
UC Irvine
UC Irvine Previously Published Works

Title
Mechanical analysis of arterial plaques in native geometry with OCT wall motion analysis.

Permalink
https://escholarship.org/uc/item/4bd2q0dw

Journal
Journal of Biomechanics, 47(3)

Authors
Heidari, Andrew
George, Steven
Chen, Zhongping
et al.

Publication Date
2014-02-07

DOI
10.1016/j.jbiomech.2013.11.010
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4bd2q0dw
https://escholarship.org/uc/item/4bd2q0dw#author
https://escholarship.org
http://www.cdlib.org/


Mechanical analysis of arterial plaques in native geometry with
OCT wall motion analysis

Claire Robertsona,b, Andrew E. Heidaria,b,c, Zhongping Chena,b,c, and Steven C.
Georgea,b,d,e,*

aDepartment of Biomedical Engineering, University of California, Irvine, 2121 Engineering Hall,
Irvine, CA 92617, USA
bThe Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of
California, Irvine, USA
cBeckman Laser Institute, University of California, Irvine, CA 92617, USA
dDepartment of Chemical Engineering, University of California, Irvine, CA 92617, USA
eDepartment of Medicine, University of California, Irvine, CA 92617, USA

Abstract
The mechanical behavior of an atherosclerotic plaque may encode information about the type,
composition, and vulnerability to rupture. Human arterial segments with varying plaque burden
were analyzed ex vivo with optical coherence tomography (OCT) to determine plaque type and to
determine compliance during pulsatile inflation in their native geometry. Calcifications and lipid
filled plaques showed markedly different compliance when analyzed with OCT wall motion
analysis. There was also a trend towards increased circumferential variation in arterial compliance
with increasing plaque burden.
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1. Introduction
Atherosclerosis is the disease process that underpins the leading causes of morbidity and
mortality in the western world can impact the entire arterial tree. The rupture of an
atherosclerotic plaque is an acute event that can lead to sudden death. For example, in the
coronary arteries, atherosclerotic plaque rupture is the most common trigger of myocardial
infarction (Finn et al., 2010); plaque rupture in more peripherial arteries (e.g., carotid,
femoral) can result in embolic stroke and death or permanent neurological deficit. Improved
understanding of when and why arterial plaques fail or rupture could reduce the clinical
burden of atherosclerosis (Roger et al., 2012).
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Post mortem histological studies have established that certain classes of plaque are more
likely to rupture (Cheruvu et al., 2007; Ma et al., 2006; Tang et al., 2009). For example,
fibroatheromatous plaques comprised of a lipid pool covered by a thin fibrous cap tend to
rupture and thrombose more frequently compared to fibrous overgrowths or calcified
plaques (Cheruvu et al., 2007). However, clinical identification of these plaques remains
challenging, as current clinically-used imaging techniques (e.g. intravascular ultrasound or
angiography) lack the spatial resolution to identify key plaque features, such as the cap
thickness (Schwartz and Touchard, 2010). Newer imaging techniques, including optical
coherence tomography (OCT), have the requisite spatial resolution to definitively identify
these plaques features (Jaffer, 2012; Suter et al., 2011); however, plaque structure by itself
cannot fully define mechanical vulnerability. The ability to assess the mechanical behavior
of a plaque in situ could further improve diagnosis and treatment of these lesions.

Current biomechanical methods are poorly adapted to assess the mechanical behavior of
small, heterogeneous arterial plaques in their native milieu. In vitro biomechanical studies
have established that arterial plaques have abnormal mechanical properties (Maher et al.,
2009; Paini et al., 2007; Teng et al., 2009). The biomechanical properties of a plaque and its
surrounding arterial tissue differ, and this difference may affect development and
progression of a plaque (Schaar et al., 2006; Yang et al., 2008). Furthermore, vulnerable
plaque types are filled with highly compliant lipid and thus, are more susceptible to
deformation during the cardiac cycle (Schaar et al., 2006) compared to both the surrounding
tissue or calcified plaques. However, traditional biomechanical methods require excision
and extensive preparation, potentially affecting critical factors, such as arterial prestress
(Cardamone et al., 2009; Horny et al., 2013). Furthermore, plaques may be mechanically
heterogeneous: some evidence suggests that the border regions between the plaque and
surrounding tissue are particularly vulnerable to rupture (Cheng et al., 1993; Schwartz et al.,
2007). Finally, new methods with higher spatial resolution could determine whether these
regions are more highly stressed or more compliant. A technique to simultaneously assess
the mechanical behavior of an arterial plaque in their native geometry and its structural
features could be useful to improve our understanding of plaque biomechanics, as well as to
identify mechanically vulnerable plaques clinically.

Our group has developed high resolution techniques to simultaneously assess tissue structure
and biomechanical properties based on endoscopic OCT (Qi et al., 2012; Robertson et al.,
2011). Unlike previous methods to assess tissue biomechanics with OCT, this method is
clinically translatable. The high resolution technique analyzes tissue in its native
configuration using cyclic loading and has been previously validated against elastic
phantoms of similar size and geometry (Robertson et al., 2011). The current study sought to
establish whether wall motion analysis from OCT was feasible in an in vitro physiological
arterial preparation, and to analyze the mechanical behavior of plaques in their native
geometry. We hypothesized that arterial plaques would differ mechanically from the
surrounding tissue, and that mechanical behavior would depend on plaque type.

2. Materials and methods
2.1. Experimental setup

Imaging studies were performed on human cadaveric arterial samples from the common
femoral artery. 10 cm long regions were harvested at autopsy from ten donors of varying age
and health (Table 1), wrapped in saline soaked gauze and frozen at −20 °C until imaging.
While freezing can affect arterial compliance (Venkatasubramanian et al., 2010), all
specimens were handled similarly. On the day of imaging, the vessels were cannulated, side
branches were sealed with suture and specimens were immersed in saline. Using a peristaltic
pump and a 5PSI pressure transducer, 1 Hz, pulsatile flow (0–10 mmHg) of saline through
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the vessel was established. Vessels were then allowed to acclimate to perfusion for at least 5
min.

2.2. Imaging
During pulsatile (1 Hz) inflation, the vessels were imaged with OCT. Using two-way valves,
an endoscopic OCT probe was introduced to the lumen of the artery. The OCT system used
has been described previously (Lee et al., 2011). Briefly, light from a swept source laser
(CW 1310 nm, FWHM 100 nm, power 5 mW, scan rate 20 kHz) was passed through a fiber
based Michelson Interferometer consisting of a 90:10 1 × 2 inline fiber coupler, two inline
fiber circulators, an in air variable optical delay reference arm, and a 50:50 2 × 2 fiber
coupler connected to a balanced photo-detector. The sample arm of the interferometer was
connected to a helical scanning MEMS endoscopic probe to image the sample lumen at 20
Hz. The maximum axial scan range of this system was determined experimentally to be 2.9
mm, with axial and lateral resolutions (in saline) of 6 μm and 15 μm, respectively.

Images of the same axial location were acquired during 10 s of pulsatile flow. These images
were then analyzed as previously described to extract wall motion and relative compliance
(Robertson et al., 2011). Briefly, the tissue surface was identified in each serial image,
motion at the driving frequency over several cardiac cycles was isolated using Fourier
domain filtering, and pressure was compared to deformation at each of 1200 radial locations,
resulting in a measure of surface deformation termed wall compliance. Wall compliance is
related to both integrated elastic modulus for the subsurface tissue and tissue thickness.
Previous work has demonstrated high reliability of these methods (Robertson et al., 2011).
Locations where artifacts obscured the tissue surface were rejected. For each arterial
specimen, 3–7 axial locations were imaged and analyzed.

Plaques visible on these axial OCT images were identified and classified using previously
described criteria (Yabushita et al., 2002). Signal-poor plaques with a thin cap and diffuse
border were classified as fibroatheroma, signal-poor plaques with sharp borders were
classified as calcified, and signal rich plaques were classified as fibrous overgrowths (Fig.
1).

2.3. Statistical analyses
Mean arterial compliance and variance in arterial compliance were compared across donors
using ANOVA and Levine's test for unequal variance to determine variability with donor.
Variability in arterial compliance was also regressed with number of arterial plaques to
determine if decreased arterial health affected the variability in arterial compliance. Plaque
type and mechanical behavior were also analyzed: for each class of plaque analyzed,
(fibroatheroma, calcification), mean compliance over the surface of the plaque was
compared to mean compliance at the same axial location. Sensitivity and specificity of
altered plaque compliance for plaque classification was then calculated.

3. Results
Donor demographic information, number of plaques in the entire arterial segment, and
average arterial compliance are summarized in Table 1. Thirty-one arterial lesions were
identified on OCT images, of which eight were identified as fibroatheroma, eight as
calcifications, four as fibrous overgrowths and nine were unclear due to insufficient image
quality (Fig. 1). Higher numbers of plaques were generally seen in specimens from older
donors, and donors with a history of cardiovascular disease (not analyzed statistically). No
difference in mean arterial compliance was seen with increasing number of plaques (R2 <
0.1). Arterial regions with high plaque burdens were noted to have increased variability in
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compliance (Fig. 2). Levine's test for uneven variance confirmed different variations in
arterial compliance between donors. Standard deviation of compliance was then regressed
with plaque number, showing a trend suggesting increased variability in compliance with
increased number of plaques (R2 = 0.45, p=0.08- Fig. 3).

Compliance was then compared between vulnerable and calcified plaques (Fig. 4). Too few
fibrous plaques were identified for statistical analysis. Lipid-filled plaques (fibroatheromas)
were significantly softer (compliance was 117 + 20% of the surrounding tissue, p < 0.01)
than the surrounding tissue whereas calcified plaques were noted to be stiffer (compliance
was 81 + 16% of the surrounding tissue, p < 0.01). The sensitivity and specificity of plaque
compliance for distinguishing plaque type were 0.88 and 0.77, respectively.

4. Discussion
OCT offers promise for diagnosis and classification of arterial plaques. In this study, we
demonstrated the feasibility of OCT wall motion analysis to assess the mechanical
properties of arteries during cyclic loading similar to that seen in vivo. While several
previous works have suggested methods to analyze arterial plaque biomechanics with OCT,
this is the first work to use the native arterial geometry and physiologic inflation. The
methods used mimicked important challenges of in vivo arterial imaging, including dynamic
pulsatile inflation and concomitant probe motion, which limit image quality. Additionally,
this study simultaneously identified plaque type and compliance. Morphology on OCT
imaging has been previously established as a reliable diagnostic of plaque type (Yabushita et
al., 2002), and was thus used in this study. OCT wall motion analysis has been used
previously in vivo, and thus has high potential for clinical translation.

While no correlation was noted between plaque number and mean compliance samples with
higher plaque burdens tended to display higher variability in compliance. As atherosclerosis
is traditionally described as a “hardening of the arteries,” the finding that the more affected
specimens did not differ in mean compliance was somewhat surprising. Higher variability,
on the other hand, is consistent with the finding that plaques are mechanically different from
their embedding tissue. Compliance and plaque type were shown to be associated in the
current study, which is consistent with previous studies that used IVUS palpography
(Brugaletta et al., 2012; Schaar et al., 2003, 2004, 2006) and in vitro biomechanical testing.
The vulnerability of a plaque depends on several features, such as its size and load patterns,
which have been linked to histological parameters including size, cap thickness, and
remodeling index (Ohayon et al., 2008). The ability to assess the deformations in the plaque
in a physiological setting is a major strength of this study. While the technique described
focuses on strain in the radial direction, strain in the orthogonal direction may be identifiable
with this form of imaging. Mechanical compliance may also serve as a plaque classifier: in
this study compliance and plaque type were strongly associated. When morphology alone is
insufficient to categorize a plaque, its deformations under loading may offer additional
diagnostic information.

The limitations of this study are related to the ex vivo experimental setup. Human cadaveric
tissue and pulsatile inflation were used to mimic the challenging in vivo imaging scenario.
However, the samples were sourced from the femoral artery and had undergone one freeze–
thaw cycle before testing. The femoral artery may be mechanically different from the
coronary arteries, or other clinically important sites of atherosclerosis, and display a
different frequency of plaque type. However, the methods used in this work are translatable
to the assessment of plaque in multiple clinically important locations. Furthermore, previous
work suggests that femoral arterial plaques are not mechanically or structurally different
from coronary or carotid arterial plaques (de Korte et al., 2000). In order to image in one
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session, samples were frozen, though freeze–thaw cycles are known to change the
mechanical behavior of arterial tissue (Venkatasubramanian et al., 2010). The inflation
pressures used in this study were lower than pressures seen in vivo. Even so, differences in
plaque biomechanics were observed, suggesting that even greater deformations and
differences in strain patterns could be present in vivo. Similarly, the adventitial tissue
surrounding the artery was not present, which may affect the material behavior of the artery,
but should have minimal impact on the mechanical property of the plaque, and should affect
the entire artery homogeneously.

In summary, mechanical behavior of atherosclerotic plaques may offer additional diagnostic
information. In an ex vivo preparation that mimicked key in vivo features including cyclic
loading, we demonstrated using OCT wall motion analysis that plaque compliance and type
were associated, and that arterial segments with increased plaque burden showed higher
variability in compliance. Thus, OCT may be useful in the clinical assessment of arterial
plaques in vivo.
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Fig. 1.
OCT images of different arterial formations. (A) Lipid filled plaque – Note the thin cap
(white arrows), diffuse border (blue arrow) and dark, signal poor body. (B) Calcified plaque
– Sharp borders (blue arrow) and mottled, signal bright plaque body (white arrow). (C)
Healthy arterial wall. Note the boundary between intima and media (gray arrow). (For
interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 2.
OCT images and wall motion compliance analysis for two sample arterial segments. The
surface of the OCT probe is outlined in white, the surface of the arterial specimen is outlined
in yellow, and plaques are outlined in red. Panel A includes a number of arterial plaques.
The compliance in this region was 4.2 ± 3.8 (Pa mm)−1. Panel B shows a healthy region
with a strong border between intima and media. The compliance in this region was 4.5 ± 2.5
(Pa mm)−1. Note the 50% higher standard deviation in panel A. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 3.
Relationship between arterial plaque burden and compliance. (A) The regression of plaque
number with mean compliance, showing little correlation between increasing plaque number
and mean arterial compliance. (B) The regression of plaque number with variation in arterial
compliance, showing increased variability with higher plaque burden.
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Fig. 4.
Plaque compliance compared to compliance of the surrounding arterial tissue. Lipid filled
plaques are relatively soft and calcified plaques are relatively stiff compared to the
surrounding tissue.
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Table 1

Donor demographics

Age Gender Cause of death Plaque
number

Compliance
(Pa* mm)−1

20 M Melanoma 0 5+3.4E–8

67 F Cirrhosis of the liver 5 4.6+1.8E–8

80 F Metastatic neuroendocrine cancer 1 4.5+1.4E–8

89 F Stroke and aspiration pneumonia 6 8.8+3E–8

91 F Alzheimers disease and cardiac arrest 8 9+4.3E–7

95 M Bladder carcinoma and cardiac arrest 11 2.3+1.8E–8
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