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Transcript errors generate amyloid-like
proteins in human cells

ClaireS.Chung1,11, Yi Kou2,11, Sarah J. Shemtov1,11, BertM.Verheijen1,11, Ilse Flores3,
Kayla Love2, Ashley Del Dosso4, Max A. Thorwald 1, Yuchen Liu2, Daniel Hicks1,
Yingwo Sun1, Renaldo G. Toney 1, Lucy Carrillo1, Megan M. Nguyen5,
Huang Biao4, Yuxin Jin 3, Ashley Michelle Jauregui3, Juan Diaz Quiroz6,
Elizabeth Head7, Darcie L. Moore 8, Stephen Simpson9, Kelley W. Thomas 9,
Marcelo P. Coba 3, Zhongwei Li 4, Bérénice A. Benayoun 1,
Joshua J. C. Rosenthal6, Scott R. Kennedy 5, Giorgia Quadrato 4,
Jean-Francois Gout10, Lin Chen 2 & Marc Vermulst 1

Aging is characterized by the accumulation of proteins that display amyloid-
like behavior. However, the molecular mechanisms by which these proteins
arise remain unclear. Here, we demonstrate that amyloid-like proteins are
produced in a variety of human cell types, including stem cells, brain orga-
noids and fully differentiated neurons by mistakes that occur in messenger
RNA molecules. Some of these mistakes generate mutant proteins already
known to cause disease, while others generate proteins that have not been
observed before. Moreover, we show that these mistakes increase when cells
are exposed to DNA damage, a major hallmark of human aging. When taken
together, these experiments suggest a mechanistic link between the normal
aging process and age-related diseases.

Protein aggregation is a defining hallmark of human aging and
disease1,2. At a molecular level, protein aggregates are formed by
misfolded proteins that form amorphous protein deposits or self-
assemble into large, neatly organized amyloid fibers. These aggregates
play an important role in various neurodegenerative diseases, includ-
ing Alzheimer’s disease (AD), Parkinson’s disease (PD) and
Creutzfeld–JakobDisease (CJD)3,4. However, they also contribute to the
functional decline associatedwith normal aging and the pathology of a
variety of other age-related diseases, including cancer5, amyotrophic
lateral sclerosis (ALS), diabetes, heart disease and cataracts6–9. In
familial cases of amyloid diseases, patients tend to carry a single point
mutation that dramatically increases the amyloid propensity of the
affected protein10. However, the majority of cases that enter the clinic

are non-familial in nature, and it is currently unclear how these
pathogenic proteins are generated in the absence of a well-defined
genetic predisposition.

One long-standing hypothesis is that in non-familial cases of these
diseases, amyloid proteins are generated by epi-mutations, non-
genetic mutations that are only present in transcripts. For example,
if amistakewasmadeduringRNAsynthesis11–14 or RNAediting15, a small
cache of mutant proteins could be generated that displays amyloid or
prion-like behavior. Although their initial number would be small,
amyloid and prion-like proteins are defined by their ability to replicate
themselves by binding to WT proteins through strong, non-covalent
interactions and converting them to an amyloid state16. Through this
self-templating mechanism, a small cache of mutant proteins created
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by a transcript error could grow in size and number and eventually
seed the amyloid fibers that characterize aging cells (Fig. 1A). Broadly
speaking, these aggregates are divided into two categories: amyloid
and amyloid-like structures. Amyloid structures are created by the self-
assembly of amyloid proteins into highly ordered, fibrillar aggregates
characterized by a cross-beta sheet structure. In contrast, amyloid-like
structures consist of pathological protein aggregates that lack classic
amyloid fibrils, but because the misfolded proteins that give rise to
these structures share the characteristic self-templating behavior of
amyloid proteins, they are often referred to as amyloid-like proteins.

Although a role for transcript errors in the formation of these
structures has been suspected, it has proven difficult to test this
hypothesis due to technical limitations that are related to error
detection. To solve this problem, we recently optimized17 an RNA
sequencing tool termed circle-sequencing18,19, which allows for high-
fidelity sequencing of mRNA molecules (Supplementary Fig. 1). Here,

we use circle-sequencing to demonstrate that transcript errors are
ubiquitous in human cells, and that they indeed result in proteins with
amyloid andprion-like properties.We support these observationswith
a variety of cellular, biochemical and biophysical experiments that
demonstrate that the proteins generated by these errors can suc-
cessfully convert WT proteins to an amyloid-like state, which then self-
assemble into protein aggregates with a variety of structures. Finally,
we show that the amount of mutant proteins required to initiate large-
scale protein aggregation is routinely breached as a result of DNA
damage, a ubiquitous hallmark of aging cells. As a result, our experi-
ments establish a plausible, mechanistic link between DNA damage
andprotein aggregation, twomajor hallmarks of human aging and age-
related diseases, including AD. In doing so, our observations provide
fresh insight into the role of mutagenesis in human aging and disease,
and suggest a plausible mechanism by which amyloid- and prion-like
diseases can develop.

Fig. 1 | Graphical representation of hypothesis and summary of transcription
error data. AWe hypothesize that transcription errors could give rise to amyloid-
and prion-like proteins. This relatively small cache of mutant proteins can then
form a seed that recruitsWTproteins and converts them to an amyloid-like state to
generate the large amyloid fibers and amorphous deposits that characterize pro-
tein aggregationdiseases.BTranscription errorswere identified across the genome

of H1 human embryonic stem cells (n = 4, ESCs), brain organoids (n = 2) and human
neurons (n = 3). All replicates are independent biological replicates. C,D The error
rate and spectrumof H1 ESCs, brain organoids and humanneurons are similar, with
the exception of A→G errors, which most likely indicate off-target A to I RNA
editing (n is identical to B). Error bars indicate standard error of the mean. Source
data are provided as a Source Data file.
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Results
Transcript errors are ubiquitous in human cells
To test whether transcript errors give rise to amyloid or prion-like
proteins, we probed the transcriptome of H1 human embryonic stem
cells (H1 ESCs), brain organoids, neurons and fibroblasts with circ-seq,
a massively parallel sequencing approach that uses consensus
sequencing to enable high-fidelity RNA sequencing17,19. The brain
organoids and neurons we sequenced were generated directly from
the H1 ESCs (Supplementary Fig. 2), so that the genetic background
between these models remained consistent and the results could be
compared to each other. In addition, we sequenced the H1 ESCs at
300x coverage to generate a custom-made reference genome and
ensure that single nucleotide polymorphisms or low-level mutations
could be excluded from downstream analyses (Supplementary Fig. 3).
In total, these sequencing efforts yielded >160,000 transcript errors
that affected >11,000 genes across all three models (Fig. 1B). A com-
plete list of the errors we detected can be found in the supplemental
material attached to this publication. Each model displayed a similar
error rate and spectrum, suggesting that the error rate of transcription
is mostly independent of cellular fate, proliferation rate and differ-
entiation status (Fig. 1C,D). We did observe a clear increase in A→G
errors in theH1 ESCs cells though, whichwepreviously found to reflect
the impact of A to I RNA editing on the transcriptome20.

Transcript errors create disease-associated proteins
We then used two approaches to determine if these errors result in
amyloid or amyloid-like proteins: a literature-based approach and a
bioinformatic approach. In our literature-based approach, we
focused on 70 proteins that are directly implicated in various
amyloid and amyloid-like diseases, including PRNP (CJD and
Gerstman–Sträussler–Scheinker syndrome (GSS)21), APP (AD)22),
SOD1, FUS (ALS)23, and TTR (transthyretin amyloidosis) (for a list of

selected proteins, see Table 1, for the full list, see Supplementary
Table 1). Over the past 3 decades, hundreds of mutations have been
identified in these proteins that cause familial cases of proteino-
pathies. In most cases, these mutations dramatically increase the
amyloid and prion-like potential of the affected proteins. We rea-
soned that if transcript errors generate identical mutant proteins,
they are likely to result in pathogenic proteins as well. To identify
these errors, we cross-referenced the errors we detectedwith various
databases that catalog germline mutations implicated in protein
aggregation diseases, including Clinvar24 and the Human Genome
Mutation Database25. Of the 1936 errors that affected amyloid and
amyloid-like proteins, we identified 38 errors that give rise to mutant
proteins previously seen in the clinic. For example, 2 of the errors we
detected generate mutant versions of the SOD126 and FUS protein27,
both of which were identified in familial cases of ALS (Table 1, Sup-
plementary Table 1), while another error generated a mutant version
of the human prion protein (PRNPA133V) that causes GSS28. Other
errors generated pathological versions of TTR (amyloidogenic
transthyretin amyloidosis), CSTB (progressive myoclonic epilepsy),
TGFBI (corneal dystrophy), APP (AD), CRYGD (coralliform cataracts),
TP53 (cancer), Medin (natural aging), and others. In addition, we
identified 75 errors that affect key amino acids directly implicated in
disease, although these errors mutated these amino acids to a dif-
ferent residue compared to the clinic. For example, one of these
errors generates a mutant version of PRNP (PRNPV210A) that closely
resembles a PRNPV210I mutation implicated in familial CJD29 (both
alanine and isoleucine are aliphatic amino acids). Similar errors were
present in transcripts that encode APP, CSTB, HNRNPA1 (inclusion
body myopathy with FTD), TGFBI, TP53, TTR and 10 other proteins
(Table 1, Supplementary Table 1). A substantial portion of these
errors are likely to affect the amyloid-like behavior of these proteins
as well.

Table 1 | Transcription errors affect proteins directly implicated in amyloid- and prion-like diseases

Gene Protein Disease Errors detected Mutations
mimicked

Key aa’s
affected

Amyloid poten-
tial ⇧

ABri peptide ITM2B FBD and FDD 66 2 6 27

Amyloid precursor protein APP Alzheimer’s disease 266 6 9 51

Cystatin-B CSTB EPM1 33 2 1 0

Fused in sarcoma FUS ALS 25 1 3 10

Gamma-crystallin D CRYGD Coralliform cataracts 1 1 0 0

Gelsolin GSN FAF 35 1 1 12

Heterogeneous nuclear
ribonucleoprotein D-like

HNRNPDL Limb-girdle muscular dystro-
phy 1G

15 1 1 4

Medin MFGE8 Cerebrovascular dysfunction 115 1 1 29

Neurofilament heavy
polypeptide

NEFH CMT and ALS 1 1 0 1

Prion protein PRNP CJD, GSS, FFI 10 1 1 1

Receptor-interacting
serine/threonine-protein kinase 1

RIPK1 Neuroinflammation 1 1 0 1

Solute carrier family 3
Member 2

SLC3A2 Lysinuric protein intolerance 57 1 0 8

Super oxide dismutase 1 SOD1 ALS 6 1 0 1

Transforming growth factor
beta-induced

TGFBI Corneal dystrophy 701 6 12 126

Tumor protein 53 TP53 Cancer 60 5 1 3

Transthyretin TTR Transthyretin amyloidosis 57 4 9 12

Tubulin alpha-1A chain TUBA1A Tubulinopathies 149 3 15 33

Column 1: Gene name. Column 2: Protein symbol. Column 3: Disease associated with protein. Column 4: Number of errors detected in transcripts that were derived from this gene. Column 5:
Number of errors that generate mutant proteins identical to those seen in familial cases of protein aggregation diseases. Column 6: Number of errors that affect an amino acid (aa) known to be
involved in disease, butmutate it to a different residue compared to the clinic.Column6:Number of errors that increase theamyloid potential of theseproteins as predicted bybioinformatic analysis
(AmyPred-FRL).
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Transcript errors create disease-associated amyloid-like
proteins
To confirm that the errors we identified through our literature-based
approach indeed result in proteins with amyloid or amyloid-like
behavior, we selected two candidates for follow-up experiments. One
of these errors generates a mutant version of SOD1 (SOD1G142E,
Fig. 2A–D) while the second error generates a mutant version of FUS
(FUSR521H, Fig. 2E–H). Thesemutant proteins were previously identified

in familial cases of ALS26,27. We expressed these proteins in primary
human fibroblasts, HEK293 cells and glioblastoma cells by lentiviral
transfection (Fig. 2, Supplementary Fig. 4) and then imaged them by
confocal microscopy. Consistent with the idea that transcription
errors generatemutant proteins that display amyloid-like behavior, we
found that both SOD1G142E and FUSR521H aggregated in all 3 cell types,
while the WT proteins did not. In addition, we found that the mutant
SOD1 and FUS proteins were mislocalized. While WT FUS is
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predominantly present in the nucleus (where it aids RNA splicing, gene
expression and DNA repair30), the mutant protein was excluded from
the nucleus and formed large punctate deposits throughout the
cytoplasm (Fig. 2E–H). These observations complement similar results
by others30–34. Similarly, SOD1 is normally distributed throughout the
cytoplasm and the nucleus, but we found that SOD1G142E was excluded
from the nucleus and formed large protein deposits in the cytoplasm
(Fig. 2B–D). Importantly, nuclear exclusion and protein aggregation of
FUS and SOD1 are key components of the pathology associated with
ALS35,36. We observed the same mislocalization and aggregation when
we mimicked transcriptional mutagenesis by transfecting 3T3 cells
with mRNA from a SOD1G142E template. The protein aggregates gener-
ated by these mRNAs remained visible for at least 7 days (our latest
time point in this experiment, Fig. 2I,J), indicating that they persist for
an extended period after synthesis. Finally, we used lentiviral trans-
duction to co-express WT and mutant SOD1 in the same cells and
monitored their behavior. We found that when co-expressed with
SOD1G142E, WT SOD1 no longer distributed equally throughout the cells,
but was excluded from the nucleus and assembled into the same
amyloid-like deposits as SOD1G142E (Fig. 2J–N), suggesting thatWTSOD1
was recruited by SOD1G142E and converted to an amyloid-like state. We
made similar observations forWT andmutant FUSR521H (Fig. 2O–R).WT
FUS was almost always excluded from the nucleus in the presence of
FUSR521H, and sequestered in cytoplasmic deposits with FUSR521H,
although rare exceptions did occur (Supplementary Fig. 5). Consistent
with the idea that SOD1G142E has amyloid-like properties, transmission
electronmicroscopy (TEM) demonstrated that mutant SOD1 can form
amyloid-like fibers in vitro (Fig. 2S,T). When taken together, these
experiments provide an important proof of principle of the idea that
transcription errors give rise to amyloid-like proteins. Moreover,
because RNAPII constantly generates new mRNA molecules inside
cells, and transcription by RNAPII is relatively error prone, (the error
rate of transcription is approximately >100-fold higher than the
mutation rate37), we conclude that transcription errors generate a
continuous stream of amyloid and amyloid-like proteins in
human cells.

Transcript errors create uncharacterized amyloid-like proteins
In addition to proteins directly connected to disease, we wondered
whether transcription errors can also generate mutant proteins whose
amyloid-like properties have not been characterized yet. To test this
hypothesis, we used an unbiased bioinformatic approach to analyze
the impact of errors on amyloid and amyloid-like proteins. First, we
usedAmyPred-FRL to analyze errors that affect amyloid- and prion-like
proteins and found that 457 were predicted to increase their amyloid
potential (Table 1, Supplementary Table 1). Second, we used PAPA38 to
analyze errors that affect proteins with prion-like domains. Although
the PRNP gene encodes the canonical prion protein in humans, many
proteins are now known to contain prion-like domains. Mutations in

these domains can increase the prion-like behavior of these proteins in
a wide variety of contexts, including proteotoxic diseases. For exam-
ple, mutations in the prion-like domain of HNRNPA1 and HNRNPAB2
increase the pathogenic behavior of these proteins and can cause
multisystem proteinopathies and ALS39,40. By applying this algorithm
to our dataset, we found that 393 transcript errors are predicted to
display increased amyloid- and prion-like behavior (Table 2, Supple-
mentary Table 2).

Next, we extracted information from Prionscan41, PLAAC42 and
the Amyloid Protein Database43 to build a comprehensive database of
proteins that have the potential to display amyloid and prion-like
features.We then cross-referenced this databasewith the transcription
errors we detected to identify errors that are likely to enhance these
features. To test the accuracyof these predictions, we examined errors
that affect the TP53protein in greater detail. TP53 is an essential tumor
suppressor protein involved in DNA repair, transcription, cellular
senescence and apoptosis, and aggregates in 15% of human cancers34.
With the bioinformatic tools described above we identified 5 tran-
scription errors that are likely to increase the amyloid propensity of
TP53: TP53S149F, TP53G245S, TP53G279A, TP53S315F and TP53P318L. When we
mapped thesemutations onto the crystal structure of TP53we noticed
that the S149Fmutation (Fig. 3A) is located in a loop at the edge of the
TP53 β-sandwich core (loop 146-WVDSTPPPGTR-156). Based on its
location and the structural change it introduces (Fig. 3B,C), we pre-
dicted that this mutation may increase the amyloid propensity of the
local peptide sequence (the 146-WVDSTPPPGTR-156 loop) and
enhance the interaction between the β-sandwich cores of separate
TP53 monomers, thereby leading to the assembly of the extended
β-sheet structures that are characteristic of amyloid proteins. Muta-
tions in the loop at the edge of the β-sandwich core of the TTR protein
were previously shown to promote amyloid formation through a
similar structure-based mechanism44. To test this hypothesis, we
expressed the core domain (aa 92-292) of WT and mutant TP53 in
bacterial cells and analyzed the behavior of these proteins by TEM.
Consistent with our predictions, we found that TP53S149F indeed
aggregated into large protein deposits, while WT TP53 did not
(Fig. 3D,E). These aggregates displayedCongo-redbirefringence under
polarized light, a strong indicator of amyloid formation (Fig. 3F,G).We
conclude that in addition to amyloid-like proteins directly implicated
in disease, transcription errors can also give rise to uncharacterized
mutant proteins with amyloid-like behavior.

Amyloid formation can be caused by a small number of errors
Next, we decided to test if TP53S149F can convert WT TP53 to an
amyloid-like state, similar to SOD1G142E and FUSR521H, and if so, how
much TP53S149F was required to initiate this process. To answer this
question, we added vanishing amounts of TP53S149F to a WT TP53
solution and found by TEM that 1% of TP53S149F (v/v) was sufficient to
initiate the aggregation of the WT protein (Fig. 3H). We confirmed

Fig. 2 | Transcription errors result in proteins with increased amyloid-like
behavior. A A transcription error (Tr) was identified in the SOD1 transcript that
mimics a mutation (Mut) implicated in ALS. This error substitutes a guanine for an
adenine base, resulting in a glycine (G) to glutamine (E) mutation at residue 142.
B WT SOD1 is soluble and present throughout the cell, including the nucleus. C In
contrast, SOD1G142E proteins form aggregates and are excluded from the nucleus.
D Quantification of WT and mutant SOD1 aggregation and mislocalization. Depic-
ted are the % of cells with aggregates or mislocalized proteins (n = 3 biological
replicates). For aggregates, P =0.0015, for mislocalization, P =0.0102. E A tran-
scription error was identified in the FUS transcript that mimics a mutation impli-
cated in ALS. This error substituted a guanine for an adenine base, resulting in an
arginine (R) to histidine (H)mutation at residue 521.FWTFUS is present in a soluble
state in the nucleus, while FUSR521H (G) forms aggregates outside of the nucleus.
H Quantification of FUS aggregation and mislocalization (n = 3 biological repli-
cates). Depicted are the % of cells with aggregates or mislocalized proteins. For

aggregates, P =0.0108, formislocalization, P =0.0174. I, J Transfection of cells with
500 ng of SOD1G142E mRNA resulted in cells with clearly visible mislocalized protein
aggregates (n = 3 biological replicates). K–M When cells are transducted with len-
tiviral particles carrying both WT SOD1 and SOD1G142E simultaneously, WT SOD1 is
excluded from the nucleus and recruited into extranuclear aggregates.
N Quantification of SOD1 colocalization with either N-terminal or C-terminal tags.
O–Q WT and FUSR521H co-expression in primary human fibroblasts, demonstrating
that mutant and WT FUS co-localize in cytoplasmic aggregates (n = 3 biological
replicates). R Quantification of FUS colocalization with either N-terminal or
C-terminal tags. (n = 3 biological replicates). SWT SOD1 does not form fibers under
TEM, but SOD1G142E does (T). TEM experiments were performed 3 times with similar
results. *P <0.05. **P <0.01 according to a two-tailed unpaired t-test with Welch’s
correction. Data are presented asmean values ± SEM. Source data are provided as a
Source Data file.
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these findings in a dynamic light scattering experiment (Fig. 3I–K) that
demonstrated that whileWT TP53was present at a size consistent with
TP53 monomers, TP53S149F aggregated into deposits that were >100-
fold larger in size. Moreover, when we added 2% (v/v) TP53S149F to the
WT solution, we observed a disproportionate increase in TP53 aggre-
gates that could only be explained by mutant-induced aggregation of
WT proteins. Finally, we used atomic force microscopy (AFM) to
characterize the cross-seeding behavior betweenWT andmutant TP53
further. First, we prepared a seeding solution of TP53S149F aggregates
(Fig. 3L), which consists of both branched and helical structures, by
sonication and centrifugation with an average particle size of 0.1 µmas
determined by multi-angle light scattering (MALS) and AFM. Particles
that are 0.1 µm in size are roughly equivalent to ~800-1000molecules,
a number that could be generated by the translation of 1 or a few
mutant transcripts45 (Fig. 3M). We then mixed these particles into the
WT TP53 solution (Fig. 3N) at a 2% v/v ratio and observed a remarkable
seed-dependent growth of WT TP53 fibers (Fig. 3O). When given suf-
ficient incubation time, a 1:50 mixture of mutant:WT proteins created
deposits that were visible to the naked eye (Fig. 3P). Given the size of
these aggregates, these deposits must be constructed almost exclu-
sively from WT proteins, with the mutant proteins serving as the
initial seed.

To expand on these observations and ensure that this phe-
nomenon is not caused by artifacts like AFM sample preparation
(which involves drying samples on a mica surface), we developed a
hanging drop method to characterize the seeding process in solu-
tion (Fig. 4A–C). First, we prepared a seeding solution of TP53S149F

particles harvested from bacteria with an average size of 0.1 µm as

determined by MALS and AFM (Supplementary Table 3). Then, we
set up a 4 × 6 screening tray with a 1ml reservoir solution that con-
tains the protein buffer and an increasing concentration of NaCl
(0.3, 0.5, 0.7, 0.8, 1.0, 1.2 M for columns 1–6, respectively). Finally,
we added a 10 µl WT TP53 solution (60 µM) to a siliconized coverslip
and placed a 1 µl drop of TP53S149F seed particles immediately adja-
cent to it at different concentrations (0, 1.2, 6, or 12 µM from rowA to
B, C and D). Over time, the protein drops on the coverslip shrink as a
function of the NaCl concentration, gradually increasing the protein
concentration. We reasoned that if themutant seed particles display
amyloid potential, this increasing concentration will eventually
trigger the conversion of WT proteins to an amyloid state at the
drop-drop interface and lead to localized fiber growth (Fig. 4C).
Consistent with this idea, we observed robust growth of TP53 fibers
under a light microscope at the WT:mutant interface, but not in the
absence of the mutant protein (Fig. 4D, E). This rod-like material
displayed strong birefringence under polarized light, which is sug-
gestive of amyloid structures (Fig. 4F). Taken together, these bio-
physical experiments support the idea that transcription errors
create amyloid proteins that can convert WT proteins to an amyloid
state, which initiates the formation of large amyloid fibers and
deposits. In addition, they suggest that a limited number of mutant
transcripts is sufficient to initiate this process. For example, if 2% of
TP53S149F proteins is sufficient to initiate the aggregation ofWT TP53,
then 2% of TP53 transcripts encoding the TP53S149F mutation should
be sufficient to initiate fiber formation as well. Similar thresholds
were previously observed for other amyloid proteins, and it has
been speculated that for prions, there may not be a safe dose at all46.

Table 2 | Transcription errors affect proteins with prion-like domains

Gene Protein PrlD Errors detected Errors in PrlD Prion potential↑

Annexin A11 ANXA11 41-177 25 6 3

Cell Cycle Associated Protein 1 CAPRIN1 466-628 59 14 20

DEAD-Box Helicase 5 DDX5 531-614 64 3 14

DEAD-Box Helicase 17 DDX17 614-719 46 4 9

Ewing Sarcoma breakpoint region 1 EWSR1 1-256 68 21 17

Fused in Sarcoma FUS 1-239 35 8 11

Heterogeneous nuclear ribonucleoprotein A0 HNRNPA0 206-305 23 7 3

Heterogeneous nuclear ribonucleoprotein A1 HNRNPA1 190-307 167 19 27

Heterogeneous nuclear ribonucleoproteins A2/B1 HNRNPA2B1 197-353 38 6 12

Heterogeneous nuclear ribonucleoprotein A3 HNRNPA3 207-378 36 6 14

Heterogeneous nuclear ribonucleoprotein D0 HNRNPD 195-260 53 3 9

Heterogeneous nuclear ribonucleoprotein H3 HNRNPH3 268-346 15 3 4

Heterogeneous nuclear ribonucleoprotein U HNRNPU 683-825 132 6 15

Heterogeneous nuclear ribonucleoprotein U HNRNPU 683-825 132 6 15

Heterogeneous nuclear ribonucleoprotein U-like 1 HNRNPUL1 531-766 105 9 17

Heterogeneous nuclear ribonucleoprotein U-like 2 HNRNPUL2 641-747 21 4 5

Interleukin enhancer-binding factor 3 ILF3 661-894 67 7 19

Nuclear receptor coactivator 1 NCOA1 908-1198 8 3 5

Nuclear factor of activated T-cells 5 NFAT5 999-1454 12 6 4

Nucleoporin 153 NUP153 1322-1453 23 4 4

Polyhomeotic Homolog 1 PHC1 7-104 103 8 5

R3H domain-containing protein 2 R3HDM2 394-714 8 3 3

SRY-Box Transcription Factor 2 SOX2 154-231 14 4 0

TAR DNA-binding protein 43 TARDBP 277-414 35 3 5

TRK-fused gene protein TFG 223-400 24 8 6

Yip1 domain family member 5; YIPF5 1-85 12 4 1

Zinc Finger MIZ-Type Containing 1 ZMIZ1 248-403 24 4 5

Column 1: Gene name. Column 2: Protein symbol. Column 3: Location of prion-like domain inside protein. Column 4: Number of errors detected in transcripts that were derived from this gene.
Column 5:Number of errors that affect the prion-like domain. Column 6: The number of errors that increase the prion-like potential of these proteins as predicted by bioinformatic analysis (PAPA)
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Human cells possess various mechanisms to counteract protein
aggregation though, including molecular chaperones, autophagy
and the ubiquitin-proteasome system. It is possible then, that the
threshold for protein aggregation differs between in vitro and
in vivo scenarios. To determine the threshold for intact cells, we
generated mRNA molecules from WT and mutant SOD1 templates,
mixed them together in various ratios and transfected them into
primary human fibroblasts and 3T3 cells. First, we transfected cells
with a 50:50 ratio of WT and mutant transcripts (250 ng:250 ng
WT:mutant mRNA) and then gradually lowered the mutant ratio to
10% (450 ng:50 ng WT:mutant mRNA). We found that co-
aggregation still occurred at a ratio of 10% mutant RNA after
7 days in culture, indicating that in human cells, the threshold for
aggregation is at least 10% (Fig. 4G–K). Mixtures with only 2%mutant
proteins did not produce sufficient mCherry signal to confidently
visualize co-aggregation.

DNA damage creates transcripts with identical errors
With this threshold in mind, we decided to test if it is possible for 10%
of transcripts to carry the same transcription error. Importantly, it was
previously shown that DNA damage can provoke the same mistake by
RNA polymerase II (RNAPII) during multiple rounds of transcription14

(Fig. 5A), so that up to 50% of transcripts can carry the same tran-
scription error47–49. These studies were primarily performed on DNA
repair deficient cells though, using a single DNA lesion placed on a
plasmid. As a result, it is unclear how well these findings translate to a
WT genome carefully wrapped in chromatin that is actively surveyed
by DNA repair. Therefore, we designed a single cell sequencing
approach to examine the impact of DNA damage on transcriptional
mutagenesis.

First, we treated quiescent mouse neural stem cells (NSCs) that
were derived from the hippocampus for 1 h with MNNG, a powerful
mutagen that randomly generates O6-methyl-guanine adducts (O6-me-

Fig. 3 | Biophysical examination ofWT andmutant TP53. A A transcription error
(Tr) was identified in a TP53 transcript that substitutes a uracil for a cytosine base,
resulting in a serine (S) to phenyl-alanine (F)mutation at residue 149.B,C Predicted
structure of WT (B) and mutant TP53 (C). D Transmission electron microscopy
showed little or no aggregates of WT TP53, while TP53S149F induces large protein
aggregates (E). These experiments were performed 3–6 times with similar results.
F,G Congo-red birefringence under polarized light indicates that TP53S149F forms
amyloid fibrils (G), whileWT TP53 does not (F).H After addition of 1% TP53S149F to a
solution of WT TP53 (v/v), the WT solution generated countless aggregates. This
experiment was performed 3 times with similar results. I–K Dynamic light

scattering, which can be used to determine the radius of protein particles, indicates
that WT TP53 is primarily in a monomeric form (I), while mutant TP53 consists of
aggregates greater than 1000nm (J). After 2% TP53S149F is added to a solution ofWT
TP53 (v/v), a large amount of TP53 aggregates emerges (K). L TP53S149F aggregates
into a variety of structures. M TP53 aggregates were sonicated to create a seed
solution of particles that are around 0.1 µm in size, which equates to 800-1000
proteins. (N) WT TP53 solution shows no apparent aggregation; (O) Adding the
TP53S149F amyloid seed solution to WT TP53 in a 1:100 ratio induced fibril growth.
P Protein aggregates created by mutant TP53 form spontaneously and can be seen
by the naked eye (arrow).
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G)50. We chose hippocampal stem cells for these experiments because
they are directly implicated in amyloid diseases51, andO6-me-G adducts
because they play an important role in human brain cancers52,53 and
were recently implicated in the pathology of female patients with AD54.
We performed these experiments on non-dividing NSCs (Supplemen-
tary Fig. 6), so that the O6-me-G lesions we induced would not be fixed
intomutations during DNA replication (a common experimental setup
to prevent mutations from confounding transcription error
measurements14,47–49,55). After MNNG treatment, we provided the cells
with fresh medium, and let them recover for increasing periods of
time. We then sequenced the transcriptome of single cells at different
timepoints (Fig. 5B) to identify transcription errors that occurred in at
least 10% of transcripts from a gene, with a minimum of 40 unique
transcripts sequenced. These parameters also prevent direct damage
to RNA molecules from affecting our measurements, because it is
unlikely that this damage will affect the same nucleotide on multiple
RNA molecules.

We found thatMNNG treatment resulted in a > 40-fold increase in
transcripts with identical errors after 16 h of recovery time (Fig. 5C).
The vast majority of these events (which we labeled pseudo-alleles for
their ability to generateWT andmutant transcripts) were C→U errors,
the most common error induced by O6-me-G lesions. Notably, no
increasewasdetected inG→Aerrors,whichwouldhaveoccurred ifO6-
me-G lesions hadbeenfixed intoCG:TAmutations, demonstrating that

our experiment was not confounded by conventional mutagenesis.
Consistent with this idea, we found that G→A errors did arise in
dividing cells (Supplementary Fig. 6). In most cases, pseudo-alleles
gave rise to 10–20% of mutant transcripts (Fig. 5D), either meeting or
exceeding the threshold required for protein aggregation in vitro and
in vivo.

Cells exposed to DNA damage experience proteotoxic stress
Consistent with the idea that the errors generated by these pseudo-
alleles cause protein misfolding and aggregation, we found that trea-
ted cells displayed a substantial increase in markers for misfolded
proteins and proteotoxic stress, particularly at the time point that the
errors reached their peak (Fig. 5E). Accordingly, human cells that dis-
play error prone transcription56 display increased protein aggregation
as well (Supplementary Fig. 7). We further note that the number of
pseudo-alleles rose over time as more and more genes were tran-
scribed, and were still present 16 h after exposure, indicating that
transcriptional mutagenesis is not only abundant after exposure, but
also long-lasting, even in cells capable of DNA repair.

Interestingly, loss of DNA repair is increasingly implicated in
amyloid diseases57. For example, it was recently reported that the
promoter of the gene that encodes themainDNA repair protein forO6-
me-G lesions in human cells (MGMT53) is hypermethylated in female
patients with AD54, suggesting that in these patients, pseudo-alleles

Fig. 4 | A hanging drop method and mRNA transfections to assess WT:mutant
ratios required for protein aggregation. A 4 × 6 screening tray was set up with a
1ml reservoir that contains protein buffer and an increasing concentration of NaCl.
B A 10 µl WT TP53 solution (60 µM) was then added to a siliconized coverslip and a
1 µl drop of TP53S149F seed particles was placed immediately adjacent at decreasing
concentrations.C If themutant seedparticles have amyloidpotential, this eventwill
trigger conversion of WT proteins at the drop-drop interface and lead to localized
fiber growth D If no TP53S149F is provided as seeding material, no fiber-like material
forms in theWT TP53 solution. EHowever, if TP53S149F seedingmaterial is provided,

fiber-like material grows out of the WT solution. F These fibers show strong bire-
fringence under polarized light, suggestive of amyloid structures. G–J. Primary
fibroblasts were transfected with 90% WT and 10% mutant SOD1G142E transcripts
display co-localized WT and mutant proteins inside protein aggregates G DAPI.
H SOD1G142E-mCherry. I WT SOD1-eGFP. J Overlay of G–I. These experiments were
performed 3 times with similar results. K Quantitation of G–J (n = 3 biological
replicates), data is presented as mean values ± SEM. Source data are provided as a
Source Data file.
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could be present for an extended period of time. To test this
hypothesis, we first confirmed that female AD patients indeed display
reduced MGMT expression by Western blots. Consistent with a pre-
vious study, males did not display this trend (Fig. 5F,G, Supplementary
Fig. 8, Supplementary Table 4). Tomimic the impactof reducedMGMT

expression on human cells, we then deleted the yeast homolog of
MGMT (mgt1) in the budding yeast S. cerevisiae, arrested them in G1
with α-mating factor (Supplementary Fig. 9) and exposed them to
MNNG. Similar to human cells, we found that WT yeast cells displayed
an increase in pseudo-alleles immediately after exposure, which

Fig. 5 | DNA damage and off-target RNA editing affect the fidelity of tran-
scription. A If DNA damage results inmultiple rounds of error prone transcription,
thenmultiple transcripts in a single cell should carry identical errors.BWhen these
transcripts are captured and tagged with UMIs, they can be grouped together, and
their sequences can be compared to each other to search for identical errors that
occur in multiple transcripts. In contrast, sequencing errors or RNA damage will
only be present in one transcript. Blue bar: cell-specific barcode. Multi-colored bar:
transcript UMI. Blue base: WT. Orange base: transcription error. Pink base:
Sequencing error/RNA damage C C→U pseudo-alleles emerge after MNNG treat-
ment of mouse neural stem cells, while G→A errors (which would indicate con-
ventional mutagenesis is occurring as well) do not (n = 2 biological replicates).
*P <0.05, ****P <0.0001 according to a Chi-squared test with Yates’ continuity
correction. D Ratio of WT:mutant mRNAs identified. Only alleles with more than
10%mutantmRNAs are depicted. EDot plots of single cell gene expression profiles

groupedbyGO-terms indicatemarkers of proteotoxic stress are elevated in treated
cells, particularly at 16 h, when the transcript error rate is the highest. Significance
was ascertained by ANOVA test. FDR= False Discovery Rate. F MGMT levels are
decreased in all females with AD compared to control females with an APOE3,3
genotype. For AD 3,3, P =0.0022, for AD 3,4, P =0.0034, for AD 4,4, P =0.0022.
n = 4 biological replicates, a two-tailed unpaired t-test with Welch’s correction.
GMGMT levels are not decreased in males with AD, except for those with a APOE3/
APOE4 genotype, P =0.0066. n = 4 biological replicates, a two-tailed unpaired t-test
withWelch’s correction.H Loss ofMGT1, the yeast homolog ofMGMT allowsO6-me-
G lesions to remain on the genome, resulting in greatly increased numbers of
pseudo-alleles over time. n = 2 biological replicates. ****P <0.0001 according to a
Chi-squared test with Yates’ continuity correction. Source data are provided as a
Source Data file.
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declined after DNA repair was able to remove these lesions from the
genome (Fig. 5H). However, in the absence of Mgt1p, the pseudo-
alleles remained on the genome, causing transcriptional mutagenesis
for an extended period of time.

These observations confirm our recent findings, which show that
Mgt1p removes 90% of DNA lesions within a 6-h timespan, and that no
mutations arise in non-dividing cells treated with MNNG58. Similar to
neural stem cells, treated yeast cells displayed increased expression of
autophagy genes, molecular chaperones and components of the

ubiquitin-proteasome system, indicating that they are under proteo-
toxic stress (Fig. 6A–D, Supplementary Fig. 10, Supplementary
Table 5–7). Consistent with the idea that these markers are upregu-
lated due to transcript errors, we previously found that yeast cells that
display error prone transcription also show increased markers of
proteotoxic stress13. In contrast, markers associated with translation
(which is inhibited in times of proteotoxic stress) were downregulated
(Supplementary Fig. 11, Supplementary Data 1). mgt1Δ cells showed a
prolonged response of these markers, consistent with the prolonged

Fig. 6 | DNA damage inducesmarkers of proteotoxic stress. Consistent with the
idea that these errors result inmisfolded proteins, these cells displayedmarkers of
proteotoxic stress, including upregulated autophagy genes (A), heat shock pro-
teins (B) and proteins implicated in the ubiquitin-proteasome system (C). Depicted
in figure A and C is the average percentage change for all autophagy and
ubiquitination-related genes identified by bulk RNA-seq. The genes depicted in
B have been separated from several heat shock proteins that displayed unusually
large increases in transcript levels (Supplementary Fig. 9, Supplementary Table 4).
n = 3 biological replicates, for autophagy P <0.0001, for heat-shock proteins

P =0.0016 at 6 h and P =0.0287 at 24h. For ubiquitin P <0.0001. *P <0.05,
**P <0.01, ****P <0.0001 according to a two-tailed paired t-test with Welch’s cor-
rection. D. Heat map of autophagy genes detected in WT and mutant cells. E Error
spectrum of human cells after transformation with plasmid that carries an editing
target, the gRNA required to edit the target, and the editing enzyme. If the editing
enzyme is present, large numbers of A to I editing events (A to G errors) were
observed. n = 2 biological replicates. F Percentage of editing events that generate
mRNAs with various mutant:WT ratios. Data are presented as mean values ± SEM.
Source data are provided as a Source Data file.
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presence of pseudo-alleles on their genome (Supplementary Figs.
5I–K, 11, Supplementary Data 1).

RNA editing creates mutant transcripts with identical errors
In addition to transcription errors, it has been proposed that other
molecular mistakes could result in amyloid and amyloid-like proteins
as well, including off-target RNA editing15. One of the best-known
examples of RNA editing in the animal kingdom is seen in cephalo-
pods, where ADARs edit adenine to inosine (A to I) in a sequence-
specific manner59, an event that can be monitored by circ-seq as
apparent A →G errors20. Editing in cephalopods is particularly abun-
dant in neuronal tissues, while non-neuronal tissues display limited
editing59,60. Consistent with this idea, we detected abundant A→G
errors in the optic lobe and stellate ganglia, and relatively little in the
gills, which we were able to pick up at both a high and low frequency
(<1%), indicating that circ-seq can detect naturally occurring editing
events at levels similar to off-target editing (Supplementary Fig. 12).
Importantly, RNA editing tools are increasingly thought of as a tool to
treat symptoms of disease61. To test whether RNA editing tools
designed in the lab can result in off-target editing and the production
of mutant proteins, we expressed the deaminase domain from human
ADAR2, linked to gRNA through an optimized bacteriophage ⌊N pro-
tein- BoxB hairpin62,63 that was specifically designed to edit the ATP1a3
transcript in human cells, and monitored off-target editing. We found
that these editors display a substantial amount of off-target editing,
whether a guide RNA is present or not (Fig. 6E). These events resulted
in large numbers of rare (<2%) and common (>2%) mutant RNAs
(Fig. 6F), suggesting that these editors have the potential to produce
large amounts of mutant proteins in human cells, potentially increas-
ing the risk for protein aggregation.

Discussion
To identify the molecular mechanisms that underpin human aging and
understand how these mechanisms drive age-related pathology, it will
be essential to determine how amyloid and amyloid-like proteins are
generated. Here, we demonstrate that transcript errors represent one of
these mechanisms. Although transcript errors are transient events,
amyloid and amyloid-like proteins are characterized by their ability to
replicate themselves by convertingWTproteins to an amyloid-like state.
Thus, even a transient event like a transcription error could trigger large-
scale protein aggregation as a result of this self-templating mechanism.

One of the most intriguing observations from our experiments is
that transcript errors generatemutant proteins that are already known
to cause familial cases of amyloid disease. This observation suggests a
unified mechanism for the development of familial and non-familial
cases of human proteinopathies, as both could be caused by identical
mutant proteins, only the mechanism by which the proteins are gen-
erated is different (Fig. 7). Consistent with this hypothesis, it was
previously shown that aggregates of tau have identical structures in
both familial and non-familial cases of AD64, suggesting that they were
initiated by identical mutant proteins.

However, we also detected a transcription error that generated an
amyloid variant of theTP53protein thathadnotbeenobservedbefore,
suggesting that transcription errors can also generate amyloid pro-
teins that we are currently unaware of. Because these mutant proteins
are likely to affect cellular proteostasis as well, it will be crucial to
determine how many of these proteins exist, and how frequently
they arise.

For these mutant proteins to cause long-term aggregation, tran-
scription errors need to create enough mutant proteins to overcome
the cellularproteinquality controlmachinery and convertWTproteins
to an amyloid state. Our in vivo experiments suggest that this thresh-
old is breached when 10% of mRNA molecules encode an identical
mutant protein, while our in vitro experiments suggest that theoreti-
cally, this limit could be as low as 1%. For example, a reduced threshold
could occur in aging cells, which are known to display reduced protein
quality control65. It is also likely that the threshold differs between
proteins, or between mutations in the same protein. For example,
some mutations could cause more aggressive conversion of WT pro-
teins than others, thereby altering the threshold required for long-
term protein aggregation.

Regardless, we show here that a 10% threshold is routinely brea-
ched as a result of DNAdamage, a ubiquitous featureof aging cells that
is closely associated with protein misfolding diseases. For example,
farmers that are exposed to the DNA damaging pesticides rotenone
and paraquat have an increased risk for developing AD and PD66,67,
while the DNA damaging agent methylazoxymethanol (MAM) is sus-
pected of being the pathogenic agent responsible for Guam ALS/Par-
kinsonism-Dementia Complex, a disease that is characterized by
protein aggregation and a variety of neurological symptoms68–70.
Importantly, we recently discovered that MAM induces enough tran-
scription errors to breach the >10% threshold in mouse neural stem

Fig. 7 | Model for the contribution of transcription errors to non-familial cases
of disease. Familial cases of protein aggregation diseases are caused by genetic
mutations that generate mutant proteins with increased amyloid or amyloid-like
behavior. In non-genetic cases, identical mutant proteins (and potentially unique
mutant proteins) are generated by non-genetic mutations such as transcription

errors. Over time, these proteins convert WT proteins to an amyloid state, leading
to a later onset of amyloid and amyloid-like diseases compared to familial cases.
Because these amyloid and amyloid-like proteins are generated by mutations that
are only present in transcripts though, they have thus far gone undetected in the
clinic.
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cells71. Although our experiments focused solely on pseudo-alleles
created by O6-me-G, it should be noted that other forms of DNA
damage can generate pseudo-alleles as well47–49, including oxidative
DNA damage14. Thus, it is likely that numerous forms of DNA damage
can trigger protein aggregation through a similar mechanism.

Itmay even be possible to use the data generated here to estimate
the number of cells that carry an amyloid pseudo-allele. A survey of
Clinvar and HGMD indicates that mutagenesis of at least 1038 bases
per genome (covering 25 genes and 20 common amyloid diseases)
could result in a pathogenic amyloid protein. Meanwhile, our single
cell sequencing data shows that pseudo-alleles causing >10% mutant
mRNA are present at a frequency of ∼5 × 10−6/bp in human cells, or
once every 200,000bases.Thus, 1 out of every 200cells could carry an
amyloid pseudo-allele at any given time. Because pseudo-alleles are
constantly lost and created (due to ongoing DNA repair and DNA
damage) and neurons are unusually long-lived cells, we suspect that
almost every neuron will carry a pseudo-allele at some point during
their lifetime. The number of cells that carry a pseudo-allele could also
change due to a variety of factors, including changes in DNA repair
capacity, exposure to environmental pollutants, or medical interven-
tions like chemotherapeutic treatments or engineered RNA editors.
For example, we found that after one treatment ofMNNG, the number
of pseudo-alleles increased almost 10-fold, indicating that as many as
1:20 cells could carry an amyloid pseudo-allele. These observations
demonstrate the potential of DNA damage to generate large amounts
of identical mutant proteins without the need to induce mutations, as
the damage itself is sufficient. It will be important to test whether real-
life exposures result in similar increases in transcriptional mutagen-
esis. In addition, it would be exciting to detect these proteins directly,
potentially by mass-spectrometry. Because DNA damage is randomly
distributed across the genome though, each cell is likely to carry a
different set of pseudo-alleles, making the mutant proteins present in
one cell exceedingly rare compared to the WT proteins present in
surrounding cells. Current mass-spectrometry technology is not yet
capable of detecting these rare events, but single-cell proteomics, or
increased sensitivity of targeted mass-spectrometry approaches may
make these experiments possible in the future.

Consistent with a role for DNA damage in protein misfolding
diseases, it is now increasingly recognized that loss of DNA repair can
exacerbate amyloid diseases as well. For example, it was recently
shown that the DNA repair gene MGMT is hypermethylated in female
ADpatients54. Whenwemimicked this phenomenon in yeast, we found
that loss of the yeast homolog of MGMT allows pseudo-alleles to per-
sist on the genome for extended periods of time, creating vast
amounts of mutant proteins through transcriptional mutagenesis and
a prolonged presence of markers associated with reduced proteos-
tasis. It has long been known that females are at a greater risk for AD
compared to males, and our data suggests that reduced MGMT
expression, followed by extended transcriptional mutagenesis, could
help explain the sexual dimorphism of AD72.

Besides DNA damage, the fidelity of transcription can also be
altered by other variables. For example, we previously found that the
error rate of transcription increases with age in yeast13 and flies, and is
also affected by epigenetic markers, cell type and genetic context12,20.
Although these variablesmaynot increase the ratio ofmutant:WTRNA
to a potentially pathogenic level, it is important to note that tran-
scription errors may not need to create highly specific amyloid pro-
teins to promote amyloid diseases. Surprisingly, we previously found
that random transcription errors can affect protein aggregation as
well. Because the primary impact of mistakes in protein coding
sequences is protein misfolding73, random errors tend to create a
cache of misfolded proteins that affect the entire proteome. Although
the vastmajority of thesemisfolded proteins are relatively benign, and
donot give rise to an amyloid version of a critical protein, they doneed
to be degraded by the same protein quality control machinery as

pathogenic proteins. As a result, random errors (like those created by
an error prone RNAPII, Supplementary Fig. 7) can create enough mis-
folded proteins to overwhelm the protein quality control machinery,
which then allows pathological amyloid proteins to evade degradation
and seed aggregates13. Thus, transcription errors may not only gen-
erate highly specific amyloid and prion-like proteins, as we demon-
strate here, they may also generate the conditions that allow these
proteins to evade the protein quality control machinery and initiate
aggregation. In this context, it is interesting to note that the speed of
transcription increases with age in mammals and multiple model
organisms74. Importantly, the speed of DNA and RNA polymerases is
directly related to their fidelity, with higher speeds resulting in lower
fidelity, and lower speeds resulting in higher fidelity, an evolutionary
trade-off that is essential for the fitness of species75. When combined
with the data presented here, these observations suggest that the
increased speed of RNA polymerases in aging cells could lead to
increased error rates, resulting in enhanced transcriptional mutagen-
esis andprotein aggregation in aging organisms. Indeed,we previously
found that highly expressed genes have higher error rates compared
to rarely expressed genes in human cells20 and that aged flies56 and
yeast cells13 display increased error rates of transcription. Because
lowering the speed of RNAPII was shown to increase their lifespan, it
would be interesting to test whether this intervention increases the
fidelity of transcription.

When taken together, these observations make a compelling case
for the idea that transcription errors could play a role in the progres-
sion of multiple diseases caused by protein aggregation. If so, we
expect this role to depend on a wide variety of variables, including the
pathophysiology of the disease itself, the aggressiveness with which
mutant proteins convertWTproteins to an amyloid state, and theerror
rate of RNAPII on critical bases. Because there are many variables, it is
likely that the contribution of transcription errors to amyloid diseases
varies from disease to disease. For example, in patients with non-
familial cases of AD, errors have been detected in transcripts that code
for the APP and UBB protein76,77, creating peptides that are part of the
amyloid plaques that characterize the disease. Importantly, these
errors occur at GAGA repeats that are highly error-prone12 and seem to
bemade especially frequently in hippocampal neurons20, which are the
primary target of the disease. Thus, multiple variables suggest that
transcription errors could play an important role in non-familial cases
of AD. In contrast, GSS is almost exclusively an inherited disorder,
suggesting that transcription errors may have a limited impact on
disease progression. These considerations underline that it will be
important to use human cell lines, animals and patient samples to
conclusively test the impact of transcriptional mutagenesis on the
progression of amyloid diseases. Human cell lines that display error
prone transcription (Supplementary Fig. 7) could play an important
role in this process, as do human patients that carry error prone RNA
polymerases56. Most importantly though, it will be critical to develop
technology and animal models capable of dissecting the impact of
transcriptional mutagenesis on disease progression while ruling out
confounding factors. If successful, these developments could provide
a unified mechanism for the etiology of various diseases that are cur-
rently endemic in our society, by demonstrating that both genetic and
non-genetic cases of proteinmisfolding diseases are caused bymutant
proteins, only the mechanism by which they are created is differ-
ent (Fig. 7).

Methods
Ethics
All applicable international, national, and/or institutional guidelines for
the care anduse of previously published animal or human sampleswere
followed. Stem cell work was approved by USC under SCRO Protocol
#2019-3. All human subjects provided informed consent and human
tissue use was approved through IRB protocol #UP-20-00014-EXEMPT.
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H1 hESC cell culture
H1 hESCs were purchased from WiCell in Wisconsin (WA01) and cul-
tured in TeSR medium (Stem Cell Technologies, 100-0276, 100-1130)
in Matrigel-coated 10 cm plates (Corning, #354277). Cells were grown
at 5%O2 tension to bettermimic the conditions inside the human body
and reduce oxidative damage as a result of non-normoxic conditions.
To passage cells and prior to collection of RNA and DNA, cells were
gently treated with 2 µg/mL Dispase (Stemcell Technologies, #07913)
mixed with DMEM/F12 (Thermo Fisher Scientific, #11320033), washed
with PBS and scraped off the plate using a glass pipette. DNA and RNA
were then isolated with standard phenol chloroform and Trizol
methods.

Library construction and sequencing
Library preparation 1100 ng of enriched mRNA was fragmented with
the NEBNext RNase III RNA FragmentationModule (E6146S) for 25min
at 37 °C. RNA fragments were then purified with an Oligo Clean &
Concentrator kit (D4061) by Zymo Research according to the manu-
facturer’s recommendations, except that the columns were washed
twice instead of once. The fragmented RNA was then circularized with
RNA ligase 1 in 20 µl reactions (NEB, M0204S) for 2 h at 25 °C after
which the circularized RNA was purified with the Oligo Clean & Con-
centrator kit (D4061) by Zymo Research. The circular RNA templates
were then reverse transcribed in a rolling-circle reaction by first incu-
bating the RNA for 10min at 25 °C to allow the random hexamers used
for priming to bind to the templates. Then, the reaction was shifted to
42 °C for 20min to allow for primer extension and cDNA synthesis.
Second strand synthesis and the remaining steps for library prepara-
tion were then performedwith the NEBNext Ultra RNA Library Prep Kit
for Illumina (E7530L) and the NEBNext Multiplex Oligos for Illumina
(E7335S, E7500S) according to the manufacturer’s protocols. Briefly,
cDNA templates were purified with the Oligo Clean & Concentrator kit
(D4061) by Zymo Research and incubated with the second strand
synthesis kit from NEB (E6111S). Double-stranded DNA was then
entered into the end-repairmodule ofRNALibrary PrepKit for Illumina
from NEB, and size selected for 500–700 bp inserts using AMPure XP
beads. These molecules were then amplified with Q5 PCR enzyme
using 11 cycles of PCR, using a two-step protocol with 65 °C primer
annealing and extension and 95 °Cmelting steps. Sequencing data was
converted to industry standard Fastq files using BCL2FASTQv1.8.4.

Error identification
We have developed a robust bioinformatics pipeline to analyze circ-
seq datasets and identify transcription errors with high sensitivity (see
code availability)12,17. First, tandem repeats are identified within each
read (minimum repeat size: 30nt, minimum identity between repeats:
90%), and a consensus sequence of the repeat unit is built. Next, the
position that corresponds to the 5′ end of the RNA template is iden-
tified (the RT reaction is randomly primed, so cDNA copies can start
anywhere on the template) by searching for the longest continuous
mapping region. The consensus sequence is then reorganized to start
from the 5′ end of the original RNA fragment, mapped against the
genome with tophat (version 2.1.0 with bowtie 2.1.0) and all non-
perfect hits go through a refining algorithm to search for the location
of the 5′ end before being mapped again. Finally, every mapped
nucleotide is inspected and must pass 5 checks to be retained: (1) it
must be part of at least 3 repeats generated from the original RNA
template; (2) all repeats must make the same base call; (3) the sum of
all qualities scores of this base must be >100; (4) it must be >2
nucleotides away from both ends of the consensus sequence; (5) each
base must be covered by >100 reads with <1% of these reads sup-
porting a base call different from the reference genome. This final step
filters out polymorphic sites and intentional potential RNA-editing
events. For example, if a base call is different from the reference
genome, but is present in 50 out of 100 reads, it is not labeled as an

error but as a heterozygous mutation. A similar rationale applies to
low-level mutations and RNA editing events. These thresholds were
altered to detect different types of editing events, including common
editing events. Each read containing 1 or more mismatches is filtered
through a second refining andmapping algorithm to ensure that errors
in calling the positionof the 5′ end cannot contribute to false positives.
The error rate is then calculated as the number of mismatches divided
by the total number of bases that passed all quality thresholds.

Brain organoid culture and generation
H1 ESC colonies were maintained with daily media change in
mTeSR (STEMCELL Technologies, #85850), supplemented with a
final concentration of 5 ⌠M XAV-939 (STEMCELL Technologies,
#72672) on 1:100 geltrex (GIBCO, #A1413301) coated tissue cul-
ture plates (CELLTREAT, #229106) and passaged using ReLeSR
(STEMCELL Technologies, #100-0484). Cells were maintained
below passage 50 and periodically karyotyped via the G-banding
Karyotype Service at Children’s Hospital Los Angeles. To generate
dorsally patterned forebrain organoids, we modified the method
previously described in Kadoshima et al.78. Briegly, on day 0,
feeder-free cultured human PSCs, 80–90% confluent, were dis-
sociated to single cells with Accutase (Gibco), and 9000 cells per
well were reaggregated in ultra-low cell-adhesion 96-well plates
with V-bottomed conical wells (sBio PrimeSurface plate; Sumi-
tomo Bakelite) in Cortical Differentiation Medium (CDM) I, con-
taining Glasgow-MEM (Gibco), 20% Knockout Serum Replacement
(Gibco), 0.1 mM Minimum Essential Medium non-essential amino
acids (MEM-NEAA) (Gibco), 1 mM pyruvate (Gibco), 0.1 mM
2-mercaptoethanol (Gibco), 100 U/mL penicillin, and 100 μg/mL
streptomycin (Corning). From day 0 to day 6, ROCK inhibitor
Y-27632 (Millipore) was added to the medium at a final con-
centration of 20 μM. From day 0 to day 18, Wnt inhibitor IWR1
(Calbiochem) and TGFβ inhibitor SB431542 (Stem Cell Technolo-
gies) were added at a concentration of 3 μM and 5 μM, respec-
tively. From day 18, the floating aggregates were cultured in ultra-
low attachment culture dishes (Corning) under orbital agitation
(70 rpm) in CDM II, containing DMEM/F12 medium (Gibco), 2 mM
Glutamax (Gibco), 1% N2 (Gibco), 1% Chemically Defined Lipid
Concentrate (Gibco), 0.25 μg/mL fungizone (Gibco), 100 U/mL
penicillin, and 100 μg/mL streptomycin. On day 35, cell aggre-
gates were transferred to spinner-flask bioreactors (Corning) and
maintained at 56 rpm, in CDM III, consisting of CDM II supple-
mented with 10% fetal bovine serum (FBS) (GE-Healthcare), 5 μg/
mL heparin (Sigma), and 1% Matrigel (Corning). From day 70,
organoids were cultured in CDM IV, consisting of CDM III sup-
plemented with B27 supplement (Gibco) and 2% Matrigel. Please
note that for these modified experiments, we eliminated the need
for growth under 40% O2, the need for cell aggregates to be
periodically bisected, and the use of high O2 penetration dishes,
by adapting the cultures to growth in spinner-flask bioreactors.

Neuronal culture and generation
H1 ESCs were grown to confluency, split with accutase and seeded at a
density of 3·105 cells per well of a coated 6-well plate in mTeSR sup-
plemented with 10μMROCK. Cells were then transduced with hNGN2
and RTTA lentiviruses to obtain >90% infection efficiency using
4μg/mL polybrene. mTeSR was changed daily until the cells were
ready to split into a single-cell suspension with accutase, and the
seeded directly into N2 media, so that approximately 1.2 × 106 cells
were present per 10 cm dish. After 1 day, the N2 media was replaced
withN2media supplementedwith puromycin at a concentration of 0.7
ug/ml to enable selection for transduced clones, which is com-
plemented 2 days later with B27. Themedia was then replaced with N2
B27 media supplemented with 2 uM Ara-C (1-β-D-Arabino-fur-
anosylcytosine) with½media change every other day. Cells were then
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allowed to grow and mature into neurons for 2 weeks before RNA
isolation and error measurements.

Lentiviral generation and transduction
HEK293T cells (ATCC) were plated at 25% confluency and then trans-
fected with plasmids that carry WT of or mutant versions of various
proteins (GeneCopoeia, custom made plasmids) using Origene’s len-
tiviral packaging kit (TR30037). All plasmids were custom made by
Genecopoeia by Gibson assembly in their LV105, LV130, LV182 and
LV183 backbone and are available upon request. Mediumwas replaced
after 18 h of incubation and viral particles were harvested 24 and 48 h
later and filtered through a 0.45μm PES filter. The particles were then
concentrated using a sucrose gradient in a Beckman ultracentrifuge at
70,000× g for 2.5 h at 4 °C. Afterwards, the viral pellets were resus-
pended in 25μL ice cold dPBS for every 15mL of viral medium spun
down. AG10215 fibroblasts (Coriell Instititute) and U87 glioblastoma
cells (ATCC) were then transduced with the concentrated viral parti-
cles at various MOIs 5 in antibiotic-free complete medium with
8μg/mL of polybrene. Cells were incubated for 18–24 h before med-
ium was changed to complete medium. Antibiotic selection for
transduced cells began 48 h after transduction and fluorescence
assessed with a Leica Stellaris confocal microscope.

Mouse neural stem cell culture
Cells were derived from mouse hippocampi, cultured at 37 °C in 5%
CO2 and 5% O2 on PLO- and laminin-coated wells in serum-free media
(NSC media) containing 1× DMEM/F12 (Invitrogen, 10565018), 1× pen/
strep (Invitrogen 15140122), 1×B27 (Invitrogen, 17504044), 20ng/ml
FGF2 (PeproTech, 100-18B), 20 ng/ml EGF (PeproTech, AF-100-15) and
5μg/mL heparin (Sigma, H3149). For quiescence induction, cells were
grown for at least 3 days in the same medium as described above, but
without EGFFGF2 and with the addition of 50ng/ml BMP-4 (Fisher
Scientific, 5020BP010).

MGMT protein levels
Immunoblotting: 20ug of nuclear lysates were boiled at 75 °C under
denatured conditions and resolved on 4–20% gradient gels. Proteins
were electroblotted using a Criterion blotter (Bio-Rad Laboratories,
Hercules, CA) and transferred onto 0.45um polyvinyl difluoride
membranes. Membranes were stained using Revert 700 fluorescent
protein stain as a loading control and imaged prior to blocking with
Intercept blocking buffer (LI-COR Biosciences, Lincoln, NE). Mem-
branes were incubated overnight for 16 h with 1:500 MGMT primary
antibody (67476-1-Ig; Proteintech, Rosemead, IL). Membranes incu-
bated with IRDye 800CW and/or 700CW secondary antibodies and
visualized with a LI-COR Odyssey C1920. Densitometry was quantified
with ImageJ and normalized by total protein per lane.

Protein expression and purification
TP53 (aa 92-292) clones in Pet28a were transformed into Rosetta DE3
pLysS competent cells (Novagen) and induced by 1mM IPTG at 18 °C
overnight. Then they were purified by Ni-NTA agarose (Qiagen). After
additional purification by Mono S column (GE Healthcare) and buffer
exchange, theywere loadedonto Superdex 75 gelfiltrationcolumn (GE
Healthcare) running on anÄKTAFPLC system. SOD1 (aa 1-154) clones in
Pet28a were transformed into Rosetta DE3 pLysS competent cells
(Novagen) and induced by 1mM IPTG at 18 degree overnight. Then
theywerepurified byNi-NTA agarose (Qiagen), andwhichwere further
purified by Superdex 75 gel filtration column (GE Healthcare) running
on an ÄKTA FPLC system

Transmission electron microscopy, atomic force microscopy,
fiber growth and hanging drop method
For TEM, protein samples were spotted on carbon-coated Formvar
grid (Ted Pella). The samples were stained with nanoW/uranyl acetate

before air drying. The imageswere takenonTalos F200CG2at80 kVat
the Core Center of Excellence in Nano Imaging (CNI). For AFM, protein
samples of different seeding conditions were spotted on MICA sheets
before loading on Dimension Icon(Bruker), with SCANASYST-AIR
probe in ScanAsyst mode. Different dilution ratios were tested for the
best visualization condition. Tomonitor fiber growth insidewells or by
the hanging drop method, protein samples of different seeding and
dilution conditionswere set up either inwells or hangingdropmanner.
All samples were observed under polarized light to ensure fiber
structure existence. A range of high concentrations ofNaClwas used in
the mother liquor of the hanging drop tray to induce the necessary
evaporation.

Multi-angle light scattering
Experiments were conducted at the University of Southern California
NanoBiophysics Core Facility. Purified WT TP53, and the TP53S149F

mutant were subjected to HPLC chromatography Shodex KW 803
instrument, in a buffer containing 500mM Na2SO4 and 10mM acetic
acid (pH 4.0). The column effluent was passed directly into a Dawn
Helios MALS detector (Wyatt Technology) and an Optilab rEX
refractometer (Wyatt Technology). Data was analyzed by ASTRA
6 software.

Single cell experiments
Cells were treated for 1 h (mNSCs) or 40min (yeast) with 10μg/ml
MNNG. Cells were then counted with a MacsQuant cell counter and
loaded onto a 10×Genomics chip for GEM preparation according to
10x Genomics protocols, so that approximately 5000 cells would be
captured inside GEMs. For yeast cells, 8000 cells were loaded with the
expectation that that would result in 5000 successful GEMs as well. In
addition, 1μl of zymolyase was added to the yeast cell suspension to
facilitate the removal of the cell wall. Results were then analyzed by
CellRanger software, and on average, 2000–9000 single cells passed
QC thresholds and were successfully sequenced for each replicate.

Seurat processing for mNSC single cell RNA-seq
CellRanger output folders were imported for processing in R v3.6.3
using Seurat v3.2.279. Runs from 2 independent batches were merged
together for analysis. To retain only high-quality cells, we applied fil-
ters nFeature_RNA > 1000& percent.mito <20. To determine likely cell
cycle stage, a list of mouse cell cycle genes was obtained from the
Seurat Vignettes (https://www.dropbox.com/s/3dby3bjsaf5arrw/cell_
cycle_vignette_files.zip?dl=1), derived from a mouse study80. Cell cycle
phase was predicted using these genes, and using the function Cell-
CycleSorting to assign cell cycle scores to each cell. Likely Doublets
were identified using DoubletFinder 2.081, and removed from down-
streamprocessing. Reciprocal PCAwas used to integrate data from the
2 cohorts andmitigate batch effects, using the top 7500most variable
genes and with k = 10. To determine whether proteostasis-related
terms were differentially regulated in response to DNA-damage in
quiescent NSCs at the single-cell level, we leveraged the UCell robust
single-cell gene signature scoring metric implemented through R
package ‘UCell’ 1.3.182. Cell-wise UCell scores were computed for
selectedGO terms related to proteostasis. Genes associatedwith these
GO terms were obtained from ENSEMBL Biomart (version 109; acces-
sed 2023-04-22) to retain relationships with all evidence codes except
NAS/TAS. For analysis of statistical significance, we used ANOVA to
compare the distribution of UCell scores across time points and is
reported for each gene set, and p-values were corrected for multiple
hypothesis testing using the Benjamini-Hochberg method.

Pseudo-allele detection
Sequencing reads are first processed with the Cell Ranger Pipeline100.
For each cell, reads with the same UMI (i.e. PCR duplicates) are col-
lapsed into a consensus sequence, which is incorporated into a pileup
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file summarizing the sequence of each unique transcript at each
genomic position in each cell. Positions covered by at least 40 unique
transcripts are retained for downstreamanalysis and thosewith at least
10% of unique bases divergent from genomic DNA are compiled into a
final output file for each cell.

Transfection of human cells with WT and mutant mRNAs
SOD1 mRNAs were generated from the plasmids that carry WT and
mutant SOD1G142E genes described above (tagged with eGFP and
mCherry respectively) using the AMbion mMESSAGE mMACHINE T7
Ultra kit and included a 5’ ARCA cap and 3’ poly(A) tail. These mole-
cules were then transfected into primary human fibroblasts (Nathan
Shock Center UCSD) or 3T3 cells (ATCC) using he Lipofectamine
MessengerMAX reagent.

Site directed RNA editing of human cells
Site directed RNA editors were generated using double stranded DNA
oligonucleotides encoding the guide thatwere cloned into the BLOCK-
iT™ U6 RNAi Entry Vector. The same approach was used to introduce
the mutant versions of these guides, which were created with the
Quikchange Lightning Site-directed Mutagenesis kit by Agilent
Technologies61. Constructs contain ADAR2 linked to a gRNA using a
bacteriophage lN protein BoxB hairpin linkage (IN-DD). This system
contains 4 lN peptides and a nuclear localization signal added to the
deaminasedomain ofADAR2, aswell as 2BoxBhairpins attached to the
gRNA. Constructs were transfected into cells using the Effectene®
Transfection Reagent kit by QIAGEN. RNA was then extracted from
cells using the RNAqeous kit from Ambion Life Technologies and
processed according to standard circe-sequencing protocols17. Finally,
the data was analyzed using a bioinformatic pipeline that called edited
bases present at a frequency of either less or more than 2%.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequencing data that was generated have been deposited in the
SRA database (https://www.ncbi.nlm.nih.gov/sra) under the following
accession codes: PRJNA917136, for the H1ESC654 data, PRJNA1138749
for the mouse single cell NSC data, PRJNA673853 for human fibroblast
data, PRJNA1142197 for human neuron data, PRJNA1141934 for brain
organoid data, PRJNA1141225 for yeast single cell data. Source data are
provided as a source data file. Source data are provided with
this paper.

Code availability
Code to analyze circ-seq datasets is available at https://github.com/
jfgout/circseq-seqan2. This code can also be accessed through
Zenodo: https://doi.org/10.5281/zenodo.7591325.
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