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ABSTRACT OF THE DISSERTATION 

 

Dissecting AXL-mediated resistance to  

EGFR-targeted therapies in lung cancer 

 

by 

 

Marc Creixell Santa Olalla 

Doctor of Philosophy in Bioengineering 

University of California, Los Angeles, 2023 

Professor Aaron S Meyer, Chair 

 

Cancer hijacks how cells sense, integrate, and respond to cues present in their environment. For 

instance, cancer cells can dysregulate their receptor tyrosine kinase (RTK) to drive proliferation 

and migration to distant tissues. RTK inhibitors, such as those targeting the epidermal growth 

factor receptor (EGFR), are therefore often effective but are invariably limited by the development 

of resistance. A well-appreciated means of resistance to RTK inhibition is so-called “bypass” 

resistance, wherein an RTK not targeted by therapy, such as AXL, activates alternative oncogenic 

pathways. In this work, we developed a paired experimental and computational strategy to 

comprehensively characterize the signaling changes that the RTK AXL regulates in EGFR-

dependent lung cancer cells when driving resistance. To do so, we generated a panel of lung cancer 

cell lines with different AXL phosphosite mutations and then measured both the proteomic and 

phenotypic changes during bypass resistance. To model such data, we developed and applied an 

algorithm, Dual Data-Motif Clustering, that identified the most prominent signaling pathways that 
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AXL activates to mediate resistance to EGFR-targeted therapies, which we then experimentally 

validated. This work demonstrates a methodology for dissecting complex signaling networks and 

identifies several mechanisms by which AXL drives resistance-associated phenotypic changes. 
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Abstract 

Receptor tyrosine kinases (RTKs) play a crucial role in cellular processes through 

complex phosphorylation-mediated signaling networks. Their aberrant activity in disease has 

resulted in many efforts to understand the underlying mechanisms that explain their contribution. 

However, RTK crosstalk and downstream signaling redundancy hinder the characterization of 

individual RTK members. One powerful approach that allows for mechanistic profiling of RTKs 

is the use of tyrosine-to-phenylalanine (Y-to-F) mutational studies, in which intracellular tyrosine 

residues are systematically mutated to non-phosphorylatable residues. Different Y-to-F mutations 

induce subtle but distinct RTK-specific signaling and phenotypic perturbations in a cellular 

environment. Both signaling and cellular responses driven by an RTK can then be functionally 

linked by coupling proteomic experiments with computational tools. Here, we review the 

mechanistic and translatable insights gained from these types of studies, as well as current 

approaches to collect and analyze this type of data. Finally, we offer a future perspective discussing 

the potential value that current advances in our tools and knowledge can add to the level of 

biological insight we can gain from this mechanistic research, especially as throughput and 

sensitivity of methods continues to improve.  

 

2. Receptor Tyrosine Kinases in Disease 

Receptor tyrosine kinases (RTKs) are key regulators of a plethora of cellular processes including 

cell proliferation, migration, differentiation, and metabolism1,2. Regulation occurs as RTKs 

propagate signals from the extracellular environment to an intracellular response. Given their 

critical cellular function, it is perhaps not surprising that aberrant RTK signaling has been 

associated with a variety of human diseases, including many cancers3. Large-scale omics studies 

have revealed various mechanisms through which abnormal RTK activation can occur, including 
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gene amplification, autocrine activation, chromosomal rearrangements, and gain-of-function or 

loss-of-function mutations4–7. As a result, many tyrosine kinase inhibitors (TKIs) and monoclonal 

antibodies have been developed and approved over the past few decades that target RTKs in 

various pathologies such as erlotinib and cetuximab in lung and head and neck cancer, 

panitumumab in colon cancer and trastuzumab and pertuzumab in breast cancer8. 

 

Despite these advancements, acquired resistance to these targeted therapies has often dampened 

success in the clinic. One well-known example of acquired resistance to EGFR-TKIs is the T790M 

mutation in non-small cell lung cancer (NSCLC). The threonine in position 790 regulates ATP and 

inhibitor specificity in the ATP binding pocket; mutation of this residue to methionine enhances 

ATP affinity and thereby confers resistance to ATP-competitive inhibitors9,10. Besides interfering 

with the drug-target interaction, other mechanisms of resistance can arise due to cellular adaptive 

responses. Cancer cells can modify their drug metabolism by changes in drug efflux and uptake or 

undergo bypass resistance, involving the hyperactivation of a receptor not targeted by therapy. For 

instance, MET and AXL have been shown to provide bypass resistance to EGFR-targeted therapies 

in lung carcinoma while HER3 drives resistance to HER2-inhibition in breast cancer11–15. Lack of 

treatment response or cancer growth after initial remission due to acquired resistance emphasizes 

the complexity of the signaling networks employed by RTKs and has fueled efforts to better 

understand receptor physiology. 

 

3. RTK Structure and Signaling Network Models 

RTKs (58 known in humans) can be grouped into 20 subfamilies based on their domain 

architecture. RTKs share a similar protein structure that includes an extracellular ligand binding 

domain, a single transmembrane helix, and an intracellular region that contains a juxtamembrane 
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regulatory region, a tyrosine kinase domain (TKD) and a carboxyl (C-) terminal tail16.  In general, 

ligand-mediated receptor stimulation results in conformational changes and dimerization, allowing 

the TKD to assume an active conformation. Trans-autophosphorylation of tyrosine residues 

located on the TKD and C-terminal tail can then occur, initiating intracellular signaling17. 

Autophosphorylation leads to recruitment, phosphorylation, and activation of a wide variety of 

downstream adapter proteins that contain Src homology-2 (SH2) or phosphotyrosine-binding 

(PTB) domains. Phosphorylation of these adapter proteins and recognition by second messengers 

and downstream signaling molecules then trigger intracellular changes that aid in the receptor’s 

biological signal relay and activate major signaling pathways including RAS/MAPK, PI3K/AKT 

and JAK/STAT18,19(Figure 1).  

 

Numerous computational methods have been generated over the past few decades to model RTK 

signaling response20–22. However, these models have generally ignored specific phosphorylation 

sites on the receptor due to the combinatorial complexity resulting from multiple phosphorylation 

sites; phosphorylation of each site results in a new species to be considered in the model. Moreover, 

interaction of a given scaffold or adaptor protein with different phosphorylation sites on the 

receptor can lead to a plethora of additional species, with associated interaction parameters for 

each phosphorylated residue and different adaptor proteins. Therefore, most computational models 

of RTK signaling consider the receptor as either non-phosphorylated and inactive or 

phosphorylated and active. Despite the challenges of modeling the full complexity of RTK 

phosphorylation and signaling, there have been extensive experimental efforts to identify specific 

phosphorylation sites on RTKs and define their respective interacting proteins. For instance, some 

experiments have used phosphorylated regions of an RTK to enrich for interacting proteins from 

cell lysate, while others have used protein microarrays to identify and quantify the interactions 
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between RTK phosphorylation sites and SH2 or PTB domains23–25. Although these studies, along 

with many others, have provided critical information of potential RTK phosphorylation-site 

specific interactions, most do not account for signaling dynamics, competition or recruitment of 

other kinases and phosphatases. Generating new insights describing RTK phosphorylation site-

specific contributions will allow computational models to better explore their signaling dynamics. 

To access this additional level of information, phosphorylation site-specific studies need to be 

conducted in cells, within the full complexity of the intracellular environment.  

 

 

Figure 1. Signaling consequences lead to phenotypic responses in RTK Y-to-F mutant cells. (A) Upon RTK 

autophosphorylation, a wildtype (WT) two PTD-containing adapters binding different pTyr sites recruit further 

signaling molecules. According to its specificity, the RTK phosphorylates the recruited substrates to activate signaling 
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programs which will eventually lead to cell responses. RTKs harboring Y-to-F mutations can undergo specific 

signaling and phenotypic changes due to (B) either a decreased (left) or increased (red) RTK kinase activity and a 

change in adaptor recruitment to the unavailability of the mutated pTyr site or (C) a change in the RTK’s kinase 

specificity towards its recruited substrates. Each of these signaling consequences lead to downstream signaling 

dysregulation that ultimately affect cell responses. 

 

4. RTK Mutational Studies 

Since the interaction between activated growth factor receptors and signal transduction molecules 

heavily relies on phosphorylation of the tyrosine residues in the TKD and C-terminal tail, many 

have used mutational strategies to identify specific residue functionalities in relation to 

downstream signaling responses.26,27 In ‘loss of function’ studies, mutation of a given tyrosine to 

phenylalanine removes the hydroxyl group and eliminates the capacity for phosphorylation at that 

site while still maintaining many structural characteristics such as π-π and hydrophobic 

interactions28,29. In some studies, tyrosine sites have been replaced with alanine, however, alanine 

is structurally quite different from tyrosine and this substitution may confound signaling data due 

to changes in protein folding30. In many cases a ‘gain of function’ mutation is also tested, usually 

by substituting the tyrosine with a glutamic acid (e.g., Y-to-E) to mimic the negative charge of the 

phosphorylated residue.  While this approach can work well on kinase activation loops, where the 

negative charge leads to altered protein structure and increased kinase activity, glutamic acid is a 

poor structural match for phosphotyrosine (pTyr)31. Therefore, Y-to-E mutations can lead to 

counterintuitive loss-of-function due to their poor binding affinity for SH2 and PTB domains. At 

the present time there are few options for a true gain-of-function experiment, as genetic 

incorporation of a constitutively phosphorylated tyrosine is highly challenging. Synthetic 

incorporation of constitutively phosphorylated tyrosines through intein chemistry may be feasible 

for relatively short proteins or for cases where the tyrosine site is at either end of the protein. 
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However, these synthetic proteins would then have to be inserted into cells to test their function. 

As an alternative to site-specific mutations, a more drastic option to assess loss of function is to 

delete the C-terminal tail, or sections of the C-terminal tail. While this approach can provide 

insights as to the function of sites in the deleted region, caution must be exerted given the risk of 

more extensive effects to protein folding and dimerization32,33.  

 

Given these options for site-specific interrogation, generating an isogenic panel of cell lines, with 

each line expressing an RTK with a selected Y-to-F mutation, represents a powerful approach to 

distinctly perturb RTK-driven signaling pathways while measuring the cell biological 

consequences. (Figure 1B/C). In studying the effects of selected Y-to-F mutations on RTK 

activity, protein interactions, and activation of downstream pathways, it is worth noting that 

selected Y-to-F mutations can also influence the overall activation state of the RTK. For instance, 

ligand induced RTK activation results in phosphorylation of several tyrosines within the TKD, 

including sites in the activation loop. On EGFR, the Y845 site lies in the kinase activation loop; 

phosphorylation of this site is thought to induce additional EGFR kinase activity. For FGFR1, 

Y677 was found to function as a stabilizer of the active conformation34. While the absolute amount 

of intracellular tyrosine phosphorylation is typically used as a proxy for RTK activation, not all 

tyrosine phosphorylation sites contribute to kinase activity, and sites may be phosphorylated at 

different stoichiometries35.  On the C-terminal tail, EGFR Y1148 is phosphorylated 4-5 times more 

compared to other sites such as Y1173 or Y1068.  

 

In addition to altering the RTK activation state, there is evidence of Y-to-F mutations shifting the 

competitive landscape of adaptor proteins binding to a given RTK36,37.  Loss of a given 

phosphorylation site due to a Y-to-F mutation can strongly decrease the binding affinity for PTB 
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domain-containing proteins, leading to differences in RTK complex formation, thereby affecting 

the signaling response23,38. Interestingly, Cullati et al recently discovered that the kinase domain 

autophosphorylation of a particular threonine (T220) in the human non-receptor tyrosine kinase 

CK1δ significantly altered the conformation of the substrate binding cleft, affecting substrate 

specificity. Thus, while the autophosphorylation effects in RTK specificity remain 

uncharacterized, they cannot be ruled out39 (Figure 1C).  

 

5. Y-to-F interactome studies 

Although there are several complicating factors when it comes to elucidation of signaling networks 

and individual tyrosine function, in many cases Y-to-F studies have successfully illuminated 

functional relevance of given RTK phosphorylation sites. One complicating factor in elucidating 

pTyr site function is redundancy, such as through the ability of adaptor molecules to bind multiple 

phosphosites40. With EGFR, for example, this built-in redundancy helps to maintain functional 

robustness in the event of low EGF stimulus or partial system failure41. A study by Gill et al found 

that EGFR containing just one functional tyrosine on the C-terminal tail was still signaling-

competent41.  Figure 2 summarizes the efforts that involved mutation of selected C-terminal 

phosphorylation sites that revealed loss of a given adapter binding or confirmed the multiplicity 

of a binding interaction27,42–53. These built-in compensatory mechanisms make it more challenging 

to ascribe functions to individual residues, as RTKs can enlist other sites to adapt to loss of a given 

tyrosine phosphorylation site. Even with this redundancy, Schlesssinger determined a hierarchy of 

binding sites for Grb2 and Shc on EGFR, by using Y-to-F mutant cell lines and co-

immunoprecipitation experiments. Although at least 5 tyrosines have been reported to bind Grb2 

and Shc1 on EGFR, their data demonstrated a preference for Grb2 binding to Y1068 and Y1173, 
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and a Shc1 binding preference for Y117354. In similar studies, preferred binding sites for PLCγ1 

and Abl were EGFR-Y992 and EGFR-Y1173, respectively41,55,56. 

 

Beyond EGFR, Y-to-F mutant studies have also been used to determine site function and 

phosphorylation stoichiometry on multiple other RTKs. For instance, in IGF1R, Y-to-F mutations 

revealed Y1150 and Y1151 to be responsible for ~80% of receptor autophosphorylation57. On the 

other hand, IGFR1 Y1136F mutation only minimally affected its overall kinase activity yet was 

found to substantially reduce the phosphorylation of various substrates58, providing a curious 

disconnect between site stoichiometry and importance for downstream signaling activity. In 

HER3, Y-to-F mutation of Y1325 revealed this site as the major binding site for Shc1 and the main 

site responsible for inducing heregulin (HRG)-dependent ERK activation59. 

 

Y-to-F mutations have also revealed intriguing crosstalk between RTKs. For instance, Y857 on 

PDGFRβ was identified as a critical site in transactivation of EGFR60. Interestingly, another study 

found this same tyrosine to affect cell proliferation, but not migration, while EGFR is known to 

affect both phenotypes46,61. Y-to-F studies have demonstrated cooperativity between residues on 

HER3 as well as requirement co-activation of HER2 and HER3 to induce PI3K activity62. In terms 

of transphosphorylation, Bae et al. showed that asymmetric receptor contact is required for 

autophosphorylation of FGFR1 and transphosphorylation of Y58363.  

 

6. Y-to-F studies in disease models  

Although these examples clearly highlight the ability of Y-to-F RTK mutants to extract insight 

about given phosphorylation sites’ function, it is worth noting that many of these experiments were 

performed in a single cell line. Depending on the cell context, the concentration of different adapter 
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proteins may vary and may represent limiting factors in one cell line relative to another, thus 

yielding different functional outcomes. Even for the same cancer types, the signaling pathways 

and targets identified across studies are largely context-dependent and thus cross-referencing 

insights generated in different systems can often be challenging and misleading. For example, 

AXL has been shown to promote cell proliferation, epithelial-to-mesenchymal transition, 

metastasis, macropinocytosis, metabolic oxidation, DNA damage response (DDR), and 

immunosuppression in various types of cancer64–67. It is easy to see how altering specific 

phosphorylation sites on the receptor may affect different pathways depending on the biological 

context of the RTK.  

 

 

Figure 2: Known binding interactions between tyrosine residues of a subset of RTKs and secondary adaptor 

molecules. Numbers indicating residue location on protein. Proteins shown: EGFR96,97, HER298, HER399, 
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PDGFRa/b100, VEGFR1-3101,102, IGF1R103, IR104, FGFR1-4105, AXL/TYRO3/MER106,107, MET108, RON109, KIT100. 

Several are still poorly characterized in terms of binding partners and function. 

 

One major application of Y-to-F mechanistic studies has been the identification of novel 

therapeutic targets with increased selectivity against oncogenic downstream signaling of an RTK. 

While RTKs are druggable themselves, the clinical efficacy of these therapies is limited, in part, 

by expression of the targeted receptor in healthy tissues leading to off-target toxic effects and the 

ability of cancer cells to overcome anti-RTK blockade by the overexpression of an RTK not 

targeted by therapy. Therefore, a major undertaking in the field has been the identification of 

specific downstream signaling pathways driving disease progression. For instance, motivated by a 

strong correlation between HER2 activation and constitutively active Stat3a in a variety of human 

tumors, Ren et al found HER2 Y1139 to be the main residue responsible for Stat3a activation 

through JAK2 and SRC-dependent mechanisms, and provided multiple novel targets for HER2-

overexpressing tumors48. In glioblastoma cell lines expressing EGFR-VIII with Y-to-F mutations 

on different C-terminal phosphorylation sites, signaling network analysis combined with 

phenotypic data identified a set of phosphoproteins as potential candidates for future drug 

development50.  

 

These studies have also helped to validate model systems to study certain diseases. For instance, 

PDGFRα was identified to be important in development of cardiac and brain cells, providing a 

model to study aberrant neural crest cell (NCC) development49. Finally, a Y-to-F study in AXL 

determined that Y821 was found to mediate resistance to cetuximab through c-ABL in a head and 

neck squamous carcinoma (HNSCC) model, proposing ABL inhibition as a potential therapeutic 

strategy to resensitize tumor cells to cetuximab treatment53. 
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7. Omics-based Y-to-F studies 

So far, most Y-to-F studies have evaluated RTK-protein interactions via pTyr on the TKD or 

measured phenotypic variation in response to single Y-to-F mutations. However, to fully 

understand the mechanisms underlying RTK function, it is critical to be able to integrate signaling 

and phenotypic responses measured in the same biological systems. To integrate these data, a 

systems biology approach should be used that considers the entire network, ideally in a system that 

recapitulates the full complexity and competition of physiological cellular signaling networks. 

Phosphoproteomics-based approaches enable the acquisition of quantitative, network-level, 

dynamic signaling data, making it well-suited to interrogate the network-wide effects of site-

specific tyrosine functions.  

 

As reviewed by Baselga et al, drug resistance should be viewed and investigated as a multifaceted 

problem driven by the development of simultaneous “collateral” malignant phenotypes that 

coordinately promote tumor growth and metastasis in the presence of therapy68. Applying 

quantitative phosphoproteomics and phenotypic endpoint assays to a panel of isogenic mutant cell 

lines (e.g., with Y-to-F mutations in the TKD or C-terminal of a given RTK) can link specific RTK 

phosphorylation sites with downstream components that collectively drive a complex 

multifactorial response, e.g., cell proliferation, cell migration, or drug resistance68 (Figure 3A). 

These complex phenotypic responses require a systems biology approach that utilizes a variety of 

computational tools and multivariate analysis approaches to separate the underlying signaling 

drivers.  

 

However, despite many advancements in phosphoproteomics over the past two decades, 

challenges inherent to phosphoproteomic data hinder the identification of relevant proteomic 
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alterations; namely, this technology measures substrates rather than kinases, provides incomplete 

and stochastic coverage of the phosphoproteome across experiments, and has high content but low 

sample throughput. The next section of this review will focus on how Y-to-F mutational model 

systems and omics-tools can be combined to measure, model, and integrate the signaling and 

phenotypic responses of RTKs. We describe ways in which the resulting model predictions of 

downstream drivers can be validated and provide a forward-looking perspective of the utility of 

this system.  

 

8. Computational tools to analyze and interpret phosphoproteomic RTK-driven signaling 

networks 

Quantitative phosphoproteomics enables the acquisition of large-scale data describing quantitative 

changes in thousands of protein phosphorylation sites across different biological samples. Such 

data allows one to extract signaling network information, including putative activated kinases and 

phosphatases. Although meaningful, the signaling consequences of RTK Y-to-F mutations in a 

panel of isogenic cell lines can be subtle and hard to discern, underscoring the need for 

computational methods capable of elucidating signaling behaviors specific to and across mutant 

cell lines. In the last decade there has been substantial advancements in the development of 

computational tools tailored to disentangle and reconstruct signaling networks from quantitative 

phosphoproteomic data. Here, we categorize these computational tools into two main groups: 

“Single-Sample” and “Multi-Sample” methods (Figure 3B).  

 

Single-Sample methods are those that allow one to profile the phosphoproteome of an individual 

sample or RTK Y-to-F mutant cell line by comparing it to a control (e.g., wild-type RTK cell line). 

Kinome enrichment tools such as kinase-substrate enrichment analysis (KSEA) and Integrative 
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Inferred Kinase Activity (INKA) aim to identify upstream kinases using the quantitative 

phosphoproteomic data; KSEA assembles phosphoproteomic data into groups of known or 

inferred kinase substrates, then averages the signals of the group to identify putative activated 

upstream kinases69, and INKA ranks kinases based on their inferred activity by integrating kinases’ 

overall and activation loop phosphorylation with the phosphorylation abundance of its known 

substrates70. These methods require making assumptions about kinase-substrate relationships for 

which there is experimental evidence in the literature or are predicted by kinase prediction 

algorithms such as Scansite or KinomeXplorer. Scansite makes predictions using kinase specificity 

profiles generated through position-specific peptide library (PSPL, further described below) 

experiments while KinomeXplorer uses sequence motif and protein-protein network 

information71,72.  Furthermore, ranked gene identifiers based on the signaling data of an RTK Y-

to-F mutant sample can be used to run Gene Set Enrichment Analysis (GSEA) or STRING analysis 

to identify and visualize overrepresented genes and associated biological processes, as well as 

protein interaction network maps, respectively. Thus, Single-Sample methods can be used to find 

enriched signaling components and their associated biological processes in specific Y-to-F RTK 

perturbations. These tools are very useful resources to ascertain the mechanistic understanding of 

a particular Y-to-F mutation, especially if the generated signaling insights can be associated with 

prior knowledge such as a mutant-specific phenotype or dysregulated signaling pathway or kinase. 

As introduced earlier, McDaniel et al found that AXL pTyr 821 conferred cetuximab resistance 

via interaction with ABL73. These methods could help identify other kinases and signaling 

components acting downstream of AXL to drive resistance.  For instance, KSEA or INKA could 

identify additional putative hyper- or hypo-active kinases in the Y-to-F mutant cell lines compared 

with wild-type. This inference, in combination with a visual representation of phospho-modulated 

protein-protein interactions such as STRING, can help reconstruct the signaling network changes 
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induced by the point mutation, beyond ABL1. Nevertheless, as argued above, pTyr-mediated RTK 

function is a coordinated, multifactorial process that occurs via the simultaneous regulation of 

multiple intracellular tyrosines and downstream components (Figures 1 and 3A). While “Single-

Sample” methods help explore the role and associated downstream effects of a particular pTyr in 

isolation, they ignore the concomitant regulation of other pTyr sites. Hence, applying Multi-

Sample analysis, to model the coordinated signaling and phenotypic consequences of a panel of 

Y-to-F mutant cell lines, should provide a better representation of the various regulatory 

mechanisms of an RTK.  

 

Multi-Sample methods to analyze phosphoproteomic data, such as clustering or dimensionality 

reduction, are extremely useful to enhance our interpretation of a dramatically underdetermined 

system—i.e., thousands of peptides across a relatively small set of samples. As phosphoproteomic 

measurements contain the phosphorylation abundance of kinase substrates, the peptides displaying 

similar signaling behavior across samples clustered in the same group can be viewed as a single 

unit that acts downstream of the same set of upstream kinases. Therefore, clustering methods 

ideally organize phosphosites into groups of peptides that represent common signaling changes. 

OpenEnsembles is a clustering algorithm that generates and incorporates multiple unique 

clustering solutions utilizing different combinations of data transformations (e.g., untransformed, 

z-score, mean-centering), clustering algorithms (e.g., k-means, hierarchical clustering, GMM), and 

parameters (number of clusters, distance metrics, linkage methods, etc.). Phosphosites are then 

grouped based on how often they cluster together74.  Via an iterative process of modifying the 

algorithm’s parameters, OpenEnsembles can find consistently dysregulated signaling pathways 

across Y-to-F mutants. Recently, the Meyer lab constructed an expectation-maximization (EM) 

algorithm, Dual Data and Motif Clustering (DDMC) that can be viewed as a Multi-Sample form 
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of KSEA and INKA. DDMC generates clusters displaying similar phosphorylation patterns and 

sequence motif features, leveraging the prior knowledge that protein kinases possess extraordinary 

specificity toward the phosphorylation site. Incorporating the sequence information into the 

clustering criterion allows one to make predictions about the upstream kinases regulating clusters 

by comparing the clusters’ sequence features with previously reported kinase specificity profiling 

data75.  Therefore, DDMC can generate protein clusters that are phospho-modulated by the RTK 

under study, which in turn might be regulated by the predicted upstream kinases. This allows the 

reconstruction of RTK-specific signaling network comprised by the RTK, downstream kinase 

drivers, and clusters of phosphopeptides74. Thus, Multi-Sample methods such as the described 

clustering algorithms or other common dimensionality reduction techniques such as principal 

component analysis (PCA) or non-negative matrix factorization (NMF) can be applied to find 

behavioral patterns across RTK mutant samples which allow the systematic identification of RTK-

driven signaling pathways and processes.  

 

9. Establishing associations between cell phenotypes and RTK downstream signaling  

RTKs are involved in a myriad of cellular processes, and data-driven multivariate regression 

modeling of a panel of Y-to-F mutants can help map the downstream signaling pathways that 

correspond to different phenotypes. In a regression model, the phosphoproteomic data—matrix 

X—is used to explain the cellular responses—matrix Y, and the observations in both matrices 

consist of the RTK mutant cell lines treated under the same conditions—such as in the presence 

of the cognate ligand for RTK activation—and the variables are phosphopeptides and phenotypes, 

respectively (Figure 3A/C). Measuring the signaling and phenotypic consequences under an 

identical cell culture environment ensures that the patterns identified by the model are exclusively 

driven by the chosen inputs (e.g., RTK activation). Practically any cell phenotype data of interest 
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such as cell proliferation, apoptosis, migration, or genetic signature scores can be incorporated in 

the Y matrix if the cell culture conditions match the ones utilized to generate the signaling data. 

Importantly, the signaling and phenotypic consequences that Y-to-F mutations might induce could 

be influenced by an impairment of RTK regulation at different levels. Thus, trafficking and 

degradation rates, gene and protein expression, as well as dynamic measurements of downstream 

signaling of the different RTKs are crucial factors that should be measured to obtain a holistic 

view of how these mutations induce the observed responses.  

 

Y-to-F mutational studies can provide a unique perspective of the extent to which RTK point 

mutations affect distinct phenotypes through specific downstream signaling components. For 

instance, RTK mutant 1 might largely activate ERK to promote proliferation whereas mutant 2 

mainly induces JNK activity and apoptosis (Figure 3A). However, as mentioned above, MS-based 

phosphoproteomic data sets tend to be hugely underdetermined given its high content but low 

sample throughput. One approach has been to use partial least squares (PLSR) models to robustly 

handle predictions in the presence of high-dimensional and correlated data76. However, as the 

number of phosphosites—or variables—increases, the system becomes increasingly 

underdetermined, and the prediction power diminishes. In addition, while these models can 

generally be predictive with such data, they are not easily interpretable. The lack of interpretability 

also arises due to the high number of variables. Like PCA, the output of PLSR models are scores 

and loadings. However, PLSR generates loadings for both the predictor (phosphosites) and 

response (phenotype) variables. In this scenario, the resulting loadings plot includes the few 

phenotype data points surrounded by thousands of phosphosites. Instead, first clustering 

phosphosites based on biologically meaningful features organizes such them into groups that 

constitute signaling nodes. The cluster averages are then used to fit PLSR to enhance the predictive 



18 

performance of the regression model while providing highly interpretable results wherein clusters 

distinctly correlate with cell phenotypes (Figure 3C). Figure 3D shows putative results of this 

strategy wherein cluster 2 tightly correlated with phenotype 2 whereas cluster 4 is associated with 

phenotype 3 in the loadings plot, whereas the scores display the correlation between the different 

RTK Y-to-F mutations and in comparison with the signaling and phenotypic effects across 

principal components (PC) 1 and 2. In this theoretical case, PC1 separates the RTK kinase activity 

with positive scores and loadings correlating with an increased RTK activation as well as cluster 

4 and phenotype 3. Moreover, as introduced earlier, KSEA, INKA, DDMC, or KinomeXplorer 

can interrogate different features of the signaling clusters to predict upstream kinases regulating 

them77. 

 

Hence, the combination of phosphoproteomic with phenotypic measurements of isogenic RTK Y-

to-F mutant cell lines represents a unique opportunity to associate key signaling events with 

biological consequences through Multi-Sample analysis. The predictions resulting from these 

models facilitate the generation of hypothesis about key signaling pathway components driving 

cell responses which in turn informs the design of downstream of validation experiments. 
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Figure 3: A combined experimental and computational strategy to associate RTK-specific signaling changes to 

cell phenotypes. (A) Collecting signaling and phenotypic data from a panel of Y-to-F mutants. (B) Categories of 

Single-Sample or Multi-Sample computational methods for signaling analysis of either individual or multiple Y-to-F 

perturbations, respectively. (C-D) A computational strategy to map signaling responses to Y-to-F mutations and their 

functional association with cell phenotypes. (C) First, phosphopeptides that behave similarly across Y-to-F mutant 

cell lines are clustered together to assemble peptides into a group that presumably acts downstream of the same 

upstream kinases. The resulting clusters are therefore summaries of the RTK-driven signaling changes that can be 

used to identify signaling nodes affecting cell phenotypes. (D) For instance, the generated cluster centers can be used 

to simultaneously predict several cell phenotypes through PLSR which allows the association between specific Y-to-

F mutations, clusters, and phenotypes. V = variables, O = observations, C = Cluster, P = Phenotype. 
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10. Validation experiments to demonstrate model predictions 

While a regression model can implicate measured RTK signaling changes with phenotypic 

responses, the causative significance of specific pathways must be experimentally validated. The 

predicted targets can be effectively validated through several experimental methods. Predicted 

changes in protein expression or protein post-translational modification can be validated by typical 

biochemical assays such as western blot; while predicted alteration in protein-protein interactions 

can be validated by proximity ligation assay (PLA), immunoprecipitation (IP), or 2-hybrid 

screening. Although these assays typically measure a single interaction and are not multiplexed, 

they provide evidence of direct protein-protein interactions. To validate RTK-protein or 

downstream protein-protein interactions with high throughput, BioID interaction mapping 

facilitates a global view of the interactome of any protein, including RTKs. This system utilizes a 

proximity-dependent labeling strategy wherein a bait protein is fused to a mutant form of biotin 

ligase (BirA*) that biotinylates interacting proteins within a 10-nm radius of the protein of 

interest77. Such data can serve as indirect evidence of adapter molecules, kinases, phosphatases 

and other signaling molecules distinctly interacting with RTK Y-to-F mutants which can then be 

subsequently associated with downstream signaling consequences. Many studies have used BioID-

based strategies to elucidate the interactome of RTKs. For instance, Bareja et al used BioID to 

identify nexin6 as a novel interactor of IGFR that suppresses the recruitment of the adaptors IRS1 

and SHC1 and ERK1/2 signaling78. Similarly, another study performed BioID on ALK and 

identified PEAK1 and SHP2 as interactors in neuroblastoma cells79. The concomitant inhibition 

of ALK and SHP2 lead to a synergistic drug response which established the functional role of the 

discovered interactions79. Therefore, by mapping the RTK interactome, multiplex BioID provides 

the opportunity of identifying changes in the recruitment of signaling molecules across Y-to-F 



21 

RTK mutants, thereby providing orthogonal evidence of the mechanistic insights generated with 

the phosphoproteomic analysis described above (Figure 3). 

 

As mentioned above, kinase specificity profiling via PSPL experiments identifies the most favored 

or disfavored amino acids surrounding the target motif of a kinase, thereby providing the “optimal” 

substrate motif of a particular kinase. For instance, ABL1 has a very strong preference for proline 

at +3 and isoleucine at -1—relative to the phosphorylation site, whereas CK2 clearly favors acidic 

residues in the C-terminal part of the motif80–83. One can interrogate the phosphopeptides present 

in an RTK-specific signaling cluster of interest (see section above) and generate a position-specific 

scoring matrix (PSSM) that summarizes the frequencies of observed residues across 

phosphopeptides positions84. If the phosphoproteomic analysis causally identifies a particular 

kinase (e.g., cluster 4 and phenotype 3 in Figure 3D), the PSSM of cluster 3 can be compared with 

the specificity profile of the kinase to explore its association. Thus, PSPL can help identify 

downstream kinases linking the activated RTK with groups of downstream phospho-modulated 

proteins. In this technique, a kinase of interest is individually incubated with each of 180 different 

peptide libraries in which each library contains a central phosphoacceptor residue (S/T or Y), a 

second fixed amino acid located at any of the 10-amino acid peptide spanning positions -5 to +4 

relative to the phosphorylation site, and a degenerate mixture containing all natural amino acids at 

all other positions. The kinase and peptide libraries are incubated in the presence of radioactive 

ATP, which allows the quantification of phosphorylation abundance per residue and position and 

the identification of the kinase’s ‘‘optimal’’ substrate motif. The accumulation of PSPL kinase 

profiles facilitates the association of putative upstream kinases regulating specific substrates or 

groups of phosphosites displaying similar kinase motifs85–88. However, while PSPL identifies the 

most favored amino acids throughout all peptide positions, it does not test for the interdependence 
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between residues. This means that the combination of the most preferred residues across peptide 

positions could still result in a highly disfavored substrate motif for the kinase due to the untested 

docking between the profiled kinase and the identified “optimal motif”. This limitation could 

compromise kinase-substrate or kinase-cluster associations. Shah et al devised a kinase specificity 

screening platform combining bacterial surface-display of a genetically-encoded peptide library—

including 2600 sequences, each spanning 15 residues surrounding known pTyr sites in the human 

proteome—with deep sequencing89. With this method, they incubated different kinases in the 

presence of bacteria displaying their human pTyr peptide library, with one peptide of defined 

sequence per cell. After kinase phosphorylation, the cells are sorted based on phosphorylation level 

measured by a pan-pTyr antibody. Finally, deep sequencing of the peptide-coding DNA before 

and after sorting provides an “enrichment score” describing the efficiency with which each 

substrate is phosphorylated by the kinase89. This technique quantifies the phosphorylation 

abundance of each motif, allowing a superior specificity profiling than PSPL. The increasing 

number of kinases profiled with this method will enable more accurate kinase-substrate or kinase-

cluster predictions. 

 

In the case of models integrating signaling networks with downstream phenotypic response, model 

predictions can be validated through pharmacological or genetic inhibition of the predicted 

signaling network nodes associated with a given phenotype. As one example, a previous PLSR 

model of phosphoproteomic data and cell proliferation data obtained from a set of Y-to-F mutant 

EGFRvIII isogenic cell lines yielded a counter-intuitive prediction that the ERK MAPKs were 

negatively associated with cell proliferation. This prediction was validated chemically through use 

of MEK inhibitors and genetically through use of constitutively active MEK. In summary, we 
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propose an experimental and computational framework to investigate, associate, and validate 

RTK-driven signaling pathways and phenotypes. 

 

11. Forward-looking perspective 

In this review, we highlighted the value of using Y-to-F studies to research the underlying 

mechanisms of signal propagation in RTKs. Linking signaling data to functional response in a 

cellular environment is crucial, whether the goal is improved mechanistic understanding or 

identification of novel biomarkers or drug targets. Recent advances in experimental and 

computational tools and methods have great potential to add additional insight we can gather with 

this type of data.  

 

Advances in CRISPR methods have made it more feasible to make point mutations in endogenous 

RTKs, preserving expression levels and cellular environment. Viral-expressing model systems, 

although easy to use and manipulate, are challenging when it comes to controlling expression 

levels between cell lines and replicates, due to random insertion, even in an inducible system.41 

Furthermore, the use of a viral system limits the choice of model system, due to potential 

confounding signals from endogenous expressing genes. CRISPR point mutations are now also 

shown to be successfully made in in vivo settings, opening the door for potential Y-to-F studies in 

animal studies (e.g., PDX models).90 

Increased sensitivity and accuracy of methods and instruments have yielded promising results for 

single-cell and single-molecule phosphoproteomics.91,92 Automated microfluidic chip LC systems 

are an important component to allow quantitative identification of already low-abundant 

phosphorylated tyrosine.93 These analyses are especially beneficial as they will reveal information 

about the stoichiometry of phosphorylation of the cell or receptor at a given time, and they could 
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allow profiling of a large panel of Y-to-F perturbations. One potential translational application 

would be in understanding tumor heterogeneity, which continues to be one of the main obstacles 

when it comes to cancer treatments.94 Before this method can gain more traction, though, issues 

regarding sensitivity and low throughput will need to be resolved. 

 

Finally, combining targeted phosphoproteomic strategies with absolute quantification methods, 

such as Surequant, will allow for reproducible pTyr profiling of commonly dysregulated oncogenic 

signaling proteins.95 These advancements allow us to build on previously gathered mechanistic 

insight regarding RTK signal and function and to continue to explore the underlying mechanisms 

that explain the complex signaling network and responses that these RTKs regulate in health and 

disease. 
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SUMMARY

Cell signaling is orchestrated in part througha network of protein kinases and phosphatases. Dysregulation
of kinase signaling is widespread in diseases such as cancer and is readily targetable through inhibitors.
Mass spectrometry-based analysis can provide a global view of kinase regulation, but mining these data
is complicated by its stochastic coverage of the proteome,measurement of substrates rather than kinases,
and the scale of the data. Here, we implementa dual data and motif clustering (DDMC) strategy that simul-
taneously clusters peptides into similarly regulated groups based on theirvariation and theirsequence pro-
file.We show that this can help to identifyputative upstreamkinases and supply morerobust clustering.We
apply this clustering to clinical proteomic profilingof lung cancer and identify conserved proteomic signa-
tures of tumorigenicity, genetic mutations, and immuneinfiltration.We propose that DDMC provides a gen-
eral and flexibleclustering strategy for the analysis of phosphoproteomic data.

INTRODUCTION

Cell signaling networks formedby protein kinases dictate cell
fate and behavior through protein phosphorylation, including
in diseases such as cancer (Hunter, 1995). Measuring cell
signaling by mass spectrometry (MS)-based global phospho-
proteomics provides a promisingopportunity to direct therapy
development (Yaffe, 2019),particularly given the accessibility
of these signaling changes to drug targeting. Nevertheless,
despite the rapid accumulation of large-scale phosphoproteo-
mic clinical data, it is still difficult to linksignaling events lead-

ing to observed proteomic alterations and phenotypic
outcomes.
One approach to analyze phosphoproteomic measurements

has beentoinfertheactivity ofupstreamkinases. For instance, ki-
nase-substrate enrichment analysis averages the signals of
groups of knownkinase substrates to inferenriched pathways in
biologicalsamples (Casadoetal., 2013).Anothermethod,integra-
tive inferred kinase activity (INKA), infers kinase activity by
integrating the overall and activation loop phosphorylation of ki-
nases alongside the phosphorylation abundance of known sub-
strates. Kinase-substrate relationships are either experimentally

MOTIVATION Measuring cell signaling by mass spectrometry-based phosphoproteomics provides a
promising opportunity to direct cancer therapy development. Despite continued progress in profilingthe
phosphoproteomes of patients across different cancer types, challenges inherent to these types of data
hinder the identification of clinically relevant proteomic alterations. Here, we present DDMC: a clustering
and kinase prediction strategy that identifies signalingnodes by groupingphosphosites according to their
phosphorylation signal and aminoacid sequence. The cluster centers, by virtue of being summaries of the
phosphorylation changes of those phosphosites, can be used to establish associations with signaling re-
sponses. The sequence features of clusters can be used to identify the upstream kinases regulating
them. In doing so, this method reconstructs signaling networks into biologically meaningful clusters that
can be associated with cell responses and upstreamkinase drivers.

Cell Reports Methods 2, 100167,February 28, 2022ª2022 The Author(s). 1
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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determined or predicted by NetworKIN, an algorithm that uses
sequence motif and protein-proteinnetwork information(Linding
et al., 2007;Beekhof et al., 2019;Hornbeck et al., 2019).Finally,
Scansite predicts kinase-substrate interactions using sequence
motifs generated from oriented peptide library scanning experi-
ments (Obenauer et al., 2003). These methods, sometimes in
combination, help to reconstruct signaling pathway activities
fromindividualsamples.
However, due to several limitations, kinase-substrate infer-

ence still provides a limited view of signaling network changes.
Kinase predictionmethodsare necessarily dependent onhaving
well-characterized kinase-substrateinteractions, butmostofthe
phosphoproteome remains largely uncharacterized (Needham
et al., 2019).Just 20% ofkinases havebeen showntophosphor-
ylate 87% of currentlyannotated substrates, and around80% of
kinases have fewer than 20 substrates, with 30% yet to be as-
signeda singlesubstrate (Needhametal., 2019).Insightsdepen-
dent on this unequal knowledge distribution are less likely to
identify understudied protein kinases. An additional major chal-
lenge, particularly with discovery-mode multiplexed tandem
mass tag (TMT)MS, ismissingvalues. Thetechniqueprocesses
batches of samples with stochastic coverage in each experi-
ment. This means that the portion of the phosphoproteome
quantified in the samples of different TMT experiments varies
(Tabb etal., 2010).Computational toolsusually requirecomplete
datasets, and so data are frequentlypreprocessed by imputing
missing values—inflating the effect of certain measurements or
throwing out any peptides displaying missing values—at the
expense of losing critical information(Chen et al., 2020; Gillette
et al., 2020). Kinase enrichment and prediction methods are
furthercompromised by this problem.
Clustering methods, such as hierarchical clustering or

k-means, can be used to cluster phosphopeptides based on
similarities in the patterns of their abundance (Mertins et al.,
2016;Chen et al., 2020;Deb et al., 2020).Thisclustering criterion
results ingroupsofpeptides that display similarphosphorylation
patterns across conditions, but that may be targeted by sets of
differentupstream kinases that are notdirectly inferredby these
methods. The residues surroundingphosphorylation sites have
evolved to become fine-tunedmotifs that confer signalingspec-
ificity and fidelity (Zarrinpar et al., 2003;Tan et al., 2009).Clus-
tering based onmotif similarity might, therefore, improve model
interpretation by facilitating the identification of upstream ki-
nases modulatingclusters thatdisplay conserved sequence mo-
tifs. On the other hand, clusteringpeptides based on sequence
alone may result in groups of proteins that, while sharing the
same set of upstream kinases, are differently regulated due to
context. We therefore hypothesized thatcombining phosphory-
lation status and sequence similarity may enable a balanced
characterization of the cell signaling state.
Here, we present an algorithmknown as dual data and motif

clustering (DDMC) that probabilistically and simultaneously
models both the peptide phosphorylation variation and peptide
sequence motifsofpeptide clusters toreconstitute cell signaling
networks (Figure1).A keydistinctionofDDMC is that itanalyzes
multidimensionaldata, whereas kinase enrichmenttoolsoperate
on individual samples, relying on prior knowledge. Importantly,
DDMC clusters are not limited to pre-existent kinase motifs

and therefore do not rely on previous kinase-substrate charac-
terization.Thus,DDMC kinase predictions can lead to the asso-
ciation of understudiedkinases and phenotypic responses. We
propose that DDMC represents a unified alternative that over-
comes fundamental methodologic issues of current tools. To
test the utility of our method, we analyzed the phosphopro-
teomes of 110 treatment-naı̈ ve lung adenocarcinoma (LUAD)
tumors and 101 paired normal adjacent tissues (NATs) from
the National Cancer Institute (NCI)ʼs Clinical Proteomic Tumor
Analysis Consortium (CPTAC) LUAD study (Gillette et al.,
2020).We characterized the phosphoproteome of patients by
identifying those signaling signatures associated with tumori-
genesis, the presence of specific mutations, and tumorimmune
infiltration.In total, we demonstrated DDMC as a general strat-
egy for improvingthe analysis of phosphoproteomic surveys.

RESULTS

Constructing an expectation-maximizationalgorithm
tailored for clustering phosphoproteomic data
In seeking to cluster phosphoproteomic measurements, we
recognized that these data provide two pieces of information:
the exact site of phosphorylation on a peptide sequence and
some measure of abundance within the measured samples.
Both pieces of informationare critical to theoverall interpretation
of the data. Based on thisobservation, we built a mixturemodel
that probabilistically clusters phosphosites based on both their
peptide sequence and abundance across samples (Figure S1).
Ineach iteration,DDMC applies an expectation-maximizational-
gorithmto optimizeclusters that capture the average features of
member sequences and their abundance variation (Figures 1A
and S1). Both information sources—the peptide abundance
and sequence—can be prioritized during cluster fitting by a
weight parameter. With a weight of 0, DDMC becomes a
Gaussian mixturemodel (GMM) that exclusively clusters pep-
tides according to theirphosphorylationsignal. With avery large
weight, DDMC primarily clusters peptides according to their
peptide sequences. Clustering both the sequence and abun-
dance measurements ensures that the resulting clusters are a
functionof bothfeatures, which we hypothesized would provide
bothmoremeaningfuland robust clusters.
The resultingclusteringprovides coordinated outputsthatcan

be used in a few differentways. The cluster centers, by virtue of
beinga summaryfor the abundance changes of these peptides,
can be regressed against phenotypic responses (e.g., cell phe-
notypes orclinical outcomes) to establish associations between
clusters andresponse (Figure1B). Regression usingtheclusters
instead of each peptide ensures that the model can be devel-
oped despite relatively few samples, with minimal loss of infor-
mation since each peptide within a cluster varies in a similar
manner. One can also interrogate the position-specific scoring
matrices (PSSMs) from the resulting cluster sequence motifs.
Given a set of peptide sequences, PSSMs quantify the amino
acid frequencies across peptide positions and show to what
extent each residue is enriched or depleted per position (Fig-
ure1A).Thus,a clusterPSSM provides a generalrepresentation
of the cluster sequence features and can be readily compared
withotherinformation,such as experimentallygenerated profiles
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of putative upstream kinases via position-specific scanning
libraries (PSPLs) (Obata et al., 2000; Snyder et al., 2010). In
this technique, a kinase of interest is individually incubated
with each of 180different peptide libraries in which each library

contains a centralphosphoacceptor residue(S/TorY), a second
fixed aminoacid located any of the peptide residues spanning
positions 5 throughout+4relative to the phosphorylation site,
and a degenerate mixturecontaining all natural amino acids at

Nr Clusters = 4
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Figure 1. Schematic of the DDMC approach to cluster global signaling data and inferupstream kinases drivingphenotypes
(A) DDMC is run to cluster an input phosphoproteomic dataset to generate four clusters of peptides that show similar sequence motifs and phosphorylation
behavior.
(B) Predictive modelingusing clusters allows one to establish associations between specific clusters and features of interest.
(C) Putative upstream kinases regulatingclusters can be predicted by comparing the experimentallygenerated specificity profilesof upstream kinases (kinase
PSPL) and thecluster PSSMs PSSM; Position-specificscoringmatrix,PSPL; Position scanningpeptide library(Huttiet al., 2004;Begley et al., 2015).
See also FiguresS1 and S2.
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allotherpositions.Thekinaseandpeptide librariesare incubated
in the presence of radioactive ATP, which allows the quantifica-
tionofphosphorylationabundance per residue andpositionand
the identification of the kinaseʼs ʻʻoptimal̓ ʼ substrate motif. We
extracted a collection of 42kinase specificity profiles to identify
which cluster motifs most resemble the optimalmotifof putative
upstream kinases (Figure 1C) (Hutti et al., 2004; Miller et al.,
2008; Begley et al., 2015; van de Kooĳ et al., 2019).However,
as kinase-substrate specificity is also dictated by features
outside of the immediate substrate region, we also note that
our approach is more general than strictly assembling kinase-
substrate predictions, as non-enzymaticspecificity information
may be present in the DDMC sequence motifs. This overview
demonstrates how DDMC can take complex, coordinated
signaling measurements and find patterns in the phosphoryla-
tion signals to reconstruct signaling networks and associate
clusters and phenotypes.

DDMC robustly imputes missing values
A major limitation of discovery-mode MS-based phosphopro-
teomic data is the presence of missing values due to the sto-
chastic signalingcoverage in each run. In the resultingdataset,
many phosphosites are observed in groups of samples and
missed in others (Figure 2A). To evaluate the robustness of
DDMC inanalyzingincompletedatasets, we designed acompu-
tational experiment wherein we synthetically removed random
TMT experiments from the dataset and predicted them using
the peptide-assigned cluster centers. The mean squared error
of imputationwas compared with other commonly used strate-
gies, such as the peptidesʼ mean, filling in zeros, or matrix
completion by principal-componentanalysis (PCA) (Figure 2A).
We applied this experimentacross differentnumbersof clusters
and sequence weightingtoexplore the imputationperformance.
We observed that increasing thenumberof clusters consistently
improved performance (Figures 2B and 2C), whereas primarily
prioritizingthe sequence information yielded worse imputation
estimates (Figures 2D–2G). However, a weight of 100 still al-
lowedDDMC toaccurately predictmissingvalues whileincorpo-
rating the sequence information into the clustering criterion
(Figures 2C and 2E–2G). We concluded thatDDMC clearly out-
performs many common imputation strategies and imputes
missing values with similar accuracy to matrix completion by
PCA.

DDMC correctly identifies AKT1 and ERK2 as upstream
kinases of signalingclusters containing their substrates
A major benefit of directly modeling the phosphopeptide
sequence informationis theconstruction ofcluster motifsto infer
which putative upstream kinases might preferentially target a
specific cluster.Tovalidate thisability,we usedDDMC to cluster
the phosphoproteomic measurements of MCF7 cells treated
with a panel of 61 drug inhibitors reported by Hĳazi et al.
(2020). We hypothesized that the phosphoproteomic clusters
align to specific and identifiable targeted kinases. Examining
the clusters by PCA, the scores of AKT/PI3K/mTORtargeted in-
hibitors (shown inorange inFigure 3A) and the loadingof cluster
16were clearly opposed (Figures 3A and 3B). The additional in-
hibitors GSK2334470 and LY2584702 were also negatively

associated with cluster 1; both inhibitkinases PDK1 and S6K1,
respectively, expected to modulate the AKT/PI3K/mTORC
pathway. A heatmap displaying cluster 1ʼs phosphorylation
signal across treatments corroborates that the abundance of
these peptides is substantially decreased when treated with
AKT/mTOR/PI3K inhibitors (Figure 3C). Encouragingly, the AKT
profilewas mostclosely matchedtothePSSM ofcluster1within
a collection of 42differentkinase PSPL matrices (Figure 3D). In
addition,NetPhorest identifiedAKT as theeighthtopscoring up-
streamkinase ofcluster 1,furthercorroboratingDDMCʼs predic-
tion (Figure 3E).
As a second test, we extracted the sequences of experimen-

tally validated substrates of ERK2 to create an ʻʻartificialʼʼ
ERK2-specific PSSM positive control (ERK2+ motif) (Carlson
et al., 2011)(Figure 3F). As expected, ERK2 was predicted to
be the upstream kinase withthe highestpreference for theclus-
terʼs motif(Figure3G). Given theconsistent enrichmentofhydro-
phobic and polar residues throughout the entire ERK2 target
motif(Figure 3F), we asked whether randomlyshufflingthe clus-
ter PSSM positions surroundingthe phosphoacceptor residue
would affect the upstream kinase prediction. Randomization
led to a marked increase in the distance between the ERK2
specificity profile and the ERK2+ motif (Figure 3H). Clusters
from the CPTAC dataset that were preferentially favored by
ERK2 showed a similardecline in specificity between the clus-
ters PSSMs and ERK2 PSPL matrix on randomization(Fig-
ure 3H). This experiment shows that position-specific matching
information is contained within the ERK2 target motif despite
the uniform biophysical properties (Figures 3G and 3H). Alto-
gether, these results illustrate two different validation scenarios
in which DDMC successfully identifies the upstream kinases
regulatingclusters.

DDMC improves prediction of different phenotypes and
provides more robust clustering
As detailed later(Figures 5,6, and 7),we used DDMC toanalyze
the phosphoproteomes of 110 treatment-naı̈ ve LUAD tumors
and 101 paired NATs from the NCIʼs CPTAC LUAD study. We
used DDMC with the binomialsequence distance method and
30 clusters (Figures 1 and 2B–2D). We were able to include
30,561peptides thatwere notobserved in every sample through
ourability tohandlemissing data butstillfilteredout11,822pep-
tides that were only captured in one 10-plexTMT run. We used
this fitting result throughout the rest of this study. The resulting
cluster motifs can be found inFigure S2.
To evaluate the benefit of including peptide sequence infor-

mation during clustering, we investigated whether different
sequence weights wouldaffect theperformance ofa regularized
logistic regression model that predicts the mutational status of
STK11, whether a patient harbors a mutation in the epidermal
growth factor receptor (EGFRm), and the level of tumor infiltra-
tion (ʻʻhotʼʼ versus ʻʻcoldʼʼ). Three independent DDMC runs
were performed to observe the reproducibility of the prediction
results. We found that forall three phenotypes, optimal predic-
tionswere derivedwhenclusteringwas partlybased on thepep-
tide sequence—as highlighted in red circles. In the case of
STK11, the use of the maximumperformance is achieved with
a weightof 250.Likewise, EGFRm samples were best classified
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with a mixweight of 1,000.Finally, the regressionmodel classi-
fying whether a sample is ʻ̒ hot-tumor-enrichedʼ̓ (HTE) or ʻ̒ cold-
tumor-enrichedʼʼ (CTE) showed the best fitness with weights
spanning from 100to 750. Together, these results indicate that
observing the motif information during clustering leads to final
clusters that enhance the performance of downstream pheno-
type prediction models (Figures 4A and S3). Note that random
chance is equal to 0.5 and perfect predictions 1.0, so an

improvement of 0.1 (STK11 prediction) is a movement across
20% of this range.
Next,we exploredhow usingdifferentweights affects theover-

all phosphorylationsignal andsequence informationof the result-
ing clusters. To do so, we compared the model behavior after
clusteringtheCPTAC data witha weightof0 (peptideabundance
only), 100 (mix), and 1,000,000(mainly sequence). First, we hy-
pothesized that the abundance-only model would generate

Observed
Missing (NaN)

artificial
missingness

~10 samples each

artificial
missingness

Introduced NaNs,
actual values stores

Cluster
Centers

- Average
- Zero
- Minimum
- PCA

Imputed
value

A

B
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C D

Figure 2. Benchmarking the robustness of motif clustering to missing measurements
(A)A schematic oftheprocess for quantifyingrobustness tomissingvalues. Anypeptides containingfewer thanseven TMT experimentswere discarded. For the
remaining15,904peptides, an entire randomTMT experimentwas removed per peptide and these values were stored forlater comparison. Next, these artificial
missing values were imputed usingeither a baseline strategy (peptide mean signal, constant zero, or matrixcompletion by PCA with five components) or the
correspondingcluster center. Once a MSE was computed foreach peptide, thesecond iterationrepeats thisprocess by removinga second TMT experiment.
(B–G) A totalof fiverandomTMT experimentsper peptide were imputedby clusteringusinga differentnumberof clusters (B–D) or differentweights (E–G). Note
that the minimumsignal imputationis not shown for clarity since its prediction performance was dramatically worse.
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clusters wherein its members would show less intra-clustervari-
ation in phosphorylation signal and thus a lower mean squared
error (MSE). To test this, we computed the average peptide-to-
clusterMSE of2,000randomlyselected peptides foreach model
across all clusters. We observed a direct correlation between
weightandMSE (Figure4B). Next,we calculated thecumulative

PSSM enrichment by summing the sequence information(bits)
of all cluster PSSMs per model. As expected, increasing the
weight led to a corresponding increase in the cumulative
sequence information(Figure 4C). We additionallyobserved that
theclusteringresultsgeneratedby DDMC are noticeablydifferent
fromthose of eight standard clusteringmethods (Figure S4).

Acidic
Basic
Amidic
Nonpolar
Polar

A B

D

F G H

E

C

Figure 3. Validation of upstream kinase predictions
(A and B) PCA analysis of the DDMC phosphoproteome clusters ofMCF7 cells subjected to a drugscreen (Hĳaziet al., 2020).
(C) Heatmap showing the effect of inhibitorson the phosphorylation signal of cluster 16.
(D) DDMC upstream kinase prediction of cluster 16.
(E) NetPhorest upstream kinase prediction of cluster 16.
(F) Resulting PSSM generated usingreported ERK2 substrates (Carlsonet al., 2011).
(G) Upstream kinase predictions of CPTAC clusters 3, 7, and 21 in addition to the ERK2 motifshown in (F).
(H) Upstream kinase predictions of the same PSSMs after randomlyshufflingthe motifpositions.
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We compared the classification performance of four regular-
ized logistic regression models fit either the DDMC clusters,
clusters generated by the standard methods GMM and
k-means,or the raw phosphoproteomic data directly. It is worth
noting that unlike DDMC, methods such as GMM, k-means,or
direct regression cannot handle missing values. and thus for
these strategies we used the 1,311peptides thatwere observed
in all samples, whereas DDMC was fit to the entire dataset
comprising 30,561 phosphosites. In predicting STK11 muta-
tional status, we found that DDMC fit to the fully observed
1,311 peptides yielded a moderately higher prediction perfor-
mance than k-means,GMM, and DDMC fitto theentire dataset
with missingness (Figure S3A). EGFR mutational status was
noticeably better classified with both DDMC fittings (with and
without missingness) than with k-means and GMM. Direct
regression to the raw signaling data yielded excellent perfor-
mance; however, thisstrategy assigns thousandsof coefficients
to different peptides that vary every time the model is run,
renderingthis approach unable toestablish a consistent linkbe-
tween phenotypes and signaling (Figure S5D). These results
show that using DDMC with a mixedweight that similarlypriori-
tizes both information sources—peptide abundance and
sequence—leads to more robust clustering of phosphosites
through a tradeoff between phosphorylation abundance and
sequence motifs.

Widespread, dramatic signaling differences exist
between tumor and normal adjacent tissue
We explored whether DDMC could recognize conserved
signaling patterns in tumors compared with NAT. The signaling
difference between tumors and NAT samples was substantial,

highlightingthe significant signaling rewiring in tumor cells (Fig-
ure 5A). Using PCA, we could observe that NAT samples were
more like one another than to each tumor sample (Figures 5B
and 5C). Nearly every cluster was significantly different in its
average abundance between tumor and NAT (Figures 5C and
5D).Not surprisinglygiven these enormousdifferences, samples
could be almost perfectly classified using theirphosphopeptide
signatures, with or without DDMC (Figures 5E and S5A–S5C).
However, directly classifying samples using the unclustered
phosphoproteomic data and a regularized logistic regression
model generates phosphosite weights that vary across runs.
For instance, we saw that the associations of peptides MYH9:
S1943-p, IFT140: S1443-p, and NCK1: Y105-p were selected
in two runs but had an opposite association with sample status
(Figure S5D). Using the DDMC clusters, a logistic regression
model identified consistent associations between NAT versus
tumor status and clusters 6, 15, and 20 (Figures 5E and 5F).
With the abundance changes and regression results we
observed, we furtherexplored these three clusters.

Our DDMC results suggest that downregulationof NEKs and
CLK2 promote cilia disassembly and migration in cancer cells,
respectively, while CK1 activity correlates with tumor-specific
signalingregulatingcell cycle. Peptides incluster 6, presumably
targeted by NEK1&4, associate with hepatocyte growth factor
(HGF) receptor signaling as well as cytoskeletal remodeling
phenotypes (Figures 5G and S6A). Even thoughNEKs are fairly
understudied, NEK1 has an established role in ciliagenesis
and NEK4 is involved in regulating microtubule dynamics
(Moniz et al., 2011; Meirelles et al., 2014).The absence of cilia
in cancer cells promotes malignancy (Plotnikova et al., 2008;
Fabbri et al., 2019), and NEK-regulated cluster 6 displays a

A B C

Figure 4. Sequence informationenhances model prediction and provides more robust clustering
(A) Performance of a regressionmodel predictingthe mutationalstatus of STK11 and EGFR, and the level oftumorinfiltrationinLUAD patients usingeither only
phosphorylation abundance (weight =0), mainly sequence information(106),or both (0 <w % 106). Error bars indicate the standard error of the mean.
(B) MSE between the phosphorylationsignal of 2,000randomlyselected peptides and the center of its assigned clusters usinga weightof 0 (p-Abundance),250
(Mix), or 106 (Sequence).
(C) Cumulative PSSM enrichment across positions comparing the p-Abundance,Mix, and Sequence clustering strategies. Error bars indicate the 95% confi-
dence interval. The bottom and top of the box indicate the 25thand 75th percentiles. The line inside the box is the median.
See also FigureS3
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strikingphosphorylation decrease in tumorsamples compared
with NATs, which mightresult incilia disassembly. Interestingly,
cluster 23, also downregulated in tumors, presents a motif
favored by NEK1&3 and shows a marked enrichment of cilia-
related processes (Figures 5Dand S6A).

Similarly, cluster 15 is dramatically upregulated inNAT versus
tumor samples, contributes toward correctly classifying NAT
samples, and DDMC predicts CLK2 to be the most promising
candidate for regulatingits activation. CLK2 is a largely under-
studied dual specificity kinase known toact as an RNA splicing

A

C

E F G

D

B

Figure 5. Conserved tumor differences compared with normal adjacent tissue
(A) Hierarchical clusteringof theDDMC cluster centers.
(B and C) PCA scores (B) and loadings (C) of the samples and phosphopeptideclusters, respectively.
(D) Phosphorylation signal of tumorand NAT samples per cluster and statistical significance according to a Mann-Whitney U rank test (*p <0.05; **p<0.001).
(E) Receiver operatingcharacteristic curve (ROC) of a regularizedlogistic regressionmodel.
(F) Logistic regression weights per cluster.
(G) Upstream kinase predictions of clusters 6, 15,20, and 23.
See also FigureS5
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regulator.Gene set enrichmentanalysis (GSEA) indicates thatin-
tegrin-mediatedcell adhesion, cell junctionassembly, and orga-
nization are the biological processes with highest enrichment
scores (Figure S6A and S6B). These data are consistent with
theobservation thatCLK2 downregulationenhanced cell migra-
tion and invasion and upregulated epithelial-to-mesenchymal
transition (EMT)-related genes (Yoshida et al., 2015).
Conversely, the phosphorylation signal in cluster 20 is signifi-

cantly higher in tumors compared with NATs and explains tu-
mor-specific signaling that could be driven by CK1 (Figures 5D
and 5F). CK1 has been identifiedto induce acquired resistance
to theEGFR inhibitorerlotinibin several EGFR-mutant non-small
celllungcancer(NSCLC)celllines(Lantermannetal.,2015).Taken
together, DDMC builds phosphoproteomic clusters that present
signaling dysregulation common to tumors compared with NATs
and identifiesputative upstream kinases modulatingthem.

Genetic driver mutations are associated with more
targeted phosphoproteomic rewiring
Tyrosine kinase inhibitors(TKIs) targeting the receptor tyrosine
kinase (RTK) EGFR are effective treatments in cancer patients

with EGFRm. However, these treatments are limited by drug
resistance, which in some cases is mediated by cell signaling
rewiring that bypasses EGFR inhibition. Thus, we aimed to
identify thephosphoproteomic aberrations triggeredby mutant
EGFR.
Most clusters were significantlyaltered on average, generally

toward higher abundances with an EGFR mutation(Figure 6A).
The cluster centers corresponding toeach patientʼs tumorsam-
ples, excluding NATs, could successfully predict the EGFR
mutational status by regularized logistic regression. We
observed the largest statistically significant phosphorylation
abundance increase in EGFRm samples with cluster 5 (Fig-
ure 6B). Moreover, the regression model identified clusters 16
and 27 to explain the signaling differences between EGFRm
and wild-type (WT) samples, respectively (Figure 6C). DDMC
identified PKC, PKA, and PIM1, respectively, as putative up-
stream kinases of clusters 5, 16, and 27 (Figure 6D). As elabo-
rated below, our data suggest that EGFRm tumors might be
regulated by two groups of proteins acting downstream of
PKC and PKA, whereas PIM1 might support the signaling of
EGFR WT tumorsthat are possiblydrivenby furtherRTKs.

A

C D E

B

Figure 6. Phosphoproteomic aberrations associated with EGFR mutational status
(A) Phosphorylation signal of EGFR WT and mutant samples per cluster and statistical significance according to a Mann-Whitney U rank test (*p <0.05;
**p<0.001).
(B and C) ROC of a logistic regressionmodel predicting the EGFR mutationalstatus and (C) its correspondingweights per sample type.
(D) Putative upstream kinases of clusters 5, 16,and 27.
(E) Volcano plot showing the differentialprotein expression between EGFR WT and mutant samples. Colored dots are statistically significant according to a
Mann-Whitney U rank test (p values <0.05).
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IndifferentEGFR-dependent tumors,PKC—putative regulator
of cluster 5—has been shown to mediate receptor transactiva-
tion, induce mTOR signaling, and confer acquired resistance to
EGFR inhibitors(Stewart andOʼBrian, 2005;Fan etal.,2009;Sal-
ama et al., 2016;Chen et al., 2021).Enrichment analysis of the
globalproteinexpressiondata across all tumorsamples showed
that the heme degradation pathway enzymes BLVRA and
HMOX2, as well as the mitogenic kinase RPS6KA1, among
others, are significantly upregulated in EGFRm samples (Fig-
ure 6E). Consistent with the DDMC prediction, the kinase do-
mains of RPS6KA1 and BVLRA are phosphorylated by PKC
(Meshki et al., 2010;Miralemet al., 2012).GSEA shows an over-
representationof theEGFR, humanepidermal growthfactor re-
ceptor (HER), and vascular endothelial growth factor receptor
(VEGFR) signaling pathways in cluster 5, which might suggest
crosstalk among the three RTKsʼ signaling(Figure S6A).
PKA, which might regulate cluster 16, is crucial for EMT,

migration and invasion, and tumorigenesis (Shaikh et al., 2012;
Coles et al., 2020).This kinase induces the activation of EGFR
and its inhibition leads to a ligand-independent degradation of
the receptor (Chen et al., 2002; Piiper et al., 2003; Oksvold
et al., 2008;Feng et al., 2014).The EGFR and VEGFR signaling
pathways are also enriched in cluster 16 alongside the ATM
pathway (Figure S6A).
PIM1 mightact upstream ofcluster 27,which inturnisupregu-

lated inEGFR WT tumorsamples (Figures6A,6C, and6D).PIM1
is an established oncogenic driver, and its inhibitionwas shown
to re-sensitizecancer cells to radiotherapyas well as c-MET and
ALK inhibition in NSCLC tumors (Kim et al., 2013; Cao et al.,
2019; Trigg et al., 2019; Attili et al., 2020). Interestingly, the
c-MET ligandHGF ismoreabundantinEGFR WT samples (Fig-
ure6E). Moreover, activationof theKIT receptor, which can also
mediatebypass resistance to targetedtherapies and is enriched
inEGFR WT samples, is reportedlyregulated,at least inpart, by
PIM1 (An et al., 2016; Dziadziuszko et al., 2016; Ebeid et al.,
2020)(Figures 6D and 6E). In total, our analysis identifies a
consistent association between EGFR activity with established
and previously unknown signalingmechanisms.
Finally, toshow thatDDMC can accurately predict othergeno-

types, we again used the signaling cluster centers with regular-
ized logistic regression to classify the mutational status of
STK11. Inactivating somatic mutations in the tumorsuppressor
STK11 leads to increased tumorigenesis and metastasis (Ji
et al., 2007).This context is consistent with ourresults that clus-
ters 9 (TLK1) and 11 (CK2) are associated with STK11m
signaling, whereas clusters 16 (PKA) and 18 (CK1) are associ-
ated withWT samples (Figure S7).

Exploration of immune infiltration-associated signaling
patterns in tumors
Immune checkpoint inhibitors (ICIs) have emerged as effective
treatment options forNSCLC patients. However, there still is a
need to identifyor influencewhich patients will respond to these
therapies. Patients whodonotrespondtoICIs oftenhave tumors
with poor immune infiltrationeither inherently or via an adaptive
process after longexposure to thedrug.However, the signaling
mechanism by which malignant cells prevent tumor infiltration
remains elusive. We used our DDMC clusters to explore the

shared signaling patterns that differentiate HTE from CTE
LUAD patients.HTE and CTE status per patientwas determined
using xCell (Aran et al., 2017;Gillette et al., 2020).
Only cluster 21 had a significantly different abundance be-

tween CTE and HTE samples (Figure 7A); however, infiltration
status could still be accurately classified using combinations of
theDDMC clusters. Thispredictive performancewas mainly ex-
plained by a positive association of cluster 17 with HTE status
andclusters 20and21withCTE samples. Otherclusters contrib-
uted to explain the signaling differences between both groups
but to a lesser extent (Figure 7B). These results prompted us to
further investigate clusters 17, 20, and 21, which our model in-
ferredwere regulatedbyCK2/TGFBR2, CK1, andERK2, respec-
tively (Figure 7C). We found that CK2 and TFGBR2 associate
with the regulation of B cell homeostasis in HTE samples,
whereas CK1 and ERK2 correlate with the activity of immuno-
suppressive regulatoryT cells (Tregs) in CTE samples.
We performedGSEA on these threeclusters usinga compen-

dium of gene sets associated with immunological signatures
(Godec et al., 2016).Cluster 17 presents a marked enrichment
of downregulated genes upon lipopolysaccharide stimulation,
an upregulation of B cell- over eosinophil-specific genes, the
enrichment of genes upregulated by an influenza vaccine, and
genes upregulated in immunoglobulin(Ig)D+B cells. Thus, these
mightsuggest thatCK2 andTGFBR2 could regulatecluster17to
direct B cell homeostasis. In linewiththis interpretation,a recent
study foundthatCK2 knockoutinB cells resultedin lower B cell
receptor signaling, which perturbed B cell differentiation (Wei
et al., 2021). Transforming growth factor (TGF)-b signaling is
involved in several processes regulatingB cell maturation.For
instance, a study showed that IgD+B cells were observed in
the presence of TGF-b signaling, whereas genetic deletion of
the receptor led to complete loss of IgD (Albrightet al., 2019).
Consistent with their higher abundance in CTE samples and

negative logistic regression coefficients, both cluster 20and 21
showed enrichmentofseveral phenotypes describing the induc-
tionofTregs. ERK2 is knowntomodulatePD-L1 expressionand
its inhibitionhas been shown to improve anti-PD-L1blockade in
several cancer types, includingNSCLC (Ng et al., 2018;Kumar
et al., 2020; Henry et al., 2021; Luo et al., 2021). Conversely,
while CK1 is associated with tumorigenesis, tumorgrowth, and
drug resistance in cancer cells, its role indifferent immunecells
and its ability to promote immune evasion has not been ad-
dressed. Overall, these data demonstrate that the presence or
lack of tumor immune infiltrationcan be accurately predicted
by the DDMC clusters, which in turn help identify putative up-
stream kinases modulating immuneevasion.

DISCUSSION

Phosphorylation-based cell signaling through the coordinated
activity of protein kinases allows cells to swiftly integrate envi-
ronmental cues and orchestrate a myriad of biological pro-
cesses. MS-based global phosphoproteomic data provide the
unique opportunity to globally interrogate signaling networks to
better understand cellular decision-making and its therapeutic
implications. However, these data also present challenging is-
sues because of their incomplete and stochastic coverage,
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high-content but low-sample throughput, and variation in
coverage across experiments. Here, we propose a clustering
method, DDMC, that untangles the coordinated signaling
changes by grouping phosphopeptides based on their phos-
phorylation behavior and sequence similarity (Figure 1). To test
the utility of DDMC, we clustered the phosphoproteomes of
LUAD patients andused theresultinggroupsofpeptides todeci-
pher signaling dysregulation associated with tumors, genetic
backgrounds, and tumor infiltrationstatus (Figures 5, 6, and 7).
Previous efforts in regressing MS-based phosphorylation

measurements against phenotypic or clinical data have been
based on the ability of certain regression models such as
PLSR or LASSO to robustly predict using high-dimensional
and correlated data (Kourou et al., 2015).While these models
can generally be predictive with such data, they are not easily
interpretable (Figure S5D). We hypothesized that clustering
large-scaleMS measurementsbased onbiologicallymeaningful
featuresandusingthecluster centers could enhance thepredic-
tive performance of the model while providing highly interpret-
able results, wherein clusters constitute signaling nodes
distinctly correlated with patient phenotypes. Here, we demon-
strate thatDDMC enhances model prediction and interpretation
(Figures 3, 4A, and S3).

A key benefit of DDMC is that the identified clusters are not
limited to pre-existingmotifs and are therefore not dependent
on prior experimentally validated kinase-substrate interactions.
This method could therefore likely improve our understanding
of the signaling effects of understudied kinases. For instance,
ourmodel predicts thatNEKs promote,at least inpart, a cluster
with strikingly increased signaling in NATs compared with tu-
mors. Further exploration of this cluster led us to hypothesize
that the lack ofNEK signalingintumorsamples mightbe associ-
ated with the absence of cilia in lung tumors (Figures 5G and
S6A). In addition, we show that cluster 20 greatly contributes
toexplaina lowimmuneinfiltrationstatus andmightbe regulated
by thekinaseCK1, which toourknowledgehas notbeen studied
inthiscontext.While DDMCmodels thepeptide sequence infor-
mation withoutany constraints or assumptions defined by prior
knowledge, the method could be easily adapted to populate
clusters withthesubstrate motifinformationofspecific upstream
kinases. This ʻ̒ fixedʼ̓ method could help improve granularity
withina specific kinase signalingpathways.
An additional major challenge during the analysis of large-

scale signalingdata ismissingness.Statistical toolsoftenrequire
complete datasets and, while researchers can use standard
methods to imputemissing values such as the peptidesʼ mean

A
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Figure 7. Phosphoproteomic signatures correlating with tumor immune infiltration
(A)Phosphorylation abundance of CTE and HTE samples per cluster and statistical significance according toa Mann-WhitneyU ranktest (*p<0.05;**p<0.001).
(B) Mean ROC and coefficients of a logistic regression model predicting infiltrationstatus—cold-tumorenriched (CTE) versus hot-tumorenriched (HTE).
(C) Putative upstream kinases of clusters 17, 20,and 21.
(D) GSEA of immunologicalprocesses.
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signal, imputation strategies generally work best when missing
values only comprise a small fraction of the dataset (Chen
et al., 2020; Deb et al., 2020; Gillette et al., 2020). In this study
we show thatDDMC can modela dataset of30,561peptides af-
ter filteringoutany phosphosites that were not captured inmore
than one TMT run (up to 80% of missingness) by imputation
during the expectation-maximization (EM) fitting process (see
STAR Methods). Furthermore, DDMC clearly outperforms the
imputationperformance ofusingthepeptidesʼ mean orconstant
zero and provides similar results to PCA imputation (Figure 3).
This important feature could offer the possibility of conducting
pan-cancer phosphoproteomics studies using readily available
large-scale clinical phosphoproteomic data by overcoming the
fractional overlap inpeptide coverage.

More generally,DDMC is tailoredtomodelanybiologicaldata-
sets that combine a given signal with sequence information.In
addition to TMT multiplex liquid chromatography-tandem MS
datasets (as used here), this method may be equally useful
withothertechniquessuch as targetedMS via data-independent
acquisition (Venable et al., 2004; Gillet et al., 2012). Beyond
phosphoproteomics, DDMC can also be used to cluster tran-
scription factor motifs or neoantigen sequences coupled with
their gene or protein expression data. The benefit of buildingal-
gorithms combining different information sources is evident in
previously published approaches. For instance, INKA predicts
active kinases by integratingscores reflectingbothphosphoryla-
tion status and substrate abundance (Beekhof et al., 2019). A
similar approach to that taken here could be applied with other
generative algorithms,such as probabilistic PCA orprobabilistic
generative adversarial networks, with similar benefits. Inte-
grating yet other information may reveal further improvements
in the dimensionality reduction and interpretation of other high-
throughputmolecular measurements.

In total, we show that combining the information about the
sequence features and phosphorylation abundance leads to
more robust clustering of global signaling measurements. Use
of the DDMC clusters to regress against cell phenotypes led to
enhanced model predictions and interpretation. Thus, we pro-
pose DDMC as a general and flexiblestrategy for phosphopro-
teomic analysis.

Limitations of this study
Ourpresent analysis is limitedtoa singleclinical phosphoproteo-
mics dataset. Examining other datasets, and integrating
phosphoproteomics measurements with other molecular mea-
surement modalities, will reveal new insights and other ways to
improve the model. For instance, it remains unclear how
DDMC might perform with smaller cohorts or with measure-
ments across differentcancer types.

DDMC interpretation is enhanced by comparing the resulting
clusterPSSMs withkinasespecificitydatasuchas PSPL toiden-
tifyputative upstreamkinases foreach cluster. Validationexper-
imentsshowed thatDDMC was able tocorrectly associate AKT1
and ERK2 with clusters containing their respective substrates
(Figure 3). Kinase specificity is defined by additional features
beyond the phosphosite motif, however, such as kinase-sub-
strate co-localization, regulation by phosphosite-binding do-
mains (e.g., SH2, PTB domains),or docking. These otherkinase

regulatoryprocesses could compromisekinase-clusterassocia-
tions established by DDMC. Refined methods of quantifyingki-
nase specificity, alongside adjustments to DDMC to account
for these other regulatory processes, could improve both up-
stream kinase predictions and the resulting peptide clustering
(Shah et al., 2018).
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METHOD DETAILS

Expectation-maximization(EM) algorithm architecture
We constructed a modifiedmixturemodel thatclusters peptides based on boththeirabundance across conditions and sequence.
The model is defined by a given number of clusters and weighting factor to prioritizeeither the data or the sequence information.
Fitting was performed using expectation-maximization, initialized at a starting point. The starting point was derived from k-means
clusteringtheabundance data aftermissingvalues were imputed.Duringtheexpectation (E) step, thealgorithmcalculates theprob-
ability of each peptide being assigned to each cluster. In the maximization(M) step, each clusterʼs distributions are fit using the
weighted cluster assignments. The peptide sequence and abundance assignments within the E step are combined by taking the
sum of the log-likelihoodof both assignments. The peptide log-likelihoodismultiplied by the user-definedweighting factor immedi-
ately before to influenceits importance. Both steps repeat untilconvergence as defined by the increase in model log-likelihoodbe-
tween iterations falling below a user-definedthreshold.

Phosphorylation site abundance clustering in the presence of missing values
We modeled thelog-transformedabundance ofeach phosphopeptide as followinga multivariateGaussian distributionwithdiagonal
co-variance matrix.Each dimensionofthisdistributionrepresents theabundance of thatpeptide withina givensample. For example,
withina data set of 100patients and 1000peptides, using 10clusters, the data is represented by 10 Gaussian distributionsof 100

REAGENT orRESOURCE SOURCE IDENTIFIER
Deposited data
LUAD phosphoproteomics, proteomics,
and clinical data

Gillette et al., 2020 https://cptac-data-portal.georgetown.edu/
study-summary/S056

UpstreamkinasePSPLs Begley et al., 2015;Horn et al., 2014;Miller
et al., 2008;Obata et al., 2000;van de Kooĳ
et al., 2019

https://netphorest.info/download.shtml

Software and algorithms
Python v3.9 Python Software Foundation https://python.org/
R The R Foundation https://r-project.org/
NetPhorest Horn et al., 2014 https://netphorest.info/download.shtml
Bioinfokit 0.3 NA https://pypi.org/project/bioinfokit/0.3/
clusterProfiler 4.2 Wu et al., 2021 https://guangchuangyu.github.io/software/

clusterProfiler/
DDMC This paper https://doi.org/10.5281/zenodo.5856274
fancyimpute v0.5.5 NA https://github.com/iskandr/fancyimpute
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dimensions. Unobserved/missing values were initially indicated as NaN and subsequently imputed using the method SoftImpute
(using the package fancyimpute) upon model initialization.Duringevery iteration of the EM algorithm, the missing values are then
updated according to the currentmodel. Any peptides that were detected in only one TMT experimentwere discarded.

Sequence-cluster comparison
PAM250
Duringmodel initialization,the pairwise distance between all peptides in the dataset was calculated using thePAM250 matrix.The
mean distance fromeach peptide to a given cluster could thenbe calculated by:

w =1
nðP, vÞ

where P is then3 ndistance matrix,n is thenumberofpeptides inthedataset, v istheprobabilityofeach peptide beingassigned to
the cluster of interest, and w is the log-probabilitiesof cluster assignment.
Binomial enrichment
We alternativelyused a binomialenrichmentmodel forthesequence representationofa clusterbased on earlierwork (Schwartz and
Gygi, 2005).Upon model initialization,a background matrix i 3 j 3 k was created with a position-specific scoring matrixof all the
sequences together.Next, a data tensorTTwas created where i is thenumberofpeptides, j is thenumberofaminoacid possibilities,
and k is the position relative to the phosphorylationsite. This tensor contained 1 where an amino acid was present for thatposition
and peptide, and 0 elsewhere.
Within each iteration, the cluster motifwould be updated using v, the probabilityof each peptide being assigned to the cluster of

interest. First, a weighted count for each amino acid and positionwould be assembled:

k = ðTu ,vÞu

Because peptides can be partiallyassigned to a cluster, the counts ofeach amino acid and positioncan take continuousvalues.
We therefore generalized the binomialdistributionto allow continuous values using the regularizedincomplete Beta function:

M =Bðkv! k1 k; k +1;1 GÞ

Finally, the log-probabilityof membership for each peptide was calculated based on the product of each amino acid-position
probability.

w =logðT 3 MÞ

We confirmedthat thisprovided identical results toa binomialenrichmentmodel forintegercounts of aminoacids butallowed for
partial assignment ofpeptides to clusters.

Quantifying the influence of sequence versus data
Themagnitudeof the weightused to scale the sequence and data scores is arbitrary.We do knowthatwitha weightof0 the model
onlyuses thephosphorylationmeasurements. Alternatively, withanenormously largeweight themotifinformationisprioritized.How-
ever, we do notknow towhat extenteach informationsource is prioritizedingeneral. Therefore,toquantifythe relative importanceof
each type of data, we calculated our clustering results at each weightingextreme, and then calculated the Frobenius normof the
resultingpeptide assignments between those and the clustering of interest.

Generating cluster motifs and upstream kinase predictions
For each cluster we computed a position-specific-scoringmatrix(PSSM). To doso, we populated a residue/positionmatrixwith the
sum of the corresponding cluster probabilities for every peptide. Once all peptides were accounted for, the resultingmatrixwas
normalized by averaging the mean probability across amino acids and log2-transformingto generate a PSSM. In parallel, we
computed a PSSM includingall sequences that served as background to account for the differentamino acid occurrences within
thedata set. Then,we subtracted each clusterPSSM with thebackgroundPSSM to generate thefinalenrichmentscores. Positive
scores represent enriched residues while negative scores represent depleted amino acids across positions. Next, we extracted
several kinase specificity profilingresults (PSPL) from the literature (Miller et al., 2008; Alexander et al., 2011;Begley et al., 2015;
van de Kooĳet al., 2019).The distance between each cluster PSSM and kinasePSPL motifwas calculated usingby the Frobenius
normof the difference between both matrices, considering only positive enrichment scores. Motif logo plotswere generated using
logomaker (Kinney, 2019).

Evaluate clustering by imputationof values
Toevaluate the abilityofourmodel tohandle missingvalues, we removed random, individualTMT experimentsforeach peptide and
used themodel to imputethese values. We thencomputed themeansquared errorbetween theactual values andpredictionsmade
by each method. We calculated the reconstruction error across different combinations of cluster numbers and weights using the
same process.
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Associating clusters with molecular and clinical features
To findclusters that tracked with specific molecular or clinical features we implemented two differentstrategies: logistic regression
and hypothesis testing. For binary problems such as tumor vs NAT samples or mutational status we used l1-regularizedlogistic
regression andtheMann-WhitneyU ranktest. Intheformer,we triedtopredict thefeatureof interestusingthephosphorylationsignal
of thecluster centers, whereas inthe latter, foreach cluster we splitallpatientsaccording to theirspecific featureand tested whether
the difference in the median signal between both groups was statistically different. We performed Bonferroni correction on the
p-values computed by the Mann-Whitney U rank test. GSEA analysis was performed using clusterProfiler (4.0.2) implemented in
R. The enrichmentmethodused was ʻʻenrichWPʼʼ or ʻʻenrichGOʼʼ (WikiPathway orGeneOntology gene sets) withthep-valueadjust-
ment methodwas set to Bonferroni (Wu et al., 2021).

QUANTIFICATIONAND STATISTICAL ANALYSIS

All the statistical and quantificationdescriptions of each analysis can be found inthe correspondingfigurelegends and results sec-
tions.Thestatistical enrichmentofphosphorylationabundance between differentbinaryphenotypes (tumorvs NAT,mutationvs WT,
orHTE vs CTE) was calculated usingtheMann-WhitneyU ranktest,witheach subjects tumortreatedas an independentobservation
(N=110).Thetest resultswere adjusted formultipletests via Bonferroni̓ s correctionmethod. ʻ̒ *ʼ̓ means thatthep-valueis lower than
0.05but higher than 0.001and ʻ̒ **ʼ̓ that it is lower than 0.001.The volcano plot showing up-and down-regulated proteins in EGFR
mutantvs WT samples was generated aftercalculating theirlog2fold-changeandp-valuesaccording toa Mann-WhitneyU ranktest
usingBonferroni̓ s correction formultipletests. Biokit v.2.0.8was used to generate thevolcano plotusingthedefault logfoldchange
and p-value cutoffs set to 1.0 and 0.05, respectively.
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SUPPLEMENTAL INFORMATION

Figure S1: Schematic of the DDMC simultaneous data and peptide sequence clustering approach. Related to
figure 1. Peptides are initialized into clusters at random. The measurements of abundance are represented by a
multivariate Gaussian mixture model where each dimension of the distribution represents the abundance within a
sample. Next, an expectation-maximization fitting scheme is used. During the expectation step, the distance of each
peptide sequence to each cluster is calculated. This is done either through a binomial enrichment scheme (method 1,
derived from (Schwartz and Gygi, 2005)) or using the average PAM250 distance (method 2). In parallel, the
distance of each peptide abundance is compared to the cluster centers. These two distances are combined to update
the assignments of each peptide to each cluster. During the maximization step, the cluster centers of the data are
updated based on the weighted average of the peptide abundances in each condition. The peptide motifs are
similarly updated through a weighted combination of the assigned peptides. Both steps continue sequentially until
the change in peptide assignments between each iteration drops below a threshold.
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Figure S2: Logo plots of all CPTAC Cluster PSSMs. Related to figures 4-7. (A-U) Sequence motifs of clusters 1
through 30. Note that clusters that are not shown do not contain any peptides that are most likely assigned to them
and that only 2 peptides are assigned to cluster 24. Amino acid types per color: Red=Acidic, Blue=Basic,
Pink=Amidic, Black=Nonpolar, Green=polar.
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Figure S3: Effect of sequence information on predictive performance. Related to figure 4. A) Prediction of
STK11m using either using DDMC fit to the complete data set with missingness (30,561 peptides) or the portion of
the data without missingness (1,311 peptides). Using the data set without missing values, STK11m was predicted
without clustering, with k-means, or GMM. The same approach was repeated to predict EGFRm. A regularized
logistic regression model was used to predict the mutational statuses. B) Performance of a regression model
predicting the mutational status of STK11 (blue) EGFR (yellow) and tumor infiltration level (hot versus cold)
(green) in LUAD patients using either only phosphorylation data (1000,000), mainly peptide sequences (106), or a
mix (50, 100, 250, 500, 750, 1000). Red circles denote the best predictive performance among weights.
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Figure S4:Mutual adjustment information across clustering methods. Related to figure 4. 8 different standard
clustering methods and DDMC were fit to the phosphoproteomic data set generating 30 clusters. The peptide cluster
assignments of each clustering method case were pairwise compared by calculating the adjusted mutual information
score. Nearest neighbors was the affinity method used for spectral clustering, the remaining methods were run with
the default parameters provided within scikit-learn (Zhang, Ramakrishnan and Livny, 1996; Knyazev, 2001;
Comaniciu and Meer, 2002; Frey and Dueck, 2007) .

MUTUAL ADJUSTED INFORMATION
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Figure S5: Additional modeling strategies to find conserved tumor differences compared to NATs. Related to
figure 5. A-B) ROC plot of a logistic regression model fit to the complete portion of the signaling data set clustered
by k-means and GMM. C-D) ROC plot of a logistic regression model fit to the complete portion of the
phosphoproteomic CPTAC LUAD data set and (D) phospho-peptides with largest weights (w < 0.5 | w < -0.5)
explaining the observed differences between tumors and NATs in two separate runs.
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Figure S6: Biological processes enriched in phosphoproteomic clusters. Related to figures 5-7. A) GSEA per
cluster using WikiPathway’s gene set. B) Gene ontology analysis of cluster 15. GSEA was implemented using
clusterProfiler (Wu et al., 2021).
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Figure S7: Prediction of patient samples harboring STK11 mutations (STK11m). Related to figure 6. A)
Phosphorylation signal of DDMC clusters grouped by STK11m and WT samples. Its statistical significance is
indicated on the top part of the plot via a series of Mann Whitney rank test. B) ROC plot of the logistic regression
model fit to the DDMC clusters. C) Logistic regression weights explaining classification of mutational status. D)
Upstream kinase predictions of clusters 9, 11, 16, and 18.
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Abstract 

Receptor tyrosine kinase (RTK)-targeted therapies are often effective but invariably limited by 

drug resistance. A major mechanism of acquired resistance involves “bypass” switching to 

alternative pathways driven by non-targeted RTKs that reactivate proliferation. Overexpression of 

the RTK AXL is frequently observed in bypass resistant tumors which, in addition to cell survival, 

drives further malignant phenotypes such as EMT and migration. However, the signaling 

molecules and pathways eliciting these responses remain elusive. To explore these coordinated 

effects, we generated a panel of mutant lung adenocarcinoma (LUAD) PC9 cell lines in which 

each AXL intracellular tyrosine is mutated to phenylalanine. Measuring phosphorylation signaling 

alongside several phenotypic changes associated with resistance, we related specific signaling and 

phenotypic changes through multivariate modeling. Our model identified an “AXL downstream 

signature” that correlates with progressive disease and poor clinical outcomes in patients. This 

signature comprises the activation of two signaling cores correlating with cell proliferation and 

migration; on one hand SFK, ABL1, and FAK acting upstream of the transcription factor YAP, 

and on the other hand CK2 protecting against E-induced DNA-damage. In total, this work 

demonstrates a methodology approach for dissecting pleiotropic signaling regulators and identifies 

several mechanisms by which AXL drives resistance-associated phenotypic changes.  

 

Summary points 

• AXL expression and abundance are associated with Yap activation in LUAD tumors. 

• AXL phosphosite perturbations lead to varied phosphoproteomic and phenotypic effects. 

• AXL downstream signaling correlates with poor clinical outcomes and progressive disease. 

• AXL activates upstream kinases SFK, Abl1, and FAK of YAP to induce its activation. 

• AXL protects cancer cells against erlotinib-induced DNA damage through CK2 activity. 
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Introduction 

Lung cancer is the leading cause of cancer mortality, accounting for almost 25% of all cancer 

deaths in the United States for 20221. Comprehensive genomic sequencing and expression 

profiling of non-small cell lung cancer (NSCLC) patients, the most common form of lung cancer, 

has helped to identify genetic alterations that drive disease progression and can be therapeutically 

targeted. These agents can have improved clinical efficacy and safety compared to conventional 

chemotherapy. One such therapy is the EGFR tyrosine kinase inhibitor (TKI) erlotinib which is 

effective in patients with advanced EGFR mutant (EGFRm) NSCLC2. However, despite being 

initially effective, targeted therapies invariably result in incomplete responses, with tumors 

regrowing after acquiring drug resistance. A major source of resistance to EGFR targeted therapy 

arises from secondary activating mutations occurring in the kinase domain of the receptor, such as 

the “gatekeeper” T790M alteration that increases the affinity of EGFR to ATP, relative to its TKI 

affinity. Second- and third-generation EGFR TKI therapies, such as afatinib and osimertinib 

respectively, have been developed to effectively target resistance derived from mutated forms of 

EGFR3. However, while agents targeting EGFR secondary mutations delay tumor relapse, the 

efficacy of these therapies are ultimately limited by resistance through still other mechanisms.  

Another well-appreciated means of resistance to EGFR inhibition is receptor tyrosine kinase 

(RTK) “bypass” resistance, wherein alternative pathways are activated so that cells are no longer 

reliant on the drug-targeted pathway. Our lab and others have shown that, while individual RTKs 

are able to activate a common set of downstream pathways, they do so to varying extents and thus 

have varied capacity to confer bypass resistance4–6. Two well-studied RTK bypass resistance 

mechanisms are Her3 signaling providing resistance to Her2-targeted therapy in breast carcinoma 

and Met signaling driving resistance to EGFR-targeted therapies in lung carcinoma5,7–9. Bypass 

resistance-conferring RTKs may contribute to intrinsic or acquired resistance, can become 
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activated by ligand-mediated autocrine or paracrine induction, amplification, or mutation, and are 

effectively blocked by combination therapy10. 

 

A member of the Tyro3, AXL, and MerTK (TAM) RTK family, AXL, is frequently upregulated 

in tumors resistant to chemotherapy, targeted therapies, and immunotherapy, across cancer types, 

including EGFR-driven NSCLC10–21. AXL expression is additionally associated with collateral 

phenotypic changes in resistant cells, including epithelial-to-mesenchymal transition (EMT) and 

cell migration, indicative of increased metastatic capacity22–28. Furthermore, AXL has been shown 

to sustain the viability of osimertinib resistant cells in lung cancer in vitro and in vivo EGFRm 

lung cancer models29,30. A landmark study describing AXL-driven erlotinib resistance showed that 

tumor xenografts with acquired resistance harbored alteration in the expression of several EMT 

marker genes15. AXL additionally drives resistance to EGFR inhibition of cycling drug-tolerant 

persister (DTP) cells by protecting them against treatment-induced DNA damage through the 

activation of low-fidelity DNA polymerases, other endogenous hypermutators such as MYC, and 

a pyridine/pyrimidine metabolism imbalance30. Notably, the triple combination treatment of 

osimertinib, cetuximab, and an anti-AXL antibody led to cures in mice whose tumors had already 

acquired resistance to osimertinib30. Given the established role of AXL to promote tumor 

resistance, it is not surprising that ongoing phase I/II clinical trials are testing the clinical benefit 

of AXL and EGFR inhibitor combinations in EGFRm NSCLC (NCT02729298, phase I/II). 

It is worth noting that although drug resistance is commonly quantified as a measure or proxy of 

cell number, tumor relapse is a multifaceted challenge driven by the development of simultaneous 

“collateral” malignant phenotypes that coordinately promote tumor growth and metastasis31. AXL 

has been involved in a myriad of biological processes that direct cancer progression, including 

EMT and metastasis22,23,25,32, inhibition of apoptosis33 and induction of cell proliferation11,29,34, 
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DNA damage repair30,35,36, endocytosis14,37, and tumor immunosuppression10,17,38,39. However, 

despite evidence implicating AXL in mediating resistance and collateral phenotypes in response 

to EGFR targeted therapies, it is unclear exactly which pathways AXL activates to promote each 

of these processes. Identifying these pathways is hindered by RTK crosstalk and signaling 

pleiotropy: Each RTK regulates a set of downstream pathways that can be also regulated by a 

different RTK, or a combination of them. Moreover, downstream pathways can influence each 

other which complicates associating a specific signaling axis with a particular phenotype. 

Therefore, we require a methodology that specifically addresses RTK redundancy and signaling 

pleiotropy to mechanistically characterize AXL-mediated bypass resistance.  

 

Upon interaction with its cognate ligand, two RTK monomers form a homodimer that 

autophosphorylates tyrosine (Y) residues located within its kinase domain, creating binding sites 

for interacting adapters and kinases that contain phospho-binding domains (PBD) such as SH2 

domains40. The RTKs then phosphorylate these signaling proteins to initiate a downstream 

signaling cascade that will ultimately influence a myriad of cellular processes6. Since 

phenylalanine (F) is a non-phosphorylatable mimetic of Y, Y-to-F mutational studies provide a 

tool for dissecting the signaling role of individual phosphosites. For instance, AXL mediates 

resistance to cetuximab and radiation through the interaction of Abl1 and a Y residue on AXL 

kinase domain (Y821) in head and neck cancer and validated that editing Y821 to F abolished the 

ability of cells to develop resistance41. Other Y-to-F mutational studies in AXL have shown that 

the regulatory subunit of PI3K, p38, binds to Y779 to activate MAPK, whereas SRC, LYK, and 

PLCα engage with Y821 and Y866 to activate PKC and STAT42–44. As individual AXL Y-to-F 

mutations have different effects in the receptor’s intracellular signaling, we hypothesized that these 

mutations would also distinctly mediate AXL’s ability to confer erlotinib resistance which would 
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provide us with the opportunity of establishing AXL-specific signaling and phenotypic 

associations during AXL bypass resistance.   

 

Here, we apply an integrated experimental and computational strategy to systematically elucidate 

the downstream signaling proteins and pathways driving cell survival and collateral phenotypes in 

response to AXL activation. To do so, we generated a cell line panel wherein each cell line carries 

a single Y-to-F mutation in AXL. We measured phosphorylation signaling alongside cell viability, 

apoptosis, migration, and an erlotinib-induced clustering effect in AXL-activated cells treated with 

erlotinib. Through statistical modeling to analyze the paired AXL-driven phosphoproteomic and 

phenotypic measurements, our results indicate that AXL activates SFK, Abl1, and FAK which 

serve as key upstream components of the YAP pathway to promote cancer cell growth. We 

correspondingly observed that AXL activation led to increased YAP nuclear translocation. 

Moreover, we observed a strong correlation between the identified AXL downstream signaling 

signature and AXL expression in EGFRm tumors, poor survival, and progressive disease in LUAD 

patients.  Separately, we found that AXL protects lung cancer cells against DNA damage induced 

by erlotinib, at least in part, through CK2 kinase activity. 

 

Results 

AXL-high LUAD tumors display strong Yap activation and EMT marker enrichment 

To explore AXL’s association with tumor progression and identify the signaling pathways most 

strongly correlated with AXL expression and abundance, we examined the proteogenomic data of 

110 treatment-naïve LUAD patients from the Clinical Proteomic Tumor Analysis Consortium 

(CPTAC) 45. We found that AXL abundance is modestly increased in EGFRm versus EGFR WT 

tumors across stages and that within EGFRm patients, AXL increases throughout disease 
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progression (Figure 1A). We then stratified LUAD tumors into the top and bottom 33% AXL 

abundance. Comparing these two patient groups, we found enrichment of a Yap signaling 

signature46 in AXL-high LUAD tumors by GSEA (Figure 1B). Consistent with this observation, 

we observed a strong correlation between AXL expression and established Yap targets including 

CYR61 and CTGF, alongside a decrease in the inhibitory phosphorylation site of Yap S382 in 

AXL-high tumors (Figure 1C-D). Yap S382-p displayed an inverse correlation with tumor stage 

(Figure 1E). Finally, we observed a significant increase in EMT markers TWIST1, VIM, and 

CDH11 in AXL-high compared to AXL-low tumors (Figure 1F). Overall, these results indicated 

to us that the Yap signaling is associated with AXL expression and abundance in LUAD tumors. 

 

Figure 1. AXL-high LUAD tumors display increased YAP activation and EMT markers. (A) AXL protein levels 

grouped by EGFR mutational status and tumor stage. (B) Transcriptomic YAP signature in AXL-high vs AXL-low 

tumors (C-D) Abundance of YAP inhibitory phosphosite by AXL levels (C) and tumor stage (D). (E) Expression of 

mesenchymal markers by AXL levels. *p-value < 0.05 and **p-value < 0.001 according to a Student T-test.  

AXL’s capacity for erlotinib resistance varies across AXL Y-to-F mutants 
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To isolate the pathways driving specific phenotypic effects, we generated a panel of AXL Y-to-F 

mutant cell lines and collected phosphoproteomic and phenotypic measurements of each during 

AXL-driven bypass signaling. We knocked-out (KO) AXL in PC9 cells using CRISPR/Cas9 and 

then expressed either AXL wild-type (WT) (KI), AXL kinase-dead (K567R, KD), or one Y-to-F 

AXL mutant cassette—namely Y634F, Y643F, Y698F, Y726F, Y750F, or Y821F—using 

lentiviral transduction (Figure 2A). We confirmed AXL total abundance, cell-surface abundance, 

and activation in each cell line (Supplementary Figure 1A). AXL activation is challenging to 

faithfully manipulate given its regulation by phosphatidylserine (PS) present in apoptotic bodies 

and the spatially heterogeneous presentation of its ligand Gas647. Therefore, we used the AXL-

activating antibody AF154 (A) as a reliable means for potent receptor activation (Supplementary 

Figure 1B). AXL activity was confirmed by phosphorylation of Akt (Supplementary Figure 1C). 

As expected, we observed complete inhibition of p-EGFR upon erlotinib treatment 

(Supplementary Figure 1D). We measured the ability of the different AXL mutants to proliferate, 

survive, migrate, and form cell “islands” in the presence of erlotinib (E) or the combination of E 

and A (EA) (Figure 2B).  

 

We simultaneously monitored cell proliferation and cell death using cell live imaging throughout 

72 hours of treatment with either E or EA. We observed a significant increase in cell proliferation 

and decrease in apoptosis in EA-treated WT cells compared to the E condition. KI cells followed 

the same trend with lesser magnitude, likely explained by the fact that each PC9 AXL mutant cell 

line is comprised by a mixed population of PC9 AXL KO cells and cells expressing AXL. As 

expected, EA did not enhance proliferation or survival versus E in AXL KO and KD. While the 

mutants Y698F and Y726 promoted proliferation and prevented apoptosis upon AXL activation, 

Y643F and Y750F effectively behaved like AXL KO or KD. Interestingly, EA-treated Y821F and 
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Y634F cells failed to increase cell proliferation but significantly blocked apoptosis (Figure 2A/B 

and Supplementary Figure 2A/B). 

 

We performed a scratch-wound assay to evaluate the migratory capacity each cell line after 

treatment (Supplementary Figure 1E). After making a wound, we used cell live imaging for 24 

hours to quantify the ability of PC9 cells to migrate and re-occupy the space in the presence of E 

or EA. WT cells treated with E unexpectedly migrated similarly in the presence or absence of the 

AXL-activating antibody, whereas the migratory ability of KO and KD was blocked, regardless of 

treatment. Moreover, Y643F, Y698F, and Y726F became more motile after receptor activation, 

while the mutations Y634F, Y750F, Y821F did not respond (Figure 2F and Supplementary 

Figure 2C). 

 

We observed that E induces a clustering effect wherein cells establish cell-to-cell adhesions that 

result in the formation of small “cell islands” (Figure 2B and Supplementary Figure 1F). Thus, 

we asked whether the different PC9 AXL mutant cell lines would differently affect this phenotype. 

To quantify the extent of cell clustering, we applied Ripley’s K function, a spatial clustering 

estimator. This metric frequently used in astronomy to model whether an object, such as stars are 

found closer to one another than would be expected by chance48,49. This algorithm allowed us to 

test the spatial distribution of PC9 cells against the null hypothesis that the cells are distributed 

randomly. As expected, we found that PC9 cells were more clustered than chance in response to 

E, whereas AXL activation abolished this clustering. Each Y-to-F mutants displayed the trends 

counter to those observed in the scratch wound assay: Y643F, Y698F and Y726F effectively 

behaved like WT and KI, whereas Y634F, Y750F, and Y821F remained clustered upon EA 

treatment. (Figure 2G and Supplementary Figure 2D). 
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Figure 2. The ability of AXL to enhance cell fitness in the presence of erlotinib varies among PC9 AXL Y-to-F 

mutants. (A) Schematic of the AXL Y-to-F mutant cell lines each causing distinct signaling and phenotypic 

consequences upon treatment with erlotinib for 4h and an AXL-activating antibody AF154 for 10 minutes. (B) Cell 

proliferation and cell death were monitored for 72h, whereas cell migration was quantified via a scratch wound assay. 

Finally, AXL activation blocks the formation of cell islands induced by erlotinib. The extent of cell clustering was 

quantified using Ripley’s K function. (C-F) Quantification of cell proliferation, cell death, cell migration, and island 

effect by PC9 cell line. (G-H) Scores (G) and loadings (H) of a PCA analysis using the phenotypic measurements 

shown in (C-F). 
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We used principal components analysis (PCA) to explore the relationships among the four 

phenotypes we measured (Figure 2H/G). Most of the variation, represented by principal 

component (PC) 1, prominently separated untreated cells from the other two treatment groups, and 

partly separated EA from E cells. We took this component to represent overall cell fitness, which 

is increased by moving positively along PC 1 for all the mutants except KO and KD, where A had 

no effect (Figure 2G). Phenotypes increased by AXL activation are positively associated with PC 

1, while those decreased are negatively associated (Figure 2H). By contrast, PC 2 separated AXL-

induced viability from migration effects; moving positively along PC 2 indicated an increase in 

viability/decrease in apoptosis, while migration decreased, and cells formed islands (Figure 2C, 

loadings). Certain cell lines showed varying effects with AXL activation: Y726F and Y750F 

shifted positively along PC1 and negatively along PC2 with A treatment, reflecting migration-

selective effects; Y634F and Y821F moved towards positively along PC1 and PC2, reflecting cell 

viability/apoptosis effects. 

 

Thus, overall, these results confirm our hypothesis that each Y-to-F mutant affects cell viability, 

death, migration, and clustering differently. Y634F and Y821F blocked AXL-induced cell 

viability, migration, and scattering, but still improved survival of PC9 cells in the presence of E. 

Y750F blocked all phenotypic effects, behaving like KO and KD. Finally, Y698F and Y726F 

behaved like WT and KI, with little impact on phenotypic outcomes. 

 

AXL mutants selectively disrupt downstream pathway effects 

As previously described, we applied a mass spectrometry approach to measure the signaling effect 

of AXL activation in the PC9 AXL mutation cells during EGFR inhibition. Each PC9 mutant cell 
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line was treated with E for 4 hours and activated with A for 10 minutes afterwards before 

performing cell lysis. Hierarchical clustering of the resulting phosphoproteomic data set showed 

AXL KO and KD clustered together, as expected, whereas the other cell lines did not display 

obvious clustering (Figure 3A). 

 

 To analyze these data, we applied a previously-developed approach, Dual Data-Motif Clustering 

(DDMC). DDMC clusters phosphoproteomic data based on both abundance variation and 

sequence information, both of which can be leveraged to improve modeling50. We applied DDMC 

with 5 clusters using the PAM250 method to model the peptide sequence information. The 

resulting cluster (C) centers summarized the AXL-responsive behaviors. C1, C2, and especially 

C3 were markedly decreased in PC9 AXL KO and KD cells, with varied phosphorylation signal 

across Y-to-F mutants. Interestingly, in addition to a dramatic phosphorylation decrease in AXL 

KO and KD, C3 peptides show an increased abundance in PC9 AXL Y698F—a mutant that 

phenotypically behaves like WT (Figure 2)—compared with the other clusters. Conversely, C4 

shows an increase in PC9 KO—but not KD—with respect to WT, and a lower phosphorylation 

signal in Y634F compared to the rest of clusters (Figure 3C). Cluster 5 had biologically 

inexplicable signaling trends, and so was discarded. We searched for AXL phosphosites and found 

thatall of them were clustered together in C3 which is not surprising since C3 displays the most 

dramatic phosphorylation changes based on AXL activity (Figure 3C/D). None of the 

phosphorylation differences observed in the AXL phosphosites correlate with total or cell surface 

AXL levels per cell line which provides confidence for the absence of any experimental bias in 

our signaling data due to varying ectopic AXL expression (Supplementary figure 1A).  
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We ran GSEA on each cluster to explore their functional roles. We found that C1 is strongly 

enriched in a TGF-beta signaling pathway signature; C2 and C3 share the enrichment of several 

biological processes associated with the activation of RTK signaling (EGFR / VEGFR) and the 

regulation of focal adhesions; and C4 is uniquely enriched in a STAT3 signaling pathway signature 

(Figure 3E). The enrichment of an EGFR downstream signature in EA treated cells might 

underscore the capacity of AXL to reactivate EGFR-mediated pathways required for survival. 

Thus, these results illustrate the activation of known biological processes regulated by AXL such 

as focal adhesion dynamics to regulate cell migration27 and RTK signaling activation, in addition 

to less established associations such as its relation to TGF-beta and STAT3 signaling.  

 

To obtain a general view of the composition of the different clusters, we next explored the cluster 

assignments and phosphorylation of RTKs, receptor adapters, and canonical protein kinases in 

PC9 WT and AXL KO cells treated with EA (Figure 3F). Among RTKs, we found a decrease in 

the phosphorylation of Epha2 Y594-p and Her2 Y877-p in AXL KO compared to WT. This is 

consistent with previous studies that have observed signaling crosstalk between AXL and HER2 

to drive resistance to anti-HER2 therapy in breast cancer, as well as between AXL and EPHA2 to 

confer resistance to EGFR inhibitors19,51,52. We found that the RTK adapters Gab1/2, Eps8, Sos1, 

or Dapp1 as well as the E3-ubiquitin ligase Cbl-b are markedly downregulated in AXL KO. 

Interestingly, the phosphorylation of these proteins is dependent on the availability of AXL Y821; 

these phosphosites were not phosphorylated in the AXL Y821F cell line (Supplementary Figure 

3A). Moreover, we observed increased phosphorylation of SFKs Frk, Lyn, Lck, Yes1, as well as 

Abl1 and its substrate and regulator Abi2 in C2 and C3. In addition, while Frk, Lyn, and Lck 

phosphorylation was increased upon E treatment, monotherapy or concomitant addition of the 

AXL inhibitor R428 downregulated them. R428 also inhibited Abi2 and Abl1, suggesting an AXL-
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specific activation of SFK and Abl1 (Supplementary Figure 3B). AXL activated the established 

drivers of resistance to TKI Erk1&2 which are both within C315. Administration of E (in the 

absence of the AXL-activating antibody) and R428, as single agents or in combination, 

downregulated ERK1/2 which suggests an AXL-specific activation of ERK signaling as well. 

Conversely, JNK2 and JNK3 phosphosites are modestly more abundant in AXL KO than WT and 

are clustered in C4. Given the interesting signaling behavior and cluster composition of C3, we 

decided to use STRING to map the protein-protein interactions while observing the 

phosphorylation changes of PC9 WT compared AXL KO cells within C3. We found that in 

addition to Erk1/2, other kinases are highly regulated by AXL activation within C3 such as Cdk1 

(as shown by the lack of phosphorylation of its inhibitory phosphosite Y15), Prkcd, Cilk1, Ack1, 

and the phosphatase Shp2 (Supplementary Figure 3C). As indicated by GSEA, this signaling 

cluster is highly enriched with regulators of focal adhesions and cytoskeletal remodeling such as 

Tjp1/2, p130cas (BCAR1), Actin1, and Afadin (MLLT4) (Figure 3E/F).  

 

In conclusion, the phosphorylation-based signaling landscape of the different PC9 cells varies by 

AXL genotype, demonstrating that single Y-to-F mutations lead to distinct AXL-specific signaling 

perturbations in addition to different cell responses (Figures 2&3). DDMC summarized the 

network-level phosphorylation changes across PC9 Y-to-F mutants during switched AXL 

activation and found C1, C2, and especially C3 correlate with AXL activation levels, while 

peptides in C4 are slightly increased in AXL KO cells compared with WT. These results led us to 

posit C3 as a core downstream component during AXL bypass signaling. 
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Figure 3. DDMC signaling clusters predict the AXL-mediated phenotypes and identifies CK2, ABL1, and SFK 

as putative bypass signaling drivers. (A) Global phosphoproteomic measurements of PC9 AXL Y-to-F cell lines. 

(B) Computational strategy to map the network-level phosphoproteomic changes driving AXL-mediated phenotypic 

responses. The signaling data was clustered using Dual Data-Motif clustering (DDMC) to generate 5 clusters of 

peptides displaying similar phosphorylation behavior and sequence features. The cluster centers were then fit to a 
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PLSR model to predict the phenotypic responses and find associations between clusters and phenotypes. DDMC was 

used to infer putative upstream kinases regulating clusters. (C) Phosphorylation signal of DDMC cluster centers. (D) 

Phosphorylation signal of AXL phosphosites per PC9 cell line and its cluster assignments. (E) Ranked GSEA analysis 

of DDMC clusters using ClusterProfiler. Gene lists per cluster were ranked based on the log phosphorylation 

abundance fold change of PC9 WT versus AXL KO cells. (F) Indicated phosphosites and its cluster assignments in 

PC9 WT and AXL KO cells. (G) PLSR model prediction performance using 5 different clustering strategies namely 

either no clustering: directly fitting the phosphoproteomic data—, or the 5 cluster centers generated by k-means, a 

Gaussian Mixture Model (GMM), DDMC using only the peptide sequence information to make the cluster 

assignments and ignoring the peptide phosphorylation abundance or using DDMC equally prioritizing the sequence 

and phosphorylation information. (H-I) PSLR scores and loadings. (J) DDMC upstream kinase predictions.  

 

DDMC clusters predict AXL-mediated phenotypic responses and identifies SFK, ABL1 and 

CK2 as downstream drivers of erlotinib resistance 

To associate the different AXL-mediated signaling clusters and phenotypes, we regressed the 

DDMC cluster centers against the phenotypic responses using a partial least squares regression 

(PLSR) model (Figure 3B). To verify the importance of DDMC-mediated clustering for 

prediction, we assessed the prediction performance of a PLSR model using different clustering 

strategies: no clustering (i.e. regressing the phosphoproteomic data set directly), k-means 

clustering, clustering with a Gaussian Mixture Model (GMM), DDMC using only the sequence 

information (DDMC seq), or DDMC equally prioritizing the phosphorylation abundance and 

peptide sequences (DDMC mix). We found that PLSR was only able to accurately predict all four 

phenotypes when using the cluster centers generated by DDMC mix. By contrast, a PLSR model 

fitting the MS data directly is not able to predict any of the phenotypes, likely due to the 

overwhelmingly higher number of peptides (498) versus cell lines (10) (Figure 3F).  

The scores and loadings of the resulting PLSR model illustrate the varying capacity of the different 

PC9 cell lines to promote cell proliferation and migration along PC 1, which, similar to the PC 1 
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of the PCA analysis of the AXL phenotypes (Figure 2G/H), are indicative of overall cancer cell 

fitness (Figures G/H). PC9 WT, as well as the AXL mutants Y698F and Y643F correlate with 

increased cell fitness by moving positively along PC 1 whereas PC9 AXL KO and KD are heavily 

negatively weighted along the same axis, thus strongly correlating with erlotinib-induced apoptosis 

and the island effect. Moreover, PC 2 seems to capture variation that is specific to apoptosis which 

increases by moving positively along this axis. The PLSR model captures an inverse correlation 

between apoptosis and the PC9 AXL mutants Y634F and Y821F as they are negatively associated 

with PC 2, consistent with the exclusive phenotypic effect of Y634F and Y821F in reducing 

apoptosis (Figure 2C/D); their PLSR scores are not weighted along PC 1 and therefore not 

associated with proliferation, migration, nor the island effect. These results highlight that the 

phosphoproteomic variation of AXL Y634F and Y821F explains their ability to exclusively block 

cell death, without affecting any of the other phenotypes. Importantly, we found that only C3 

strongly correlates with cell migration and proliferation along both PC1 and PC 2, whereas C1, 

C2, and C3 strongly correlate with cell migration and proliferation across PC1 but not PC 2 

(Figure 3G/H).  

 

A feature of DDMC is the construction of position-specific scoring matrices (PSSMs) for each 

cluster which represent the frequency of each residue across peptide positions. These 

computationally-derived kinase motifs cab then be compared against a compendium of 60 

experimentally-determined kinase motifs to infer the upstream kinases regulating each cluster50 

(Figure 3B). DDMC found that C1 displays a kinase motif characterized by the strong enrichment 

of an acidophilic C-terminus, a known hallmark of CK2 specificity53,54. The GSEA results of C1 

provides support to this DDMC upstream kinase prediction as CK2 has been reported to be 

activated by TGFβ treatment and required for TGFβ-induced EMT55. CK2 has also been shown to 
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phosphorylate the C1 members Mcm2, Ldlr, and Sptbn156. With C2, the PSSM shows an Abl1 

kinase motif since the kinase specificity of Abl1 features a proline at position +3 with respect the 

phosphorylation site, an isoleucine at -1 and an alanine at +1. Both C2 and C3 have sequence motif 

features associated with SFK: C2 has a strong enrichment of acidic residues at position -3 and to 

a lesser extent at position -2. The SFK Yes1 specifically favors glycine, threonine, and tryptophan 

at position +1 as well as serine, glycine, and methionine at -2 which are all included in the PSSM 

of C2. On the other hand, C3 displays a strong enrichment of hydrophobic residues leucine and 

phenylalanine at position +3, serine and threonine at +2, and basic residues at position +4 and +5 

which are all specificity drivers of SFK. C3 was also inferred to regulated by the RTKs Alk, Met, 

and INSR. These receptors tend to target substrates that present highly hydrophobic C-terminus in 

addition to hydrophilic residues at -1 which are characteristics of the motif of C3 (Figure 3I and 

Supplementary Figure 3D). The association of C3 with RTKs is consistent with its enrichment 

and STRING analysis (Supplementary Figure 3A/D). 

 

In summary, the results of our paired experimental and computational approach suggest that AXL 

activates Ck2, Abl1, and SFK which in turn regulate C1, C2, and C3, respectively, to promote cell 

proliferation and migration in the presence of E.  

 

AXL downstream signaling correlates with poor patient survival and progressive disease in 

EGFRm LUAD patients 

We sought to explore the clinical relevance of the AXL downstream signaling identified by our 

analysis and its association with resistance to EGFR therapy in vitro and in LUAD patients. To do 

so, we first selected all phosphosites in C1, C2, and C3 and ranked them based on the log2 fold-

change in PC9 WT versus PC9 AXL KO. The resulting “AXL downstream signature” shows an 
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enrichment of an EGFR TKI resistance signature according to a ranked GSEA analysis (Figure 

4A).  

 

We then asked whether the AXL downstream signature is enriched in AXL-high LUAD tumors in 

patients and whether it correlates with poor clinical outcomes. To do so, we again stratified the 

CPTAC LUAD patient samples into AXL high or AXL low tumors and looked at the overall and 

phosphorylation abundance of the members of C1-3. We found a significant enrichment in the 

protein expression of C1, C2, and C3 in AXL-high and EGFRm compared to AXL-low and EGFR 

WT tumors (Figures 4B/C). We did not observe a difference in phosphorylation abundance in C1, 

C2, and C3 in AXL-high versus AXL-low tumors (data not shown). However, unlike AXL-low 

samples, AXL-high tumors display a remarkable phosphorylation enrichment of the AXL 

signature in EGFRm compared with EGFR WT (Figure 4D and Supplementary Figure 4A). 

With single cell RNAseq (scRNAseq), we asked, whether in EGFRm tumors, the gene expression 

of the AXL downstream signature is higher in patients displaying progressive disease, and thus 

resistance to EGFR-targeted therapies. Our AXL signature was significantly upregulated in cancer 

cells compared with other cell types, as well as in resistant and metastatic tumors (Figure 4G-J). 

By plotting each cluster separately, we found that these differences are explained by the 

contribution of the genes present in C2 and C3, but not C1 (Supplementary Figure 4C-N).  

Using TCGA data, we explored whether the gene expression of AXL downstream signaling 

correlates with poor overall survival of LUAD patients. Interestingly, we observed statistically 

significant decreases in the percent survival of patients with higher gene expression of the AXL 

signature in LUAD and PAAD tumors (Figure 4J/K and Supplementary Figure 4R). Enrichment 

of this signature in PAAD patients with poor clinical outcomes is consistent with the fact that many 
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PAAD tumors are driven by mutant EGFR and that AXL has indeed also been implicated in 

resistance to TKI in this context57. 

 

In all, these results support a strong association between the identified AXL downstream signaling 

and poor clinical outcomes of EGFRm LUAD patients. 

 

 

Figure 4. AXL downstream signature based on C2 and C3 is specific to AXL-high EGFRm LUAD tumors and 

correlate with progressive disease. (A) EGFR TKI resistance signature found by a ranked GSEA analysis using the 

list of gene names included in C1, C2, and C3 and ranked by their log fold-change phosphorylation between PC9 WT 

and AXL KO cells. (B-C) Protein expression of C1, C2, and C3 members in (B) AXL-low versus AXL-high tumors 

or (C) EGFRm versus EGFR WT tumors. (D) Phosphorylation signal of AXL signature by AXL levels and EGFR 

genotype. (E) tSNE plot of the different cell types defined by Louvain clustering. (F) AXL signature score as defined 
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by the mean gene expression of C1, C2, and C3 per cell in cancer cells, epithelial normal cells, or non-epithelial cells. 

(G-J) AXL signaling score of cancer cells by (G) Driver mutation, (H) EGFR mutation, (I) treatment response or by 

(J) Metastatic status. (K-L) Kaplan-Meier curve of (K) LUAD and (L) PAAD patients according to their AXL 

signature score. PD: Progressive disease, PR: Partial Response. PAAD: Pancreatic adenocarcinoma. 

 

Dasatinib inhibition validates SFK and Abl1 as regulators of C2 and C3 

To experimentally validate that SFK and Abl1 regulate C2 and C3, we measured cell proliferation 

and the global phosphoproteomic state of PC9 cells upon treatment with the targeted inhibitor 

dasatinib. We first asked whether dasatinib was able to block the cell proliferation increase induced 

by AXL activation. We treated PC9 cells with E, EA, or E with the AXL inhibitor R428. As 

expected, EA-treated and E+R428 cells were significantly more, and less proliferative, 

respectively, than cells treated with E, and we observed a dose-response decrease of cell 

proliferation with increasing concentrations of dasatinib (Figure 5A).  

 

We performed pY-based mass spectrometry once again to ascertain whether there was an 

enrichment of phosphosites from C2 and C3 in those most prominently depleted by dasatinib 

treatment. We activated AXL in PC9 WT cells after pretreating with E and increasing 

concentration of dasatinib for 4 hours. In parallel, we also pretreated AXL KO cells. We then lysed 

cells and run mass spectrometry (Figure 5B). We ran hierarchical clustering and identified a 

cluster of peptides that displays clear decreasing phosphorylation levels with increasing dasatinib 

(Supplementary Figure 5A and Figure 5C). Asking which of the DDMC AXL clusters has a 

statistically significant enrichment of dasatinib-responsive peptides we saw extensive overlap with 

C2 and C3 (Figure 5C/D). Consistent with our AXL phosphoproteomics data, beyond ABL1- and 

SFK-related phosphosites, this cluster includes most of the AXL-regulated kinases previously 

described in Figure 3 including Ack1, Prkcδ, FAK1/2, and Epha2, as well as proteins associated 



86 

with focal adhesion regulation and cytoskeletal remodeling such as p130cas, CasL, Git1, Tjp1, 

Paxilin, and Actin1 (Figure 5C).  

 

A previous FAK pathway signature in EMT-mediated erlotinib resistant lung cancer cells was 

counter-acted by dasatinib58. These mesenchymal resistant cells overexpress many of the proteins 

that are our model identified to correlate with migration and proliferation when differentially 

phosphorylated upon AXL activation (Figure 3E/H and Supplementary Figure 3C). Thus, we 

asked whether AXL downstream signature overlaps with the FAK signature. We found that 

following AXL activation, PC9 cells display significantly higher FAK signaling with ACK1 and 

CDK1 being most dramatically activated (Figure 5E). We did not find transcriptional association 

with this pathway (not shown), suggesting that the regulation of the FAK signaling pathway by 

AXL is mediated through phosphorylation.  

 

Finally, the dasatinib treatment data revealed an additional cluster of interest that displays an AXL-

dependent increase of phosphosites (Supplementary Figure 5B). For example, ERK1 Y187-p 

and ERK2 Y204-p remain phosphorylated in PC9 WT cells but are strongly inhibited in AXL KO 

cells. This suggests that the AXL-mediated activation of ERK is independent of but affected by 

SFK and ABL1. Together, these results indicate that SFK and ABL1 inhibition impairs key 

downstream components of AXL signaling that correlate with cancer cell growth and migration.  
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Figure 5. ABL1 and SFK regulate C2 and C3. (A) Cell confluency of PC9 WT cells exposed for 72 hours to the 

indicated treatments with increasing concentrations of dasatinib and relative to UT. (B) Diagram of the MS 

experiment; Cells were treated with E in addition to the indicated concentration of dasatinib for 4h and subsequently 

with AF154 for 10 minutes. Cells were then lysed and subjected to mass spectrometry (see Methods). (C) Heatmap 

showing the log phosphorylation signal of peptides normalized to 0nM of dasatinib per cell line. (D) Hypergeometric 

test to evaluate the enrichment of dasatinib-responsive peptides per DDMC cluster. (E) Phosphorylation signal of the 

FAK pathway signature in PC9 WT and AXL KO cells. Note that the signal of CDK1 Y15-p was multiplied by -1 

since it is a known inhibitory site of its kinase activity. (F) Phosphorylation signal of phosphosites located in the 
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activation loop of Erk1/2 in PC9 WT and AXL KO cells treated with the indicated concentrations of dasatinib and 

EA. 

 

AXL activates upstream kinase YAP regulators which in turn drive AXL expression and 

kinase activation 

To extend our understanding of the mechanism by which the identified phosphoproteomic 

signaling changes affect AXL-driven phenotypes, we decided to explore the transcriptional 

changes occurring during switched AXL signaling. We collected bulk RNAseq data of each PC9 

AXL Y-to-F cell line treated with E or EA and performed an enrichment. We run PCA analysis of 

the RNAseq data and found that PC1 represents AXL activation since the scores of all cell lines 

shift positively along PC 1 in EA-treated cells compared with E. We generated a ranked gene list 

based on the PC 1 scores to run a ranked GSEA analysis and found a YAP signature in AXL-

activated cells (Figure 6A and Supplementary Figure 6A). This is consistent with the association 

between AXL and YAP in LUAD patients (Figure 1B-E) as well as with our DDMC upstream 

kinase predictions of C2 and C3, as the role of ABL1 and SFK phosphorylation of YAP is a well-

known mechanism of YAP nuclear translocation and activation59–62. Moreover, several studies 

demonstrate the association between YAP activation and the development of drug resistance, 

including in the context of EGFR-targeted therapy in NSCLC cells63–67. For instance, a recent 

study shows that FAK signaling strongly activates YAP to enable the emergence of drug tolerant 

persister cells during EGFR-targeted therapies in patient-derived models and in clinical samples68. 

Together, these insights led us to hypothesize that AXL activates key upstream components of the 

YAP pathway—namely SFK, ABL1, and FAK signaling—to mediate the emergence of drug-

tolerant persister cells. 
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Figure 6. AXL promotes the activation and nuclear translocation of YAP which in turn regulates AXL 

expression and kinase activity. (A) Ranked GSEA analysis of the RNAseq data of the Y-to-F mutant cell lines ranked 

by the scores of a PCA analysis (see Supplementary Figure 6A). (B-C) Total and S126-p YAP levels of (B) PC9 WT 

and (C) AXL KO cells with increasing concentrations of dasatinib in addition to EA. (D) Total and S126-p YAP levels 
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of PC9 WT, AXL KI, and PC9 AXL KO cells seeded at high or low cell density and treated with E or EA. (E) YAP 

nuclear translocation ration of immunofluorescence YAP staining after 3 days of treatment with E or EA. Data was 

quantified using CellProfiler. (F) Total and pan-pY AXL signal in the indicated treatments. (G) Western blot of total 

AXL levels in the indicated treatments. (H) Total and pan-pY AXL levels in PC9 YAP KO cells. (I-K) Cell viability 

assay of PC9 WT cells treated with the indicated inhibitors for 15 days. Thereafter, treatment solutions were replaced 

with media and drug-tolerant persister cells were allowed to regrow for 15 days. Treatment or media were replaced 

every 3-5 days. *p-value < 0.05, **p-value < 0.001, ***p-value < 0.0001, ****p-value < 0.00001. 

 

To test this hypothesis, we first treated cells with increasing concentrations of dasatinib and blotted 

for the inhibitory YAP phosphosite S126 which when phosphorylated, is bound by 14-3-3 proteins 

to sequester YAP in the cytoplasm and prevent its nuclear translocation59. Indeed, we found that 

dasatinib induces an increase in the phosphorylation abundance of the YAP S126-p which is 

further exacerbated in the absence of AXL. Interestingly, AXL KO cells present an upregulation 

of total YAP protein expression compared with PC9 WT cells which might be indicative of its 

dysregulation (Figure 6C/D).  

 

To further validate the effect of switched AXL signaling on YAP activation, we measured YAP 

S127-p in PC9 WT, AXL KI and AXL KO cells treated them with E or EA for 24h. We also seeded 

cells at high or low density as YAP is known to respond to changes in cell confluency, with the 

transcription factor becoming inactive at higher cell densities69. As expected, we found that YAP 

S127-p most strongly decreases in response to E or EA at low cell density. Importantly, while 

AXL KO cells still display the same trend, the overall phosphorylation signal of S127-p is 

substantially higher in AXL KO compared to PC9 WT or AXL KI cells, again showing an AXL-

specific YAP activation. Like we observed in PC9 cells treated with dasatinib, AXL KO cells 

displayed higher levels of total YAP across conditions (Figure 6D).  
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We then directly visualized YAP cellular localization in PC9 WT and AXL KO cells using 

immunofluorescence. In this experiment we treated cells with E and EA for 3 days to observe YAP 

localization dynamics as surviving cancer cells persist the inhibitory effects of treatment. PC9 cells 

treated with EA display significantly higher nuclear YAP than cells treated only with E. Moreover, 

while most AXL KO cells have cytoplasmic YAP, WT cells YAP displayed a much more nuclear 

localization. Consistent with the western blots of YAP S127-p, we observed that E administration 

promoted YAP nuclear translocation in AXL KO cells as well (Figure 6E and Supplementary 

Figures 6B/C). 

 

Several studies indicate that AXL can be a target of YAP when in complex with the DNA-binding 

protein TEAD, thereby proposing that YAP acts upstream of AXL63,70,71. Nevertheless, others have 

reported that it is in fact AXL kinase activity which induces YAP activation67. A third hypothesis 

emerged when another study showed that AXL and the YAP homologue TAZ form a positive 

feedback loop to promote the development of lung cancer brain metastases32. Our results suggest 

that upon AXL activation, SFK and ABL1 kinases engage a network of cytoskeletal-remodeling, 

EMT-associated, signaling proteins that affect YAP translocation. To explore whether YAP 

inhibition influences AXL expression and activation, we quantified total and phosphorylated AXL 

in PC9 cells treated with dasatinib and found that both decrease with increasing dasatinib (Figure 

4F/G). Moreover, PC9 YAP KO cells treated with E or EA and fail to activate AXL (Figure 4H). 

Together, this data indicates that AXL and YAP form a positive feedback loop.  

 

We then investigated the influence of AXL signaling in the emergence of drug-tolerant persister 

cells by inhibiting AXL, SFK and Abl1, YAP, or Erk1/2, through RXDX-106, dasatinib, and 
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XAV-393 treatment, respectively, in PC9 WT cells for 15 days. Then, we replaced the treatment 

solutions with complete media and assessed the ability of resistant cells to regrow for 15 more 

days. We used RXDX-106 instead of R428 given the fact that RXDX-106 is extremely specific to 

TAM receptors and PC9 cells do not express neither MerTK nor Tyro3 and R428 has been shown 

to trigger cell death independent of AXL inhibition72. We found that whereas AXL or YAP 

inhibition delayed PC9 regrowth after washout, PC9 cells treated with E were unable to regrow 

(Figure 6I-K). All cell lines treated with E and dasatinib did not regrow. In total, this data supports 

the hypothesis that AXL and YAP form a positive feedback loop wherein AXL activation leads to 

the phosphorylation of key upstream components of YAP, which in turn induce its nuclear 

translocation and effector functions to sustain cancer cell growth. 

 

AXL protects PC9 cells against erlotinib-induced DNA damage in part through CK2- and 

cell cycle-dependent repair mechanisms 

DDMC infers that CK2 regulates C1 since the sequence motif of this cluster is highly acidophilic 

in its C-terminus which is a known determinant of CK2 kinase specificity. Thus, we sought to 

elucidate how CK2 influences AXL bypass signaling. Both AXL and CK2 have been previously 

reported to regulate DDR responses but have never been shown to cooperate in this capacity. AXL 

inhibition has been shown to downregulate homologous recombination which affects the fidelity 

of double strand break (DSB) repair35,36. On the other hand, CK2 is an established regulator of 

DSB during mitosis; ATM-dependent phosphorylation of H2AX recruits MDC1 which binds 

TOPBP1 and CIP2A via its CK2-mediated phosphorylation. Then, TOPBP1 and CIP2A form 

filamentous structures to tether both DSB ends together73–75. We hypothesized that AXL activation 

promotes to the ability of CK2 to repair DSB induced by E, thereby blocking DNA damage-

induced apoptosis and enabling cancer cell survival. 
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We first asked whether AXL-activated PC9 cells treated with E display decreased DSB lesions. 

Since reactive oxygen species (ROS) induce DSB events, we monitored the amount of oxidative 

stress occurring in response to E while activating or inhibiting AXL with A or RXDX-106 (R), 

respectively. As expected, we observed a decrease in ROS production in EA- versus E-treated 

cells. Conversely, EGFR and AXL inhibition led to a sustained increase in oxidative stress, 

displaying a strong generation of ROS after 30 minutes. RXDX-106 alone also triggered an early 

induction of ROS production which subsequently decreased after 24 hours (Figure 7A). 

Accordingly, we observed many enzymes responsible for ROS detoxification, such as GPX, 

SOD1, GST, SOD1, or PYCR, upregulated in EA-treated PC9 cells and downregulated in AXL 

KO cells. HIF-1, also upregulated in AXL-activated cells and downregulated in AXL KO cells, 

has been shown to sustain cell survival during metastatic colonization by reducing cytotoxic ROS 

levels76. Finally, the lysosomal enzyme PPT1 which is upregulated in response to ROS production, 

is down- and upregulated in AXL-activated or AXL KO cells, respectively77 (Figure 7B). Thus, 

this data shows that AXL activation leads to the detoxification of ROS through the activation of 

antioxidant proteins. 

 

We then used immunofluorescence to stain for p-H2AX and directly quantify the amount of H2AX 

foci, a proxy for DSB lesions, present in PC9 cells treated under different conditions affecting 

AXL and CK2 kinase activity in addition to EGFR. As expected, we found a dramatic increase in 

H2AX foci in E-treated cells which were reduced when AXL is activated. Conversely, combined 

EGFR and AXL inhibition increased the amount of DDR compared with E. Importantly, we found 

that AXL activation failed to decrease the amount of H2AX foci induced by the treatment with 
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CK2 inhibitor CX-4945, indicating that the loss of CK2 kinase activity hinders the ability of AXL 

to repair E-induced DSB lesions (Figure 7C).  

Next, we used the RNAseq data of the different AXL Y-to-F mutants to find transcriptional 

changes indicating an upregulation of DSB repair machinery upon AXL activation. To do so, we 

performed GSEA analysis using the KEGG 2021 gene set of the transcriptome of the different 

AXL mutant cell lines treated with E compared with EA. As expected, we found a strong 

enrichment of a myriad of processes related to DDR (Figure 7D). Several of these signatures are 

associated with the regulation of DDR during cell cycle checkpoints. Since CK2 plays a role in 

DSB repair during G2 to M checkpoint signaling, we specifically asked whether AXL activation 

specifically leads to an upregulation of genes involved in this process. We found that EA-treated 

cells upregulated HR and DSB repair machinery including MDC1, TOPBP1, and MDC1 (Figure 

7D/E). Interestingly, we also observed an increased expression of CDK1/2, which is consistent 

with the increased kinase activity of CDK1 during bypass AXL signaling (Figure 3F). 

Consistently, a recent study showed that CDK1 phosphorylates and activates the major HR 

regulators Rad51 and Rad52 in the G2/M phase. These findings thus suggest that CK2, in 

cooperation with CDK1/2, promote HR at DSB lesions upon AXL activation (Figure 7F). 

 

Given these results, we investigated the ability of PC9 cells to overcome EGFR inhibition in the 

presence or absence of CK2 activity. We treated PC9 WT or AXL KO cells with E, CX-4945 or a 

combination of E, CX-4945 or the AXL inhibitor RXDX-106 for 15 days and then replaced the 

treatment solutions with regular media to observe cancer cell regrowth for 15 days more. We found 

that CK2 inhibition alone did not affect cancer cell survival and that in combination with E, slightly 

delayed the emergence of drug-tolerant persister cells (Figure 7G/H).  
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Conclusively, PC9 cells undergoing AXL bypass signaling display increased protection against 

DNA damage generated by EGFR targeted therapy. CK2 inhibition blocks this AXL-mediated 

protection which suggests that AXL requires CK2 to promote DSB repair. However, the addition 

of CX-4945 barely affected the capacity of PC9 cells to regrow after E treatment. 
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Figure 7. AXL promotes DSB repair through CK2 kinase activity. (A) ROS production normalized to cell number 

in the indicated treatments. (B) Heatmap of enzymes that regulate ROS levels. (C) Quantification of H2AX foci stained 

by immunofluorescence. The foci of 30 random cells were counted per condition. (D) GSEA analysis of EA- versus 

E-treated PC9 using the KEGG 2021 gene library. (E-F) GO analysis showing enrichment of (F) genes involved in 

mitotic G2 DNA damage checkpoint signaling in cells treated with EA compared with E. (G) Drug-tolerant persister 

cell assay in PC9 WT cells treated with E and/or CX-4945, or E, CX-4945 and RXDX-106.   

Discussion 

The reactivation of oncogenic pathways mediated by RTKs not targeted by therapy, referred as 

RTK bypass signaling, is a well-known resistance mechanism5,7–9. In fact, the FDA recently 

approved Amivantamab, a bispecific antibody directed against EGFR and MET for patients with 

advanced or metastatic EGFRm NSCLC (NCT04599712)78. Nevertheless, the downstream 

signaling pathways that bypass RTKs activate to mediate drug resistance remain largely unknown 

and its investigation could lead to (i) an increased mechanistic understanding of RTK inhibitors 

reaching the clinic and (ii) the identification of new drug targets. Several challenges intrinsic to 

the study of RTK downstream signaling such as RTK crosstalk or signaling pathway 

interdependency hinder the identification of RTK-specific phosphoproteomic and phenotypic 

changes during bypass resistance4,5. To overcome this limitation, we devised a combined 

computational and experimental approach by generating a panel of PC9 AXL Y-to-F mutant cell 

lines. Using these cell lines, we measured their phosphoproteomic and phenotypic changes during 

EGFR inhibition and AXL activation and applied multivariate modeling to identify the most 

prominent AXL-driven signaling pathways that promote cell fitness. This methodology ensures 

that any signaling, or phenotypic variation observed across cell lines is specific to AXL.  

 

Our multivariate modeling identified three phosphosite clusters (C1, C2, and C3) defining an 

“AXL downstream signature”, that correlates with cell viability and migration in vitro (Figure 
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3G/H). Moreover, the gene expression and phosphorylation signal of this downstream signature 

were significantly enriched in AXL-high EGFRm LUAD tumors, and C2 and C3, but not C1, 

correlated with poor treatment response, metastasis, and overall survival in LUAD patients. 

Interestingly, we observed that unlike its downstream signature, the gene expression of AXL did 

not correlate with poor clinical outcomes, suggesting that unlike its downstream signature or AXL 

protein abundance, AXL gene expression does not correlate with its kinase activity. This 

observation underscores that AXL gene expression might be insufficient to identify AXL-driven 

LUAD tumors resistant to EGFR-targeted therapies.  

 

The Hippo pathway effector YAP is known to drive resistance to EGFR-targeted therapies in 

NSCLC60,61,64,79. Although YAP has been shown to upregulate AXL gene expression, other studies 

suggest that it is AXL which acts upstream of the transcription factor63,67,70. DDMC identified and 

we experimentally validated using dasatinib that ABL1 and SFK regulate C2 and C3, respectively, 

upstream of YAP (Figures 3J and 5C/D). Moreover, transcriptomic profiling during switched 

AXL activation revealed a strong enrichment of YAP targets in AXL-activated cells (Figure 6A). 

This is not surprising as YAP phosphorylation by SFK and ABL1 is known to promote its nuclear 

translocation and effector functions. Importantly, a recent study showed that a previously 

established FAK signaling signature activates YAP to mediate osimertinib resistance. EA-treated 

PC9 cells show a dramatic increase in this FAK signature compared with EA-treated AXL KO 

cells (Figure 5E). Genetic or dasatinib inhibition of YAP decreased AXL protein expression and 

its kinase activity (Figure 6F-H). Thus, our data indicates that AXL activates key upstream 

components of YAP, namely SFK, ABL1, and FAK, and in turn, the transcription factor regulates 

AXL expression and allows its kinase activation. 
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Resistant cells to single-agent osimertinib can emerge through both Erk1/2 reactivation or YAP 

activation, whereas YAP activation becomes the dominant resistance mechanism of cells 

overcoming combined EGFR and MEK inhibition65. Here we show that AXL can mediate both 

Erk1/2 reactivation and YAP activation during bypass signaling. Intriguingly, here we show that 

YAP inhibition through dasatinib treatment in EA-treated PC9 cells promote Erk1/2 activation 

whereas dasatinib inhibited Erk1/2 in AXL KO cells. This suggests that AXL might play a role in 

enabling cancer cells to rely in either Erk1/2 or YAP to drive drug resistance (Figure 5F). 

 

In addition to YAP activation, transcriptomic profiling of the AXL mutant cell lines revealed a 

strong enrichment in signatures related to DDR pathways. Here we show that AXL protects cells 

against E-induced DDR by two ways: First, by upregulating antioxidant proteins and enzymes, 

thereby reducing the amount of ROS production and second, by regulating a mitotic G2 DNA 

damage checkpoint through the upstream regulator of C1 CK2 as well as with CDK1/2. However, 

combined EGFR and CK2 inhibition barely affected the emergence of drug-tolerant persister cells 

(Figure 7G), which suggests that this pathway is not required for AXL to provide resistance to 

anti-EGFR therapy.  

 

In total, this work demonstrates that systematically leveraging Y-to-F mutational studies and 

combining phosphoproteomic with phenotypic experiments allows dissecting pleiotropic signaling 

regulators to identify various mechanisms by which AXL drives resistance and collateral 

phenotypes in lung cancer (Figure 8).  
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Figure 8. Downstream signaling of AXL bypass resistance to EGFR-targeted therapies in lung cancer. AXL 

activates ABL1 and SFK that, through phosphorylation of proteins within C2 and C3, promote the nuclear 

translocation and activation of YAP which in turn upregulated its gene targets, including AXL, and drives cell 

proliferation and migration. Additionally, AXL activation leads to increased protection against E-induced DNA 

damage through CK2 kinase activity and the upregulation of antioxidant enzymes..  

 

Methods 

All analysis was implemented in Python and can be found at https://github.com/meyer-

lab/resistance-MS. 

 

Antibody reagents, inhibitors, and cell culture 
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Erlotinib (LC Laboratories), RXDX-106 (Selleck Chemicals), R428 (Fisher Scientific), XAV-393 

(Selleck Chemicals) were used at 1 μM, dasatinib (LC Laboratories) at 200nM, and CX-4945 and 

trametinib (both from MedChem Express) were used at 4 μM and 30 nM, respectively. The AXL-

activating antibody AF154 (R&D Systems) was used at 300 ng/mL. AXL, YAP, YAP S126-p 

were purchased from CST and rhodamine-conjugated β-tubulin from Bio-Rad and used for 

Western blotting. ELISA-based signaling measurements were performed using according to the 

manufacturer’s instructions (Bio-Rad). The Luminex kits EGFR Y1068-p and p-AKT is S473-p 

were obtained from Bio-Rad. The capture AXL antibody was generated by conjugating a primary 

AXL antibody (R&D systems MAB154) with magnetic beads (Bio-Rad). For total AXL detection, 

a biotinylated AXL antibody (R&D systems BAF154) was used and for p-AXL measurements a 

pan-tyrosine antibody (R&D systems) was used. The primary antibodies YAP (Santa Cruz), p-

H2AX (CST), AXL (Abcam), diluted at 1:50, 1:200, and 1:1000, respectively, and the secondary 

antibodies Alexa Fluor 488 goat anti-rabbit IgG (Invitrogen) and PE goat anti-mouse IgG 

(Invitrogen), diluted at 1:500 and 1:50, respectively, were used for immunofluorescence as 

described in47. PC9 (Sigma Aldrich) cells and all derivatives were grown in RPMI-1640 media 

supplemented with 10% fetal bovine serum (FBS) and penicillin/streptomycin. HEK293T cells 

were grown in DMEM supplemented with 10% FBS and 1% GlutaMAX (Thermo Fisher 

Scientific). PC9 YAP KO cells were obtained from Passi Jänne’s laboratory at Harvard Medical 

School. The oxidative stress assay was performed using CellROXTM Deep Red Reagent according 

to the manufacturer’s instructions.  

 

Generation of PC9 AXL Y-to-F mutant cell lines 

The PC9 AXL KO cell line was generated by transfecting cells with a CRISPR/Cas9 and GFP 

vector containing a gRNA targeting the AXL kinase domain. The gRNA sequence, cell culturing, 
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and sorting methods have been previously described80. Plasmids containing the AXL phosphosite 

mutations were generated from an AXL-IRES-Puro vector (Addgene #65627) using site directed 

mutagenesis. Each mutant was then inserted into a lentiviral vector with a puromycin resistance 

marker (Addgene #17448). 

 

For viral packaging, HEK 293T cells were seeded at 4.5 x 106 per 10 cm dish. After 24 hours, the 

lentiviral AXL expression vector, VSV-G envelope vector, and packaging vector (Addgene 

#12259 and #12260 respectively) were combined in a 10:1:10 mass ratio and diluted in Opti-MEM 

(Thermo Fisher Scientific). TransIT-LT1 (Mirus Bio) was added dropwise, and the solution was 

mixed gently by swirling and incubated at room temperature for 20 minutes. The solution was then 

added dropwise to the cells. After 18 hours, transfection media was replaced by media 

supplemented with 1% BSA fraction V (Thermo Fisher Scientific). Cells were incubated for 24 

hours, after which the virus-containing media was removed and stored at 4℃. The media was 

replaced, and the cells incubated a further 24 hours to generate a second batch of viral media. The 

harvested batches were then pooled, filtered through a 0.45μm PVDF membrane to remove 

packaging cells, and flash frozen followed by storage at -80ºC until use. 

 

PC9 AXL KO cells were seeded at 1.5 x 105 cells per well with antibiotic-free media in a 6-well 

plate and incubated for 24 hours. The cells were then infected with viral particles in antibiotic-free 

media supplemented with polybrene (MilliporeSigma). After 18 hours, the media was replaced 

with fresh antibiotic-free media. Cells were observed for a GFP positive population and then 

passaged into a 10 cm plate until confluent. The virally transduced cells were then sorted for based 

on GFP expression using a BD FACSAria cell sorter. The mutant cell populations were 

subcultured for later experiments. 
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Cell Viability and Apoptosis Assays 

Cells were seeded in a 96-well plate at a density of 1.05 x 103 cells per well. After 24 hours, 

treatments were added in media containing 300 nm YOYO-3 (Thermo Fisher Scientific). Cells 

were cultured and imaged every 3 hours using an IncuCyte S3 (Essen Bioscience) at 20x 

magnification with 9 images per well. The phase, green, and red channels were manually 

thresholded and then analyzed by IncuCyte S3 software (Essen Bioscience) to determine cell 

counts and fraction of area covered.  

 

Cell Migration Assay 

96-well IncuCyte ImageLock plates (Essen Bioscience) were coated with a Collagen-I solution 

(Thermo Fisher Scientific), washed twice, and then seeded with 4 x 104 cells per well. After a 4-

hour incubation, cells were wounded using the IncuCyte WoundMaker, washed twice to remove 

detached cells, and then treated with respective conditions. Images of the center of the wound were 

taken every 2 hours at a magnification of 10x, one image per well. The phase and green channels 

were thresholded and analyzed as above to determine migration measurements. 

 

Cell Island Effect 

Phase contrast images used for the cell island measurements were taken from image sets gathered 

in the cell viability assay. For endpoint readings, images at the 48-hour post-treatment time point 

were used. Representative images were chosen across experimental replicates. Images were 

opened in ImageJ and the center of each cell was manually marked. Dead cells, identified using 

YOYO-3 based fluorescence, were not marked. The 2D coordinates of all cell centers in an image 

were then exported for analysis. The amount of clustering present in a particular image was then 
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measured by applying Ripley’s K function to the set of coordinates. The implementation of 

Ripley’s K function used was taken from the astropy Python package49. 

 

Preparation of Cell Lysates for mass spectrometry 

Cell lines were grown to confluence in 10 cm dishes over the course of 72-96 hours, washed, and 

treated by addition of media containing 1 μM erlotinib. Cells were incubated for 4 hours at 37ºC 

and then additionally treated with media containing 1 μM erlotinib and 300 ng/mL AXL activating 

antibody for 10 minutes. The cells were then placed immediately on ice, washed with ice-cold 

phosphate-buffered saline, and lysed with cold 8 M urea containing Phosphatase Inhibitor Cocktail 

I and Protease Inhibitor Cocktail I (Boston BioProducts). The lysates were then centrifuged at 

20,000xg, 4℃ to pellet cell debris, and the supernatants removed and stored at -80℃. A 

bicinchoninic acid (BCA) protein concentration assay (Pierce) was performed according to the 

manufacturer’s protocol to estimate the protein concentration in each lysate. Cell lysates were 

reduced with 10 mM DTT for 1 hour at 56℃, alkylated with 55 mM iodoacetamide for 1 hour at 

RT shielded from light, and diluted 5-fold with 100 mM ammonium acetate, pH 8.9, before trypsin 

(Promega) was added (20:1 protein:enzyme ratio) for overnight digestion at RT. The resulting 

solutions were acidified with 1 mL of acetic acid (HOAc) and loaded onto C18 Sep-Pak Plus 

Cartridges (Waters), rinsed with 10 mL of 0.1% HOAc, and eluted with 10 mL of 40% Acetonitrile 

(MeCN)/0.1% HOAc. Peptides were divided into 200 aliquots, and sample volume was reduced 

using a vacuum centrifuge (Thermo) and then lyophilized to dryness for storage at -80℃. TMT 

labeling for multiplexed analysis was performed according to manufacturer’s protocol. Samples, 

each containing ~200 μg peptides, were resuspended in 35 μL HEPES (pH 8.5), vortexed, and 

spun down at 13,400 rpm for 1 minute. 400 μg of a given channel of TMT10plex (Thermo) in 

anhydrous MeCN, was added per sample. Samples were shaken at 400 rpm for 1 hour, after which 
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the labeling reaction was quenched using 5% hydroxylamine (50%, Thermo). After another 15 

minutes on the shaker, all samples were combined using the same pipette tip to reduce sample loss, 

and sample aliquots were washed twice with 40 μL 25% MeCN/0.1% HOAc which was added to 

the collection tube to improve yield. Sample volume was reduced using a vacuum centifuge and 

then lyophilized to dryness for storage at -80⁰C.  

 

Phosphopeptide enrichment 

Immunoprecipitation (IP) and IMAC were used sequentially to enrich samples for phosphotyrosine 

containing peptides. TMT-labeled samples were incubated in IP buffer consisting of 1% Nonidet 

P-40 with protein G agarose beads conjugated to 24 μg of 4G10 V312 IgG and 6 μg of PT-66 

(P3300, Sigma) overnight at 4⁰C. Peptides were eluted with 25 μL of 0.2% trifluoroacetic acid for 

10 minutes at room temperature; this elution was performed twice to improve yield. Eluted 

peptides were subjected to phosphopeptide enrichment using immobilized metal affinity 

chromatography (IMAC)-based Fe-NTA spin column to reduce non-specific, non-phosphorylated 

peptide background. High-Select Fe-NTA enrichment kit (Pierce) was used according to 

manufacturer’s instructions with following modifications. Eluted peptides from IP were incubated 

with Fe-NTA beads containing 25 μL binding washing buffer for 30 minutes. Peptides were eluted 

twice with 20 mL of elution buffer into a 1.7 mL microcentrifuge tube. Eluates were concentrated 

in speed-vac until ~1 μL of sample remained, and then resuspended in 10μL of 5% acetonitrile in 

0.1% formic acid. Samples were loaded directly onto an in-house constructed fused silica capillary 

column [50 μm inner diameter (ID) x 10 cm] packed with 5 μm C18 beads (YMC gel, ODS-AQ, 

AQ12S05) and with an integrated electrospray ionization tip (~2 μm tip ID). 

 

LC-MS/MS analysis 
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LC-MS/MS of pTyr peptides were carried out on an Agilent 1260 LC coupled to a Q Exactive HF-

X mass spectrometer (Thermo Fisher Scientific). Peptides were separated using a 140-minute 

gradient with 70% acetonitrile in 0.2 mol/L acetic acid at flow rate of 0.2 mL/minute with 

approximate split flow of 20 nL/minute. The mass spectrometer was operated in data-dependent 

acquisition with following settings for MS1 scans: m/z range: 350 to 2,000; resolution: 60,000; 

AGC target: 3 x 106; maximum injection time (maxIT): 50 ms. The top 15 abundant ions were 

isolated and fragmented by higher energy collision dissociation with following settings: resolution: 

60,000; AGC target: 1x105; maxIT: 350 ms; isolation width: 0.4 m/z, collisional energy (CE): 

33%, dynamic exclusion: 20 seconds. Crude peptide analysis was performed on a Q Exactive Plus 

mass spectrometer to correct for small variation in peptide loadings for each of the TMT channels. 

Approximately 30 ng of the supernatant from pTyr IP was loaded onto an in-house packed 

precolumn (100 μm ID x 10 cm) packed with 10 mm C18 beads (YMC gel, ODS-A, AA12S11) 

and analyzed with a 70-minute LC gradient. MS1 scans were per-formed at following settings: 

m/z range: 350 to 2,000; resolution: 70,000; AGC target: 3x106; maxIT: 50 ms. The top 10 

abundant ions were isolated and fragmented with CE of 33% at a resolution of 35,000. 

 

Peptide identification and quantification 

Mass spectra were processed with Proteome Discoverer version 2.5 (Thermo Fisher Scientific) 

and searched against the human SwissProt database using Mascot version 2.4 (MatrixScience, 

RRID:SCR_014322). MS/MS spectra were searched with mass tolerance of 10 ppm for precursor 

ions and 20 mmu for fragment ions. Cysteine carbamidomethylation, TMT-labeled lysine, and 

TMT-labeled peptide N-termini were set as fixed modifications. Oxidation of methionine and 

phosphorylation of serine, threonine and tyrosine were searched as dynamic modifications. TMT 

reporter quantification was extracted, and isotope corrected in Proteome Discoverer. Peptide 
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spectrum matches (PSM) were filtered according to following para-meters: rank=1, mascot ion 

score>15, isolation interference<40%, average TMT signal>1,000. Peptides with missing values 

across any channel were filtered out. 

 

Preprocessing and clustering of phosphoproteomic data  

We performed three phosphoproteomic biological replicates of the PC9 AXL Y-to-F mutants 

treated with EA. The three data sets were concatenated, mean-centered across cell lines, and log2-

transformed. To discard phosphosites whose measurements were not reproducible among 

replicates, all recurrent phosphosites in two or three biological replicates were identified. For those 

appearing in two biological replicates, any peptides showing a Pearson correlation coefficient 

smaller than 0.55 were filtered out, whereas for those appearing in all three biological replicates, 

peptides with standard deviations of 0.5 were discarded. Moreover, to discard any unchanging 

peptides across cell lines, we filtered any phosphosites out containing a 0.5 cutoff change of the 

fold-change maximum versus the minimum signal for every cell line. All overlapping peptides 

were then averaged. The resulting preprocessed phosphoproteomic data set was then fit to Dual 

Data-Motif Clustering (DDMC) using 5 clusters and a sequence weight of 2. 

 

Prediction of AXL-mediated phenotypes using PLSR 

To predict the AXL-mediated phenotypes, a 4-component PLSR model (scikit-learn) was used 

with the DDMC cluster centers. To assess the predictive performance of PLSR leave-one-out 

cross-validation was applied wherein the model was trained using the paired cluster centers and 

phenotypic measurements in all cell lines except one, the cluster centers of that remaining cell line 

was used to predict its phenotypic measurements and a mean squared error between the predicted 

and actual value per phenotype was computed. This process was iterated across all cell lines to 
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obtain a final r score value per phenotype. To benchmark the ability of PLSR to predict the 

phenotypes using the DDMC clusters, we additionally fit PLSR using either the unclustered 

phosphoproteomic data set directly, k-means clustering, GMM, DDMC using only the peptide 

sequence information, or the selected DDMC model combining the phosphorylation and sequence 

information (referred as DDMC mix). All cluster methods were used with 5 clusters and the 

number of PLSR components used was optimized for each case. We then applied leave-one-out 

cross-validation fitting the cluster centers generated with each method to PLSR.  

 

RNAseq sample preparation and sequencing 

To generate the RNAseq data, 300.000 cells of each PC9 AXL Y-to-F mutant cell line were seeded 

in 100 mm dishes. The next day were treated with E or EA and after 24 hours of treatment, cells 

were lysed with RIPA and RNA was extracted using the RNeasy Mini Kit (Qiagen) and RNA 

sequencing and read alignment and processing was performed by Novogene. Any genes with less 

than 10 TPM were filtered out. Ranked or standard GSEA were implemented in python (gseapy).  

 

Clinical data and analysis 

Bulk RNAseq, proteomic, and phosphoproteomic data of LUAD patients was obtained from the 

CTPAC LUAD study45. scRNAseq of LUAD patients including cell type and clinical annotations 

were obtained from Maynard et al81 which was analyzed using python’s package scanpy. The 

Kaplan-Meier curves displaying the overall survival of LUAD and PAAD patients according to 

the gene expression of the AXL downstream signature were generated using the web server 

GEPIA282 which uses TCGA/GTEx data.  

 

Drug-tolerant persister cell assay 
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1000 cells were seeded in a 96 well plate and treated with the indicated treatments and cell lines 

In four technical replicates per treatment. After 15 days of treatment, the treatment solutions were 

replaced with complete RPMI-1640 media for additional 15 days to allow drug-tolerant persister 

cells to regrow. Cells were imaged every 4 hours using an IncuCyte S3 (Essen Bioscience) at 10x 

magnification with 4 images per well. The phase were manually thresholded and then analyzed by 

IncuCyte S3 software (Essen Bioscience) to determine cell confluency. 
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Supplementary Figures 

 

 

Figure S1. (A) Cell surface and total protein AXL expression in the indicated PC9 cell lines. (B) AXL phosphorylation 

signal in PC9 AXL mutant cell lines in response to A alone or in combination with E. (C) EGFR inhibition in response 

to E. (D) AXL-specific activation of Akt. (E-F) Images of a scratch wound assay after 12h (E) as well as the E-induced 

cell island effect (F). Related to Figure 2.  
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Figure S2. (A-B) Cell proliferation and cell death quantified for 96 hours using live cell imaging in response to E or 

EA. (C) Relative wound density (RWD) measured by a scratch wound assay across all PC9 cell lines treated with E 
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or EA. (D) Extent of a E-induced cell island effect upon AXL activation measured by Ripley’s K function. Related to 

Figure 2. 

 

 

Figure S3. A) Hierarchical clustering of the phosphorylation signal of RTK adapters across AXL Y-to-F mutants. B) 

Heatmap of the indicated phosphosites in PC9 cells treated with E, R428, or the combination of both C) STRING 

network of DDMC’s C3 D) Motif logo plots using the PSSM of C1, C2, and C3. Related to Figure 3. 
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Figure S4 (A) Phosphorylation signal of C1, C2, or C3 in EGFRm or EGFR WT tumors. (B) tSNE plot of cancer 

cells grouped by treatment response. (C-Q) Gene expression of C1, C2, C3 in (C-E) epithelial cancer cells, epithelial 

normal cells, or non-epithelial, (F-H) Gene driver (I-K) EGFR mutation, (L-N) Tumor response, and (O-Q) Metastasis 
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status. R) p-value of the overall survival differences of LUAD or PAAD patients with high or low AXL signature 

scores. Related to figure 4. 

 

Figure S5 (A) Heatmap of full phosphoproteomic data of PC9 WT and AXL KO cells treated with 0, 50, 100, 200, 

or 500nM or dasatinib and EA. Two clusters are highlighted: Green indicates the dasatinib-responsive phosphosites 

shown in Figure 4C. B) Cluster shown in orange includes phosphosites increased in PC9 WT but decreased AXL KO 

cells. Related to Figure 5.  
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Figure S6 (A) Scores of a PCA analysis of the RNAseq data of the PC9 Y-to-F mutant cell lines treated with E or 

EA. (B-C) Immunofluorescence staining of YAP and DAPI in (B) PC9 WT and (C) AXL KO cells. (D-E) Drug-

tolerant persister cells assay with the indicated treatments in (D) PC9 WT, as well as in (E) AXL KO and YAP KO 

cells. Related to Figure 6. 
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A B S T R A C T

Cancer drug response is heavily influenced by the extracellular matrix (ECM) environment. Despite a clear
appreciation that the ECM influences cancer drug responseand progression,a unified view of how, where, and
when environment-mediated drug resistance contributes to cancer progression has not coalesced. Here, we
survey some specific ways in which the ECM contributes to cancer resistance with a focus on how materials
development can coincide with systemsbiology approaches to better understand and perturb this contribution.
We argue that part of the reason that environment-mediatedresistance remains a perplexing problem is our lack
of a wholistic view of the entire range of environments and their impacts on cell behavior. We cover a series of
recent experimental and computational tools that will aid exploration of ECM reactions space, and how they
might be synergistically integrated.

1. Tumor cell-environment interactions are multi-factorial

Environmental factors play a crucial role in dictating sensitivity or
resistance of cancer cells to drug treatment (Fig. 1). Advances in bio-
materials and bioprinting technologies have made it possible to mimic
the 3Dtumormicroenvironment andevaluate how specificextracellular
matrix (ECM) compositions, ligands, geometries, and biophysical
properties influence drug response more accurately. However, a
consensusunderstanding of how environment-mediated drug resistance
(EMDR) limits the efficacy of targeted therapies remains elusive. The
presence of cell-to-cell intrinsic differences, multi-factorial environ-
mental inputs, and combinations of resulting phenotypesin and around
tumorspresentan overwhelmingly large parameter spaceaffecting drug
response. Given these challenges, we propose that a combination of
modeling techniques tailored for high-dimensional analysis, alongside
high-throughput experimental approaches to interrogate engineered
tumor microenvironment (TME) variations, is critical to integrate and
summarize this vast space, unify findings across studies, and generate
data-drivenhypothesesand biological insights related to EMDR.

1.1. Cell intrinsic differenceslead to clonal diversification

Before directly addressingEMDR, we mustacknowledgehow clonal

heterogeneity drives drug response characteristics. Intratumoral het-
erogeneity can be subdivided in two broad categories—environmental
and cellular—resulting in complexity that must be considered when
studying ECM-cell interactions. Isolation and systematic characteriza-
tion of cancer cells has significantly advanced our understandingof the
cell-autonomousheterogeneitypresent within the tumor [1,2]. Genome
sequencing studies have uncovered that tumors are both spatially and
temporally heterogeneous,leading to major challenges in finding ther-
apieseffective for all cells in a tumor.As just oneof numerousexamples,
Yates et al. analyzed the spatial distribution of subclones for twelve
cancers. Eight showed significant spatial heterogeneity in cells with
point mutations, and two showed heterogeneity in copy-number
changes. Interestingly, they noted the degree of heterogeneity in
triple-negative breast cancer correlated to tumor size, although the
causality is not clear [3].

Environmental heterogeneity arises when regions within the TME
contain distinct environments that modulate disease progression. For
instance, the pancreatic TME consists of locally confined sub-tumor
microenvironmentswith distinct fibroblast plasticity, tumor immunity,
and treatment responsestates revealed by regional transcriptomic and
proteomic measurements [4]. Additionally, tumors are formed by
heterogenoussubpopulationsof intrinsically different cells that evolve
in responseto their environment; consequently, eachsubpopulation has
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distinct input–output responsesto the TME. A substantial amount of
work has been dedicated to investigating the emergence of subclonal
populations defined by their genetic diversification in responseto the
selective pressureimposedby drugs[5–8]. In breast cancer, sequencing
303 tumor samples from 50 patients enabled investigators to map the
spatial and temporal clonal evolution of tumors. They were able to
identify causal genetic alterations present in specific subclones with
increased resistance to chemotherapy and metastatic capacity [3].
However, while clonal subpopulationswithin tumors have now been
extensively profiled for their selection and relative fitness within the
tumor ecosystem,this hasyet to beevaluated within the contextof their
local TME (Fig. 1) [9].

1.2. Cell-ECM interactions

The ECM is a collection of sugars, proteoglycans, and proteins that
collectively provide attachment, scaffolding, and, via integrin binding,
initiate receptor-mediated signaling in resident cells, which plays a
critical role in regulatingtumorgrowth andmetastasis[10]. Tissuesthat
nurture the formation of successful metastases have a distinct ECM
profile [11], and thoroughanalysis of thesesiteshas revealed that each
tissuehasa distinct profile ofadhesive matrixproteinsandphysiological
stiffness [12–20]. Inspired by this, Barney et al. designed bone-,brain-,
and lung-inspiredbiomaterial platforms by varying the compositionand
density ofECM proteins[21]. When they cultured bone-,brain-,or lung-
tropic cell lines on these ECMs, they found coordination of ECM with
EGF regulation of spreading rate, area, displacement, and chemotactic

index. They also demonstrated that these ECM-specific responsescould
predict breast cancer metastasis. The clear next step is to take these
ECM-specific biomaterials to drug responsestudies.

Several studies have indeed demonstrated that integrin-binding to
the ECM drive therapy resistance and blocking these interactions has
emerged as a potential strategy to overcome integrin-mediated drug
resistance [22–24]. For instance, administration of a β1 integrin inhib-
itory antibody (AIIB2) reducedtumorvolumeand increasedtheefficacy
of ionizing radiation in human breast cancer xenografts [25]. A 3D
spheroid systemdemonstratedthat matrix-attachedovarian cancer cells
developed resistance to dual inhibition of PI3K/mTOR, while inner
matrix-deprived cells underwent apoptosis. The ECM-driven adaptive
mechanism included upregulation of nutrient deprivation and cellular
stress programs that sensitized cells when targeted [26]. Lee et al.
developed a miniaturized 3D cell-culture array (DataChip), which
spotted upto 1080 cell-seededcollagen or alginate gels onto glassslides
[27]. This assay, although miniaturized, yielded accurate cytotoxicity
information when comparing its IC50 values to those in conventional
well-plate assays.Thesehigh-throughput3Dsystemswill enable toxicity
analysis of drug candidates and their metabolites at the early-stageof
drugdevelopmentprocess(Fig. 2) [28]. Examplesofcombinatorial ECM
screening approaches include that from Beachley et al., who spotted
ECM from 11 different tissuesand quantified cell growth over a large
panel of cell types, including three different cancer cell lines [29].
Although not explored yet, this would be an excellent system to screen
for EMDR acrosstissuespecific ECMs. Mabry etal. designeda synthetic
hydrogel in a high-throughputmulti-well plate, where they can vary

Fig. 1. Tumorcell responsesto their environment aremulti-factorial. Thereare multiple factorsthat canaffect tumorcell behaviors.Dimensionality (2D or3D),
stiffnessof theculturingmaterials, topographyof thesurface, addition ofgrowth factors, shearforcesor interstitial fluid pressurecan changehow tumor cells behave.
Outputs are alsomulti-factorial. Within the sametumor, cells can show different proliferation profiles, drug responses,immune responses,and ECM remodeling due
to their intra-and inter-tumor heterogeneity.
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several parameters including the types of peptides, peptide concentra-
tion, and matrix modulus dynamically while cells are embedded[30].
Thus far, this lab has usedthis and similar approachesto study vascular
interstitial cells duringfibrosis,and it would be anexcellent tumorECM
progression model for cancer.

These studies and others also emphasized the importance of
dimensionality, or the geometry in which cells grow, when attempting
to recreatetheTME [31,32]. In fact, directly comparingCRISPR screens
in 2D monolayers and 3D lung-cancerspheroids revealed that many 3D
cancer growth-specificvulnerabilities are not recapitulated in 2D [33].
The role offocal adhesionproteinsin driving cancer cell disseminationis
similarly distinct between 2D and 3D environments [34]. However,
systematic comparisons of different dimensionalities can reveal how
individual cellular componentsretain their functional role, butdiffering
importance comesfrom ashift in the overall rate limiting processes.For
example, Meyer et al. identified that, while migration growth factor
responsesdiffer between 2D and 3D, initial membrane protrusion re-
sponseswere identical [35]. A mechanistic understanding of which
specific componentswithin theECM and molecular interactors in cancer
cells modulate these phenotypic responseswill improve our ability to
manipulate these responses.

1.3. The physical traits of the TME

The biophysical propertiesof theTME (e.g.,ECM modulus) generate
forces that are sensed by cells via integrins, the cytoskeleton, and
mechanosensitive ion channels, and strongly influence cell behavior
[36]. Modulus is an intrinsic property that describesthe extentto which
the ECM resists deformation in responseto an applied force. Increased
modulus is commonly observed in tumors relative to healthy tissue
acrossmany cancertypes[37–40], typically throughECM depositionby
stromalcells, especially cancerassociatedfibroblasts(CAFs) [41], or via
mechanical stressesfrom cell contraction and tumor growth [36]. The
density and identity of ECM proteins deposited by tumor stroma
dynamically stiffens the ECM: e.g., type I collagen imparts tensile
strength, and elastin gives tissue its elasticity. Several studiessupporta
prevailing hypothesis that ECM stiffness impacts tumor metastases
[42,43]. Solid stressescan also begeneratedby increased tissuevolume
and increasedinterstitial fluid pressure.The impact of thesemechanical
factors in treatment responsehas gainedcontinued attention. However,
their role in EMDR and cancer recurrence has been underappreciated
and a deeper molecular understanding of the pathways engagedmight

lead to further therapeutic opportunities.We will highlight someof the
emerging studies and tools developed for this exact topic here.

Schwartz et al. developed an approach to study drug responses in
cells cultured on a2D environmentsor in 3D hydrogels[44]. This study
revealed that cells were more resistant to receptor tyrosine kinase
(RTK)-targeting drugs,suchas sorafeniband lapatinib, when cells were
cultured on high modulus 2D hydrogels or when spheroids were
cultured in high modulus 3D hydrogels. This agreeswith a prior study
from Nguyenetal. who showed that several cancer cell lines were more
resistant to sorafenib when they were cultured on a stiffer 2D bio-
materials [45]. They went further to show that gene expressiondiffer-
ences were not sufficient to explain the observed drug resistance. They
combinedmultiple linear regressionanalysis with quantification of the
activation of a small panel of receptor tyrosine kinases in and on those
environments to reveal that blocking MEK phosphorylation alongside
these targeted therapies could overcome EMDR and reduce tumor
burden in vivo.

Both prior studies show the value in incorporating tunable bio-
materials into high-throughput formats, but their limitation is that
although they tuned modulusand geometry, they were limited to single
ECM proteins. Brooks etal. overcame this limitation when they studied
ovarian cancer drug resistance in an omentum-inspired3D hydrogel
[46]. They generated 3D tumor spheroids in microwells and encapsu-
lated them in the 3D hydrogels that had the stiffness and protein
composition of omentum tissue. The tumor spheroids showed increased
sensitivity to Carboplatin, Doxorubicin, LY2606368, and Mafosfamide
comparedto thosecultured on2Dtissueculture polystyrene, which they
were able tocorrelate to observedclinical responsewith paired primary
patient derived samples[46].

1.4. Soluble ligands are released by cancer and stromal cells

Paracrine signaling between cancer and stroma also initiates
receptor-mediated signaling to tumor cells, further driving disease
progression.For example, TGFβ, IL-6, IL-8,EGF, and hepatocyte growth
factor (HGF) produced by CAFs have emergedas potential drug resis-
tance targets[41,47]. IL-6and IL-8exertpro-migratoryeffectsoncancer
cells [48], and IL-6 further affects apoptosis,cell growth, angiogenesis,
and antioxidant metabolic programs that ultimately protect cells from
therapy [49]. Similarly, autocrine and paracrine release of TGFβ pro-
motes epithelial-to-mesenchymaltransition (EMT), cancer cell migra-
tion, and invasion [50–52]. HGF is thecognateligand of the RTK c-Met,

Fig. 2. Experimental solutions to reflect multiple environmental inputs and outputs. To consider physical and biological factors that affect cancer cell
behavior, different culturing platforms suchas 2Dplastic, 2D hydrogels, 3D hydrogels with single cells, 3D hydrogels with spheroidscan be used.Thesecan be made
on high-throughputsystem, like 96-well plates. Tumor-on-chipisanother platform that reflects tumor microenvironment with microfluid system.Tumor xenografts,
although not high throughput, are physiologically closer to the actual tumor microenvironment. With these platforms, drug response,gene expression,and kinome
analysis can be done to study multi-factorial outputs.
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which regulates tumor growth, migration, and resistance to tyrosine
kinase inhibitors (TKIs) [50,51,53,54]. Importantly, crosstalk between
responseto combinations of thesesoluble factors can additionally serve
as a drug resistance mechanism. For instance, CAFs respond to TGFβ
inhibition by increasing release of HGF, which in turn enhances cell
invasion [55–58]. Furthermore, cancer cells reprogram their energy
metabolism from mitochondrial oxidative phosphorylation to
glycolysis-mediatedATP production to fuel uncontrolled cell prolifera-
tion in tumors. This metabolic switch occurs in response to hypoxia
common to tumors, activating a response system that upregulates
glucosetransportersand glycolytic enzymes,and increasesthe releaseof
reactive oxygen species (ROS) [59,60]. Recent work by Oren et al.
observed a strong relationship between the proliferative capacity of
persister cell subpopulations and antioxidant expression signatures.
They subsequently validated that the EGFR inhibitor osimertinib in-
ducesan increase in ROS and showed that the fraction of proliferative
persistercells increasedsignificantly uponROS neutralization using the
ROS scavengerN-acetylcysteine[61].

Clearly, soluble factors in the TME are crucial mediatorsof EMDR.
Whether and how these signals should be targeted, however, will
dependontheir exactrole in theTME. For instance, thesesolublefactors
might alter tumor cell responsesto their environment, promote survival
and other phenotypes directly, or promote tumorigenic responsesindi-
rectly through changes to the TME. Systematic studies of soluble and
ECM signalswill help to identify the uniqueor overlappingrole ofeach.
A sophisticated study to doexactly this, Lin etal. generated 210unique
microenvironments to explorein parallel how they shapethe inhibitory
effectsof lapatinib [62]. They tested four ECM compositionsand seven
ligands, on either 2,500 Pa or 40 kPa elastic modulus substrate poly-
acrylamide gels and measuredcell proliferation, HER2 expressionand
phosphorylation, and cell morphology across four different cancer cell
lines. Interactions between soluble factor responsescan be observed in
vivo aswell. For instance, trastuzumabor lapatinib elicited responsesin
HER2-amplified breast cancer metastaseswhen they were situated in
mammaryfat padbutnot in thebrain, where thecombinationofa HER2
inhibitor with an anti-VEGFR2 antibody was required to slow tumor
growth [63]. In a secondstudy,HER3 blockadewasneededtoovercome
resistanceconferred by the brain microenvironment to PI3K inhibition
[64].

1.5. Multiple cell phenotypes,in combination, define the resistance
capacity of cancer cells

Drug resistance is typically quantified via a direct or surrogate
measure of cell number. However, the ability of tumors to sustain
growth in the presenceof treatment is defined by cooperation between
phenotypic responses.Drug treatment can lead to potent differences in
cell response,hidden by simply quantifying cell number [65]. Resistant
tumor cells that undergo EMT result in both drug resistance and
increased metastatic capacity [66,67]. Resistance to cancer immuno-
therapies is driven, at least in part, by mechanisms such as T-cell
exhaustion, immune suppressive cell populations, and inhibitory cyto-
kines andmetabolites that immunologically suppressthe tumor micro-
environment [68]. Furthermore, cancer and other resident cells (e.g.,
CAFs) reciprocally respond to tumor environmental signals by remod-
eling their ECM. This responsecan be subdivided in three broad cate-
gories: (1) ECM deposition affecting the biochemical and mechanical
properties of the environment, (2) the proteolytic degradation of the
ECM weakeningmigratorybarriersandpromotingthe invasive ability of
cancer cells, and (3) integrin-mediatedcell-ECM binding causing non-
proteolytic physical breaching of the base membrane facilitating can-
cer cell invasion [69]. For thesereasons,drugresistancemustbeviewed
as the coordination of multiple phenotypes to overcome the inhibitory
effects of therapy.

The drug response and resistance mechanisms of RTK inhibitors
effectively illustrates the importance of determining the role of

individual factors within an overall environment. Our labs and others
have shown that a commonform of RTK inhibitor resistance is derived
from alternative “bypass” RTKs that can reactivate essential survival
signaling [70–73]. While each RTK has some propensity for this
signaling redundancy, different growth factors vary in their resistance-
conferring capacities. For instance, lung adenocarcinoma cells treated
with the EGFR inhibitor erlotinib can bemaderesistantby HGF or FGF
much moreso than EGF, IGF, HRG, or PDGF, and each growth factorsʼ
resistance conferring capacity could be explained by its ability to acti-
vate a commondownstreampathway [70,74]. Beyond merely inducing
cell proliferation, RTK-mediated bypass resistance can also activate
collateral malignant programsthat, in combination, limit therapy effi-
cacy and direct disease progression. For instance, resistance through
AXL activation associates with more advanced diseases stages as the
receptor sustainscells that have undergoneEMT resulting in increased
metastatic capacity [66,73,75,76]. The TME can also modulate drug
response through these same signals. While these bypass mechanisms
mean that there are many possible environmental factors that can
contribute to resistance, systematically identifying which factors may
lead to similar downstream consequenceswould help to build a catalog
of which are capable of conferring bypass resistance.

Together, theseobservations indicate that no one environment will
faithfully represent the complex cell-ECM interactions that exist in a
living tumor. High-throughput screening methods that systematically
evaluate the impact of hundreds of tumor-inspiredmicroenvironments
can circumvent these limitations to help uncover resistance or
sensitivity-driving environmental cues. These data can then be com-
plemented with transcriptomics, proteomics, and/or phosphoproteo-
mics information to uncover the signaling programsthat transduce such
cues and give rise to the resulting phenotypic responses(Fig. 2). Pro-
vided this huge space of inputs and outputs, a set of experimental and
computational methods to systematically disentangle what specific
microenvironmental factors, signaling changes, and phenotypic ex-
pressionsdrive drug resistancewill be necessary.

2. Unique challenge of multi-factorial problems like
environment-mediatedresistance: Exploring the space of
possibilities

A central challenge in understandinghow environment contributes
to tumorcell resistance is that the “space” ofenvironmental factors is so
large. Different environmental factors interact, creating context-specific
responses unless one considers the entire range of possible environ-
ments. Onthe other hand, it becomesimpossible tomeasure responseto
all possibleenvironments. Even in large-scaleprofiling studies,it can be
difficult to “map” between studies to determine which responsesoccur
through commonmechanisms,and which represent distinct pathways.
A similar problem in mapping ariseswhen considering the relevance of
in vitrosystemsto in vivoresponses:first, there aremany factors that can
bemimicked invitro,but it is not clear which are essentialto creatingan
accurate (or minimally necessary) representation of the in vivo envi-
ronment; second, the in vivo environment itself is not monolithic, and
containsmicroenvironments that vary in their composition.The answer
cannot simply be larger studies, as the scale difference is modest
compared to the overwhelming range of environmental factors. For
instance, testing 10 parameters defined by the categories above, in
combination and in triplicate, would require 300,000 measurements
(Fig. 3A).

A similar challenge exists in the use of many-parameter computa-
tional models. Optimization requires exploring which among many
possible inputs leads to optimal outputs. However, the curse of dimen-
sionality dictates that problems quickly become intractable, even for
computational exploration, as the number of parameters increases
(Fig. 3B). Solutions to this problem from computational applications
offer lessonsfor studying the ECM environment.
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3. Computational solutions to reduce the space of ECM
responses

Computational approaches can provide a solution to parsing the
overwhelming spaceof ECM environment possibilities and their effects
on drug response. These methods can help visualize multi-factorial
space, optimize experimental design for desired outcomes, and inte-
grate observations with prior knowledge. To do so, computational
methodswork off two generalprinciples—recognition of certain general
patterns, and the use of pre-definedpatterns based on prior knowledge.
Both approaches have shown successinmaking senseof cellsʼ responses
to their environment and have future opportunities for improvement.

A particularly promising solution to exploring many-parameter re-
sponses is finding low-rank structure within a space of possible re-
sponses.For instance, when exploring how cells respond to a panel of
soluble factors, the responsescan be visualized with a technique like
principal componentanalysis (PCA), which identifies a low-rankstruc-
ture within matrix data (conditions ×measurements). However, cell
responsesare not onlymulti-dimensional butmulti-modal,meaning that
types of variables, such as soluble ligands, treatment, and ECM bio-
physical or biochemical properties, can be present in all possible com-
binations, andinduce cell phenotypechangesthroughtheir combination
(Fig. 3C and 4). For instance, Lin et al examined cell responses to
lapatinib with different soluble ligands, ECMs, and matrix stiffnesses,
with or without lapatinib treatment. These different groupsof factors
were tested in all possible combinations. Such structured data can be
organized as a 4-modetensor where axes represent ECMs, ligands, ma-
trix stiffness, and treatments. Moreover, this data is still multi-
dimensional given that many measurements were made. For these
cases, higher-mode generalizations of PCA exist. These methods,
broadly referred to as tensor decomposition techniques, can be
remarkably effective at dimensionality reduction even beyond PCA
(Fig. 3D) [77]. For instance, Farhat et al. recently profiled the response
of several immune cell populations to cytokines at several concentra-
tions over time, resulting in a four-modetensor (cell types ×time ×
ligand ×concentration) [78]. Tensor-baseddecompositionreducedthe
datato~ 2% of its original size,while preserving90% ofthevariance in
the original 2,880 measurements,by recognizing that just two overall
patterns existedacross the different parameters [78]. Importantly, this
reduction is far beyond what would have been achieved by PCA, and
additionally helpedvisualize the effectof each modeby separatingtheir

effects (e.g., the effect of time). Tan etal. similarly exploredhow tensor
decompositionscan reduce antibody serologydata in which the antigen
targeting and immune interactions of antibodies are profiled across
subjects and time [79]. There too, they observed that dimensionality
reduction in tensor form could further reduce data into component
patterns, and that its visualization was improved by separation of each
modeʼs effect. Dimensionality reduction in this form can also help to
harmonize data acrossstudies. For instance, it has beenusedto identify
patterns across microbiome studies, overcoming inter-study batch ef-
fectsand sparse,irregular sampling [80]. Commonpatterns existamong
all the ECM factorswe have describedabove, aswell, where substantial
dimensionality reduction can reduce the search spaceof experiments.

As an illustrative example of the biological conclusions one can
derive from multi-modal dimensionality reduction, we performed
PARAFAC decompositionon a microenvironment microarray (MEMA)
dataset of MCF10A breast epithelial cells. 182 cellular properties were
measured across 57 ligand treatments and 48 ECM environments,
forminga 3-modetensor[81] (Fig. 4A). First, PARAFAC can reduce the
data more effectively than PCA—by 98% while still explaining60% of
the variance (Fig. 4B). This makes it easier to identify patterns in how
ECM composition, soluble factors, and interactions between bothaffect
the measured cell response. The influence of each mode within a
component is multiplied together to reconstruct the data, making
interpretation straightforward. For instance, component2 illustrates the
effect of elastin and nidogen, acrossa range of soluble ligands, affecting
cytoplasmic shape properties. These results additionally show how one
can draw overall conclusionsabout thedata. For example, component2
varies more extremely with ECM environment, while component1 is
much more responsive to soluble ligandsʼ presence. Finally, tensor
decomposition can facilitate the integration of various data sets, pro-
vided they have one mode in common. Here, one could expand the
shown tensor (Fig. 4A) into a 4-modetensor incorporating measure-
ments from different cell lines across the same ligands and ECMs
[82,83]. This can help ensurethat the cell-ECM interactions discovered
are conserved acrossrelevant cell line models.

Alternative solutionsto thecurseof dimensionality are methodsthat
still enable optimization for somedesiredoutput. Broadly, optimization
is often performed computationally using either gradients, which indi-
cate thedirection of iterative improvement, orsurrogatemodelsthat act
as a stand-into represent the search space. Both techniques have been
applied, for example, in protein design.For instance, directed evolution

Fig. 3. Computational solutions tomappingEMDR. A) The vast “space” of environmental factors that affect cell responseprevents an accurate experimentaland
computational representationof EMDR. B) Optimization is achieved through a local exploration within the neighborhoodof an existingoptimal solution. However,
becauseof the curse of dimensionality, this can require an impossibly large number of local searchesto fully explore the multi-factorial space of EMDR. C) Multi-
modal data includes different variables that combinatorically influence the ECM-mediated cell responses.D) Dimensionality reduction using tensor decomposition
can vastly simplify multi-modalpatterns.
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is essentially a series of local searcheswithin the neighborhood of the
existing optimal solution (Fig. 3B) [84]. Surrogate modeling using
generative models like Gaussian processeshas been widely applied for
optimizing protein designwhen combined with evaluating libraries of
variants [85–87]. These techniquesmight similarly be applied to ECM
environments to optimize somedesired outcomesuch asin the design of
regenerative tissue scaffolds.

4. Outlook

Though the TME is seemingly vast in the possible combinations of
environments and responses, solutions exist for systematically charac-
terizing such problems. Overcoming drug resistance induced by the
tumor environment will continue to benefit from tighter integration of
experimental solutions to systematically measure environmental re-
sponses,and computational solutions to make sense of these measure-
ments. As outlined above, multi-modal dimensionality reduction
solutionswill be especially critical to this effort as they provide a solu-
tion for globally characterizing thespaceofpossibleECM environments.
There is good reason to expect that, despite the large number of envi-
ronmental factors, common patterns exist in the types of responsesthey
elicit, and therefore significant gains are possible through dimension-
ality reduction. We expect that, as progress is made in characterizing
these responses, the ECM environment will one day be considered
tractable toprofile in a comprehensiveway. Comprehensively capturing
the influence of the ECM environment will in turn greatly improve our
ability to elicit durable treatment responsesin cancer.
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