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Abstract
Although gross primary productivity (GPP) is estimated with remote sensing over large regions of Earth, urban areas are usually
excluded due to the lack of light use efficiency (LUE) parameters for urban vegetation and the spatial heterogeneity of urban land
cover. Here, we estimated midsummer GPP, both within and among vegetation and land-use types, across the Minneapolis-Saint
Paul, Minnesota metropolitan region. We derived LUE parameters for urban vegetation types using estimates of GPP from tree
sap flow and eddy covariance CO2 flux observations, and from fraction of absorbed photosynthetically active radiation based on
2 m resolutionWorldView-2 satellite imagery. Mean GPP per unit land area (including vegetation, impervious surfaces, and soil)
was 2.64 g C m−2 d−1, and was 4.45 g C m−2 d−1 per unit vegetated area. Mapped GPP estimates were within 11.4% of estimates
from independent tall tower eddy covariance measurements. Turf grass GPP had a larger coefficient of variation (0.18) than other
vegetation classes (~0.10). Vegetation composition was largely consistent across the study area. Excluding golf courses, mean
land-use GPP for the total study area varied more by percent vegetation cover (R2 = 0.98, p < 0.001) than by variability within
vegetation classes (R2 = 0.21, p = 0.19). Urban GPP in general was less than half that of natural forests and grasslands in the same
climate zone.

Keywords Primary production . Carbon cycle . Land use . Urban vegetation . High spatial resolution remote sensing . Light use
efficiency

Introduction

Gross primary productivity (GPP) is the sum of photosynthe-
sis at the ecosystem scale (Chapin et al. 2002). It describes the
initial inputs of atmospheric carbon to ecosystems and is an
important metric of ecosystem function (Heinsch et al. 2006).
Models of GPP from satellite remote sensing have been used
to estimate carbon uptake at regional-to-global scales, improv-
ing constraints on ecophysiological models across many bi-
omes (Ogutu and Dash 2013). However, urban areas are not

usually included in such large-scale models due to the small
percentage of the global land area covered by cities relative to
the major natural biomes and due to the fine-scale spatial
heterogeneity of urban areas.

More than half of the global human population now lives in
urban areas, and this proportion is expected to grow through
the twenty-first century (Grimm et al. 2008). Urbanization
replaces native vegetation, often negatively affecting terrestri-
al carbon storage initially (Seto et al. 2012). In general, urban
development reduces primary production in densely vegetated
regions (Imhoff et al. 2004), but it can increase primary pro-
duction in some areas previously covered by agriculture (Zhao
et al. 2007) or deserts (Buyantuyev and Wu 2009). Once
established, urban vegetation can provide ecosystem services
such as local cooling (Oke 1989) and absorption of airborne
pollutants (Nowak et al. 2006). Urban vegetation has direct
effects on the carbon budget through CO2 uptake and storage,
and through CO2 release from plant respiration. Urban vege-
tation has indirect effects on the carbon budget through re-
duced building energy consumption due to tree shading and
windbreaks, modifying soil respiration, and potential CO2

emissions as energy is used for landscape maintenance
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(Pataki et al. 2006). In this context, there is a need for mapping
GPP within urban areas because it is relatively unknown how
GPP varies among vegetation and land-use types in cities.

One of the most established methods to calculate GPP from
remote sensing is the light use efficiency (LUE) approach, first
proposed by Monteith (1972), which assumes that vegetation
takes up carbon at a rate relative to incident photosynthetically
active radiation (PAR). In this approach, GPP can be calculat-
ed on a per-pixel basis as:

GPP ¼ FPAR� PAR� LUE ð1Þ
where GPP is the mass of carbon taken up per unit time (g C
m−2 d−1), PAR is the incident photosynthetically active radia-
tion per unit time (e.g., MJ m−2 d−1), FPAR is the unitless
fraction of PAR absorbed by the vegetated surface, and LUE
is the conversion rate from absorbed PAR to plant carbon
uptake (e.g., g C MJ−1) (Hilker et al. 2008). Versions of this
method have been used to estimate large-scale dynamics of
GPP in light use (or production) efficiency models, and in situ
carbon flux measurements are used both to parameterize and
to validate such models at the ecosystem scale (Hilker et al.
2008; Ogutu and Dash 2013). FPAR is often estimated
through spectral vegetation indices and radiative transfer
modeling (Hilker et al. 2008; Song et al. 2013). LUE has been
shown to vary by species and the environmental conditions
affecting an individual plant or leaf (e.g., Ahl et al. 2004), but
has been successfully modeled by vegetation biome at a vari-
ety of scales (Song et al. 2013).

Generally in LUE models each image pixel is labeled as a
unique vegetation class due to differences in physiological and
functional characteristics among vegetation types (Song et al.
2013). Labeling is a challenge in urban areas because the
remote sensing systems used to estimate GPP at regional
and global scales (e.g., Landsat TM and MODIS) have spatial
resolutions that are too coarse to distinguish small vegetation
patches, such as street trees, from urban structures, such as
roads and buildings (Raciti et al. 2014). Imagery from such
sensors in urban areas is dominated by mixed pixels compris-
ing multiple constructed and vegetated surfaces that each
affect FPAR differently. This causes two problems in the
context of production efficiency modeling of urban GPP from
remote sensing. First, it is difficult to identify unique vegeta-
tion types, each of which has different LUE parameters.
Second, it is difficult to obtain accurate estimates of FPAR
due to the mixing of spectral reflectance characteristics of
different vegetated and non-vegetated surfaces within an
image pixel.

High spatial resolution imagery has the potential to im-
prove spatial estimates of urban GPP by enhancing detail in
classification and vegetation function at finer scales. As urban
areas have highly variable surface cover over relatively short
distances (Cadenasso et al. 2007), urban land cover classifica-
tion from remote sensing is often approached using imagery

either with high spectral resolution (e.g., Herold et al. 2004;
Wetherley et al. 2017) or with high spatial resolution using
pixel- or object-based techniques (e.g., Myeong et al. 2001;
Myint et al. 2011). While it can be difficult to separate trees
from grasses due to their spectral similarity using only multi-
spectral data (e.g., Myeong et al. 2001), additional data sets
such as LiDAR (light detection and ranging) can be used to
help distinguish vegetation types by height (e.g., Raciti et al.
2014; Alonzo et al. 2016; Hedblom et al. 2017).

In urban GPP studies, the issue of fine-scale surface het-
erogeneity has been approached by assigning per-pixel esti-
mates of fractional cover (e.g., Zhao et al. 2007; Zhao et al.
2012), considering urban areas as a single vegetation type
(such as savanna) in which condition varies as a function of
a spectral vegetation index (e.g., Milesi et al. 2003), or by
using relatively high spatial resolution imagery to better sep-
arate vegetated and non-vegetated surfaces (e.g., As-syakur et
al. 2010; Wu and Bauer 2012). More recent research has esti-
mated urban biogenic fluxes as they vary with impervious
surface cover, the urban heat island, and plant phenology
(Hardiman et al. 2017). Variability of urban primary produc-
tion by land cover type is often analyzed using large pixels due
to data availability and scale (e.g., Imhoff et al. 2004; Zhao et
al. 2007).

Urban GPP estimates have often relied on LUE parameters
from natural ecosystems (e.g., Zhao et al. 2007) because there
have been few field measurements of LUE in cities (e.g., Wu
and Bauer 2012). While LUE values have been analyzed ex-
tensively within and among natural ecosystems (Hilker et al.
2008), the values have not been evaluated for application to
urban vegetation, and few studies locally estimate their LUE
parameters (e.g., Wu and Bauer 2012). Therefore, it remains
unclear how different vegetation and land-use types individu-
ally affect GPP within urbanized areas at a scale in which
lawns, trees, and roads can be identified. In general, the im-
portance of unique LUE parameterization of urban vegetation
cover types to accurately characterize urban GPP is relatively
unknown.

We used high spatial resolution surface reflectance data
from WorldView-2 (WV-2) satellite imagery to estimate
GPP across the Minneapolis-Saint Paul, Minnesota metropol-
itan area. We produced a land cover classification usingWV-2
imagery, canopy height data from airborne LiDAR, leaf-off
color-infrared aerial orthophotos, and regional GIS layers to
mask specific land cover/land-use types.We calculated empir-
ical LUE estimates for deciduous broadleaf trees, evergreen
needleleaf trees, turf grass, and golf course grass from WV-2
reflectance by using in situ observations of GPP from tree sap
flow and eddy covariance flux measurements over a turf grass
lawn. We compared our mapped GPP estimates using eddy
covariance observations at a height of 40 m from a tall tower
(KUOM) near our in situ training sites, and we assessed the
variability of GPP by vegetation and land-use type across the
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study area. Our research questions were: (1) what is the mag-
nitude and variability of GPP within dominant urban vegeta-
tion types, specifically deciduous broadleaf trees, evergreen
needleleaf trees, turf grass, and golf course grass; (2) what
determines the magnitude and variability of GPP within the
major urban land-use types; and (3) how does GPP for urban
vegetation compare to natural vegetation?

Methods

Study area

Our study site was a large part (894 km2) of the Minneapolis-
Saint Paul, Minnesota (44° 59’ N, 93° 11’ W) metropolitan
region. The region has a humid continental climate (Köppen
Dfa) with warm summers and very cold winters, and receives
precipitation year-round. The region has a mean annual tem-
perature of 7.4 °C and mean annual precipitation of 747 mm
(Peters et al. 2011). It has two densely developed urban cores
~14 km apart surrounded by extensive suburban residential
development. Much of the study area is likely to be influenced
by the urban heat island effect (Winkler et al. 1981; Todhunter
1996; Sen Roy and Yuan 2009). The region has been under-
going urban growth and expansion over recent decades (Yuan
et al. 2005), and is expected to grow by over 800,000 people
between 2010 and 2040 (Metropolitan Council 2015).

We selected this region due to the availability of in situ
observations of GPP from sap flux, leaf-level gas exchange,
and eddy covariance for dominant urban vegetation types in
the region: deciduous broadleaf trees, evergreen needleleaf
trees, and turf grass. Common deciduous broadleaf trees in-
cluded ash (Fraxinus spp.), elm (Ulmus spp.), red oak
(Quercus rubra), eastern black walnut (Juglans nigra), and
American basswood (Tilia americana); common evergreen
needleleaf trees included spruce (Picea spp.) and pine (Pinus
spp.) species (Peters and McFadden 2012); and common turf
grass species included Kentucky bluegrass (Poa pratensis),
tall fescue (Festuca arundinacea), and perennial ryegrass
(Lolium perenne) (Hiller et al. 2011). We used additional eddy
covariance measurements acquired at 40 m height on a tall
radio tower (KUOM) near the in situ flux observations of tree
and turf grass to compare with our mapped GPP (Peters and
McFadden 2012; Menzer et al. 2015; Menzer and McFadden
2017).

Land cover classification and validation

The 2 m resolution WorldView-2 imagery was acquired on
July 17 and July 28, 2010, and was orthorectified (NAD83,
UTM Zone 15 N) to a digital surface model (DSM) gridded at
1 m spatial resolution (Potapenko 2014). The DSM was de-
rived from a multi-return LiDAR point cloud acquired during

flights in 2011 and 2012 at 1.5 points m−2 by a Leica ALS50-
II MPiA sensor and at either 2 or 8 points m−2 using a FLI-
MAP sensor (Fugro Horizons, Inc. and the Minnesota
Department of Natural Resources 2012). We atmospherically
corrected the WV-2 imagery with the FLAASH module in
ENVI version 5.1 (Adler-Golden et al. 1998) and mosaicked
the WV-2 images. Then we resampled the 2 m mosaic to 1 m
spatial resolution using a nearest neighbor approach to match
the DSM and its associated canopy height model, verified its
alignment with the DSM base map (RMSE = 1.69 m, SD =
0.79 m), and clipped the data to the final extent of the total
study area.

We classified land cover/land-use using a hierarchical ap-
proach. We first computed the Normalized Difference
Vegetation Index (NDVI = (NIR – red) / (NIR + red); Tucker
1979). We corrected a small difference in NDVI between the
twoWV-2 images using a linear regression (Eq. 2) from poly-
gons sampled within a 33 km2 overlapping region of the two
images.

NDVI July 28 ¼ 1:0246� NDVI July 17 þ 0:0040;

R2 ¼ 0:9869; p < 0:001

ð2Þ

Then, we used a maximum likelihood supervised classifi-
cation (Jia and Richards 1994) including all WV-2 bands and
the NDVI to distinguish between vegetated and non-vegetated
pixels. Water was masked using a modified version of an open
water features GIS layer (Metropolitan Council 2013) to avoid
confusion with shadows and vegetation.

Trees and turf grasses were separated using a 1 m height
threshold, following Raciti et al. (2014), using a canopy height
model gridded from the DSM’s LiDAR point cloud. Gaps in the
model were mitigated using a 3 × 3 m mean filter. We relabeled
prominent areas of electric transmission lines that had been
misclassified as trees to be turf grass. We separated turf grass
within golf courses (referred to as golf course grass) from all
other grass surfaces (referred to as turf grass) using a GIS layer
of land-use types (Metropolitan Council 2011). Although they
are of the same plant functional type, golf courses have a dif-
ferent species composition and they receive higher levels of
maintenance and nutrient and water inputs as compared to other
turf grass sites (Qian and Follett 2002). Deciduous broadleaf
and evergreen needleleaf trees were separated by thresholding
a ratio of the WV-2 NDVI and the NDVI from digital color-
infrared orthophotos acquired during leaf-off conditions in
April 2010 at 0.3 m resolution (Minnesota Department of
Natural Resources and Surdex Corporation 2010), and
smoothed using a 5 × 5 m median filter in the tree classes.

Other classes were created to exclude them from GPP cal-
culation due to our focus on common urban land covers.
Wetlands have different physiological characteristics from
our vegetation classes (Chapin et al. 2002) and we did not
have in situ observations of wetland GPP. They were labeled
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using a modified GIS layer of wetlands and wet areas
(Metropolitan Mosquito Control District 2012) and replaced
turf grass, golf course grass, and impervious and soil pixels
within the layer’s extent, not including well-drained grasses
and woodlands. Agriculture was labeled using a modified GIS
layer of land-use types (Metropolitan Council 2011). Clouds
were masked using manually drawn polygons.

We assessed the accuracy of our land cover classification
for the built-up and urban vegetation classes, namely decidu-
ous broadleaf trees, evergreen needleleaf trees, turf grass, golf
course grass, and impervious and soil. For accuracy assess-
ment, turf grass and golf course grass were combined because
these were distinguished using a land-use map in a GIS rather
than from raster imagery. We randomly sampled 100 initial
single-pixel targets for each land cover class, and we assessed
each target using the WV-2 imagery, a ~0.3 m (1 ft) spatial
resolution RGB USGS orthophoto acquired in early spring
2012, and imagery from Google Earth. We excluded any tar-
gets that could not be unambiguously labeled using the avail-
able validation imagery, resulting in 275 evaluated targets.

NDVI and FPAR

We calculated FPAR from the NDVI following Sims et al.
(2006) as:

FPAR ¼ 1:24� NDVI−0:168 ð3Þ

The relationship was based on ground measurements of
multiple plant functional types and is similar to other pub-
lished NDVI-FPAR linear relationships (Ruimy et al. 1994;
Song et al. 2013). Few NDVI-FPAR equations have been
published specifically for urban vegetation types, but Eq. 3
was similar to a relationship for turf grass from Wu and
Bauer (2012; FPAR = 1.29 × NDVI – 0.29). In this study,
we used the relationship from Sims et al. (2006) for our entire
study region to maintain a consistent NDVI-FPAR relation-
ship across vegetation types. Eq. 3 has been applied using
MODIS NDVI in light use efficiency studies (e.g., Wu et al.
2012), and we converted our WV-2 NDVI to approximate
MODIS NDVI to account for differences in the sensors’ spec-
tral bands. Similar NDVI conversions have been implemented
in other urban GPP studies (e.g., Zhao et al. 2007). We devel-
oped an empirical WV-2 NDVI to MODIS NDVI linear re-
gression by spectrally resampling an Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS; Green et al. 1998)
image from July 29, 2009 of Rosemount, Minnesota to ap-
proximate the WV-2 and MODIS spectral bands using spec-
tral response functions in ENVI. We atmospherically
corrected the AVIRIS radiance image with ACORN
6.080101 mode 1.5 using a summer atmospheric model, de-
rived water vapor at 940 nm, and 50 km image atmosphere
visibility (ImSpec LLC – Palmdale, CA, USA). We used

every available pixel in the AVIRIS image extent. Pixels be-
low the line of Eq. 4 were water bodies in nearly all cases.

NDVIMODIS ¼ 1:01� NDVIWV−2 þ 0:025 ð4Þ

We masked all pixels below this line and regressed the
remaining pixels, generating Eq. 5.

NDVIMODIS ¼ 0:9842� NDVIWV−2 þ 0:01039;

R2 ¼ 0:9994; p < 0:001

ð5Þ

We applied Eq. 5 to the WV-2 NDVI, and then used Eq. 3
to produce an FPAR image.

In situ CO2 flux data

We used in situ observations of tree and turf grass GPP and
PAR in a first-ring suburban neighborhood in the center of our
study area to derive an empirical LUE estimate for each veg-
etation type.

For trees, we used GPP estimates based on sap flow and
leaf-level gas exchange measurements on seven genera
representing evergreen needleleaf and deciduous broadleaf
tree plant functional types (Peters and McFadden 2012).
These data were collected in 2007 and 2008 on representative
trees growing in park-like conditions at four locations in the
Minneapolis-Saint Paul metropolitan area. Maintenance was
considered to be low at all sites, with no irrigation, little or no
fertilizer, and regular mowing. Canopy-level meteorological
measurements were used to convert whole-tree transpiration
rates obtained from sap flow measurements to canopy con-
ductance estimates. Leaf-level gas exchange measurements of
photosynthesis and stomatal conductance were used to con-
vert canopy conductance to continuous estimates of canopy
photosynthesis (i.e., tree GPP). We averaged across genera to
derive separate GPP estimates for deciduous broadleaf trees
and evergreen needleleaf trees.

For turf grass, we used GPP estimates from eddy covariance
CO2 flux measurements that were acquired during 2005–2009
at a 1.5 ha turf grass field, also in a first-ring suburban location
(Hiller et al. 2011). The field was representative of low-
maintenance lawns, with regular mowing, no clipping removal,
no irrigation, and one application of fertilizer per year (Hiller et
al. 2011). Turf grass net ecosystem exchange (NEE) was mea-
sured directly by the eddy covariance system, and GPP was
calculated by estimating ecosystem respiration based on the
temperature response of the CO2 flux during nighttime, and
then subtracting it from NEE. We used only observed (i.e.,
not gap-filled) data from the turf grass eddy covariance site.

We did not have in situ measurements for golf course grass.
However, Peters and McFadden (2012) modeled GPP for ir-
rigated grass based on measurements at the turf grass site
when water was not limiting growth in the spring and fall.
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Irrigated grass GPP during midsummer was estimated by
fitting these data to light-response curves and ecosystem res-
piration models using midsummer soil temperature and soil
radiation data. For golf course grass, we used this modeled
GPP. It may underestimate actual golf course grass GPP be-
cause it does not account for fertilization or other benefits of
increased maintenance.

We made an independent assessment of our mapped GPP
estimates using eddy covariance CO2 fluxmeasurements from
a height of 40m on a tall tower near the turf grass and tree sites
(Peters and McFadden 2012; Menzer et al. 2015; Menzer and
McFadden 2017). The reference GPP was obtained by apply-
ing the flux partitioning algorithm by Reichstein et al. (2005)
to the biogenic fraction of the net CO2 flux measurements
(Menzer and McFadden 2017). We used half-hourly flux ob-
servations, and filtered the data according to the following
criteria: (1) the measurement was from the northwest wind
sector (270–360°) over the predominant residential land-use
type; (2) the measurement was observed, rather than gap-
filled; and (3) the cumulative flux source was >99% within
the residential land-use type (Menzer and McFadden 2017).

LUE and GPP estimation

In situ observations at half-hourly intervals were used to gen-
erate characteristic mean diurnal cycles of midsummer daily
GPP and PAR for the plant functional types of interest and the
tall tower (e.g., Soegaard and Møller-Jensen 2003). The turf
grass site had available summertime eddy covariance data
from 2006 to 2008, but we omitted data from 2007 because
conditions during the midsummer period were hot and dry
compared to long-term averages (1981–2010, National
Climatic Data Center). The tree sap flow and tall tower eddy
covariance data were only available in 2008 for the time win-
dow near our image acquisition. We estimated PAR from in-
cident shortwave radiation (W m−2) measurements at the turf
grass site multiplied by 0.45 (Running and Zhao 2015). Only
daylight (PAR > 0.45 W m−2) observations of GPP were used
and we removed values due to rainy or cloudy conditions or
instrument error. We averaged GPP and PAR at half-hourly
time points, and summed the average values to produce com-
posite diurnal estimates of GPP (g C m−2 d−1) and incident
PAR (MJ m−2 d−1) over a 4-week interval surrounding our July
image acquisition date. We also tested 2- and 3-week averaging
intervals, but the composite sums of GPP and PAR were rela-
tively insensitive to the range used. We selected the 4-week
interval because of the greater number of data points.

To estimate LUE, we extracted FPAR estimates for decid-
uous broadleaf trees, evergreen needleleaf trees, and turf grass.
We used manually delineated polygons containing only the
tree or turf grass areas where GPP was measured in situ. At
the sites used to train the LUE values, deciduous broadleaf
trees had a mean FPAR (± SD) of 0.88 ± 0.04, evergreen

needleleaf trees had a mean FPAR of 0.83 ± 0.07, and turf
grass had a mean FPAR of 0.74 ± 0.03. To parameterize golf
course grass FPAR, we used its mean FPAR value for the total
study area because the golf course grass GPP values were
modeled rather than measured at a field site. The empirical
LUE estimates were calculated using the site polygons’ FPAR
and the vegetation types’ 4-week GPP and PAR values.

We generated our composite map of GPP for clear-sky,
midsummer conditions by multiplying the WV-2 FPAR raster
by the 4-week PAR based on the 40 m tower observations
(12.09 MJ m−2 d−1) and the LUE estimates by mapped vege-
tation type from the land cover classification.

GPP validation and variability

We used flux footprints from the 40 m tower site to compare
with our GPP map. Each footprint represented the modeled
ground area from which 80% of a given flux measurement
originated (Kljun et al. 2004). We created a composite foot-
print for the tall tower flux observations by merging the foot-
prints corresponding to the half-hourly flux observations used
to construct the 4-week mean diurnal cycle. We extracted the
GPP estimates of all vegetated pixels within the merged foot-
print and used the mean value to independently compare with
the tall tower’s summed mean diurnal cycle.

We quantified variation in urban GPP by analyzing how
GPP varied among and within dominant vegetation and land-
use types. Land-use types were derived from the Generalized
Land Use 2010 GIS layer (Metropolitan Council 2011) and
included: airport; golf course; industrial; institutional; major
highway; mixed use; office; park, recreational, or preserve;
residential; retail; and undeveloped.

Results

Vegetation classification

Our land cover classification (Fig. 1) had an overall accuracy
of 80% (kappa = 0.74) for built-up and vegetated urban land
cover classes, which included impervious and soil, deciduous
broadleaf tree, evergreen needleleaf tree, and grass (turf grass
and golf course grass combined) classes (Table 1). We did not
include water, wetland, agriculture, or clouds in the accuracy
assessment because those classes were not the focus of our
urban GPP analysis and they were mapped primarily from
existing GIS data sources rather than our imagery. Grouping
the vegetation classes together, we had an overall accuracy of
98% (kappa = 0.95) in classifying vegetated areas versus im-
pervious and soil. The tree classes combined were separable
from the grass class with an overall accuracy of 94% (kappa =
0.85), and the accuracy was 74% (kappa = 0.62) in
distinguishing among the vegetation classes.
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The greatest misclassification was between the deciduous
broadleaf and evergreen needleleaf tree classes. Nearly all real
evergreen needleleaf trees were correctly mapped (Producer’s
accuracy = 0.92), but many trees mapped as evergreen
needleleaf were actually deciduous broadleaf (User’s accura-
cy = 0.47). Given the leaf-off imagery we had available, we
believed it was more important to accurately map every real
evergreen needleleaf tree due to the very small area of ever-
green needleleaf trees in the image. As a consequence, we
misclassified a small amount of the dominant deciduous
broadleaf tree class as evergreen needleleaf trees. We also
had misclassification between deciduous broadleaf trees and
grass. Seven pixel targets were classified as turf grass but were
deciduous broadleaf trees, mostly at the edge of a tree canopy,
in canopy gaps, or consisted of shrubs. This is likely partially a
result of the low pass filter we used to reduce pits and gaps in
the canopy height model.

FPAR retrieval

The distributions of FPAR by vegetation type are shown in
Fig. 2. Deciduous broadleaf trees, evergreen needleleaf trees,
and golf course grass had similarly high FPAR values, while

the turf grass had a broader distribution with a lower mean
value. The mean FPAR (± SD) values were 0.87 ± 0.09 for
deciduous broadleaf trees, 0.86 ± 0.08 for evergreen
needleleaf trees, 0.76 ± 0.13 for turf grass, and 0.85 ± 0.09
for golf course grass, all with left-skewed distributions.

Mean diurnal cycles and LUE

The mean diurnal cycles from the in situ observations are
shown in Fig. 3. The deciduous broadleaf and evergreen
needleleaf tree GPP exhibited a rapid increase in the morning
and slow decline in the afternoon. Deciduous broadleaf trees
had a lower daily maximum GPP than did evergreen
needleleaf trees. The turf grass GPP reached a daily maximum
in mid-morning that remained relatively constant until late
afternoon, while the modeled golf course grass GPP reached
higher values in a parabolic fashion. The GPP data at the 40 m
KUOM flux tower were similar to the turf site, but had a
higher constant daily maximum closer to noon.

Golf course grass had the highest GPP, followed by turf
grass, evergreen needleleaf trees, and deciduous broadleaf
trees (Table 2). The incident PAR observations were nearly
the same across all time periods with values ~12 MJ m−2 d−1.

KUOM Tall Tower

Example inset (below)

Minnesota

  Deciduous Broadleaf Tree

  Evergreen Needleleaf Tree

Turf Grass

  Golf Course Grass

  Impervious and Soil

  Water

  Wetland

Agriculture

  Cloud

Fig. 1 Land cover classification for the full study extent (32 × 28 km)
(left), with the KUOM flux tower location indicated by a red circle, the
Minneapolis and Saint Paul boundaries by the white lines, and the

Ramsey County boundary by the yellow lines. Inset (lower right)
location indicated by gray box. Location of study area in Minnesota
indicated by red box in state outline (right)
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We found that LUE was lowest for deciduous broadleaf trees
(0.24 g C MJ−1) and highest for golf course grass (1.14 g C
MJ−1), with evergreen needleleaf trees (0.56 g C MJ−1) and
turf grass (0.66 g C MJ−1) in between.

Comparison to tall tower flux measurements

The sum of the mean diurnal cycle of GPP measured at the
40 m tower during the 4-week time period was 8.01 g C m−2

d−1, while the corresponding sum of PAR was 12.09 MJ m−2

d−1. The union of the 80% contribution flux footprint poly-
gons from the 40 m tower (Fig. 4) was used to spatially

aggregate our mapped GPP estimates. Our GPP map had a
mean value of 7.10 g C m−2 d−1 (area weighted mean SD =
0.67 g C m−2 d−1) for the parameterized vegetation classes
within the 40 m tower footprint area. We considered our
GPP map’s estimate, 11.4% lower than the tower GPP, to be
reasonable given the inherent variability in both our model
and the tower data.

GPP totals

The majority of our map’s vegetated areas were deciduous
broadleaf trees and turf grass, with only small areas of ever-
green needleleaf trees and golf course grass (Table 3). The
vegetation cover of the total study area was 52.1% including
all land cover classes. We found consistent percent cover for
each mapped vegetation type among the administrative
boundaries of Minneapolis, Saint Paul, and Ramsey County.
However, the percent impervious and soil cover was greater in
the major cities of Minneapolis and Saint Paul than in Ramsey
County and the total study area.

For the total study area, the mean GPP across the parame-
terized vegetation classes and the impervious and soil class
was 2.64 g C m−2 d−1, and was 4.45 g C m−2 d−1 within the
vegetated areas. The mean estimates of GPP were consistent
in the vegetated classes. For the total study area, deciduous
broadleaf trees had the lowest mean GPP (2.52 g C m−2 d−1),
evergreen needleleaf trees (5.81 g C m−2 d−1) and turf grass
(6.05 g C m−2 d−1) had similar means, and golf course grass
(11.77 g C m−2 d−1) had the highest mean GPP. The percent
contributions to total GPP by vegetation class were similar
across the selected regions, with turf grass contributing 55–
62% and deciduous broadleaf trees contributing 27–32% of
the total GPP. Both classes had similar total areas, but the
lower LUE of the deciduous broadleaf trees resulted in lower
GPP contributions. Evergreen needleleaf trees and golf course
grass had small areas and little impact on the GPP totals.

Table 1 Accuracy assessment table for built-up and vegetated urban
land cover. Overall accuracy was 80% (kappa = 0.74). Golf and turf grass
were considered as one class for accuracy assessment because they were

distinguished from one another using a GIS layer rather than the raster
image classification

Reference

Deciduous 

Broadleaf Tree

Evergreen 

Needleleaf Tree

Grass

(Turf + Golf)

Impervious and 

Soil Total User's Acc.

C
la

ss
if

ic
at

io
n

Deciduous Broadleaf Tree 54 3 2 0 59 0.92

Evergreen Needleleaf Tree 33 33 3 1 70 0.47

Grass (Turf + Golf) 7 0 52 3 62 0.84

Impervious and Soil 0 0 2 82 84 0.98

Total 94 36 59 86 275

Producer's Acc. 0.57 0.92 0.88 0.95

Vegetation Type
DBT ENT TG GCG

F
P

A
R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2 Box plots of FPAR for deciduous broadleaf tree (DBT), evergreen
needleleaf tree (ENT), turf grass (TG), and golf course grass (GCG) for
the full study extent (10,000 samples per class). The middle line of the
box is the median, the outer edges of the box are the 25th and 75th
percentiles, and dashed lines are whiskers that extend to 1.5 × the
standard deviation, with values greater than this from the median shown
as dots
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Variability of GPP among and within vegetation types

The coefficients of variation (CV = SD / mean) of GPP were
0.10 for deciduous broadleaf trees, 0.09 for evergreen
needleleaf trees, 0.18 for turf grass, and 0.10 for golf course
grass. The CVof GPP for turf grass was nearly twice as large
as those for the other vegetation classes, and all the

distributions were left-skewed (Fig. 5). Deciduous broadleaf
trees had a more peaked distribution but had a similar CV to
evergreen needleleaf trees and golf course grass due to their
lower mean GPP.

GPP among and within land-use types

Themajor urban land-use types varied widely in percent cover
of the different vegetation classes (Table 4). We calculated
percent cover using only the vegetation classes and the imper-
vious and soil class. We did not include the other land cover
classes (water, wetlands, agriculture, and clouds) in our per-
cent cover calculations because those classes are not typical
urban land cover classes that were the focus of our GPP
analysis.

Residential areas had 63.2% vegetation cover, with a
higher percent cover of deciduous broadleaf trees (34.9%)
than all other land-use types except parks, recreational areas,

Deciduous Broadleaf Tree   Evergreen Needleleaf Tree

Turf Grass Golf Course Grass

Tall Tower

Fig. 3 In situ flux observations
used to calculate mean daily sums
of GPP and PAR during 4-week
interval. Mean values at half-
hourly intervals are black lines,
colors are day of year (DOY), tri-
angles represent 2006 and circles
2008. The deciduous broadleaf
and evergreen needleleaf tree
GPP data were from sap flow
measurements in 2008. The turf
grass GPP data were from eddy
covariance measurements in 2006
and 2008. The golf course grass
GPP data were modeled based on
turf grass eddy covariance mea-
surements under peak growing
conditions in 2006 and 2008. The
tall tower eddy covariance data
were from 2008. All data are
during daylight (PAR>
0.45 W m−2)

Table 2 Parameters from sums of mean diurnal cycles and site
polygons in FPAR image to estimate LUE: GPP (g C m−2 d−1), FPAR
(unitless), PAR (MJ m−2 d−1), and LUE (g C MJ−1 PAR)

GPP FPAR PAR LUE

Deciduous Broadleaf Tree 2.54 0.88 12.08 0.24

Evergreen Needleleaf Tree 5.57 0.83 12.08 0.56

Turf Grass 5.96 0.74 12.15 0.66

Golf Course Grass 11.79 0.85 12.11 1.14
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or preserves and undeveloped areas, but a similar percent cov-
er of turf grass (24.9%) compared to the other land-use types.
Deciduous broadleaf trees had less than 10% cover in the most
built-up land-use categories such as industrial, mixed use, re-
tail, and airport, but had high percent cover in less developed
land-use types such as the undeveloped and park, recreational,
or preserve classes. Evergreen needleleaf trees had low per-
cent cover across all land-use categories because they are less
commonly planted in the region. Turf grass had 26.1% cover
for the total study area, and had the highest percent cover at
48.5% for the airport land-use type, while golf courses had
65.3% grass cover and a total of 91.1% vegetation cover, the
highest of any land-use type. In general, land-use types with
30–60% vegetation cover had greater turf grass cover than
deciduous broadleaf tree cover, and only at low levels of veg-
etation cover (<30%) was turf grass cover also strongly re-
duced (Fig. 6).

When expressed per unit of land area (i.e., including im-
pervious surfaces and soil), we observed large differences in
mean GPP among land-use types, but when compared per unit
vegetated area, the mean land-use GPP values exhibited low
variability (Table 5). The overall differences in land-use GPP
were mostly attributable to the percent vegetation cover. Turf
grass accounted for the majority (59.0–94.8%) of the total
GPP within every land-use type (excluding golf courses)
(Table 6). Turf grass GPP had a larger CV across the land-
use types (0.16 to 0.21) than either of the tree classes or the
golf course grass. The CV for golf course grass GPP (0.10)
was similar to the tree classes rather than the turf grass.
Among all land-use types, the CV for deciduous broadleaf
trees ranged from 0.07 to 0.14 and the CV for evergreen
needleleaf trees ranged from 0.07 to 0.11. Land-use types with
more impervious and soil cover generally had greater CVs.

The mean GPP values of the land-use types had a strong
linear relationship (y = 0.04x + 0.21, R2 = 0.98, p < 0.001)
with percent vegetation cover, not including golf courses
(Fig. 7a). Golf courses had the highest percent vegetation cov-
er, and the uniquely high LUE parameterization for golf
course grass resulted in a meanGPP twice as large as the value
predicted by the other land-use types’ linear trend. Mean veg-
etation GPP (including deciduous broadleaf trees, evergreen
needleleaf trees, and turf grass combined) did not exhibit
strong variability by land-use type, also excluding golf
courses (y = −0.06x + 4.92, R2 = 0.21, p = 0.19; Fig. 7b).

Discussion

Evaluation of GPP parameters

Vegetation cover and GPP totals

The percent vegetation cover of the total study area (52.1%)
was similar to vegetated, suburban sites in Montreal, Canada
(50%) (Bergeron and Strachan 2011), Helsinki, Finland (44%)
(Järvi et al. 2012), Syracuse, New York (48.2%) (Myeong et
al. 2001), and a park site in Essen, Germany (52%)
(Kordowski and Kuttler 2010). The tree canopy cover was
28.0% for the total study area, similar to high spatial resolu-
tion imagery studies in Boston,Massachusetts (25.5%) (Raciti
et al. 2014), Santa Barbara, California (25.4%) (Alonzo et al.
2016), Syracuse, New York (26.6%) (Myeong et al. 2001),
Leipzig, Germany (19%) (Strohbach and Haase 2012), and
Berlin, Germany (30.4%) (Tigges et al. 2017). Turf grass cov-
er (22.9%) was similar to estimates of residential areas in

Fig. 4 Union of high quality 80%
contribution polygons forming
tall tower ground footprint (white
boundary, tower is '×') during 4-
week interval over a clipped out
area of the GPP map. Non-
vegetated areas are shown in
black
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Sacramento, California (24.5%) (Akbari et al. 2003) and sev-
eral major cities in Sweden (22.5%) (Hedblom et al. 2017).

The midsummer GPP of our total 894 km2 study area was
2071 Mg C d−1 (Table 3c; Table 6). The similar fractional
contributions to GPP of the different vegetation types in
Minneapolis, Saint Paul, Ramsey County, and the total study
area suggest that, at the city or county scale, there were no
large differences in vegetation type composition or vegetation
condition as evidenced by NDVI-derived FPAR. Turf grass
was responsible for more than half of the total GPP for the
region due to its large area of coverage (22.9%) and high GPP
compared to trees. Deciduous broadleaf trees had the largest
area of cover (25.5%) among vegetation classes, but were
responsible for only 27 to 32% of the total GPP for the select-
ed regions due to their low GPP (Table 3d). Evergreen
needleleaf trees and golf course grass combined never consti-
tuted more than 14% of the total GPP due to their small cover
fractions.

The 11.4% difference between our mean vegetation GPP
mapped within the tower footprint and the GPP calculated from
the tall tower CO2 flux measurements was reasonable given the
sources of uncertainty inherent in the two approaches. First, the
land cover map is subject to error in land cover classification.
Second, there is uncertainty in GPP estimation from the in situ
data. For example, the eddy covariance technique has errors
associated with bias due to sensor configuration and data pro-
cessing of typically 5–10% and random error due to atmospher-
ic turbulence of ~5% (Baldocchi 2008). There is also uncertain-
ty in estimating anthropogenic fluxes at an urban site, removing
them to determine the vegetation CO2 fluxes, and modeling
GPP with flux partitioning approaches (Menzer and
McFadden 2017). The error associated with sap flow and
leaf-level gas exchange estimation of tree GPP was assumed
to be 29% and 23% for evergreen needleleaf and deciduous
broadleaf trees, respectively (Peters and McFadden 2012).
The spatial distribution of the flux footprint is also a potential

Table 3 Summary of vegetation
classes and GPP within the full
extent of the study area, the cities
of Minneapolis and Saint Paul,
and Ramsey County. (a) Total
area (km2); (b) Mean GPP (± SD;
g C m−2 d−1); (c) Total daily GPP
(± SD;Mg C d−1); and (d) Percent
contribution to total daily GPP (±
SD) by vegetation type

a. Areas (km2) Full Study Extent Minneapolis Saint Paul Ramsey County

Deciduous Broadleaf Tree 228.1 35.3 38.0 115.9

Evergreen Needleleaf Tree 22.3 2.1 3.3 13.5

Turf Grass 204.4 30.0 28.0 95.8

Golf Course Grass 11.1 1.3 1.7 4.9

Impervious and Soil 317.6 70.6 61.9 139.7

Total Vegetated 465.9 68.7 71.1 230.1

Total Area 894.0 148.6 145.0 439.8

b. Mean GPP (g C m−2 d−1) Full Study Extent Minneapolis Saint Paul Ramsey County

Deciduous Broadleaf Tree 2.52 ± 0.25 2.45 ± 0.28 2.51 ± 0.27 2.54 ± 0.24

Evergreen Needleleaf Tree 5.81 ± 0.52 5.73 ± 0.54 5.86 ± 0.53 5.81 ± 0.51

Turf Grass 6.05 ± 1.07 5.97 ± 1.06 6.02 ± 1.06 6.10 ± 1.04

Golf Course Grass 11.77 ± 1.20 11.65 ± 1.21 11.80 ± 1.09 11.76 ± 1.18

Total Vegetated 4.45 ± 0.76 4.26 ± 0.76 4.27 ± 0.72 4.41 ± 0.72

Total Vegetated + Impervious and Soil 2.64 ± 0.59 2.10 ± 0.53 2.28 ± 0.53 2.75 ± 0.57

c. Total GPP (Mg C d−1) Full Study Extent Minneapolis Saint Paul Ramsey County

Deciduous Broadleaf Tree 576 ± 57 86 ± 10 95 ± 10 295 ± 28

Evergreen Needleleaf Tree 129 ± 12 12 ± 1 19 ± 2 78 ± 7

Turf Grass 1236 ± 218 179 ± 32 169 ± 30 584 ± 100

Golf Course Grass 131 ± 13 15 ± 2 20 ± 2 58 ± 6

Total 2071 ± 150 292 ± 22 304 ± 20 1015 ± 67

d. GPP Full Study Extent Minneapolis Saint Paul Ramsey County

Deciduous Broadleaf Tree 27.8 ± 2.8% 29.5 ± 3.4% 31.4 ± 3.4% 29.0 ± 2.8%

Evergreen Needleleaf Tree 6.3 ± 0.6% 4.1 ± 0.4% 6.4 ± 0.6% 7.7 ± 0.7%

Turf Grass 59.7 ± 10.5% 61.2 ± 10.9% 55.5 ± 9.8% 57.6 ± 9.8%

Golf Course Grass 6.3 ± 0.6% 5.1 ± 0.5% 6.7 ± 0.6% 5.7 ± 0.6%
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source of uncertainty (Kljun et al. 2004), but this is less severe
due to the temporal aggregation of the half-hourly footprints
into one cumulative polygon (Menzer and McFadden 2017).

Few published remote sensing studies of urban GPP have
reported midsummer (rather than annual) values that are di-
rectly comparable to those reported in this study. A study of
the Detroit metropolitan region by Zhao et al. (2007) reported
summer GPP of ~15 g C m−2 d−1 compared to our study
region mean GPP of 2.64 g C m−2 d−1. The difference is
partially attributable to the use of LUE parameters based on
natural forests, grasslands, and agricultural crops in Zhao et al.
(2007), and also attributable to the greater extent of the Detroit
study region beyond the city center in Zhao et al. (2007) com-
pared to our study. This could lead to reduced impervious

surface cover and greater areas of non-urban tree cover. The
leaf area index (LAI) of urban forests can be lower than in
natural forests (Peters andMcFadden 2010) and above ground
biomass for urban trees can be 20% less than trees in natural
forests for the same diameters at breast height (Nowak 1994).

FPAR

The FPAR of our turf grass lawn (0.76 ± 0.13) was lower than
the more uniformly irrigated and well-maintained golf course
grass (0.85 ± 0.09), reflecting differences in species composi-
tion and management practices (Qian and Follett 2002) and

Table 4 Percent cover within
built-up and urban vegetation
areas only, with all non-urban
land cover classes removed (wa-
ter, clouds, wetlands, and
agriculture)

Impervious
and Soil

All
Vegetation

Deciduous
Broadleaf Tree

Evergreen
Needleleaf Tree

Turf
Grass

Golf
Course
Grass

Total Study
Area

40.5% 59.5% 29.1% 2.8% 26.1% 1.4%

Airport 47.1% 52.9% 3.9% 0.5% 48.5% 0%

Golf Course 8.9% 91.1% 21.8% 4.0% 0% 65.3%

Industrial 74.5% 25.5% 8.1% 0.7% 16.6% 0%

Institutional 50.3% 49.7% 16.0% 1.6% 32.1% 0%

Major
Highway

56.7% 43.3% 7.3% 0.5% 35.4% 0%

Mixed Use 66.5% 33.5% 7.3% 0.6% 25.7% 0%

Office 71.5% 28.5% 10.5% 0.8% 17.1% 0%

Park, Rec., or
Preserve

14.3% 85.7% 46.7% 4.4% 34.6% 0%

Residential 36.8% 63.2% 34.9% 3.4% 24.9% 0%

Retail 82.6% 17.4% 6.7% 0.4% 10.4% 0%

Undeveloped 15.6% 84.4% 40.9% 4.0% 39.5% 0%

Fig. 6 Vegetation cover (%) plotted against deciduous broadleaf trees or
grass (turf or golf course grass) cover (%) within each land use type. See
Table 4 for specific land use values

Fig. 5 Normalized histogram of GPP (g C m−2 d−1) for each vegetation
cover type for the total study area
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the summer dormancy typical of cool-season C3 turf grass
lawns (Fry and Huang 2004). Our turf grass FPAR estimates
were similar to midsummer values of ~0.7 for a corn and
soybean site in Illinois (Turner et al. 2005; Meyers and
Hollinger 2004) and a value of ~0.8 for a tallgrass prairie site
in eastern Kansas (Turner et al. 2006; Ham and Knapp 1998).
Our deciduous broadleaf tree and evergreen needleleaf tree
FPAR estimates corresponded well with estimates by Turner
et al. (2005) for their respective vegetation types (Wofsy et al.
1993; Anthoni et al. 2002) and with estimates by Turner et al.
(2006) for a mixed forest (Davis et al. 2003). Trees did not
show as much FPAR variability as did turf grass (Fig. 2),

suggesting that trees experienced relatively uniform environ-
mental stress conditions across the metropolitan area but turf
grasses had much greater variation in condition, likely due to
their more intensive management requirements.

Light use efficiency

We calculated an empirical LUE value for each urban vegeta-
tion type using daily GPP and PAR totals from in situ mea-
surements in combination with FPAR values from WV-2
NDVI. The empirical LUE values were applied as constants
to produce a single estimate of midsummer GPP. This is in

Table 6 Percent contribution to
each land-use type’s total GPP (±
SD) by vegetation type. The total
area (km2) and the total daily GPP
(± area weighted SD; Mg C d−1)
of each land-use type are also
included

Contribution (± SD; %) to Land Use GPP

Deciduous
Broadleaf
Tree

Evergreen
Needleleaf
Tree

Turf Grass Golf Course
Grass

Total
Area
(km2)

Total GPP
(± SD; Mg
C d−1)

Total Study
Area

27.79 ± 2.75% 6.25 ± 0.56% 59.66 ± 10.52% 6.30 ± 0.64% 894 2071 ± 150

Airport 3.90 ± 0.33% 1.27 ± 0.09% 94.83 ± 20.19% 0% 11 27 ± 5

Golf Course 6.66 ± 0.48% 2.78 ± 0.22% 0% 90.56 ± 9.26% 18 151 ± 11

Industrial 16.52 ± 2.02% 3.61 ± 0.36% 79.87 ± 15.82% 0% 60 72 ± 9

Institutional 16.56 ± 1.83% 3.85 ± 0.40% 79.59 ± 13.15% 0% 54 129 ± 14

Major
Highway

8.28 ± 0.97% 1.41 ± 0.16% 90.31 ± 18.18% 0% 37 80 ± 13

Mixed Use 10.33 ± 1.31% 1.93 ± 0.21% 87.74 ± 15.26% 0% 12 19 ± 2

Office 19.16 ± 2.39% 3.56 ± 0.36% 77.28 ± 13.95% 0% 10 13 ± 1

Park, Rec., or
Preserve

33.29 ± 2.37% 7.15 ± 0.51% 59.56 ± 9.67% 0% 103 374 ± 19

Residential 33.47 ± 3.47% 7.53 ± 0.69% 59.00 ± 9.57% 0% 424 1106 ± 71

Retail 20.65 ± 2.80% 2.91 ± 0.33% 76.44 ± 15.55% 0% 40 31 ± 4

Undeveloped 28.87 ± 2.10% 6.53 ± 0.49% 64.60 ± 12.25% 0% 57 209 ± 14

Table 5 Mean GPP (± SD; g C
m−2 d−1) for the total study area
by land use type for different land
cover and vegetation type
categories

All Vegetation +
Impervious and
Soil

All
Vegetation

Deciduous
Broadleaf
Tree

Evergreen
Needleleaf
Tree

Turf Grass Golf Course
Grass

Total Study
Area

2.64 4.45 2.52 ± 0.25 5.81 ± 0.52 6.05 ± 1.07 11.77 ± 1.20

Airport 2.57 4.85 2.58 ± 0.22 6.12 ± 0.41 5.02 ± 1.07 0

Golf Course 8.48 9.31 2.59 ± 0.19 5.89 ± 0.46 0 11.77 ± 1.20

Industrial 1.19 4.68 2.44 ± 0.30 5.77 ± 0.58 5.73 ± 1.13 0

Institutional 2.40 4.82 2.48 ± 0.27 5.64 ± 0.58 5.95 ± 0.98 0

Major
Highway

2.17 5.01 2.46 ± 0.29 5.67 ± 0.63 5.52 ± 1.11 0

Mixed Use 1.69 5.04 2.40 ± 0.31 5.58 ± 0.60 5.78 ± 1.00 0

Office 1.32 4.63 2.41 ± 0.30 5.63 ± 0.58 5.94 ± 1.07 0

Park, Rec., or
Preserve

3.64 4.25 2.60 ± 0.19 5.98 ± 0.43 6.26 ± 1.02 0

Residential 2.61 4.12 2.50 ± 0.26 5.76 ± 0.53 6.17 ± 1.00 0

Retail 0.76 4.38 2.37 ± 0.32 5.60 ± 0.63 5.63 ± 1.14 0

Undeveloped 3.68 4.37 2.60 ± 0.19 5.98 ± 0.45 6.02 ± 1.14 0

842 Urban Ecosyst (2018) 21:831–850

Author's personal copy



contrast to global models of GPP, which divide the land sur-
face by biomes or plant functional types, assign a maximum
LUE parameter to each class, and then use environmental
variables to scale down LUE to account for seasonality and
large-scale geographic variability (Song et al. 2013). In this
study, in situ GPP measurements for each urban vegetation
type allowed us to produce accurate maps of GPP that were
representative of clear-sky, midsummer conditions. To extend
our map to annual estimates, continuous multi-year flux mea-
surements are available, but a corresponding time series of
high spatial resolution imagery is not. However, in future
work, data fusion of limited high spatial resolution imagery
with daily imagery such as MODIS (e.g., Kim and Hogue
2012) could potentially generate intra- and inter-annual time
series of urban FPAR and GPP.

We compared our empirical LUE values to MODIS LUE
parameters from the Daily GPP and Annual NPP
(MOD17A2/A3) Products User’s Guide Version 3.0
(Running and Zhao 2015), which were originally derived in
Yang et al. (2007). MOD17 GPP has maximum LUE values
for multiple vegetation classes that are reduced by linear ramp
functions of minimum daily air temperature and vapor

pressure deficit (VPD) based on gridded meteorological data.
We used half-hourly air temperature and VPD measurements
from our turf site to calculate MOD17 LUE estimates. Using
these data, the MOD17 LUE estimates were not affected by
minimum air temperature but were affected by VPD. We pro-
duced MOD17 LUE estimates using both the mean
(2.018 kPa) and the median (1.881 kPa) VPD of our midsum-
mer composite diurnal cycle.

Our empirical LUE values and MOD17 LUE parameters
are shown in Table 7. Our deciduous broadleaf tree LUE
(0.24 g C MJ−1) was similar to the MOD17 mixed forest
LUE (0.23 and 0.31 g C MJ−1). It did not match the
MOD17 deciduous broadleaf forest LUE because the latter
was scaled to zero due to its VPD threshold. Our evergreen
needleleaf tree LUE (0.56 g C MJ−1) was similar to the
MOD17 evergreen needleleaf forest LUE (0.63 and 0.66 g C
MJ−1). Our turf grass LUE (0.66 g C MJ−1) was in the same
range as the MOD17 LUE estimates for the mostly herba-
ceous vegetation classes of savanna (0.53 and 0.60 g C
MJ−1), grassland (0.61 and 0.63 g C MJ−1), and cropland
(0.65 and 0.69 g C MJ−1). Our golf course grass LUE
(1.14 g C MJ−1) was higher than all MOD17 LUE estimates.

Vegetation Mean GPP (g C m-2 d-1)
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A baFig. 7 For each land-use type in
this study: (a) vegetation cover
(%) plotted against mean GPP of
all vegetation, impervious and
soil (g C m−2 d−1), note that golf
courses are not included in the
linear regression; (b) mean GPP
of all vegetation types (g C m−2

d−1) plotted against mean GPP of
all vegetation, impervious and
soil (g C m−2 d−1). See Tables 4
and 5 for specific land-use values

Table 7 Comparison between our empirical LUE estimates and estimates for scaled MODIS GPP (MOD17) LUE by vegetation class. LUE estimates
are g C MJ−1 PAR

This Study Estimated MOD17 GPP

Vegetation Class LUE Vegetation Class LUE (VPD = 2.018 kPa) LUE (VPD = 1.881 kPa)

Deciduous Broadleaf Tree 0.24 Evergreen Needleleaf Forest 0.63 0.66

Evergreen Broadleaf Forest 0.60 0.67

Evergreen Needleleaf Tree 0.56 Deciduous Needleleaf Forest 0.19 0.28

Deciduous Broadleaf Forest 0.00 0.00

Mixed Forest 0.23 0.31

Closed Shrubland 0.85 0.89

Open Shrubland 0.56 0.59

Woody Savanna 0.57 0.64

Turf Grass 0.66 Savanna 0.53 0.60

Golf Course Grass 1.14 Grassland 0.61 0.63

Cropland 0.65 0.69
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In general, our measured LUE values of urban vegetation
were similar to the MOD17 LUE parameters of the corre-
sponding natural vegetation types. However, our results also
indicated that caution must be used in applying natural vege-
tation LUE parameters to estimate urban GPP. For example,
we would not have known a priori that our deciduous broad-
leaf tree LUE would be better represented by the MOD17
mixed forest class rather than the deciduous broadleaf forest
class, nor that our measured golf course grass LUE would be
underestimated by all the MOD17 vegetation types.

Comparisons between our empirical LUE values and other
empirical LUE estimates reported for similar vegetation types
are shown in Table 8. The two grass types at our urban study
site bracketed the range of published LUE values for natural
vegetation, with golf course grass having higher LUE and turf
grass having lower LUE compared to natural grasslands. Both
of our grass LUE values were lower than the maximum esti-
mates for turf grass LUE at varying levels of nitrogen appli-
cation (converted using a ratio of NPP/GPP = 0.5; Wu and
Bauer 2012). Our evergreen and deciduous tree LUE values
were lower than most published values from natural forests.
This may be because our LUE estimates were empirically
determined for a limited midsummer period, whereas many
published values represent maximum LUE for a given vege-
tation type. Differences apart frommaximumLUEmost likely
reflect the typically lower stem density due to tree spacing in
park-like conditions and reduced crown area due to pruning of
urban forests compared to natural forest stands (Nowak 1994;
Peters andMcFadden 2010). Similarly, turf grasses in residen-
tial yards are not as uniformly managed as herbaceous crops
grown in agricultural settings, and they are less suited to the

local climate than prairie tallgrasses. Ruimy et al. (1994) and
Ogutu and Dash (2013) provide further LUE comparisons.

Urban GPP compared to natural vegetation

Our mean GPP of 2.64 g C m−2 d−1 for the total study area
(including the large fraction of non-vegetated, impervious
surfaces) was lower than GPP estimates for many natural eco-
systems (Yuan et al. 2007). Due to similarities in urban land
cover composition (McKinney 2006; Groffman et al. 2014),
the GPP of the Minneapolis-Saint Paul metropolitan region
may have more in common with other midwestern cities than
with nearby natural forests and grasslands. The mean GPP of
all vegetated areas (excluding impervious surfaces) in our total
study area was 4.45 g C m−2 d−1, which falls at the low end of
the range of 5 to 14 g C m−2 d−1 reported for mixed forests,
deciduous broadleaf forests, and grasslands in the same cli-
mate zone (Yuan et al. 2007).

Our GPP estimates for deciduous broadleaf trees were low-
er than many of the values reported in the literature for natural
forests (Turner et al. 2005; Yuan et al. 2007; Ogutu and Dash
2013). Reductions in GPP may be because open grown trees,
typical of urban areas, tend to have less above ground biomass
than trees with similar heights and diameter at breast height
measurements in forests (Nowak 1994). Urban trees experi-
ence local stresses (Oke 1989) that likely impact evapotrans-
piration (and thus GPP) per unit area, such as pruning (Hutyra
et al. 2011) and upward fluxes of sensible heat and radiation
(e.g., from pavement) under street tree canopies (Kjelgren and
Montague 1998). Evergreen tree GPP in our study area was
similar to estimates from flux measurements at a boreal forest

Table 8 Comparisons of our
empirical LUE values to literature
values. Literature LUE marked
with ‘*’ have been converted to
GPP LUE from NPP LUE using a
ratio of NPP/GPP = 0.5, and
vegetation types denoted with
‘max’ are maximum LUE
parameters that are scaled down
by environmental variables to
estimate GPP

This Study Literature

Vegetation Class LUE Vegetation Class LUE Reference

Deciduous Broadleaf Tree 0.24 Deciduous Broadleaf Forest ~12 Turner et al. 2005

Deciduous Broadleaf Forest (max) 1.56 Yang et al. 2007

Evergreen Needleleaf
Tree

0.56 Boreal Forest ~1.0 Turner et al. 2005

Dryland Needleleaf Forest ~0.5

Evergreen Needleleaf Forest (max) 1.02 Yang et al. 2007

Mixed Forest ~1.0 Turner et al. 2006

Mixed Forest (max) 1.31 Yang et al. 2007

Turf Grass 0.66 Grassland (max) 0.86 Yang et al. 2007
Golf Course Grass 1.14 Cropland (max) 1.47

Desert Grassland ~0.5 Turner et al. 2005
Corn and Soybean (MODIS) ~0.5

Corn and Soybean (BigFoot flux model) ~2.0

Tallgrass Prairie (MODIS) ~0.5 Turner et al. 2006
Tallgrass Prairie (BigFoot flux model) ~1.5

Turf Grass (high N; max) 2.16* Wu and Bauer 2012
Turf Grass (med. N; max) 1.68*

Turf Grass (low N; max) 1.3*
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site in northern Manitoba at the peak daily rate (Goulden et al.
1997; Turner et al. 2005; Heinsch et al. 2006). While there is
no direct analogue for turf grass in natural ecosystems, turf
grass GPP can be compared to estimates for grasslands and
herbaceous crops. Turf grass GPP estimates were similar to
GPP estimates at an abandoned agricultural field near Duke
Forest in North Carolina (Novick et al. 2004; Yuan et al.
2007), but were lower than GPP estimated at a tallgrass prairie
site in Kansas (Song et al. 2005; Yuan et al. 2007) and a corn
and soybean site in Illinois (Meyers and Hollinger 2004;
Turner et al. 2005). By contrast, our golf course grass GPP
was similar to the latter two sites.

Spatial variability of GPP

Variability within vegetation types

Our GPP variability within the vegetation type classes was
driven by spatial variations in FPAR because our empirical
LUE parameters were constant within a given vegetation type
and we assumed a uniform incident PAR for clear-sky condi-
tions across our study area. The spatial variations in FPAR
were determined by the amount of leaf area and canopy con-
dition, which modulate the absorption of PAR. This is one of
the first studies of urban GPP to examine its variability within
different vegetation types, including turf grass lawns, golf
course grass, deciduous broadleaf trees, and evergreen
needleleaf trees. This was possible because the 2 m resolution
imagery from WV-2 and the 1 m gridded LiDAR canopy
height data allowed us to resolve individual tree crowns and
small lawn patches across the entire metropolitan area.

We found that the spatial variability of GPP within the turf
grass class was larger than all the other vegetation types, and
this was likely partially attributable to differences in lawn
management, such as fertilization, aeration, and irrigation, that
can increase GPP in turf grass (Milesi et al. 2005; Polsky et al.
2014). On the other hand, even at the 2 m resolution of our
imagery, low maintenance lawns form a matrix with small
patches of bare soil included within pixels that are classified
as Bpure^ turf grass vegetation, reducing GPP estimates. This
effect must have been expressed in our results because our
GPP estimates were produced for midsummer, when cool-
season C3 turf grasses normally have a period of dormancy
due to high temperatures (Peters et al. 2011). Taken together,
these factors alternatively favored the high or the low ends of
the GPP range, which is consistent with the overall higher
spatial variability within turf grass compared to the other veg-
etation types.

The golf course grass, deciduous broadleaf tree, and ever-
green needleleaf tree classes all had similar spatial variability
in GPP, as measured by CV. Golf course grasses can be ex-
pected to have more uniformly high maintenance, with signif-
icant nutrient inputs through fertilizers and intensive irrigation

to reduce the stress of midsummer high temperatures on the
grass (Qian and Follett 2002; Peters et al. 2011). Trees do not
experience the heat-induced dormancy of the C3 turf grasses,
and tree LAI changed little in the midsummer period we stud-
ied (Peters and McFadden 2010). Additionally, the lower spa-
tial variability in tree-covered areas, as evidenced by FPAR,
may have been due to NDVI saturation in dense canopies
(Huete 1988). The spatial variability of GPP would likely be
more pronounced if trees were distinguished by species rather
than plant functional type (Ahl et al. 2004; Peters and
McFadden 2012).

Variability among land-use types

Our study allowed us to separate the effects of vegetation
percent cover and vegetation condition because we were able
to map individual tree and turf grass patches using high spatial
resolution imagery. This minimizes the number of mixed veg-
etation pixels, and the FPAR can more accurately represent
spatial variations in the condition of Bpure^ pixels of each
vegetation type. This adds new information to previous re-
ports on urban GPP using coarser resolution imagery such as
Landsat, in which GPP could be estimated only at the level of
broad urban density classes or land-use types (e.g., Zhao et al.
2007). Here, we could examine why GPP differs among urban
land-use types due to percent vegetation cover and differences
in the GPP rates. The mean GPP of the major urban land-use
types had a strong linear relationship with percent vegetation
cover, with the exception of the golf course class (Fig. 7a). In
contrast, the mean rate of GPP of only the vegetated pixels did
not explain the variations of GPP among land-use types (Fig.
7b).

While percent vegetation cover was most important in
explaining differences among land-use types at the scale of
the metropolitan region, both percent cover and the mean rate
of GPP were important for understanding patterns within spe-
cific land-use types. For example, residential land use covered
nearly 50% of the total area of our study region and accounted
for the largest share of the region’s total GPP (Table 6). The
rate of turf grass GPPwas higher in residential areas compared
to all land-use types other than parks, recreational areas, or
preserves. The high rate of GPP in residential areas may have
been due to more intensive management including fertilizer
application and irrigation (Milesi et al. 2005).

Highly vegetated land-use classes, including parks, recrea-
tional areas, or preserves; undeveloped lands; and golf courses
had higher mean GPP than did residential land, but they cov-
ered a smaller area. Parks, recreational areas, or preserves and
undeveloped areas had the highest estimates of mean GPP for
deciduous broadleaf trees. The higher rates of GPP in these
highly vegetated land-use types could be because of reduced
plant water stress due to lower temperatures and lower vapor
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pressure deficit (Kjelgren and Montague 1998; Spronken-
Smith et al. 2000).

The land-use classes with high impervious surface cover
had low total GPP mainly due to their relative lack of vegeta-
tion, but the mean rate of GPP per unit area of vegetation was
also slightly lower compared to the more highly vegetated
land-use types. The lower rate of GPP was consistent with
plant water stress in more open, warm sites. Field experiments
with well-watered plants have shown that isolated plants
surrounded by impervious surfaces tend to have much higher
transpiration rates than do less isolated plants (Hagishima et
al. 2007). Without sufficient irrigation, C3 turf grasses are
GPP-limited at high levels of potential evapotranspiration
and temperature (Peters and McFadden 2012). Another possi-
bility is that the less vegetated areas had more pixels mixed
with impervious surfaces, which would reduce the apparent
GPP due to the effect on NDVI (Wetherley et al. 2017). This
effect should have been limited at the high spatial resolution
used in our study, but even with the 2 m resolution of the WV-
2 imagery there undoubtedly were some effects due to mix-
tures of bare soil within turf grass lawns or tree canopies above
pavement, for example.

Finally, along a gradient of land-use types from low to high
percent total vegetation cover, we observed that the main ur-
ban vegetation types followed two different patterns (Fig. 6).
Turf grass cover increased with total vegetation percent cover,
except in the three land-use types where trees were most im-
portant—parks, undeveloped, and residential—in which turf
grass cover was reduced as tree cover increased. By contrast,
deciduous broadleaf tree cover remained at a nearly constant
level of 6–8% in nearly all land-use types having <50% total
vegetation cover, then increased in a step-like manner to levels
of 35–47% in the land-use types in which trees were most
important.

This suggests two generalizations about the contributions
to regional GPP. First, there was a relatively constant mini-
mum of tree canopy cover across land-use types, perhaps oc-
curring as street trees. Second, much of the linear increase of
GPP in relation to increasing total vegetation cover was due to
a steadily increasing amount of turf grass cover. This suggests
that, due to the high GPP of turf grass compared to deciduous
broadleaf trees, GPP of most land-use types in the metropol-
itan area would be highly sensitive to changes in turf grass
percent cover or maintenance, for example through changes in
planting preferences or regulations on landscape irrigation.
The effects of trees would be most important in: park, recrea-
tional, or preserve; undeveloped; and residential.

Implications for net carbon budget of urban
vegetation and soils

This study quantified GPP, the initial input of atmospheric
carbon to ecosystems, because it is an important metric of

ecosystem function and is amenable to estimation from satel-
lite imagery to improve our understanding of how vegetation
carbon uptake varies spatially across a large metropolitan re-
gion. In residential land use, covering 47.4% of the region,
flux partitioning analyses of our flux tower data have shown
that during the growing season GPP can have a larger magni-
tude than any other component of the urban carbon budget,
including anthropogenic emissions (Menzer and McFadden
2017). On the other hand, GPP is small in urban land-use
types with little vegetation and, in our cold continental study
area, it reduces to zero everywhere during the winter.
Importantly, GPP always is balanced by a flux of similar mag-
nitude, but of the opposite sign, in the form of ecosystem
respiration (the combined respiration of plants and soil micro-
organisms). This can result in a net carbon flux from urban
vegetation and soils that is a small fraction (<10%) of GPP
(Menzer and McFadden 2017). This means that while quanti-
fying GPP is necessary to understand patterns of carbon up-
take by vegetation in urban ecosystems, high rates of GPP do
not necessarily imply high rates of net carbon storage.

We found turf grasses had higher midsummer LUE than
trees and that differences in turf grass cover were responsible
for much of the variation in total vegetation cover among
land-use types. However, in our flux studies, turf grass eco-
systems were often net sources of atmospheric CO2 during
midsummer due to temperature-induced dormancy, resulting
in high rates of ecosystem respiration that exceeded GPP
(Peters and McFadden 2012). On an annual basis, our turf
grass flux study site was a small net sink of −71 g C m−2 y−1

in 2008 with typical temperature and moisture conditions, but
it was a net source of 92 g C m−2 y−1 in 2007 with relatively
hot, dry summertime conditions (Hiller et al. 2011; Peters and
McFadden 2012). This is perhaps unsurprising given that
these turf grass fields, similar to residential lawns in the area,
were mowed weekly with the clippings left to decompose on
the surface. While a significant amount of GPP is represented
in the growing turf grass leaves, most of the carbon is returned
to the atmosphere by the decomposition of the clippings and
root respiration. At the same time, while natural ecosystems
such as tallgrass prairie can take up large amounts of carbon in
soil organic matter over time (Suyker and Verma 2001), in
urban turf grass shallow rooting depths and maintenance prac-
tices such as aeration limit the amount of soil organic matter
that can be stored (Fry and Huang 2004). Although well-
irrigated areas tend to produce greater initial sinks through
greater biomass production (Milesi et al. 2005), areas of lower
maintenance (e.g., certain residential areas) may produce
greater sinks in soil over time than highlymanaged recreation-
al areas (Pouyat et al. 2006).

Deciduous and evergreen tree species at our sites were
consistent net annual carbon sinks (Peters and McFadden
2012). Trees store carbon as wood (Nowak 1994) in addition
to producing soil organic matter, and have greater long term
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carbon storage with about half of forest GPP going into net
primary production (NPP) (DeLucia et al. 2007). However,
there is high variability in this conversion efficiency due to
many factors including stand age (Noormets et al. 2007) and
local temperature reduction (Peters and McFadden 2010).
Although spatial modeling of plant respiration and NPP was
beyond the scope of this study, we note that in our study area
net carbon uptake over time was likely to be mainly driven by
trees rather than turf grasses. Thus we expect that the land-use
types with high tree cover will have a larger effect on the net
carbon exchange of urban vegetation as compared to turf
grass-dominated land-use types, despite the latter’s larger
GPP.

Broader implications of high spatial resolution urban
carbon flux measurements

The continued development of satellites that can provide high
spatial resolution imagery at sufficient spectral resolutions
(e.g., WorldView-4), and the increased availability of
LiDAR data over cities, have several implications for carbon
flux studies in urban areas. First, high spatial resolution imag-
ery allows for fine-scale image objects, such as lawns and tree
canopies, to be uniquely identified, which provides increased
accuracy in carbon flux attribution. Second, it creates oppor-
tunities for comparisons not only among but alsowithin urban
spatial units such as land-use types (as in this study), neigh-
borhoods, census tracts, parks, households, and individual
trees. Third, it allows for improved spatial estimation of key
variables used in quantifying ecosystem services and carbon
accounting, especially when fused with LiDAR data (e.g.,
Alonzo et al. 2016). Lastly, with repeated observations, it
could provide opportunities for tracking fine-scale urban de-
velopment and vegetation functioning through time. There are
limits to the utility of improved spatial resolution at extremely
fine scales, but in general, these data allow for more accurate
and spatially robust measurements of carbon fluxes both
across and within urban areas as compared with coarser reso-
lution remote sensing measurements.

Conclusions

We analyzed variations in GPP across the 894 km2

Minneapolis-Saint Paul metropolitan region. The vegetation
cover of the total study area was 52.1% including all land
cover classes, while the tree canopy cover was 28.0%. Our
results demonstrated that high spatial resolution imagery can
reveal important patterns of spatial variability in urban GPP
compared to lower resolution data. However, the total percent
vegetation cover provided reasonable estimates of GPP at
large scales because vegetation composition was quite consis-
tent across the study area. This suggests that urban GPP can be

adequately quantified at the metropolitan scale using coarser
resolution sensors and fractional vegetation cover estimates
given that vegetation LUE is appropriately parameterized,
but higher resolution imagery is necessary to compare within
and among neighborhoods, land-use types, and vegetation
cover classes.

For the total study area, the mean GPP per unit land area
(including vegetation, impervious surfaces, and soil) was
2.64 g C m−2 d−1. Our mapped estimate of vegetation GPP
was 11.4% less than the GPP determined from CO2 flux mea-
surements when both were compared over the footprint area of
a tall eddy covariance tower. The mean estimates of GPP were
largely constant within the vegetation classes across the se-
lected regions. For the total study area, deciduous broadleaf
trees had the lowest mean GPP (2.52 g C m−2 d−1), evergreen
needleleaf trees (5.81 g C m−2 d−1) and turf grass (6.05 g C
m−2 d−1) had similar means, and golf course grass (11.77 g C
m−2 d−1) had the highest mean GPP. The contributions to total
GPP by vegetation class were consistent across the study re-
gion, with turf grass contributing 55–62% and deciduous
broadleaf trees contributing 27–32% of the total GPP. Both
classes had similar percent cover in the study region, but the
lower LUE of the deciduous broadleaf trees resulted in a lower
contribution to the total GPP.

This is one of the first studies of urban GPP to examine its
spatial variability within different vegetation types. This was
possible because the 2 m imagery from WV-2 and the 1 m
gridded LiDAR canopy height data set allowed us to resolve
individual tree crowns and small lawn patches across an entire
metropolitan area. We found that the variability of GPP within
the turf grass class was larger, with a CV that was nearly twice
as large, compared to all of the other vegetation types. The
larger spatial variability was likely attributable to differences
in lawn management, such as fertilization, aeration, and irri-
gation, that can significantly increase GPP in turf grass. We
also examined why GPP differs among urban land-use types
due to their percent vegetation cover versus differences in the
rate of GPP from place to place. The GPP of the major urban
land-use types had a strong linear relationship with percent
vegetation cover, with the exception of the golf courses. In
contrast, the mean rate of GPP of only the vegetated pixels did
not explain the variations of GPP among land-use types be-
cause it varied within a narrow range from 4.12 to 5.04 g C
m−2 d−1.

Over the total area, urban GPP tended to be low relative to
natural forests and grasslands due to reduced total vegetation
cover. The mean GPP of all vegetated areas (excluding imper-
vious surfaces) in our total study area was 4.45 g C m−2 d−1,
which falls at the low end of the range of 5 to 14 g C m−2 d−1

reported for mixed forests, deciduous broadleaf forests, and
grasslands in the same climate zone. It is important to note that
these comparisons refer strictly to GPP, which was the focus
of our study. When taking plant and soil respiration into

Urban Ecosyst (2018) 21:831–850 847

Author's personal copy



account (i.e., NPP or net ecosystem exchange of CO2), our in
situ flux data showed that, on an annual basis, turf grass
(which had higher GPP than trees) could be a net source or a
sink of carbon, while trees were consistently net carbon sinks.
Further workwould use remote sensing data fusion techniques
to evaluate seasonal changes in the spatial variability of GPP
by vegetation and land-use type, and would help to extrapolate
our current results to an annual cycle.
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