”/Zﬂ sin[%%) as r — o . (12)

(; — © because S, becomes large.)

L

It should be noted that V has effectively been set equal to zero
in the matching condition given by equation (12). This is justified
for obtuse angles because the primary current density (see equation
(5)) decreases for large r. Acute angles require the treatment out-

lined in the apﬁendix.

Details of the numerical solution for ¢ are given below. It
should be recognized that the equations are free of parameters and

that ¢ is therefore independent of the stretching parameter SL.



30

An important result of this section is that, for high exchange

current densities, the current density in the corner region is given
by

. Y(1-mn/28)
, (a +a YFi
i(r) _ _ a c) o) 2 (13)
P RTx o’
o
That the current density at the edge of the electrode approaches
infinity as a power of a parameter involving the exchange current
density should not be too surprising since previous experience [4]

suggests that such a parameter dictates the distribution of current.

for linear kinetics..

Tafel Kinetics

For anodic Tafel kinetics, the boundary condition along the
electrode is
30 a F

L ; a2 -
- r 38" i exp RT v Qo) . (14)

The exchange current density is no longer a key variable in determin-
ing the distribution of current. Previous experience suggests that a
dimensionless average current density is the important parameter.
Since a characteristic length is missing from this problem, no such
parameter can be defined. Po' though, is analogous in that it speci-
fies the magnitude of the current, and it may be expected to be

important for Tafel kinetics.

If Po is large—so that the ohmic resistance is large and the

analysis 1is valid—the current distribution far from the edge is
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given adequately by the primary distribution. To investigate the
region where the primary distribution does not apply, the potential

should be stretched as

- aF a Fi_
¢ = BT (® -V) - ln(ST) + 1n *Te |’ : (15).

and the radial distance by

r=rS. =r

T

[a FP ]zﬁ/"
a8 o (16)
RTx ' i

In terms of these variables, equations (9) and (10) apply, and the

boundary condition along the electrode becomes

IS

1

r

- - exp(-Zo) at 6§ = 0. (17)

(13

8

for large r, Z must approach the asymptotic solutioq suggested by
Smyrl and Newman [3]:f

3 —_ - %? ;w/zﬁsi;[gg] + [é% - l]ln(;) as’ r — o, (18)

The numerical procedure used to solve for ¢ is discussed in the

next section. For large values of Po’ the current in the edge region

is given by

(19)

. a FP

i(r) - a’ o

P RT«
o

(28/7-1)
] exp(-4 )

Again, the parameter that is important for specifying the current

t A complication which could arise in the analysis is that Tafel
kinetics may no longer apply at distances at which the primary
distribution is approached. The possibility of entering a 1linear
kinetics regime before the primary distribution is approached was not
investigated.
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density in the edge region is consistent with previous experience.

Numerical Analysis

Since, in two dimensions, currents can not flow to infinity
without an infinite potential drop, it 1is necessary to calculate
deviations from the primary potential distribution. A new potential,

¥, is defined as

b-3-% (20)
where ;p is given by equation (12). To facilitate the solution for
¥, the geometry of figure 1 can be mapped conformally so that the

insulator and electrode are coplanar. The coordinates of this new

geometry are related to the original coordinates through

/B on ’ (21)

X =r and 6 = —
B

In terms of these new variables, the problem can be stated as

2
1 af &¥] , Lla ¥ _
X 6x[x ax] * 2[ 2] 0. (22)
x (88
with the boundary conditions:
M- -
30 0 at © s (23)
and
19y _8 B/n-1) _ -1/2
% 36 n[f(¢o) X + X at 6 0. (24)
For linear kinetics, f(¢o) - ¢o, and for Tafel kinetics,

E($,) = - exp(~ ¥_).



33

The boundary integral equation describing the potential of the

solution adjacent to the electrode is

2r2

For linear kinetics and 8 < n/2, the integrand does not approach zero.

¥ (x) = L2 [ In(x-x)° [f(¢ y B/ L2 ]dx. (25)
o] q o , q (o]

quickly enough for the integral to converge. The appendix demon-
strates the modification to the solution procedure necessary to

obtain convergence.

A finite-difference approximation to equation (25) was solved
with an iter;tive procedure. An upper limit of integration, X ox’
was chosen to set a finite domain of integration. The contribution
of the integral for x > X .x vas assumed to be negligible, which is

consistent with requiring that the primary current distribution be

approache
pp d at X ax

The accuracy of this procedure was verified by increasing X ax
until the value of the current at the corner changed by some small
amount. A procedure of node-point doubling was also used. The
results for the case of B = » were compared with the results from
references (2) and (3). Finally, an integral constraint can be used
to check the accuracy of the answer. This arises from the asymptotic

behavior expressed in equations (12) and (18) and takes the form, for

linear kinetics (obtuse angles),

0= [¢ox<ﬁ/”‘1) + x_l/zldx , (26)
0

and, for Tafel kinetics,
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x [1 - 2—':3] -1 [x_l/ 2 exp(-y )x#/ "'”]dx- (27)

The reported values are estimated to be accurate within 0.5 percent.

Results and Discussion

Results for linear kinetics are shown in figures 2 and 3. These
figures, along with equation (13), give a good estimate of the
current density in the corner region only for large values of
(aa+ac)Fio/RTn. Figure 4 shows results for Tafel kinetics. It can
be used with equation (19) to predict current distributions near

corner regions for high values of aaFPo/RTn.

Our experience has shown (and this analysis suggests) that
numerical difficulties can arise when ohmic resistances begin to dom-
inate. 1In other words, the results of this chapter become applicable
when other numerical analyses begin to become suspect. A practical
use, then, of these resuits could be as a tool for the verification
of other results. One test which could be made for linear kinetics

is to determine whether

(aa+a )F;o

RTx

i
_§g&£-_ AL(ﬂ) [ (28)
o

](l-ﬂ/Zﬁ)

as the right side of the equation goes to infinity. The test for

Tafel kinetics is whether

(29)

iedge aaFPo (2h/r=1)
P = 4r(B) |"rrx

as the right side of the equatioh goes to infinity. Smyrl and Newman

[3] have demonstrated. such tests for the case of ‘ﬂ = T, The
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Figure 2. Current distribution for linear kinetics (obtuse angles).
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Figure 3. Current distribution for linear kinetics (acute angles).




37

o 1 o | 1
3r -
| B=7m4
[ 3n/3
~ 2 [ sw ]
X
[=] i
| ©
g n
s *
3n/4
|2
/4 ‘_ 1
b
" 1 " 1 " 1
0 1 2 3 4
2B

Figure 4. Current distribution for Tafel kinetics.
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coefficients, AL(ﬁ) and AT(ﬁ), are shown in figure 5. The appendix

shows that the value of AL is 6.0 for an angle of 8 = w/8.

By solving the primary current distribution for an actual cell,
it is possible to relate Po to measureable electrochemical and
geometric variables. It might, though, not be desired to take the
time to determine the exact relation between Po and these other vari-
ables. As a quick check, one might recall that Po is proportional to
iavg and determine whether the proper relationship, suggested.by
equation (28) or (29), is fallowed.

The analysis can also be used to establish the proper mesh-
spacing for an accurate and efficient finite-difference procedure.
For linear kinetics, the region wbere tﬁe primary distribution does

. )-1
(a +ac)F10

RTn For Tafel kinetics, the

not apply is of the order

region where the kinetic resistance is important is of the order

[a FP ]—2ﬂ/"
a’o

RTx

Conclusions

A singular-perturbation analysis has shown explicitly the manner

. |
in which the current density near an electrode edge approaches
extreme values as the primary current distribution is approached.

The results are consistent with previous analyses of a coplanar elec-

trode and insulator and also with the special case of 8 = n/2.
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Figure 5. Dimensionless coefficient which specifies the value of the stretched
current density at the edge. See equations (28) and (29).
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Appendix

For linear kinetics, the solution to equations (9) through (12)

might be approximated by

n.
$- 3 ar- cos{ni(ﬂ - o)], (a.1)

i=0

where n; and Ai are determined through the boundary conditions and
the matching condition. This series diverges except for certain
angles, B, where it terminates. Three angles which terminate are
B =-=n/2, B=rn/4, and B = n/8, For these angles, the potential of

the solution adjacent to the electrode edge is given by

¢, = -1 (B =1r/2), . (A.2)
¢, =-l-r (B=rn/4), | (A.3)

and
Zo - -6 ~ 14.4852F — 7.2464r 2 - F 3 (B = n/8). (A.4)

As r — =, the difference between the actual stretched current
and the stretched primary current (in terms of x) is of the order

given by

¢ox(ﬁ/ﬂ—l) + x—1/2 o x-(l/2+ﬁ/”). (A.5)

For angles B less than n/2, the integral equation (25) is unbounded

- . -1
since the first neglected term is of order greater than x .

Stated another way, for linear kinetics and acute angles, the

first neglected term in the matching condition is sufficiently large
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along the electrode surface that the integral does.not converge. For
x/4 < B < n/2, equations (30) and (34) suggest that an equation which
calculates the deviations of the current density from the first two
terms of the series will converge. A potential defined in this
manner is

P =4+ %? ;ﬂ/zﬁcos[f%(ﬂ - 0)] (A.6)

- Al?("/zﬂ‘l)cos[(f% - 1)(8 - o)].

A1 is determined by applying the matching and boundary conditions:
-1
4 " 51a B (a-7)
The integral equation which gives ¥’ is
-]
b ' = L [ ln(x-x )2[¢ B/ A'x(‘l/z’ﬂ/"?]dx, (A.8)
o 2 q o
2z~ 0
where :
b o] —L
A = [Zﬂ 1] tan (B) (A.9)

The matching condition used numerically for wo' is given by the next

term of the series:

v 4 o(m/28-2) T T o o (A.10)
wo Azr cos |3 28| as r ©,
For example, for B = 3n/8, the potential at the electrode sur-

face is

4, = -r 1/3 _ o.138077 ~2/3. .. . (A.11)

For B < n/4, additional terms need. to be subtracted from ¥%’'. The
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number of additional terms is given by equation (30), the solution

for ¢ as r — =,

To obtain results for 8 < n/2, this appendix is necessary. It
can also be used with obtuse angles because it shows how asymptotic
corrections can be used to relax the assumption that the integrand in
equation (25) is zero for x > x . This reduces the wvalue of x

max max
needed to obtain accurate results.

Appendix B of Smyrl and Newman [3] can be used to show that, for
Tafel kinetics, the difference between the current density and the

primary current density is sufficiently small that the integral equa-

tion (25) converges for acute, as well as obtuse, angles.

List of Symbols

AL' AT dimensionless coefficients given in figure 5

F Faraday;s constant, 96487 C/equiv

i current density, A/cm2

iavg average current density, A/cm2

iedge current density at the electrode/insulator edge,
A/cm

io exchange current density, A/cm2

Ro parameter defined in equation (5), A/cm(1+"/25)

R universal gas constant, 8.3143 J/mol-K

r radial distance variable, cm

T stretched, dimensionless radial distance

variable, defined by equation (7) or (16)
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SL stretching variable for linear kinetics, cm

ST stretching variable for Tafel kinetics, cm

T absolute témperature, K

X,X dimensionless position in transformed coordinate
9 system

|4 electrode potential, V

aa, transfer coefficients

B angle defined in figure 1, radians

6 angular coordinate in cylindrical coordinates

e angular coordinate of transformed geometry

n 3.141592654

3 | specific conductivity, ohm-lcm-l

® potential, V

&f primary potential, V

Z stretched, dimensionless potential

Y dimensionless potential defined by equation (20)

¥’ dimensionless potential defined by equation (35)
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CHAPTER 4
A Criterion to Verify Current Distribution Calculations

This chapter provides a practical demonstration and partial
verification of the abstract results of chapter 3. Specifically, it
shows how the results provide a criterion by which the wvalidity of
current distribution calculations can be tested. The geometry used
to demonstrate the procedure is a slotted-electrode cell for which
the primary current distribution was given by Orazem and Newman [1].
Previously, Smyrl and Newman {2] applied similar results to the

rotating disk and flow channel cells.

A summary of the results of chapter 3 is given below. To gen-
eralize the treatment, a parameter PO is used. It sets the magnitude

of the current density for small distances from the edge:

P -p L7728 -1 (1.

The angle A and the radial coordinate r are shown in figure 1 of
chapter 3. Po is determined by the cell potential and the details of
the entire geometry. It is obtained by comparing the péimary current
distribution of the cell with equation (1), the asymptotic form valid

near the edge.
For large polarization parameters, chapter 3 shows:

1. that the current density deviates appreciably from the primary

current density where
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(a_+a YFi |7
~ |8 ¢ 0o (2)
r =
RTx
for linear kinetics, and
a FP —2B/m
r = |22 (3)
RTx
for Tafel kinetics.
2. that the current density near an electrode edge behaves as
i (a +a )Fi |}~ /2P
edge « a _c o (4)
i RTx
avg
for linear kinetics, and
i o rp |28/ - 1)
edge |_a_o (5)
i RTx
avg
for Tafel kinetics.
3. detailed distributions in the edge region for various angles, 8.

Numerical Analysis

The primary current distribution of the slotted-electrode cell
shown in figure 1 was determined by a technique that utilizes two
numerical, Schwarz-Christoffel transformations. Conformal wmapping
techniques such as this one are often used for the determination of
primary current distributions. When coupled with other numerical
procedures, problems with more complicated boundary conditions can be

analyzed.

Orazem and Newman (2] gave the transformation relating the coor-

dinates of figure la and figure 1lc. Since this is a conformal
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Figure 1. Schematic diagram of the slotted-electrode cell. Figure 1a shows the cell in
the original coordinate system. To facilitate solution of Laplace's equation it is mapped
conformally to the coordinate system of figure 1c, with the coordinate system shown in
figure 1b as an intermediate coordinate system. See reference [1] for details.
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mapping, Laplace’s equation maintains the same form. Insulator boun-
dary conditions also remain the same. Along the counterelectrode,
the kinetics are assumed to be infinitely fast, and the constant
potential boundary condition is unchanged. At the working electrode,

the boundary condition becomes

3%
E = £(2 )70, (6)

where

(aa+a YFi

- — Q - (7)
f(éo) RTx W <I’o)
for linear kinetics, and
i aaF
f(q’o) -- exp RT (Vv - @o) (8)

for anodic, Tafel kinetics.

v(x) relates the normal derivatives along the working electrode

in the two coordinate systems and is given by

Jt-a Jt-a J[t+a

1(x,.) = (9
Je+b Je=t Jd-t
where t is related to x through
t
ide
x =/ - : (10)
a Jt-a Jt-b Je+d [Je+c
and the original coordinate z is related to t through
£ [t=a Jtva dt
z=f : (11)
0 Je=b Je+b Jt=c Jt+c Jt-d Je+d

This problem was solved with a boundary-integral technique.
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In this chapter, the geometric ratios wused are L/h = 0.5,
r/g = 0.1, and h/G = 6.0, where L, h, 7, and g are shown in figure 1.

The polarization parameter for linear kinetics is

(a +a )FLi
J = _a ¢ o (12)
RTx
and for Tafel kinetics is
a FL|i |
§ = -2 4v8 (13)
RTx

The length L used in defining J and § is chosen arbitrarily.

Applicability of the Perturbation Analysis

Singular perturbation analyses can be quite involved. Neverthe-
less, their results can ;e simple to use. In this chapter, a tool
that checks the validity of numerical calculations is established. To
use it effectively, one must be aware of the limited range of appli-
cability of the perturbation analysis. Also, a physic;lly signifi-
cant length should be used in the definitions of the polarization

parameters. Otherwise, the coefficients in the series may be very

different from unity.

The first neglected term in a perturbation series determines the
rahge of applicability.. Because the term arises from the details of
the entire cell (and not one specific detail like B), a general con-
clusion is difficult to make. To estimate its magnitude, it is use-
ful to study in detail one particular geometry: the disk electrode.
For this cell, the characteristic length L in equations (12) and (13)

should be replaced with r_, the disk radius.
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Linear Kinetics—For large J, the current density at the elec-

trode edge is given by [3]

:

—edge _ o627 JF + (2 101
1 -
avg JJ

is determined by solving for the second order correction

(14)

(2)

where ¢

to the primary potential distribution.
The condition for when the first term adequately predicts the
current density is

(D 1

(2)

JI > (15)

Although a determination of ¢ may not be worth the effort, its
value should be near unity, and one can make a reasonable estimate of

the range of applicability.

Figure 2 compares calculated values of the current density at
the. edge of the electrode with the first term of the asymptotic pred-
iction. The predicted behavior is approached by values of J con-
sistent with the above inequality. Equation (14) also suggests an

alternate, more sensitive way of plotting results. For example, a

i
plot of _fﬁﬂﬁi vs. l?i could be used. For such plots, the ordinate
JIi
avg

intercept is predicted.

To comment generally about the magnitude of the next term, the
relation of Nisancioglu and Newman [&] is useful:
1 nJ

Ja - ¢ _/V)rdr = 0(13—) (for high J). (16)
0
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Figure 2. The current density at the edge of a disk electrode for linear kinetics. The
points are calculated values, and the dashed line is the asymptotic prediction.
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An analogous term should give the order of the next term for other
geometries, and it is expected to be of the same magnitude. If so,

for large J and 8 > =n/2,

i
edge _ (1) (1-7/28) | 6(2)‘% : (17)
lavg J

This implies that the analysis of chapter 3 applies when

(2)

€
J > FS InJ. : (18)

Tafel Kinetics—For Tafel kinetics on a disk electrode, Appendix
A shows that the order of the next term in the perturbation expansion

is unity with respect to §, thus implying that

i
iidgf(- 0.196 § + (2. (19)

avg

Figure 3 compares the first term with calculated results. In harmony
with equation (19), the calculated values lie on a line parallel to
the asymptotic prediction. The figure shows that the last data point
(near 6§ = 90) is inaccurate. For larger § (not shown), errors are

more noticeable. A more sensitive test of numerical calculations

i
would be to plot E%Qgg vs. 1/6, with a predicted ordinate intercept
avg '

of 0.196.

Appendix A suggests that the next term of a perturbation series
will be of order unity for other cell geometries. Previous calcula-
tions (4] verify this for the channel geometry (again, 8 = x). In

general, for B8 > n/2, the expected relationship is
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Figure 3. The current density at the edge of a disk electrode for Tafel kinetics. The
points are calculated values, and the dashed line is the asymptotic prediction.
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i
edge | (1) ,(28/-1) _ (2) (20)
tavg

The third term in this series will be of order less than unity. For

5(28/7-1)

> 10 we can expect the numerical calculations to attain the

correct slope but to be offset from a line through the origin by an

)

amount e

Results and Discussion

For the slotted-electrode cell, the primary current distribution

near the electrode edge is

i =pr 723 ‘ (21)
as (o]

where r is the distance along the electrode measured from point A.
Po is determined by comparing this asymptotic form with the current
distribution as calculated by the method of Orazem and Newman (see

figure 4):

2/3

Po - 0.569 L™ 71 . ' (22)

avg
For linear kinetics in the slotted-electrode cell, equation (28)

of chapter 3 gives

i

—edge _ 5 ;23 (23)
lavg

as J — o, In figure 5 this relationship is compared to calculated

2/3

values of i /i . Good agreement exists for J > 4,
edge’ "avg

For Tafel kinetics, equation (29) of chapter 3 gives

ied e 2
Tg" - 0.426 § : (24)
avg
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Figure 4. The primary current distribution of a slotted-electrode cell. The dashed
line is the asymptotic approximation of the current distribution, given by equations
(21) and (22).
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culated values, and the dashed line is the asymptotic behavior predicted by
equation (23).
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as 6§ — o, Figure 6 compares this relationship with calculated
results. An empirical curve, with the predicted slope of 0.426, is
fit through the calculated results. Its intercept is determined from

the slope of the curve shown in figure 7.

Figure 7 provides a sensitive test of numerical calculations.
If the next term in the series is of order unity with respect to §,
the curve should be linear -at high § and have the ordinate intercept
predicted by equation (24). This figure shows that the numerical
calculations begin to fail near 62 = 30. For larger § (not shown),
the numerical calculations are clearly in error. The deviation from
the semi-empirical curve of figure 6 also suggests that the calcula-
tions begin to fail near 62 = 30. Our experience suggests that it
becomes difficult to obtain highly accurate solutions with tradi-

tional numerical procedures when i /i is much greater than 10.
edge’ "avg

Figures such as 5, 6, and 7 are recommended as checks on numeri-
cal resulté, where, for large polarization parameters, numerical dif-
ficulties arise. To check data quickly, the proportionalities given
by equations (3) and (5) can be tested. Deviations from a linear

relationship indicate that results are inaccurate.

Few numerical difficulties are expected for small polarization
parameters; therefore, a perturbation analysis describing the devia-
tions from a uniform current distribution might not be as interest-
ing. Nevertheless, Appendix B demonstrates by example how the devia-
tions could be predicted. For other geometries, the same functional

dependence on the polarization parameter is expected, but general
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Figure 6. The current density at point A of the slotted-electrode cell (see figurel)
as it varies with the polarization parameter for Tafel kinetics. The points are cal-
culated values, the solid line is the asymptotic behavior predicted by equation (24),
and the dashed line has the predicted slope but an empirical ordinate intercept.
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Figure 7. An alternate, more sensitive way of plotting calculated results for Tafel kinetics
in the slotted-electrode cell. The ordinate intercept is predicted by the perturbation analysis,
and the slope of the line gives an estimate of the next term in the series.
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predictions of the coefficients in the series is not possible.

Conclusions

Applications of the results of chapter 3 are demonstrated. The
results, valid for asymptotically large polarization parameters, pro-
vide a test of numerical results. The predictions do not hold for

/i =1 for a

small polarization parameters, partly because ie 'avg

dge
zero polarization parameter. For Tafel kinetics and obtuse angles of
intersection between the electrode and insulator, the next term in a
perturbation series is expected to be of order unity. Calculated

values of i /1 are expected, therefore, to fall on a line that
edge’ “avg

is parallel to the predictions of chapter 3.

The importance of asymptotic analyses should not be underes-
timated. In addition to giving insight, they can provide checks on
calculations. With the emergence of high-speed computers and sophis-
ticated, packaged software, complicated numerical calculations are
more prevaient, and simple tests of these results are necessary.

Appendix A
Tafel Kinetics on a Disk Electrode

The order of the next term in a perturbation series describing

/iavg for Tafel kinetics on a rotating disk electrode is shown

to be unity. It is also suggested that a term of order unity can be

ledge

expected for other geométries. O(e) means of order ¢, and o(e¢) means

of order lower than e.
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Following Smyrl and Newman [2], a potential ¢ is defined as

$ = %[1 - ¢/¢§] , (A.1)
where @5 is the primary potential difference, for the same total
current, between the disk electrode and a reference electrode placed
at infinity. The stretched variables for the outer region (away from
the edge of the electrode) are § = ¢, n = n, and & = £, where £ and 7
are the rotational elliptic coordinates. In the inner region, the

appropriately stretched variables are

$ = 66 - 1ns, (A.2)
£ - s¢, ' . (A.3)

and
n = &n. (A.4)

The stretched potentials, Z and §, can be exparnded in terms of §:

R A NOIT A N (4.5)
PR LC YN ?2(5)$<2) o (A.6)
Smyrl and Newman showed that 3(0) - % tan-lf, and they determined

(1)

numerically ; .

In the inner region, terms of order 8—2 are neglected iﬁ
Laplace’'s equation. Terms can also arise from the matching and boun-
dary conditions. The insulator boundary condition does not introduce
additional terms. Along the disk electrode, the boundary condition

is
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ge%_;Fﬂ (A.7)
2 — — — ?
nld§)§=0
where
Zio aaF o
E = i exp EH'(V - o) . (A.8)
avg
It is shown [2] that
ng = 1+ 2P 4 L (A.9)
where lnE(l) is the second term in a perturbation expansion of 1nE.

The boundary condition, therefore, can be rewritten as

§[1 + %lnE(l) + o(1/5)]exp[$él) + 52(5)322) + o(fz(s)) (A.10)
—(1L) _ <(2) _
B LR | +eGent
n 3§ gfo a¢ -0

which is expanded further to yield

(1)
— — ]
§[1 + %lnE<l) + 0(1/8)][1 + f2<5)¢§2) + ... lev (a.11)
=(1) _ =(2) _
-1~ + £,(6) 9 + o(F,(8))
n | 8¢ Z-0 3¢ Z=0

Equating terms of the same order in § suggests that f2 =

decide conclusively necessitates inspecting the matching conditions,

To

|

where higher order terms due to the outer solution can arise.
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In the outer region, the exact form of Laplace’s equation (in
rotational elliptic coordinates) was solved, and thus no terms arise
from the governing equation. Also, no terms arise from the boundary
condition at infinity, on the insulator, or on the axis. The boun-
dary condition along the electrode in the outer region can be

expressed by

2

. 0 . PP . .
Since $é ) = 0, this boundary condition is rewritten as

53
1 o_13¢ A.12)
ke asls-o ' (

(L)
§F. (86)¢
[1 s 1D _ ]e 1497, 7 (a.13)

2 + o(1/5)][1 + 5?2(5>aéz) + .

=0

321) - -1 - ln(n),‘ (A.14)

Nl

(1)
+ 25 B —

£=0 %

_1] 3@
n ¢

This suggests that fl - % and that

‘which is expected from a straightforward attempt to correct the
potential (from the primary potential) for finite electrode kinetics.
Smyrl and Newman [2], with a different approach, implied the same

results.

3(1)

is described by Llaplace’s equation in rotational elliptic
coordinates:
2-(1) 2-(1) (L (L)
2, 8
(l—q)—§Z—+(l+§2)a—‘%+2§i§a_—2n%_=o. (A.15)

The insulator boundary condition at n = O is unchanged, the boundary

condition at the. disk electrode is given by equation (A.1l4) and



64

3(1)

— 0 as §2+q2 — o, Furthermore, no current should flow to
infinity since § specifies the total current, and this is supplied by

©)

the primary current term, ¢

From separation of variables, the solution is

©
(L)
3 7(n&) = L BP, (MM, (&), (A.16)
n=1
where P2n are the even Legendre polynomials, and M2n are Legendre

functions of imaginary argument [S5]. The Bn are determined through

the orthogonality condition (see, for example, reference [6]):

l £
B, = =(4n + 1) ngn(n)ln(n)dn ) (A.17)

The asymptotic behavior (for small ¢€¢,n) of 3(1) must be
developed to provide the matching condition for the inner solution.

If r = (€2+02)8 and § = tan—l(n/f), Laplace’s equation becomes

S L

2

or ar 2

gé

2.(1) (1) : 24(1) 2
0 = [Q_é___ + :F + _%.Q—éL——][l + %r(l - 2sin20)] (A.18)
r

; [ 13D G50 ]

2sinfcosé r dé T arad

(1) (1)
+ 2r(l - 2sin20) Q%ET— - 4sinfcoséd é%;—— .

Using a coordinate expansion technique and separation of wvariables,

and applying the appropriate boundary conditions,

3(1) = -1 - Inr + Z{l)rcosﬂ - r2c0s20 - (A.19)

% Zil)r3cosﬁ + Kél)r3cos(39) + O(ra),
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which can be written in terms of £ and n as

31 (1—0,6—0)= -1 - In(n+eH + 2{Pe - 6% - (a.20)

2 2.3/2
2 2V g% 3‘1)555——331175 + o((gtnH%) .
(€ +9

Zil) and Zél) would be determined by comparing this asymptotic solu-

tion with the complete solution.

Finally, the matching condition is applied. This condition is

expressed formally as

1né 1 = =2 =2 ~

5+ 5 S+ ) = F(1—0,6—0) . (A.21)
Agreement must be observed for all orders in § and also all orders in
($2+q2)Li Equation (B-8) of Smyrl and Newman can be rewritten in

terms of £ and n as

-(1)
2227 3
3 (22480 —a) = % ¢ - In(E6 (24D + % —Elf-i (A.22)
) &+

(2)(—2 =2

P 13D o,

where Zil) is the same as Smyrl and Newman's A1 and is estimated to

be -3.1. Substituting for £ with equation (A.9) gives

Ins B 4Eim) £ (A.23)

5 ) 2

[l + ln(n2+52)g]

O 1=
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AV,
+$2 2(2)—1n5(1)+—21—2- +o(1/62).
§ § +n
To specify completely the matching condition for 3(2), it is
necessary to investigate the outer region expansion:
> 5. .1 2 2.k
$m~m&w)-§-%+0@>+3L1—m@+n>. (A.24)

D¢ - & + ocePenD D] 4 01ss?

The leading term of 3(2) must match the highest unmatched term in §.
Although it might not be worth the effort of solving it, for com-

pleteness, the problem statement is given.’

The governing equation remains

62;(2) . 323(2) )

0. (A.25)
an° o
The insulator boundary condition is
T(Z) -
g =0 at n =0, (A.26)

an
Along the working electrode, the boundary condition is
7(1)

$ 3(2)
2o [lﬁa)+;§>]_%gL_ (A.27)
‘ n

€
2 —_
8¢€ 7;:=-0

where equation (A-18) of Smyrl and Newman gives

et o [Eél) + 1n§]d3 . (A.28)
0
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Results of finite-difference calculations can be correlated by

g 4.3 + § (A.29)

T 4.3 +0.73585° |
which is expanded to suggest that lnE(l) = ~1.544. Finally, the

matching condition is

=(2) ,=2 32 1)<
3D (qragl—e) = a{VE, (A.30)
and, in principle, 3(2) can be obtained.
The next term for i /i would be
edge’ "avg
. —(1) =
i ¢ """ (n=0) - -
iédge - % e © 5 + lnE(l) + ¢é?)<n=0) . (A.31)
avg

Without further numerical work, the important result is that the next

term in a perturbation series is of order unity.

A thorough treatment of the&rotating disk geometry is presented.
The £ parameter of Smyrl and Newman [3] is the key to obtaining the
next term in a perturbation series. For other cell geometries, an
analogous term arises, and it might be expected to behave similarly.
For a coplanar electrode and insulator, a term of order unity seems
likely. For other angles of intersection, the correct expansion for
the primary current distribution near the edge may cause unforeseen

terms to arise. This makes it difficult to draw a more general con-

clusion.
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Appendix B
Current Distributions for Small Polarization Parameters

A perturbation analysis describing the deviations from a uniform
current distribution is regular. Such an analysis is given here for

linear and Tafel kinetics on a disk electrode.
Before proceeding, one should recall the integral equation
relating the potential and current distributions on the disk [7]:

r .
o an(m)r

- —_— B.1
%) = I Ty dr (8.1)

K(m) is the complete elliptic integral of the first kind [8], and

m-—a (B.2)

Linear Kinetics—For linear kinetics, the boundary condition

along the disk electrode can be expressed as

(aa+ac)Fio ’ (B.3)

T %) o
We solve this problem as one with a set electrode potential. It is
equally valid to specify the total current, as we prefer for Tafel

kinetics.

For J = 0, the current distribution is uniform, and & = 0; that
is, the ohmic potential drop in the solution is negligible. This
fact, along with equation (B.3), suggests that the potential is

appropriately expanded as

%_JQ(I) + 720 L (B.4)
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Substitution of equations (B.3) and (B.4) into equation (B.1l) gives a
formal solution for the potential, where terms of the same order in J

are equated:

1
L 2 K(m)r :

LN (rq) -2 g — 5 dr (B.5)

q

and, for n > 1,
(n 1)
K(m)r

o™ (ry --2 f o 7 . (B.6)

o q Y r + rq

Nanis and Kesselman [9] show that
(L) 2 2,2
éo - E(r /ro), (B.7)

where E(m)T is the complete elliptic integral of the second kind.

These results give

-1+ J(¢(1) ( )y v g (¢<2) (1) (1) _g ( )y & 07, (B.8)

o
avg

where the ¢( a) arise as corrections to the average current density,

() 1 (n)

@ -2 [ & rdr . (B.9)

o o
0
(1) _ 8

Nanis and Kesselman [9)] showed that ¢o 3.

TNote that our argument for the elliptic integral is the square
of Nanis and Kesselman's argument. We use a definition of the
elliptic integral chosen to be consistent with Abramowitz and Stegun

[8].
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Tafel Kinetics—For Tafel kinetics,

a F

. . a
ln -1 exp EH'(V - Qo) . (B.10)

For relatively uniform current distributions, Wagner [10] suggested

that the Tafel kinetics boundary condition can be linearized:

a Fi
. . _a avg RT _
i [ aaF Qo ]. (B.11)

n RT
This suggests that the first correction to a uniform current distri-
bution for Tafel kinetics will be identical to the first correction
for linear kiﬁetics (with a properly modified definition of J). Only

for higher order corrections will differences appear.

We solve this problem by setting 5§, the dimensionless average
current density. As § — 0, the current distribution is uniform, and
® is zero (as a zeroth approximation). This fact, along with equa-
tion (B.10), suggests that the potential of the solution can be writ-

ten as

a F®
2

RT

The electrode potential must also be expanded:

- 6¢(1) + 82¢(2> + ... (B.12)

aaFV aaFroio n..(n)
2t 1n %7 | - iné + ngls v . (B.13)

The 1né term on the right side of equation (B.13) can be thought of
as the zeroth order term, which is determined by requiring that the
dimensionless current distribution be uniform with a magnitude speci-
fied by §. Since this term satisfies the specified average current

density, all of the higher order corrections to the potential
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distribution (¢(2), etc.) must have a zero average current density.

. . n
This provides the condition to determine V( ).

Following the same procedure used for linear kinetics gives

B2/, (B.14)

r | (B.15)
[o] r +r
and
(2)_(2),_ 1,,(1)_ (1) 2]
NN } Km [V o 2 "7, (B.16)
o L r +rq !
where
vl } D rar = 2 (B.17)
T Od’o rar 3x )
and
@) _, 1,2 Lo (1,2
v -2 ¢ “rdr - [ (V"' =¢ ") rdr (B.18)
0 ° 0 °
These results give
! (1) _ (1)
- =L+ 8 (VT -4+ (B.19)
'Lavg

2 (2) (2)y 1 (L) (1),2 3
§ [V - ¢o + 3 (v - ¢o ) ] + 0(§7).

W

Summary——These analyses demonstrate the correct procedure to

calculate small deviations from a uniform current distribution. The

terms in each series can be obtained by a numerical integration of
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the previously determined, lower order current distribution. Since
E(l) = 1, the current density at the edge of the the electrode for

linear kinetics is

i
—edge _ 4 31 J (small J), (B.20)
lan n

and for Tafel kinetics is

i
—=dge 1 + L5 (small 6). (B.21)
.Lavg T

As expected [10], the first correction to a uniform distribution is
the same for linear and Tafel kinetics. Figufe 8 compares numerical
results obtainéd from finite-difference calculations with these
asymptotic predictions:, The current density at the center of the disk

is also compared with its asymptotic value. Since E(0) = =n/2,

i
—C.—‘*w-1+(3—i-1)J(or5). (B.22)
avg

These analyses show how the current densities for linear and
Tafel kinetics deviate from one another for larger values of the
polarization parameter. For other cell geometries, the same linear

dependence on J or § is expected.

List of Symbols

Aél) coefficients arising in matching conditions (see
equations (A.19-23))
a,b,c,d parameters used in the conformal mapping procedures,

shown in figure 2, cm
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Figure 8. Calculated and predicted current densitiesfor linear and Tafel kinetics
at the center and edge of a disk electrode for small polarization parameters. For
» linear kinetics, the current density depends on J, and, for Tafel kinetics, it depends

on é.
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coefficients defined by equation (A.17)
stretching functions for the solution potential
Faraday’s constant, 96487 C/equiv

parameter defined by equation (A.8)

complete elliptic integral of the second kind
current density, A/cm2

exchange current density, A/cm2

/-1

dimensionless exchange current density

" complete elliptic integral of the first kind

lengths characterizing the slotted electrode, cm
even Legendre functions of imaginary arguments
parameter defined by equation (1), A/cm(1+"/2ﬂ)

even Legendre polynomials

radial distance away from the electrode/insulator
edge, cm

radius of the disk electrode, cm

radial position where the potential is being
determined, cm

universal gas constant, 8.3143 J/mol-K
stretching variable, cm-l«
absolute temperature, K
complex coordinates
electrode potential, V

transfer coefficients

interior angle between insulator and electrode, radians



v(x)

(n)

n,§

as
avg
center
edge

i, r

relates normal derivatives in original and
transformed coordinate systems

dimensionless average current density
th . s . ; . .
n  coefficient in a perturbation series
rotational elliptic coordinates
.. -1 -1
specific conductivity, O “cm
3.141592654

dimensionless solution potential

solution potential, V

solution potential adjacent to the electrode, V

Subscripts

asymptotic
average
center of the disk electrode

electrode/insulator interface

imaginary and real parts of a complex variable

Superscripts

primary
inner region variable

outer region variable
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CHAPTER 5
Corrections to Kinetic Measurements Taken on a Disk Electrode

Newman [1], [2] has suggested that a nonuniform ohmic potential
drop to an electrode can lead to errors in the determination of
kinetic parameters. A subsequent paper [3] showed that for linear
kinetics the error in the measured exchange current density, io’ can
be as great as 300 percent, depending on the reference electrode
placement and the dimensionless exchange current density, J, défined

by Newman [4].

The present analysis considers the errors in kinetic parameters
determined on the disk for the Tafel region in the absence of concen-
tration variations. The apparent surface averpotential is taken to
be that measured by a reference electrode of the saﬁe kind as the
wo?king electrode, with the ohmic-potential drop being determined by
the interruption of the current. - Since the reference electrode
" passes no current, it can be at equilibrium with the solution even

though the working electrode is operating in the Tafel regime.

In the Tafel region, the exchange current density or J is no
longer an important parameter in determining the distribution of
current density and potential in the solution. Instead, the relevant

parameter is a dimensionless average current density, §, defined by

a Fr i
§ = 2o avg (1)
RTx

This analysis presents the error in the measured exchange current

density as a function of § and three reference electrode placements.
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Concentration variations are neglected in the analysis. Thus
the ratio of the average current density to the limiting current den-
sity should be small. Since the expression for the limiting current
density does not involve r_ or «x, which appear in §, and does involve
the rotation speed and the bulk concentration of the limiting reac-
tant, which do not appear in §, it is.possible to neglect concentra-
tion variations in certain situations while still achieving
moderately large values of §. Figure 132-2 of reference 4, repro-
duced from reference 1, illustrates how the uniformity of current
distribution is governed by the average current density, 'the exchange
current density, and the limiting current density, as given by §, J,

and a dimensionless mass-transfer rate, N.

Analysis

The potential in solution, outside the double layer, in the

absence of concentration variations, is given by Laplace’s equation,

?oe-o0, (2)
with boundary conditions,
9  Oforr>r andz=0 (3)
dz fe)

® = 0 as r2 + 22 — o

and

i(r) = f(ns) for r < r, and z = 0.

ng is the local surface overpotential given by
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n, =V - &r,0), (4)
where V is the potential of the electrode and ®(r,0) is the potential
of the solution just outside the diffuse double layer measured with a
reference electrode of the same kind as the working electrode. In
the Tafel region, the boundary condition describing the electrode
kinetics for anodic currents is

aaFns
RT

(3)

i(r) = i, exp

Without the sectioning of an electrode, local current densities
and overpotentials cannot be measured. Common practice, then, is to
relate the average current density to the apparent surface overpoten-

tial, given by [5]

"s,app -V - ®d(r,z) - Q(r,OZ + &(r,z). (6)
d(r,z) is the potential of the reference electrode, and
S(r,z) - s(r,O) represents the potential change observed upon interr-
uption of the current and corresponds to the ohmic drop associated

with the primary distribution of the same average current density

(5].

To interpret a polarization curve obtained with a disk elec-

trode, equation (5) may be more appropriately written as

%a 3PPF”S app
lavg - lo,app exp RT . (7)
Two defined parameters, i and a , are involved in this equa-
o,app a,app

tion, and there are at least two possibilities for determining them

from the experimental data. One is to take a appF/RT to be the
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slope of the line tangent to the Tafel plot of the data and io app to

be an’ intercept obtained when this tangent line is extrapolated to

n 0. Then io and a would be, in general, functions

s.app ,app a,app

of §, since the data will not yield exactly a straight line on a
semi-logarithmic plot. ‘Another approach is to assume that a is
known and that its value is used for a, app" A line of slope aaF/RT

is extrapolated through the data to obtain io app Again, the value
obtained depends on the position along the Tafel plot through which

the line is extrapolated.

Figure 1 shows a simulated Tafel plot of ¥ vs. 1In(é§) for three
reference electrode placements. ¥ is defined in the caption of fig-
ure 1 and is used in order to make the plot valid for any (low) value
of the exchange current density. Thus, in the Tafel range a decrease
in the value of io with no change in iavg would leave unchanged the
current density and potential distributions. The only change would
be to increase the electrode potential V, and hence g by an amount

reflected in the definition of V.

For wvalues of 1In(§) < -1, a =

a . Additionally, for
a a,app

In(8) > 3 and for a reference electrode placed at the center of the

disk or at infinity, a =

a . For a reference electrode placed
a a,app

adjacent to the edge of the disk, «a =a /2 as § — «. For
a,app a

values of 1n(§) > 4, ng app should be determined by the asymptotic
solution shown with the dashed line. The deviation of the solid and
dashed lines shows the difficulty in calculating potentials at the

edge of the disk for high values of § [6]. Only for intermediate



0.5¢ ref. electrode placement |
1. edge of disk
O-%F 2. infinity ]
3. center of disk
0.3¢f -
> 0.2} T
0.1F .
"o} T = 298.15 K A
« = 0.5
a
-0.1¢ .
_0.2 1 L 1 1 N A A 1 1 L
-3 -2 -1 0 1 2 3 4 5 6 7

In(8)

Figure 1. Average current density vs. ¥, where

¥ - + RT In ioaapro
"s,app * a_F RTx
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values of § will a » «a » ; therefore, it is reasonable to assume

a a,app
that one typically has a good estimate of a_. The following analysis
will develop the equations for the more general case but will

emphasize the results for the case of a_ = a .
a a,app

To develop the relationships between the apparent parameters and
the true parameters, it is convenient to introduce a new variable,
a Fr i a FV
a

A= 9 ex a
RTx P\ rT

(8)

As is suggested in the appendix, A is a function only of 6. The
relationship defined by equation (8) can be used to determine the
disk potential necessary for a given average current. Originally, 4
was calculated by a boundary integral method. The method, as writ-
ten, can not be used for ﬁigh values of §, since, as § becomes large,
the problem of the secondary current distribution becomes singular.
Smyrl and Newman (6] give a parameter, E, valid for all §, which can

be related to A through

A - % § exp[%?]. ’ (9)

E is shown in figure 2 and can be used to obtain A for any §.

It arises as a correction factor in an estimation of the potential of
the disk electrode at high values of §. The electrode potential V
would be estimated by the sum of the ohmic potential drop to the
center of the disk (estimated with the primary resistance) and the
surface overpotential (estimated with i/iavg = 0.5 at the center for

a primary distribution):
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Figure 2. E vs. 6§ (Adopted from Smyrl and Newman [6]).
As § — o, E — e, the base of the natural logarithm.
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aaFV o iavg
RT-7¢—+1n210 + InE . (10)

At low § the correction factor takes on the value £ = 2. At high §,
Smyrl and Newman (6] found by means of a singular perturbation

analysis that E — e.

The ratio of the actual exchange current density to the apparent
exchange current density as a function of § can be found by combining

equations (5), (7), and (8):

A —aaFV aa appFns app
lo/lq,app = 5 SXP|"Rr |eXP 2T . (11)

The ohmic drop between a disk with a primary current distribu-

tion and a reference electrode at infinity is given by

3(r,2) - 8(r,0) = - BEL (12)
a

Therefore, for a reference electrode at infinity, equation (11)

becomes
A aaFV aalagg -”Saa,agg
lo/lo,app = 5 XP| T a -1 exp aaa . (13)

With the reference electrode placed adjacent to the surface,

lo/lo,app ) RT a

A aaFV a, . 1, F
=- = exp ~£,40P 1 exp ———E%RE— d(r,0)|. (14)
a
~ The potential of the solution at the interface, &(r,0), is given by

Smyrl and Newman [6] and is shown in figure 3 as a function of § for

r=0and r =-r .
o

When ¢ =

a aa,app’ equation (13) reduces to
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Figure 3. Dimensionless potential at the center and edge
the disk.
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s s E
lo/lo,app =2 (15)
and equation (1l4) reduces to
F
s s _E s %a
lo/lo,app -3 exp[zr - RT @(r,O)]. (16)

Equations (15) and (16), the latter for r = 0 and r = ro, are shown

in figure 4. The results of Smyrl and Newman [6] imply that, as

i /i

§ — i
o’ To,ap

o goes to 0.5 for a reference electrode at the center
of the disk, to infinity for a reference electrode at the edge of the
disk, and to e/2 for a reference electrode at infinity, where e is

the base of the natural logarithm.

Figure 1 shows that, for intermediate values of 3§, a_  may not

equal «a "In the rare case that experimental data exist only in

a,app

this intermediate range, a, if. determined by differentiation of

exact data, would be given by

dlnE dlng(é)
aa/aa,app 1+ dlns * dln§

(17)
where g(§) 1is one for a reference electrode at infinity and
exp(né/4 - aaF¢(r,O)/RT) for a reference electrode adjacent to the
surface. The second term on the right side of equation (17) is shown
in figure 5. The last term is shown in figure 6 for a reference
electrode at the center of a disk and at the edge of a disk. The
true value of a_ can be determined from figure 7, where

a Fr i
5 . _a,app o avg (18)
app RTx )

For a reference electrode placed at infinity, the apparent transfer

coefficient differs from the true value of the transfer coefficient
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Figure 4. Correction to the exchange current density for
three reference electrode placements, assuming a, =a, aép'
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Figure 5. Correction term
used in equation (17).

for the transfer coefficient,
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Figure 6. Correction term in equation (l17) for a reference
electrode at the edge and center of the disk.
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by less than four percent for any value of §. For a reference elec-
trode placed adjacent to the disk electrode, the maximum errors can
be rather large. For any reference electrode placement other than at
the edge of the disk, the errors become negligible for both low and

high values of §.

Once a, is known, two approaches are possible to determine the
true value of the exchange current density. 1In the first approach,
equation (13) or (1l4) could be used to obtain io. These equations

can be rewritten as

i (a /Ja_ - 1)
2 =2 ge) x TP C : (19)
o,app

The last term in equation (19) can be thought of as a correction to

figure 4, where

aaFV 0] E iav
x = exp|—2= - 72| g(8) = 3 & g(6). (20)
(o}

Unfortunately, as is suggested by the last expression of equation

(20), x can vary over many orders of magnitude.

Since x can be very different from one, the value of io obtained
from equation (19) is very sensitive to the value of aa’appldeCer-
mined from experimental data. Any uncertainty in this wvalue can
cause even greater uncertainties in io. The more accurate approach.
would be to extrapolate a line of slope aaF/RT that best fits the
data to obtain a new io,app’ where a  was determined through figure
7. Then, equation (15) or (16) would be valid and figure 4 could be

used to obtain io.
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The above analysis can also be applied to cathodic Tafel kinet-

ics. The appropriate kinetic boundary condition becomes

-aans
i(r) = - i eXp| =7 (21)
If one now takes
acFr io —acFV
A = RTr exp RT R (22)

the results, equations (11), (13), and (14), will be identical if
absolute values of § and ®(r,0) are used in the analysis. One would
want to substitute cathodic transfer coefficients and apparent

cathodic transfer coefficients everywhere.

Discussion
This analysis shows that i /i and a_/a vary with the
o’ “o,app a’ “a,app
average current density. Therefore, a traditional plot of g app Vs,

ln(iavg) should not be expected to fall on a straight line. Figure 1
shows the range of § over which significant variations in the slope
can occur. When possible, experiments should be designed to operate
mainly outside these regions of §, since data are easier to analyze

once a, is known.

In practice, a Tafel plot of experimental data will not extend
as a straight 1line through the abscissa since, as § — 0, the
cathodic term of the Butler-Volmer equation becomes important. As is
shown in figure 8, the common practice is to extend the straight part

of the curve through g = 0, which gives io . By determining

app »dpp

the valuer of § at some point near which the slope of the curve
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Figure 8. Simulated Butler-Volmer data, showing how experi-
mental data may be expected to deviate from its Tafel slope.
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deviates from the Tafel slope, one can use figure 4 to calculate the
true exchange current density. It is important to realize that, for
a given average current density, the error becomes larger for low

solution conductivities and large disk radii.

Whenever possible, exchange current densities should be deter-
mined from data taken in the linear kinetics region. Errors could
then be determined from reference [3]. For high exchange current
dénsities, sufficient data should be available in this linear region.
For more practical reasons, it is also desirable to use linear data,
since, in the Tafel region, ohmic potential drops may dominate the

measurements.

Conclusions

This analysis again confirms suggéscions that the reference
electrode should be placed far from the disk when possible. In addi-
tion to the reduction in measurement errors, errors caused by the
distortion of current lines near the working electrode can be
avoided. Contamination of the working electrode due to the reference

electrode can also be minimized.

In the literature, reported exchange current densities for a
given system can vary by Qell over one hundred percent. Therefore,
depending on the application, the magnitude of the errors shown in
the analysis may be considered minor. For more complicated kinetics,
though, the errors may become much more significant. For example, in

a study of passivation phenomena, the use of a disk electrode could
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easily lead to much larger errors than those calculated unless the

nonuniform current distribution is explicitly taken into account [7].

In the study of such complex kinetics or when high precision is
desired, a geometry with a uniform current distribution should be
chosen. Better geometries include rotating cylinder and rotating
hemisphere electrodes. The disk electrode, though, is easier to
manufacture and polish. Therefore, for many applications, the disk

will very likely remain a popular choice.

The rotating disk electrode can be a valuable tool when mass-
transfer and concentration effects can not be eliminated completely.
Newman [1] outlined a method of studying electrode kinetics wunder
such conditions. His analysis 1is wvalid for Butler-Volmer kinetics
with a concentration dependent exchange current density. In the most
general case, both § and J are important parameters. Additionally, a
dimensionless mass-transfer rate, the order of the reaction, aa/ac,
and the transference number of the reactant are important. Newman's
approach involves determining the current density at the center of
the disk for the appropriate set of parameters. Additionally, the
potential at the center of the disk can be determined through
knowledge of i(r = O)/iavg, the disk radius, and the conductivity of

the bulk electrolyte. True kinetic constants can then be determined.

This approach may involve an iterative procedure.

The qualitative conclusions of this analysis are valid for any
geometry with a nonuniform current distribution. In designing

kinetic experiments, one-should try to use a cell geometry that will
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avoid these nonuniformities. Additionally, mass-transfer effecté
should be minimized by having uniformly accessible surfaces and

operating under the pfoper hydrodynamic conditions.

Appendix

Axisymmetric boundary integral equations were used to calculate
the current distribution (see chapter 2, equation (23)). For anodic
currents, the Tafel relationship, in dimensionless form, can be writ-

ten as

* .
o - —A exp[ - Q*] (A2)

R ;
where z = z/ro,

and A is given by equation (8).

List of Symbols

A dimensionless parameter, defined by equation (9)
E dimensionless parameter, shown in figure 2

g(s) function defined below equation (17)

i current density, A/cm2

io exchange current density, A/cm2

J dimensionless exchange current density

K(m) complete elliptic integral of the first kind

r radial position coordinate, cm
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radius of the disk, cm

radial position at which the potential is being solved, cm
universal gas constant, 8.3143 J/mol-K

absolute temperature, K

electrode potential, V

distance from electrode surface, cm

transfer coefficients

dimensionless average current

;urface overpotential, defined by equation (3), V
solution conductivity, mho/cm

3.141592654

potential of the solution, V

dimensionless parameter defined in equation (20)-

potential defined in figure 1, V

Subscripts
anodic
apparent
average
cathodic
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