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ABSTRACT OF THE THESIS 

 

Prediction of Prostate Cancer in Biopsy Targets 

Using Multiparametric Magnetic Resonance Imaging 

 

by 

Alex Gautham Raman 

 

Master of Science in Bioinformatics 

University of California, Los Angeles, 2019 

Professor Xinshu Xiao, Chair 

 

 Prostate cancer is one of the leading causes of death due to cancer for men in the United 

States. Current diagnostic procedures have been shown to lead to overdiagnosis and 

overtreatment of the disease. Thus, a need exists for diagnostic protocols with higher positive 

predictive value (PPV). Magnetic resonance imaging (MRI) guided biopsy has emerged as a new 

diagnostic technology that has increased the ability to detect cancerous tissue in the prostate. In 

this study, we utilize a dataset of 555 patients who have undergone MRI-guided biopsy to answer 

two questions: 1) how accurate are radiologist drawn regions of interest (ROIs) on prostate MRI, 

and 2) can we map the location of a biopsy to an MRI and use MRI voxel intensities at that 

location to predict whether or not the biopsy core contains clinically significant cancer (csCaP). 

In answering the first question, we found that 50.35% of csCaP-containing cores are found inside 

ROIs while 49.65% of csCaP-containing cores are found outside of ROIs. This indicates room 
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for improvement in ROI delineation. We then trained support vector machine (SVM) and logistic 

regression classifiers using features from the MRI voxels corresponding to each biopsy core’s 

location to predict whether cores would be cancer-positive or cancer-negative. The SVM 

achieved the best performance, with a negative predictive value of 0.93, a PPV of 0.23, and a test 

area under the curve (AUC) of 0.72.  
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CHAPTER 1 

INTRODUCTION 

 Prostate cancer (CaP) is the most commonly diagnosed cancer in American men. It is 

also the second leading cause of death due to cancer for men in the United States.1 Though CaP 

can be a severe condition, most men who have the disease do not die from it but rather, with it. 

The growth of CaP is often slow, and this has important implications for treatment decisions and 

screening methodologies.2 Current treatment for the disease includes procedures such as radical 

prostatectomy, radiation, and chemotherapy, all of which have serious possible side-effects such 

as incontinence and impotence.3,4 In addition, screening methodologies such as the prostate-

specific antigen (PSA) test have been shown to lead to overdiagnosis and overtreatment.5 These 

two aspects of CaP - the large decline in quality of life due to treatment and the trend of 

overdiagnosis – make it a unique type of cancer to be tackled. The costs and benefits of treatment 

must be carefully weighed on a patient-by-patient basis, and the development of diagnostic 

procedures with high PPV is critical. 

   Current screening procedures for CaP proposed by the National Comprehensive Cancer 

Network involve monitoring PSA levels, performing a digital rectal exam (DRE), conducting 

imaging studies such as multiparametric MRI (mpMRI), and then following up with a 

transrectal-ultrasound (TRUS) guided biopsy for at-risk patients.6 PSA is a protein made by the 

prostate and can be detected by a simple blood test. Typically, the larger the size of the gland, the 

higher concentration of PSA (measured in ng/ml) there will be in the blood. Gland size can 

increase due to cancer or diseases such as benign prostatic hyperplasia. PSA velocity, a measure 

of how quickly a patient’s PSA level increases over time, is often used as an indication of 
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problems in the prostate. However, it is seen as somewhat unreliable since PSA is also known to 

increase after exercise and sex.  

 Next, the DRE involves a physician inserting a gloved finger into the rectum and feeling 

for hard, lumpy areas that could be indicative of CaP. If PSA levels or the DRE are abnormal, a 

physician may then schedule an mpMRI. The mpMRI is typically done using either a 1.5 or 3 

Tesla MRI scanner and consists of T2-weighted imaging, Diffusion Weighted Imaging (DWI), 

and Dynamic Contrast Enhanced (DCE) or “perfusion” imaging. The use of these different MRI 

modalities allows for the increased detection of prostate cancer.7 In T2 and DWI, cancer is often 

seen as a low-intensity signal, while in DCE cancer is seen as a high-intensity signal.8 Using 

mpMRI, a radiologist can denote regions of interest (ROIs) in the image that they think 

correspond to potentially suspicious lesions. The severity of these lesions can then be scored on a 

1-5 scale using the Prostate Imaging – Reporting and Data Services (PIRADS) scoring system, 

with 1 being negligible and 5 being highly suspicious of cancer.9  

Finally, with all of this information at hand, a physician will perform a TRUS-guided 

biopsy of the prostate. Biopsy cores consisting of prostate tissue will then be sent to a 

pathologist, who will examine each core and assign it a Gleason score. The Gleason score 

consists of two numbers – the primary and secondary score. Each score is a categorical score 

from 1 to 5 based on the histopathological structure of the tissue. A score of 1 indicates well-

differentiated tissue and has the most favorable prognosis, while a score of 5 indicates the least-

differentiated tissue and has a poor prognosis.10 The two scores combined (e.g. 4+3 = 7) yields 

the total Gleason Score. A combined Gleason score of 7 or higher is deemed to be clinically 

significant CaP.11  
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From the early 2000s to the recent present, biopsy of the prostate has been performed 

using a systematic technique.12 In this method, 12 cores are taken from pre-defined regions of the 

prostate and sent to the pathologist for Gleason grading. However, with the advent of MRI, a 

new technique called MRI-Ultrasound (MRI-US) Fusion Targeted Biopsy has emerged, which 

allows for biopsy cores to be taken not only systematically, but also from previously denoted 

ROIs.13 In this technique, an MRI of the prostate is taken and sent to a radiologist for 

examination. The radiologist will denote ROIs as well as a contour of the prostate on the MRI so 

that a biopsy can be taken under MR guidance. Using a biopsy device such as the Artemis, 

produced by Eigen, this MRI, including the ROI and prostate contours, will be fused in real time 

with the ultrasound that the urologist uses to take the biopsy. In this manner, the urologist can 

take cores directly from the region of the prostate corresponding to the ROIs denoted by the 

radiologist. This technology allows cores to be taken with a spatial error of just 1-2 mm.14 MRI-

US Targeted Biopsy has been shown to increase the detection of high-risk CaP by 30% and 

decrease the detection of low-risk cancers by 17% when compared to TRUS systematic biopsy.15 

Thus targeted biopsy has proven to be an enormously useful technique that has improved 

diagnosis of CaP.  
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Figure 1: MRI-US Fusion Targeted Biopsy - The dark orange contour in this figure represents 

the prostate, while ROIs are denoted by the red and light orange regions within the prostate. 

Biopsy cores, seen in yellow, are taken from these ROIs. Figure from: Jessedle [CC BY-SA 3.0 

(https://creativecommons.org/licenses/by-sa/3.0)]. 

 

 This work utilizes a dataset of 555 MRI-US Fusion guided prostate biopsy procedures 

performed at UCLA between 2012 and 2016. This data consists of MR images with prostate and 

ROI contours, 3-Dimensional (3D) biopsy coordinates in both MR and Ultrasound (US) space, 

as well as Gleason scores for each biopsy core. Using the MRI-US Fusion technology developed 

by Eigen, the path of each biopsy core can be visualized in the 3D MRI. Voxels from the MRI 

corresponding to the spatial location of each biopsy can then be extracted. Using this data, we 

seek to answer two questions: 
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1. How often do cancer-positive and cancer-negative cores occur outside of 

ROIs? 

2. Can the result of a biopsy (cancer-positive or cancer-negative) be predicted 

from its corresponding MR voxel intensities alone? 

 

The purpose of answering the first question is to ascertain how effective radiologist-

drawn ROIs are. An analysis will be conducted on how often cancer-positive cores occur inside 

vs. outside ROIs as well as how often cancer-negative cores occur inside vs. outside ROIs. We 

will also examine how far away the positive and negative cores that occur outside of ROIs are 

from the ROIs. 

By answering the second question, we hope to enable a method for conducting “virtual” 

biopsies of the prostate. We aim to build a machine learning based classifier that can accurately 

predict the presence of prostate cancer in a biopsy core from nothing but MR voxel intensities. 

Biopsy Gleason score is still considered to be the best ground truth for presence of CaP apart 

from whole-mount histopathology (which requires resection of the prostate gland). So, if 

Gleason scores can be predicted from an MRI, we can improve the detection of clinically 

significant lesions and better inform physicians about potential biopsy targets. 

The use of MR-derived parameters has already been shown to improve the identification 

of risk for csCaP upon biopsy.16 Specifically, using MRI-derived prostate volume as well as the 

PI-RADS score of the ROI decreases the false positive rate of a model designed to predict the 

presence of csCaP during biopsy. Additionally, Haralick textures, which are features of an image 

based on spatial grayscale variation, have been shown to be able to differentiate between 



   
 

6 
 

cancerous and non-cancerous tissue in T2 MRIs of the prostate.17 These features include 

quantities like homogeneity and contrast, and can be computed directly from the grayscale 

intensity values at a region of an image. Thus, it is clear that MR features, both seen through the 

eye and derived computationally, have the potential for detecting prostate cancer. We 

hypothesize that applying these types of features to a volume of pixels representing a biopsy core 

will allow us to differentiate between cores containing cancerous and cores containing non-

cancerous tissue, thereby allowing us to more accurately localize cancer in the prostate.  
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CHAPTER 2 

DATA PREPROCESSING 

 

§ 2.1 Introduction to the Artemis Dataset 
 
 The dataset used for all the analyses described in this thesis consists of patients from 

Ronald Reagan Hospital who have undergone MRI-US Fusion guided prostate biopsy using the 

Artemis device produced by Eigen. This dataset consists of 1810 patients who have undergone 

MRI-US Fusion guided biopsy. However, not all these patients were used in the subsequent 

analyses. Various exclusion criteria were used to select patients with a complete set of biopsy 

coordinates, Gleason scores, and MR data. The exclusion criteria and resulting patient cohort are 

described below.  
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Figure 2: Patient Exclusion Criteria – Patients are excluded from the final analysis performed 

in this study largely due to missing information. This information includes certain MR series, 

segmentation files, Gleason scores, biopsy coordinates, and Artemis files.  

 

 

The final dataset used in the following analyses consisted of 555 patients who met the 

above criteria. Their age, biopsy, and ROI information are provided below.  

 

1810 Patients 

1124 Patients 

998 Patients 

Remove: 
• 686 patients for whom an Artemis FUSION folder could not 

be generated (data in this folder helps convert biopsy 
coordinates from US to MR space) 

Remove: 
• 126 patients for whom the MATLAB script extracting 

MR coordinates failed due to lack of information in 
patient files 

555 Patients 

Remove: 
• Patients missing Gleason scores for biopsies (64) 
• Patients missing ROI and prostate contours (148) 
• Patients missing 12-Bit T2 MRI, ADC, Ktrans, or High-b 

val series (231) 
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Figure 3: Patient Age Distribution – The age distribution of the patients in this study is roughly 

normally distributed with a mean of 64.27 years and a standard deviation of 7.36 years. 

 

 

Figure 4: Distribution of Cores Per Patient - The distribution of the number of cores per 

patient is roughly normal with a mean of 14.56 and a standard deviation of 3.00. 
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Figure 5: Gleason Score Distribution – The distribution of total Gleason score (primary + 

secondary score) for all the cores in the dataset is bimodally distributed. Every core was labeled 

as either 0+0, or 3+3 or higher. 

 

Figure 6: Distribution of the Number of ROIs per Patient – The distribution of the number of 

ROIs per patient is skewed right with a mean of 1.38 and a standard deviation of 0.60. 
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Table 1: Number of Cores in Different Gleason Score Categories – Since the distribution of 

Gleason scores is bimodal, with cores being either 0+0 or  ≥ 3+3, but csCaP is defined as ≥ 3+4, 

we present the number of cores that are ≥ 3+3 as well as the number of cores that are denoted as 

csCaP. 

  

Number of Cores with Gleason ≥ 7 (csCaP) 858 

Number of Cores with Gleason <7 (non-csCaP) 7223 
 

Number of Cores with Gleason ≥ 6 1531 

Number of Cores with Gleason < 6 6550 

Total Number of Cores 8081 
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§ 2.2 Generating 3-D Prostate Biopsy Visualizations 

 The generated dataset is a set of MR voxels corresponding to each biopsy core as well as 

an associated primary and secondary Gleason score for those voxels. We also obtain the 

radiologist drawn ROI and prostate contours registered to the same MRI coordinates. The biopsy 

is performed using an US probe along with an 18-gauge (0.838 mm inner diameter) needle.18,19 

The Artemis software is then able to transform the US coordinates of each biopsy core to MR 

coordinates. In the Artemis system, we start with patient files that include all of the biopsies’ 

needle tip and needle base coordinates as well as all of the ROI and prostate contour coordinates 

in MR space. All of these coordinates are contained in an Extensible Markup Language (XML) 

file that is parsed using MATLAB and turned into a MATLAB-friendly data structure.  

 

Figure 7: ROI Seen in US and MRI – The radiologist-drawn ROI (marked in red) in the T2 

image (right) is superimposed using the Artemis software to the US image (left) seen by the 

urologist performing the biopsy. Biopsy cores can then be registered from US space to MR space 

using an inverse of this transformation. 
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 After the MR coordinates of the biopsy cores as well as the prostate contour and ROIs for 

each patient are obtained, these coordinates, which are measured in millimeters along the x, y, 

and z planes, are then registered to each particular slice of the MR image. Each MRI in this 

dataset consists of 60 slices, each of size 256 by 256 pixels. After this final registration is 

performed, images like the figure below can be obtained for each patient.  

 

Figure 8: Prostate Contour, ROI, and Needle Coordinates for a Single Patient –The prostate 

contour (red dots), radiologist drawn ROI (purple dots), and biopsy cores (multicolored lines) are 

all plotted in the same coordinate space. The coordinates for each of these points directly 

correspond to the row, column, and slice number of the MRI for this patient. 
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 Now that each biopsy core is registered to its corresponding rows, columns, and slice 

locations in the MRI, the pixels associated with that core can be obtained.  The biopsy core 

consists of a needle tip and needle base coordinate as two separate points in 3D space. We 

connect these two points with 18 additional points between them that are linearly spaced in each 

of the 3 dimensions (using Numpy’s linspace function) to generate 20 points for each biopsy 

core.20  Though each individual biopsy coordinate is mapped to a single pixel, we extract a small 

region of pixels around that initial coordinate in order to account for needle registration error and 

to extract more meaningful intensity features from the MRI. Thus, the set of pixels used to 

represent a biopsy will be a rectangular prism of MR pixels.  
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Figure 9: A Biopsy Core Visualized Going Through an MRI – The top image shows a single 

slice of an MRI and in red, the two-dimensional region of pixels extracted from this slice that is 

representative of part of a biopsy core. In the bottom image, we see a 3-D representation of the 

rectangular prism of pixels extracted from multiple slices of an MRI.   
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§ 2.3 Final HDF5 Dataset 

 The data for each of the patients is initially saved in an XML file that contains biopsy 

coordinates, as well as Digital Imaging and Communications in Medicine (DICOM) files that 

contain the T2 MRI, prostate contours, and ROI segmentations. In addition to the T2 images, 

additional DIOCM series for each patient study are pulled from the UCLA Picture Archiving 

Communication Systems (PACS). These series include Diffusion Weighted Imaging (DWI) in 

the form of the ADC (Apparent Diffusion Coefficient) and High b-val MR modalities, as well as 

Perfusion Weighted Imaging (PWI) in the form of the Ktrans modality.  

 Once these different series are pulled, all of the necessary biopsy information for each 

patient including biopsy coordinates, Gleason scores, prostate and ROI contours, and MR series 

are reformatted into Hierarchical Data Format (HDF5) files. These files allow for easy 

manipulation of the high dimensional data that we are dealing with. An explanation of the 

dimensionality of each of these patient-specific elements is provided below.  
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Element Size 
biopsy_grades 14 x 2 
biopsy_masks 14 x 256 x 256 x 60 
prostate_mask 256 x 256 x 60 
roi_masks 1 x 256 x 256 x 60 
T2 256 x 256 x 60 
ADC 256 x 256 x 60 
Ktrans 256 x 256 x 60 
High b-val 256 x 256 x 60 

 

Table 2: The Elements Associated with an Example Patient – This example patient had 14 

biopsy cores, which can be seen by the (14 x 2) biopsy grades as well as the (14 x 256 x 256 x 

60) biopsy_masks and one ROI which can be seen by the (1 x 256 x 256 x 60) roi_masks 

element. These masks are created to easily associate cores, ROIs, and contours with the different 

MR series.  

 

 Each of the masks described in the table above is an extremely sparse matrix, with one’s 

wherever a biopsy, ROI, or prostate contour coordinate occurs (for the biopsy_masks, roi_masks, 

and prostate_mask respectively), and zeros everywhere else. Thus, all of these masks are kept in 

compressed HDF5 files to avoid using unnecessary memory. The biopsy_grades element 

corresponds to the primary and secondary Gleason score of each core, which accounts for its size 

of (number of cores x 2).  

  

 Lastly, the pixel intensities in each of the MR series are normalized using a z-score so 

that intensities across the series are all on the same relative scale. Every pixel intensity in each of 

the series is thus recalibrated according to the following equation:  
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𝑝$%&'( = 	
+,-,.,/012

3
  

where 𝑝$%&'( = new pixel intensity, 𝑝%&%4%'(  = initial pixel intensity, 𝜇 = mean pixel intensity 

across the entire 256 x 256 x 60 series, and 𝜎 = standard deviation of pixels across the entire 

series. The mean and standard deviation of the pixel intensities for each series are stored as 

attributes of the HDF5 dataset in case they need to be denormalized later on. 
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CHAPTER 3 

METHODS 

§ 3.1 Core Distances from ROIs 

 In this section, we seek to answer two questions that will motivate the rest of the 

experiments in this work. The first question is how often are there cancer-containing cores found 

outside of ROIs (what we will call “MR-invisible” lesions). The second question is how far away 

from the ROIs are these cores found. Since the goal of this work is to improve detection of 

prostate cancer from MRI, it is worthwhile to investigate whether radiologists miss cancerous 

lesions in the MRI in the first place. Thus, it is important to rigorously define what it means to be 

“inside” vs “outside” an ROI as well as the “distance” of a core from a set of ROIs.  

 Each ROI is loaded into MATLAB as a 3D-triangulated surface with faces and vertices. 

The in_polyhedron function in MATLAB is used to detect whether any of the 20 points used to 

represent a biopsy core lie within the ROI surface.21 This algorithm works using the following 

method: 

 

For each point: 

Shoot a random ray from that point in a random direction 

For each face: 

 Solve the equation 7
−𝑑

𝑣; − 𝑣<
𝑣= − 𝑣<

> ?
𝑡
𝑢
𝑣
B = 𝑜 −	𝑣< 

 Where 𝑢, 𝑣, 𝑤 = 1 − 𝑢 − 𝑣, are barycentric coordinates, d is the ray direction, 𝑜 

is the ray origin, and t is the distance from the ray origin.  

 The ray and triangle intersect if 𝑢, 𝑣, 𝑤, 𝑡 are all positive 
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 If the number of intersections is even, the query point is inside the ROI, if it’s odd 

then the query point is outside the ROI 

 If the ray hits the edge of a face, repeat the process with a new ray  

  

If any of the 20 points for the biopsy core lie within the ROI, then that core is said to lie 

within the ROI. If none of the 20 points lie within the ROI, then that core is said to lie outside the 

ROI. For cores outside of ROIs, we calculate the distance of a core to an ROI with the following 

equation: 

min	[𝐿2_𝑑𝑖𝑠𝑡(𝑅, 𝐶)] 

where L2_dist is the L2 distance of every possible pair of points in two sets, R is the set of all 

points for all ROIs for that patient, and C is the set of points in that biopsy core   

 

 Using these two methods, we will present how many cancer-positive cores are found 

outside of ROIs as well as how far away these cores are from the ROIs. This will help determine 

the significance of the MR-invisible lesion problem.  
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§ 3.2 Generating MR-based Features of Biopsy Cores 

 We analyze the rectangular prism of MR voxels representing each biopsy core to try to 

find features of these voxels that are different between cancer-positive and cancer-negative 

cores. The first step to this procedure is extracting this prism of voxels from the MRI along the 

angle of the biopsy. We find the biopsy angle using polar coordinates, and then sample a region 

of pixels around each coordinate. The chosen region size for these analyses is 5 pixels, creating 

an 11 x 11 pixel square for each biopsy coordinate.   
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Figure 10: Selecting Voxels along the Angle of the Biopsy – The top image shows a voxel 

sampling using pixels adjacent to the initial coordinate but along the plane of the MR slices. The 

bottom image shows a sampling when voxels are chosen from the planes orthogonal to the 

biopsy angle.  
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 By choosing voxels along the angle of the biopsy, we are sampling intensity levels that 

are more closely related to and thus, more representative of, that biopsy core. The biopsy angle is 

calculated in polar coordinates using the following method22: 

𝛾 = 	 sin1;(
∆𝑑 ∗ 𝑠;

Y(∆𝑑 ∗ 𝑠;)= + (∆𝑟 ∗ 𝑠=)= + (∆𝑐 ∗ 𝑠=)=
) −	

𝜋
2 

𝜃 = 	 tan1;(
∆𝑐 ∗ 𝑠=
∆𝑟 ∗	𝑠=

) −
𝜋
2	 

where 𝛾 and 𝜃 are the two polar coordinate angles in radians, ∆𝑑, ∆𝑟, and ∆𝑐 are the (final – 

initial) depth, row, and column coordinates of the biopsy, 𝑠; is the MRI slice thickness (1.5 mm), 

and 𝑠= is the MRI pixel spacing (0.664 mm) 

 

 Once the angle of the biopsy is calculated, each of the biopsy coordinates will be 

transformed into a square patch orthogonal to this angle. Thus, for each coordinate, calculating 

the intensity value of its 𝑝𝑎𝑡𝑐ℎ[𝑖, 𝑗] will involve two steps: 

1. Finding a new row, column, and depth value for that patch[i,j] to extract an MR intensity 

value from based on the biopsy angle and the radius of the region we are looking at 

2. Performing a trilinear interpolation of that new row, column, and depth value in the case 

that these new values fall in between voxels of the MRI (i.e. they are decimals and not 

whole numbers) 

 

These two steps are performed using the following method: 

𝐹𝑜𝑟	𝑖	𝜖	[0,2 ∗ 𝑟𝑎𝑑𝑖𝑢𝑠]	𝑎𝑛𝑑	𝐹𝑜𝑟	𝑖	𝜖	[0,2 ∗ 𝑟𝑎𝑑𝑖𝑢𝑠] 

𝑟𝑜𝑤$ = 𝑟𝑜𝑤% +
(𝑗 − 𝑟𝑎𝑑𝑖𝑢𝑠) cos(𝜃) + (𝑖 − 𝑟𝑎𝑑𝑖𝑢𝑠) cos(𝛾) cos(𝜃)

𝑠=
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𝑐𝑜𝑙$ = 𝑐𝑜𝑙% +
(𝑗 − 𝑟𝑎𝑑𝑖𝑢𝑠) sin(𝜃) + (𝑖 − 𝑟𝑎𝑑𝑖𝑢𝑠) cos(𝛾) sin(𝜃)

𝑠=
 

𝑑𝑒𝑝$ = 𝑑𝑒𝑝% +
(𝑖 − 𝑟𝑎𝑑𝑖𝑢𝑠) sin(𝛾)

𝑠=
 

 

𝑝𝑎𝑡𝑐ℎ[𝑖, 𝑗] = 𝑡𝑟𝑖𝑙𝑖𝑛𝑒𝑎𝑟_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑟𝑜𝑤$, 𝑐𝑜𝑙$, 𝑑𝑒𝑝$) 

 

 

Figure 11: Performing Trilinear Interpolation For Coordinates Between Voxels – Using the 

change in orientation formulas listed above, if a particular coordinate is mapped to a voxel that 

lies between an integer row, column, or slice, (i.e. one of its x,y, or z coordinates is a decimal) 

then the voxel intensity value for that coordinate is determined by the weighted average of the 

intensities of the 8 surrounding voxels. The weights come from the distance of each of these 

surrounding voxels to the coordinate to be interpolated. This diagram provides a visualization of 



   
 

25 
 

this procedure. The coordinate to be interpolated is the red C, and the 8 surrounding coordinates 

are represented by the blue C’s. 

 

For some cores, when coordinates are transformed from the millimeter-based MR 

coordinates to the actual row, column, and slice of the MR images, two coordinates can be 

mapped to the same voxel. Thus, some biopsies that may have started out with 20 separate 

coordinates, wind up with fewer than 20 coordinates after this transformation is applied. 

However, because we compute features from the prism that are independent of dimensionality, 

no mean padding is necessary before inputting into the model. Next, the pixel intensity values of 

each biopsy are denormalized based on the mean and standard deviation of the MR image from 

which they came and are renormalized onto a 0 to 256 grayscale.    

Once the rectangular prism for each core is determined, we split the core into two halves 

of equal length and extract two types of features from each half – Haralick textures and statistical 

features. We perform this split because it is undetermined where in the core the cancer may be, 

so we compute features for each half and then average the features between the halves to get a 

resulting feature vector for the full core. This increases the relative importance of MR features 

from csCaP tissue in the overall feature vector even if the cancer is located in just a small portion 

of the core. 

Haralick textures are imaging features derived from the gray level co-occurrence matrix 

of an image – a matrix that is computed by observing identical pixel values at a certain offset.23 

We calculate the Haralick textures for each core using the mahotas package in Python.24 This 

package calculates the following 13 features in four directions. The value for each feature is 

taken as the mean of the values across the four directions. These textural features are: 
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1. Angular Second Moment 

2. Contrast 

3. Correlation 

4. Sum of Squares: Variance 

5. Inverse Difference Moment 

6. Sum Average 

7. Sum Variance 

8. Sum Entropy 

9. Entropy 

10. Difference Variance 

11. Difference Entropy 

12. Information Measure of Correlation 1 

13. Information Measure of Correlation 2 

 

For each of the core halves, we also calculate statistical features, and again, take the 

average of the respective features between the two halves to represent the final feature for the 

core. The following statistical features are calculated: 

1. The 5th, 20th, 50th, 80th, and 95th percentile of all the intensity values in the core (5 

features) 

2. The mean intensity of each bin when the intensities in the prism are sorted into 16 

equally spaced bins (16 features) 

3. Variance of the intensities 

4. Mean of the intensities 
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It is important to note that when a core is mapped to its final rectangular prism of voxels, 

we extract the intensity levels from each of the four mpMRI modalities – T2, ADC, Ktrans, and 

High b-value - using the same calculated row, column, and slice coordinates. The biopsy 

coordinates are technically only registered to the T2 modality; thus, an assumption is made that 

corresponding row, column, and slice values between modalities are identical. Upon visual 

inspection of the four modalities for each patient, this largely seems to be true, with perhaps a 

very minor registration error. 

 

Figure 12: Visualization of the Four mpMRI Modalities – In this image we see the four mpMRI 

modalities from which biopsy voxels are extracted – T2, ADC, High b-value, and Ktrans. A lesion 

from which a csCaP core was extracted from is shown using the red box. Registration differences 

between the modalities is seen to be quite minor. 
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Each core is thus associated with 13 Haralick texture features and 23 statistical features 

for each of the four mpMRI modalities. This totals to 144 features per biopsy core. These 

features are subsequently used to train three machine learning classifiers in order to learn 

differences between cancer-positive and cancer-negative biopsies.  

  



   
 

29 
 

§ 3.3 Machine Learning Techniques and Evaluation Metrics 

In this last section, we train and test two machine learning based classifiers – an SVM 

and a logistic regression model on the binary classification task of distinguishing between biopsy 

cores that are cancer-positive (Class 1) and biopsy cores that are cancer-negative (Class 0) based 

on their respective Haralick texture and statistical features. Two different definitions of cancer-

positive are applied, and results are presented for each definition. The first definition involves 

any core having a Gleason score ≥ 3+3 being labeled as cancer-positive, and the second is to call 

a core cancer-positive only if the Gleason score is ≥ 3+4. These two definitions are commonly 

used in the literature for tasks that binarize cancer/no cancer. 

The dataset of 555 patients is split 70% into a training set (388 patients) and 30% into an 

independent test set (167 patients). This totaled to 5642 cores in the training set and 2439 cores 

in the test set. For the Gleason ≥ 3+3 classifiers, this corresponded to 18.1% of cores in the 

training set being labeled as cancer-positive and 21.0% of cores in the test as being labeled 

positive. For the Gleason ≥ 3+4 classifiers, this corresponded with 9.9% of cores in the training 

set being labeled cancer-positive, and 12.4% of cores in the test set being labeled cancer-

positive. The features of the training set were z-score normalized using their respective means 

and standard deviations and the same transformation was applied (using the same means and 

standard deviations from the training set) to the test set before evaluation. Each of the three 

classifiers were trained using 5-fold cross validation on the training set and evaluated on the test 

set. Each classifier was also trained with “balanced” class weights to correct for the imbalance in 

the size of the two classes. This means that mistakes in classifying the less frequent class, the 

cancer-positive class, will be penalized 𝑃 times more than mistakes in classifying the more 

frequent class, the cancer-negative class. P is defined as: 
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𝑃 = 	
(𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠	𝑖𝑛	𝑀𝑜𝑟𝑒	𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡	𝐶𝑙𝑎𝑠𝑠)
(𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠	𝑖𝑛	𝐿𝑒𝑠𝑠	𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡	𝐶𝑙𝑎𝑠𝑠)  

The classifiers will then be evaluated using the following metrics: 

• Accuracy 

• Precision 

• Recall 

• F1-score 

• Area Under the Curve (AUC) 

• Precision-Recall Curve 
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CHAPTER 4 

RESULTS 

§ 4.1 Detection of MR Invisible Cores 

Using the spatial locations of the biopsy cores and ROIs, we first look at the number of 

cancer-positive cores outside ROIs (PO), the number of cancer-positive cores inside ROIs (PI), 

the number of cancer-negative cores outside of ROIs (NO), and the number of cancer-negative 

cores inside ROIs (NI). For each of these analyses, we use two different definitions of “cancer-

positive.” First, we define cancer-positive to be cores with ≥ 3+3 Gleason score, then we define 

cancer-positive to be cores with ≥ 3+4 Gleason score. For the 555 patients used in this study, 

using both of these criteria, the results are as follows. 
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Positive Outside 923 
Positive Inside 608 
Negative Outside 5,420 
Negative Inside 1,130 

 

Proportion of Cores Inside 

ROI that are Positive 

34.98% 

Proportion of Cores Outside 

ROI that are Positive 

14.55% 

 

Proportion of Positive 

Cores found Inside ROI 

39.71% 

Proportion of Positive 

Cores found Outside ROIs 

60.28% 

 
 

Number of Patients with no Positive 
Targeted Biopsies 

275 

Number of Patients with no Positive 
Targeted Biopsies, but with at least one 

Positive Systematic Biopsy 

51 

Total Number of Patients 555 
 
 
 

Table 3: Cores Inside and Outside ROIs (≥ 3+3 Criteria) – When positive cores are defined 

as cores with Gleason ≥ 3+3, the above statistics are obtained for PO, PI, NO, and NI cores as 

well as the number of patients with no positive targeted biopsies but with at least one positive 

systematic biopsy.  
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Positive Outside 426 
Positive Inside 432 
Negative Outside 5,917 
Negative Inside 1,306 

 

Proportion of Cores Inside 

ROI that are Positive  

24.86% 

Proportion of Cores Outside 

ROI that are Positive  

6.71% 

 

Proportion of Positive cores 

found inside ROIs 

50.35% 

Proportion of Positive cores 

found Outside ROIs 

49.65% 

 
 

Number of Patients with no Positive 
Targeted Biopsies 

349 

Number of Patients with no Positive 
Targeted Biopsies, but with at least one 

Positive Systematic Biopsy 

33 

Total Number of Patients 555 
 

 
 

Table 4: Cores Inside and Outside of ROIs (≥ 3+4 Criteria) – When positive cores are 

defined as being cores with Gleason ≥ 3+4, the above statistics are obtained for PO, PI, NO, and 

NI cores as well as the number of patients with no positive targeted biopsies but at least one 

systematic biopsy. 
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Figure 13: PO and NO Core Distances from ROIs (≥ 3+3) Criteria – When Gleason ≥ 3+3 is 

used as the criteria for determining positive cores, the above plots are obtained for the number of 

cores observed at varying distances from the ROI. 
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Figure 14: PO and NO Core Distances from ROIs (≥ 3+4) Criteria – When Gleason ≥ 3+4 is 

used as the criteria for determining positive cores, the above plots are obtained for the number of 

cores observed at varying distances from the ROI. 
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§ 4.2 Feature Analysis of Cancer-Positive and Cancer-Negative Biopsies 

 In this section, we analyze the features that are statistically significantly different 

between cores with csCaP and cores without csCaP. Thus, Gleason ≥ 3+4 is used as the criteria 

for positivity in this section.  

Positive Core 
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Negative Core 

 

Figure 15: Unrolled Biopsy Vectors in Each Modality – A single positive and negative core 

seen in the 4 different MR modalities. Each core is normally an 11x11x20 matrix, but for the 

purpose of this plot, each of the 20 11x11 squares are stacked after one another so that the core 

can be viewed in 2D. Slightly different features can be seen between the corresponding 

modalities of the cancer-positive and cancer-negative cores including relative hypointensity and 

hyperintensity. 
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Feature Name P-value Positive 
Class Mean 

Negative 
Class Mean 

Positive 
Class Std 

Negative 
Class Std 

ADC 20th 
percentile 

2.24E-27 70.077 78.498 16.618 15.795 

ADC 6th Haralick 
(Sum Average) 

1.68E-25 169.318 184.482 29.544 31.852 

ADC Mean 2.43E-25 84.741 92.171 15.665 14.576 
ADC 50th 
percentile 

1.11E-24 84.665 92.476 16.82 15.326 

ADC 5th 
percentile 

1.24E-22 57.421 65.417 16.392 17.183 

T2 5th Haralick 
(Inverse 

Difference 
Moment) 

8.66E-21 0.1 0.0862 0.0318 0.0262 

T2 10th Haralick 
(Difference 
Variance) 

6.63E-20 0.000342 0.000253 0.000246 0.000171 

T2 Histogram Bin 
4 

1.71E-19 32.402 37.954 10.576 12.654 

T2 Histogram Bin 
5 

3.09E-19 40.069 46.708 12.815 15.089 

T2 Histogram Bin 
3 

3.82E-19 24.835 29.296 8.589 10.422 

 

Table 5: Features with Greatest Statistical Significance – The top 10 features with the lowest 

p-value between the cancer-positive and cancer-negative class. These p-values are generated by 

selecting a random sample of 858 non-csCaP cores (the same number as the number of csCaP 

cores) and performing a Wilcoxon signed-rank test.25 
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§ 4.3 Predictive Power of Machine Learning Models 

SVM and logistic regression classifiers are trained, using Haralick textures and statistical 

features as input, to predict whether a biopsy will be cancer-positive or cancer-negative. Results 

are presented for both definitions of cancer positivity. First, we show the results of the two 

models when Gleason ≥ 3+3 is used as the positivity criteria. Then we show the results of the 

two models when Gleason ≥ 3+4 is used as the positivity criteria. These models were trained, 

and plots were generated using Python’s Scikit-learn library.26 
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Gleason ≥ 3+3 Results 

SVM 

 

 

 

Test Accuracy: 69.04% 

Figure 16: SVM Results for Predicting Gleason ≥ 3+3 – The 5-fold cross validation ROC, 

precision recall curve, test ROC, precision and recall statistics, and test accuracy for the SVM 

trained with Gleason ≥ 3+3 as the positive class. 
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Logistic Regression 

 

 

 

Test Accuracy: 62.48% 

Figure 17: Logistic Regression Results for Predicting Gleason ≥ 3+3 – The 5-fold cross 

validation ROC, precision recall curve, test ROC, precision and recall statistics, and test 

accuracy for the logistic regression model trained with Gleason ≥ 3+3 as the positive class. 
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Gleason ≥ 3+4 Results 

SVM 

 

 

 

Test Accuracy: 75.72% 

Figure 18: SVM Results for Predicting Gleason ≥ 3+4 – The 5-fold cross validation ROC, 

precision recall curve, test ROC, precision and recall statistics, and test accuracy for the SVM 

trained with Gleason ≥ 3+4 as the positive class. 
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Logistic Regression 

 

 

 

Test Accuracy: 68.47% 

Figure 19: Logistic Regression Results for Predicting Gleason ≥ 3+4 – The 5-fold cross 

validation ROC, precision recall curve, test ROC, precision and recall statistics, and test 

accuracy for the SVM trained with Gleason ≥ 3+4 as the positive class. 
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CHAPTER 5 

DISCUSSION 

 In the first section of our results, we find that regardless of the criteria for “cancer-

positivity”, whether it be Gleason ≥ 3+3 or Gleason ≥ 3+4, the proportion of cores outside ROIs 

that are positive is much lower than the proportion of cores inside ROIs that are positive. This 

supports the claim that radiologist-drawn ROIs are indicative of underlying cancerous pathology 

and certainly gives confidence to ROI delineation. However, when the proportion of positive 

cores inside ROIs is compared to the proportion of positive cores outside of ROIs, we find that 

those two numbers are about the same. In the Gleason ≥ 3+3 criteria scheme, about 60% of 

positive cores were found outside of ROIs, and in the Gleason ≥ 3+4 criteria scheme, about 50% 

of positive cores were found outside of ROIs. This statistic implies that, though there is a higher 

chance of finding positive cores within ROIs, there is a significant proportion of positive cores 

that fall outside of ROIs, and this could be a potential area of improvement for the delineation of 

these ROIs. 

 Since so many positive cores were found outside of ROIs, we next looked at how far 

away from the ROIs these positive cores were. In both criteria schemes, the number of positive 

cores seems to fall off dramatically as distance from the ROI is increased. This lends credence to 

the idea that even if cores do fall outside of ROIs, most of them fall fairly close to these ROIs. 

When the same type of histogram is observed for negative cores that fall outside of ROIs, we see 

this same pattern of the number of cores dropping off as the distance from the ROI is increased. 

If it is true that the ROI is a ground truth hub of cancer from which the lesion originates as the 

PO plot suggests, we would expect to see the number of negative cores increase with distance 

from the ROI instead of decrease. However, because there is sampling bias in favor of regions 
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close to the biopsy (since the dataset involves targeted biopsy) this result is not surprising. To 

combat this sampling bias, we then plot the distance of systematic cores that are cancer-negative 

from ROIs. Systematic cores are taken uniformly from regions of the prostate, so we would not 

expect to see the same sampling bias of more cores taken close to ROIs. From this plot, we see 

that the number of negative systematic cores does increase with distance from the ROI, then 

trails off as that distance gets much larger (presumably because fewer cores are taken from very 

distant areas of the prostate). However, the fact that 51 out of 555 patients had positive 

systematic biopsies and no positive targeted biopsies using the ≥ 3+3 criteria is indicative of the 

fact that it is not uncommon to find cancer outside of targets, and that systematic biopsy is still 

necessary for a reason. Altogether, these statistics indicate areas for improvement in ROI 

delineation. 

 Next, we go on to examine the MR features of csCaP cores vs. non csCaP cores. To do 

this, we use the Wilcoxon rank test (since these features are not normally distributed within the 

classes) to obtain p-values for each feature between the different classes. We present the top 10 

most statistically significant features, and all of them have p-values far below an alpha of 0.05. 

These p-values are even far below an alpha of 0.05/144, applying the Bonferroni correction for 

multiple comparisons.27 Interestingly, we see that the top 5 features all come from the ADC 

modality, while the next 5 features come from the T2 modality. High b-val and Ktrans features 

did not make it into the top ten most statistically significant features. The low p-values seen 

between these features established confidence in the hypothesis that machine learning based 

classifiers could be trained to differentiate between the two classes.  

 When the SVM and logistic regression models were trained and tested using the two 

different criteria for cancer-positivity, results seemed fairly similar across the board. The models 
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all had relatively steady AUC’s during the 5-fold cross validation training and relatively similar 

test AUCs as well. Notably, both the SVM and the logistic regression models had higher 

precision on the cancer-positive class when the criteria for cancer-positive was lower, i.e. 

Gleasons 3+3 were considered as cancer-positive. In terms of overall test accuracy, and test 

AUC, the SVM trained to distinguish between csCaP (Gleasons ≥ 3+4) and non csCaP (Gleasons 

< 3+4) performed the best out of all four classifiers. It had a high negative predictive value of 

0.93 and a fairly strong test AUC of 0.72. However, the PPV of all the classifiers (the same as 

the precision on the cancer-positive class) was still exceedingly low, none reaching more than 

0.35. This metric, in the context of the problems associated with prostate cancer, is the most 

valuable. Since prostate cancer tends to get overdiagnosed, we aim to build models that have 

high PPV. In other words, of all the cores we predict to be cancer-positive with the model, a 

large majority of them should ideally be cancer-positive in the ground truth. If this metric is not 

high for a given model, then the model fails to address the clinical problem of overdiagnosis. 

Thus, these models provide a good baseline for building classifiers that can achieve results with 

higher PPV.   
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CHAPTER 6 

CONCLUSIONS AND FUTURE DIRECTIONS 

 In this work, we first determine that there is room for improvement in the delineation of 

ROIs on prostate MRI. Cancerous biopsy cores are often found outside of ROIs, and thus, the 

delineation of ROIs can benefit from using the pathology results of biopsies as ground truth. To 

enable this improvement, we propose a unique methodology of mapping biopsy cores to their 

location in the MRI, extracting features of voxels in these biopsy regions, and trying to correlate 

these features with the ground truth pathology of these biopsies. The classifiers we built had high 

negative predictive values and moderately high AUCs, but rather low positive predictive values. 

Since one of the biggest problems in the arena of prostate cancer is overdiagnosis, attempting to 

raise the low PPV of our classifiers will motivate future work in this topic. 

 Some of this future work could entail trying deep learning methods such as 

Convolutional Neural Networks on the raw voxel intensity levels extracted from each MR 

modality to have a classifier learn its own features that are representative of cancer-positive and 

cancer-negative cores.28 In addition to this, the method by which we deal with the fact that we do 

not know where prostate cancer actually is in the core could be examined more closely. It may be 

useful to split the core up into smaller parts rather than just halves and use features such as 

minimums and maximums at these regions to boost the classifier results. In this vein, a useful 

analysis that could be done would be trying to correlate pathology features of biopsy cores with 

their MR features, to directly determine the type of MR features that denote prostate cancer. 

Lastly, additional types of data including time series perfusion data could be incorporated as 

additional features to this model.  
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