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ASIC Clouds: Specializing the Datacenter

Ikuo Magaki*, Moein Khazraee, Luis Vega Gutierrez, and
Michael Bedford Taylor

*TUC San Diego, Toshiba

ABSTRACT

GPU and FPGA-based clouds have already demonstrated the
promise of accelerating computing-intensive workloads with
greatly improved power and performance.

In this paper, we examine the design of ASIC Clouds,
which are purpose-built datacenters comprised of large ar-
rays of ASIC accelerators, whose purpose is to optimize the
total cost of ownership (TCO) of large, high-volume chronic
computations, which are becoming increasingly common as
more and more services are built around the Cloud model.
On the surface, the creation of ASIC clouds may seem highly
improbable due to high NREs and the inflexibility of ASICs.
Surprisingly, however, large-scale ASIC Clouds have already
been deployed by a large number of commercial entities, to
implement the distributed Bitcoin cryptocurrency system.

We begin with a case study of Bitcoin mining ASIC Clouds,
which are perhaps the largest ASIC Clouds to date. From

there, we design three more ASIC Clouds, including a YouTube-

style video transcoding ASIC Cloud, a Litecoin ASIC Cloud,
and a Convolutional Neural Network ASIC Cloud and show
2-3 orders of magnitude better TCO versus CPU and GPU.

Among our contributions, we present a methodology that
given an accelerator design, derives Pareto-optimal ASIC
Cloud Servers, by extracting data from place-and-routed cir-
cuits and computational fluid dynamic simulations, and then
employing clever but brute-force search to find the best jointly-
optimized ASIC, DRAM subsystem, motherboard, power
delivery system, cooling system, operating voltage, and case
design. Moreover, we show how data center parameters de-
termine which of the many Pareto-optimal points is TCO-
optimal. Finally we examine when it makes sense to build
an ASIC Cloud, and examine the impact of ASIC NRE.

1. INTRODUCTION

In the last ten years, two parallel phase changes in the
computational landscape have emerged. The first change
is the bifurcation of computation into two sectors: cloud
and mobile; where increasingly the heavy lifting and data-
intensive codes are performed in warehouse-scale computers
or datacenters; and interactive portions of applications have
migrated to desktop-class implementations of out-of-order
superscalars in mobile phones and tablets.

The second change is the rise of dark silicon [1, 2, 3, 4]
and dark silicon aware design techniques [5, 6, 7, 8, 9, 10]
such as specialization and near-threshold computation, each
of which help overcome threshold scaling limitations that
prevent the full utilization of transistors on a silicon die.

Accordingly, these areas have increasingly become the fo-
cus of the architecture research community. Recently, re-
searchers and industry have started to examine the conjunc-
tion of these two phase changes. GPU-based clouds have
been demonstrated as viable by Baidu and others who are
building them in order to develop distributed neural network
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accelerators. FPGA-based clouds have been validated and
deployed by Microsoft for Bing [11], by JP Morgan Chase
for hedgefund portfolio evaluation [12] and by almost all
Wall Street firms for high frequency trading [13]. In these
cases, companies were able to ascertain that there was suffi-
cient scale for the targeted application that the upfront devel-
opment and capital costs would be amortized by a lower total
cost of ownership (TCO) and better computational proper-
ties. Already, we have seen early examples of customization,
with Intel providing custom SKUs for cloud providers [14].

At a single node level, we know that ASICs can offer
order-magnitude improvements in energy-efficiency and cost-
performance over CPU, GPU, and FPGA. In this paper, we
extend this trend and consider the possibility of ASIC Clouds.
ASIC Clouds are purpose-built datacenters comprised of large
arrays of ASIC accelerators, whose purpose is to optimize
the TCO of large, high-volume chronic computations that
are emerging in datacenters today. ASIC Clouds are not
ASIC supercomputers that scale up problem sizes for a sin-
gle tightly-coupled computation; rather, ASIC Clouds tar-
get workloads consisting of many independent but similar
jobs (eg., the same function, but for many users, or many
datasets), for which standalone accelerators have been shown
to attain improvements for individual jobs.

As more and more services are built around the Cloud
model, we see the emergence of planet-scale workloads. For
example, Facebook’s face recognition algorithms are used
on 2 billion uploaded photos a day, each requiring several
seconds on a GPU [15], Siri answers speech queries, ge-
nomics will be applied to personalize medicine, and YouTube
transcodes all user-uploaded videos to Google’s VP9 format.
As computations of this scale become increasingly frequent,
the TCO improvements derived from the reduced marginal
hardware and energy costs of ASICs will make it an easy
and routine business decision to create ASIC Clouds.

ASIC Clouds Exist Today. This paper starts by examining

the first large-scale ASIC Clouds, Bitcoin cryptocurrency

mining clouds, as real-world case studies to understand the

key issues in ASIC Cloud design. Bitcoin clouds implement

the consensus algorithms in Bitcoin cryptocurrency systems.

Although much is secretive in the Bitcoin mining industry,

today there are 20 megawatt facilities in existence, and 40

megawatt facilities are under construction [16], and the global
power budget dedicated to ASIC Clouds, large and small, is

estimated by experts to be in the range of 300-500 megawatts.
After Bitcoin, the paper then examines other applications in-

cluding YouTube-style video transcoding, Litecoin mining

and Convolutional Neural Networks.

Specializing the ASICs. At the heart of every ASIC Cloud

is an ASIC design, which typically aggregates a number of
accelerators into a single chip. ASICs achieve large reduc-

tions in silicon area and energy consumption versus CPUs,

The first two authors contributed equally. To Appear in ISCA 2016.



GPUs, and FPGAs because they are able to exactly pro-
vision the required resources needed for the computation.
They can replace area-intensive, energy-wasteful instruction
interpreters with area-efficient, energy-efficient parallel cir-
cuits. ASIC designers can dial in exactly the optimal voltage
and thermal profile for the computation. They can customize
the I/O resources, instantiating precisely the right number of
DRAM, PCl-e, HyperTransport and Gig-E controllers, and
employ optimized packages with optimal pin allocation.
Bitcoin ASIC specialization efforts have been prolific: over
27 unique Bitcoin mining ASICs have been successfully im-
plemented in the last three years [17]. The first three ASICs
were developed in 130 nm, 110 nm, and 65 nm, respectively;
55 nm and 28 nm versions followed quickly afterwards. To-
day, you can find chips manufactured in the state-of-the art
FinFET technologies: Intel 22 nm and TSMC 16 nm. Al-
though many original designs employed standard-cell de-
sign, competitive designs are full-custom, have custom pack-
ages, and as of 2016, operate at near-threshold voltages.
Specializing the ASIC Server. In addition to exploiting
specialization at the ASIC design level, ASIC Clouds can
specialize the server itself. A typical datacenter server is en-
crusted with a plethora of x86/PC support chips, multi-phase
voltage regulators supporting DVFS, connectors, DRAMs,
and I/O devices, many of which can be stripped away for a
particular application. Moreover, typical Xeon servers em-
body a CPU-centric design, where computation (and profit!)
is concentrated in a very small area of the PCB, creating ex-
treme hotspots. This results in heavy-weight local cooling
solutions that obstruct delivery of cool air across the sys-
tem, resulting in sub-optimal system-level thermal proper-
ties. ASIC Servers in Bitcoin ASIC Clouds integrate ar-
rays of ASICs organized evenly across parallel shotgun-style
airducts that use wide arrays of low-cost heatsinks to ef-
ficiently transfer heat out of the system and provide uni-
form thermal profiles. ASIC Cloud servers use a customized
printed circuit board, specialized cooling systems and spe-
cialized power delivery systems, and can customize the DRAM
type (e.g., LP-DDR3, DDR4, GDDRS, HBM...) and DRAM
count for the application at hand, as well as the minimal nec-
essary I/O devices and connectors required. Further, they
employ custom voltages in order to tune TCO.
Specializing the ASIC Datacenter. ASIC Clouds can also
exploit specialization at the datacenter level, optimizing rack-
level and datacenter-level thermals and power delivery that
exploit the uniformity of the system. More importantly, cloud-
level parameters (e.g., energy provisioning cost and avail-
ability, depreciation and ... taxes) are pushed down into the
server and ASIC design to influence cost- and energy- effi-
ciency of computation, producing the TCO-optimal design.
Analyzing Four Kinds of ASIC Clouds. In this paper we
begin by analyzing Bitcoin mining ASIC Clouds in depth,
and distill both their unique characteristics and characteris-
tics that are likely to apply across other ASIC Clouds. We
develop the tools for designing and analyzing Pareto- and
TCO- optimal ASIC Clouds. By considering ASIC Cloud
chip design, server design, and finally data center design in
a bottom-up way, we reveal how the designers of these novel
systems can optimize the TCO in real-world ASIC Clouds.
From there, we examine other ASIC Clouds designs, ex-
tending the tools for three exciting emerging cloud work-
loads: YouTube-style Video Transcoding, Litecoin mining
and Convolutional Neural Networks.
When To Go ASIC Cloud. Finally, we examine when it

makes sense to design and deploy an ASIC Cloud, consid-
ering NRE. Since inherently ASICs and ASIC Clouds gain
their benefits from specialization, each ASIC Cloud will be
specialized using its own combination of techniques. Our
experience suggests that, as with much of computer archi-
tecture, many techniques are reused and re-combined in dif-
ferent ways to create the best solution for each ASIC Cloud.

2. BITCOIN: AN EARLY ASIC CLOUD

In this section, we overview the underlying concepts in the
Bitcoin cryptocurrency system embodied by Bitcoin ASIC
Clouds. An overview of the Bitcoin cryptocurrency system
and an early history of Bitcoin mining can be found in [18].

Cryptocurrency systems like Bitcoin provide a mechanism
by which parties can semi-anonymously and securely trans-
fer money between each other over the Internet. Unlike
closed systems like Paypal or the VISA credit card system,
these systems are open source and run in a distributed fash-
ion across a network of untrusted machines situated all over
the world. The primary mechanism that these machines im-
plement is a global, public ledger of transactions, called the
blockchain. This blockchain is replicated many times across
the world. Periodically, every ten minutes or so, a block of
new transactions is aggregated and posted to the ledger. All
transactions since the beginning can be inspected’.

Mining. A distributed consensus technique called Byzan-
tine Fault Tolerance determines whose transactions are added
to the blockchain, in the following way. Machines on the
network request work to do from a third-party pool server.
This work consists of performing an operation called min-
ing, which is a computationally intense operation which in-
volves brute force partial inversion of a cryptographically
hard hash function like SHA256 or scrypt. The only known
way to perform these operations is to repeatedly try a new
inputs, and run the input through the cryptographic function
and see if the output has the requisite number of starting ze-
ros. Each such attempt is a called a hash, and the number
of hashes that a machine or group of machines performs is
called its hashrate, which is typically quote in terms of bil-
lions of hashes per second, or gigahash per second (GH/s).
‘When a machine succeeds, it will broadcast that it has added
a block to the ledger, and the input value is the proof of work
that it has played by the rules. The other machines on the
network will examine the new block, determine if the trans-
action is legitimate (i.e. did somebody try to create currency,
or transfer more money than was available from a particular
account, or is the proof-of-work invalid), and if it is, they
will use this new updated chain and attempt to post their
transactions to the end of the new chain. In the infrequent
case where two machines on the network have found a win-
ning hash and broadcasted new blocks in parallel, and the
chain has "forked", the long version has priority.

The first two ASIC Clouds analyzed in this paper target
mining for the two most dominant distributed cryptocurren-
cies: Bitcoin and Litecoin. People are incentivized to per-
form mining for three reasons. First, there is an ideologi-
cal reason: the more machines that mine, the more secure
the cryptocurrency network is from attacks. Second, ev-
ery time a machine succeeds in posting a transaction to the
blockchain, it receives a blockchain reward by including a
payment transaction to its own account. In the case of Bit-
coin, this reward is substantial: 25 bitcoins (or BTC), valued

ISee http://blockchain. info to see real-time ledger updates.
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Figure 1: Rising Global Bitcoin ASIC Computation and Corre-
sponding Increase in Bitcoin ASIC Cloud Specialization. Num-
bers are ASIC nodes, in nm. Difficulty is the ratio of the current
world Bitcoin hash throughput relative to the initial mining net-
work throughput, 7.15 MH/s. In the six-year period preceding Nov
2015, throughput has increased by 50 billion times, corresponding
to a world hash rate of approximately 575 million GH/s. The first
release date of a miner on each ASIC node is annotated.

at $10,725 on the BTC-USD exchanges in April 2016. Since
approximately 144 blocks are mined per day, the total value
per day of mining is around $1.5M USD. Mining is the only
way that currency is created in the Bitcoin system. Third,
the machine also receives optional tips attached to the trans-
action; these tips comprise only a few percent of revenue.

In order to control the rate at which new Bitcoin are cre-
ated, approximately every 2016 blocks (or two weeks), the
difficulty of mining is adjusted by increasing the number of
leading zeros required, according to how fast the last group
of 2016 blocks was solved. Thus, with slight hysteresis, the
fraction of the 3600 bitcoins distributed daily that a miner
receives is approximately proportional to the ratio of their
hashrate to the world-wide network hashrate.

Economic Value of Bitcoins. Bitcoins have become in-
creasingly valuable over time as demand increases. The value
started at around $0.07, and increased by over 15,000x to
over $1,000 in late 2013. Since then, the price has stabi-
lized, and as of late April 2016, is around $429, and over
$6.5 billion USD worth of BTC are in circulation today. Fa-
mously, early in the Bitcoin days, a pizza was purchased for
10,000 BTC, worth $4.3 million USD today. The value of
a BTC multiplied by yearly number of BTC mined deter-
mines in turn the yearly revenue of the entire Bitcoin mining
industry, which is currently at $563M USD per year.

3. RAMPING THE TECHNOLOGY CURVE
TO ASIC CLOUD

As BTC value exponentially increased, the global amount
of mining has increased greatly, and the effort and capital
expended in optimizing machines to reduce TCO has also
increased. This effort in turn increases the capabilities and
quantity of machines that are mining today. Bitcoin ASIC
Clouds have rapidly evolved through the full spectrum of
specialization, from CPU to GPU, from GPU to FPGA, from
FPGA to older ASIC nodes, and finally to the latest ASIC
nodes. ASIC Clouds in general will follow this same evo-
lution: rising TCO of a particular computation justifies in-
creasingly higher expenditure of NRE’s and development
costs, leading to greater specialization.

Figure 1 shows the corresponding rise in total global net-
work hashrate over time, normalized to the difficulty running
on a few CPUs. The difficulty and hashrate have increased
by an incredible factor of 50 billion since 2009, reaching ap-
proximately 575 million GH/s as of November 2015.

By scavenging data from company press releases, blogs,
bitcointalk.org, and by interviewing chip designers at these
companies, we have reconstructed the progression of tech-
nology in the Bitcoin mining industry, which we annotate
on Figure 1, and describe in this section.

Gen 1-3. The first generation of Bitcoin miners were CPU’s,
the second generation were GPU’s and the third generation
were FPGAs. See [18] for more details.

Gen 4. The fourth generation of Bitcoin miners started with
the first ASIC (ASICMiner, standard cell, 130-nm) that was
received from fab in late December 2012. Two other ASICs
(Avalon, standard cell, 110-nm and Butterfly Labs, full cus-
tom, 65-nm) were concurrently developed by other teams
with the first ASIC and released shortly afterwards. These
first ASICs, built on older, cheaper technology nodes with
low NREs, served to confirm the existence of a market for
specialized Bitcoin mining hardware.

These first three ASICs had different mechanisms of de-
ployment. ASICMiner sold shares in their firm on an online
bitcoin-denominated stock exchange, and then built their own
mining datacenter in China. Thus, the first ASICs developed
for Bitcoin were used to create an ASIC Cloud system. The
bitcoins mined were paid out to the investors as dividends.
Because ASICMiner did not have to ship units to customers,
they were the first to be able to mine and thus captured a
large fraction of the total network hash rate. Avalon and But-
terfly Labs used a Kickstarter-style pre-order sales model,
where revenue from the sales funded the NRE of the ASIC
development. As the machines become available, they were
shipped sequentially by customer order date.

Gen 5. The fifth generation of Bitcoin miners started when,
upon seeing the success of the first group of ASICs, a sec-
ond group of firms with greater capitalization developed and
released the second wave of ASICs which used better pro-
cess technology. Bitfury was the first to reach 55-nm in mid
2013 with a best-of-class full custom implementation, then
Hashfast reached 28-nm in Oct. 2013, and there is evidence
that 21, Inc hit the Intel 22-nm node around Dec 2013.

Gen 6. The current generation, the fifth generation of mining
ASICs, is by companies that survived the second wave, and
targets bleeding edge nodes as they came out (e.g. TSMC
20-nm and TSMC 16-nm). So far, these advanced nodes
have only been utilized by ASIC manufacturers whose intent
is to populate and run their own ASIC Clouds.

Moving to Cloud Model. Most companies that build Bit-
coin mining ASICs, such as Swedish firm KnCminer, have
moved away from selling hardware to end users, and instead
now maintain their own private clouds [19], which are lo-
cated in areas that have low-cost energy and cooling. For
example KnCminer has a facility in Iceland, because there is
geothermal and hydroelectric energy available at extremely
low cost, and because cool air is readily available. Bitfury
created a 20 MW mining facility in the Republic of Georgia,
where electricity is also cheap. Their datacenter was con-
structed in less than a month, and they have raised funds for
a 100 MW data center in the future.

Optimizing TCO. Merged datacenter operation and ASIC
development have become the industry norm for several rea-
sons. First, the datacenter, enclosing server and the ASIC
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Figure 2: High-Level Abstract Architecture of an ASIC Cloud.

can be co-designed with fewer unknowns, eliminating the
need to accommodate varying customer environments (en-
ergy cost, temperature, customs and certifications, 220V/110V,
setup guides, tech support...) and enabling new kinds of op-
timizations that trade off cost, energy efficiency and perfor-
mance. Second, ASIC Cloud bringup time is greatly short-
ened if the product does not have to be packaged, troubleshooted
and shipped to the customer, which means that the chips can
be put into use earlier. Finally, meeting an exact target for
an ASIC chip is a challenging process, and tuning the system
until it meets the promised specifications exactly (energy ef-
ficiency, performance) before shipping to the customer de-
lays the deployment of the ASICs and the time at which they
can start reducing TCO of the computation at hand.

4. PARETO- AND TCO- OPTIMALITY

In ASIC Clouds, two key metrics define the design space:
hardware cost per performance ($ per op/s, which for Bit-
coin is $ per GH/s), and energy per operation (Watts per
op/s, equivalent to Joules per op, which for Bitcoin is W per
GH/s). Designs can be evaluated according to these metrics,
and mapped into a Pareto space that trades cost and energy
efficiency. Joint knowledge and control over datacenter
and hardware design allows for the ASIC designers to se-
lect the single TCO-optimal point by correctly weighting
the importance of cost per performance and energy per
op among the set of Pareto-optimal points.

S. ARCHITECTURE OF AN ASIC CLOUD

We starting by examining the design decisions that apply
generally across ASIC Clouds. Later, we design four exam-
ple ASIC Cloud for Bitcoin, Litecoin, Video Transcoding,
and Convolutional Neural Networks.

At the heart of any ASIC Cloud is an energy-efficient,
high-performance, specialized replicated compute acceler-
ator, or RCA, that is multiplied up by having multiple copies
per ASICs, multiple ASICs per server, multiple servers per
rack, and multiple racks per datacenter. Work requests from
outside the datacenter will be distributed across these RCAs
in a scale-out fashion. All system components can be cus-
tomized for the application to minimize TCO.

Figure 2 shows the architecture of a basic ASIC Cloud.
Starting from the left, we start with the data center’s ma-
chine room, which contains a number of 42U-style racks. In
this paper, we try to minimize our requirements for the ma-
chine room because in many cases, after an array of GPU or

CPU-based machines has been replaced with a new kind of
nascent ASIC Cloud, it may occupy only a tiny part of a dat-
acenter?, and thus have little flexibility in dictating the ma-
chine room’s parameters. Accordingly, we employ a modi-
fied version of the standard warehouse scale computer model
from Barroso et al [21]. We assume that the machine room
is capable of providing inlet air to the racks at 30° C.
ASIC Cloud Servers. Each rack contains an array of servers.
Each server contains a high-efficiency power supply (PSU),
an array of inlet fans, and a customized printed circuit board
(PCB) that contains an array of specialized ASICs, and a
control processor (typically an FPGA or microcontroller, but
also potentially a CPU) that schedules computation across
the ASICs via a customized on-PCB multidrop or point-to-
point interconnection network. The control processor also
routes data from the off-PCB interfaces to the on-PCB net-
work to feed the ASICs. Depending on the required band-
width, the on-PCB network could be as simple as a 4-pin
SPI interface, or it could be high-bandwidth HyperTrans-
port, RapidIO or QPI links. Candidate off-PCB interfaces
include PCI-e (like in Convey HC1 and HC2), commodity
1/10/40 GigE interfaces, and high speed point-to-point 10-
20 gbps serial links like Microsoft Catapult’s inter-system
SL3 links. All these interfaces enable communication be-
tween neighboring 1U modules in a 42U rack, and in many
cases, across a rack and even between neighboring racks.
Since the PSU outputs 12V DC, our baseline ASIC server
contains a number of DC/DC converters which serve to step
current down to the 0.4-1.5 V ASIC core voltage. Finally,
flip-chip designs have heat sinks on each chip, and wire-
bonded QFNs have heat sinks on the PCB backside.
ASICs. Each customized ASIC contains an array of RCA’s
connected by an on-ASIC interconnection network, a router
for the on-PCB (but off-ASIC) network, a control plane that
interprets incoming packets from the on-PCB network and
schedules computation and data onto the RCA’s, thermal
sensors, and one or more PLL or CLK generation circuits.
In Figure 2, we show the Power Grid explicitly, because for
high power density or low-voltage ASICs, it will have to
be engineered explicitly for low IR drop and high current.
Depending on the application, for example, our Convolu-
tional Neural Network ASIC Cloud, the ASIC may use the

2In the case of Bitcoin, the scale of computation has been increased
so greatly that the machine rooms are filled with only Bitcoin hard-
ware and as a result are heavily customized for Bitcoin to reduce
TCO, including the use of immersion cooling [20].



_____ mesh _ _ _ __ —~ Host Processor
O O O ASIC
3 [0 O O [« Andies are the same
g O M m m area.
o O
= Oododo DC/DCs
=] @ O O =~ sypply up to 30W/each
3 OO O 0O 90% efficiency
O O O M
|:| D D |:] High static-pressure fan
0O O o e (12V,7.5W)

Figure 3: The ASIC Cloud server model.

on-ASIC network for high-bandwidth interfaces between the
replicated compute accelerators, and the on-PCB network
between chips at the 1U server level. If the RCA requires
DRAM, then the ASIC contains a number of shared DRAM
controllers connected to ASIC-local DRAMs. The on-PCB
network is used by the PCB control processor to route data
from the off-PCB interfaces to the ASICs to the DRAMs.
This paper examines a spectrum of ASIC Clouds with di-
verse needs. Bitcoin ASIC Clouds required no inter-chip or
inter-RCA bandwidth, but have ultra-high power density, be-
cause they have little on-chip SRAM. Litecoin ASIC Clouds
are SRAM-intensive, and have lower power density. Video
Transcoding ASIC Clouds require DRAMs next to each ASIC,

and high off-PCB bandwidth. Finally, our DaDianNao-style [22]

Convolutional Neural Network ASIC Clouds make use of
on-ASIC eDRAM and HyperTransport links between ASICs
to scale to large multichip CNN accelerators.

Voltage. In addition to specialization, voltage optimization
is a key factor that determines ASIC Cloud energy efficiency
and performance. We will show how the TCO-optimal volt-
age can be selected across ASIC Clouds.

6. DESIGN OF AN ASIC SERVER

In this section, we examine the general principals in ASIC
Cloud Server design to find the Pareto frontier across $ per
op/s and W per op/s. Using area, performance and power
density metrics of an RCA we show how to optimize the
ASIC Server by tuning the number of RCAs placed on each
chip; the number of chips placed on the PCB; their orga-
nization on the PCB; the way the power is delivered to the
ASICs; how the server is cooled; and finally the choice of
voltage. Subsequent sections apply these principles to our
four prototypical ASIC Clouds.

6.1 ASIC Server Overview

Figure 3 shows the overview of our baseline ASIC Cloud
server. In our study, we focus on 1U 19-inch rackmount
servers. The choice of a standardized server form factor
maximizes the compatibility of the design with existing ma-
chine room infrastructures, and also allows the design to
minimize energy and components cost by making use of
standardized high-volume commodity server components. The
same analysis in our paper could be applied to 2U systems
as well. Notably, almost all latest-generation Bitcoin min-
ing ASIC Cloud servers have higher maximum power den-
sity than can be sustained in a fully populated rack; so racks
are generally not fully populated. Having this high density
makes it easier to allocate the number of servers to a rack
according to the data center’s per-rack power and cooling
targets without worrying about space constraints.

The servers employ forced-air cooling system for heat re-
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Figure 4: ASIC Server Evaluation Flow. The server cost, per
server hash rate, and energy efficiency are evaluated using RCA
properties, and a flow that optimizes server heat sinks, die size,
voltage and power density.

moval, taking cold air at 30° C from the front using a num-
ber of 1U-high fans, and exhausting the hot air from the rear.
The power supply unit (PSU) is located on the leftmost side
of the server, and a thin wall separates the PSU from the
PCB housing. Because of this separation and its capability
of cooling itself, the PSU is ignored in terms of thermal anal-
ysis in the remaining part of this section. Figure 3 provides
the basic parameters of our thermal model.

6.2 ASIC Server Model

In order to explore the design space of ASIC Cloud Servers,
we have built a comprehensive evaluation flow, shown in
Figure 4, that takes in application parameters and a set of
specifications and optimizes a system with those specs. We
repeatedly run the evaluation flow across the design space in
order to determine Pareto optimal points that trade off $ per
op/s and W per op/s.

Given an implementation and architecture for the target
RCA, VLSI tools are used to map it to the target process
(in our case, fully placed and routed designs in UMC 28-nm
using Synopsys IC compiler), and analysis tools (e.g. Prime-
Time) provide information on frequency, performance, area
and power usage, which comprise the RCA Spec. This infor-
mation and a core voltage is then applied to a voltage scaling
model that provides a spectrum of Pareto points connecting
W per mm? and op/s per mm?. From there, we compute the
optimal ASIC die size, ASIC count, and heat sink configu-
ration for the server, while ensuring that the transistors on
each die stay within maximum junction temperature limits.
Then, the tool outputs the optimized configuration and also
the performance, energy, cost, and power metrics. Table 1
shows the input parameters.

04 05 06 07 08 09 1
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Figure 5: The Delay-Voltage curve for 28-nm logic.




Parameters Description

Power density (W/mm?),
Perf. density (Ops/s/mm?),
Critical paths @ nom. voltage, 1 V

Replicated Compute Accelerator

Core Voltage 04V-15V

DC/DC Efficiency & Cost
PSU 208->12V Efficiency & Cost

90 %, $0.33 per Amp
90 %, $0.13 per Watt

Table 1: Inputs of the server model.

To assess the effect of voltage scaling throughout this pa-
per, we applied a delay-voltage curve shown in Figure 5 to
the logic part of the critical path, computing the effect on
both power density (W /mm?) and performance (ops/s per
mm?). This curve is inferred from I-V characteristics taken
from [23, 24] and normalized at 1.0 V. For SRAMs, we as-
sume the SRAM is on a separate power rail that supports a
higher minimum supply voltage than for logic, because of
the challenges in downward scaling SRAM voltages. The
dynamic power is evaluated by the new frequency and volt-
age while leakage is affected only by the voltage.

Iterative trials find the best heat sink configuration, opti-
mizing heat sink dimensions, material and fin topology.

6.3 Thermally-Aware ASIC Server Design

In this subsection, we optimize the plumbing for ASIC
Cloud Servers that are comprised of arrays of ASICs. We
start by describing the power delivery system and packaging.
Then we optimize the heat sinks and fans for the servers, and
optimally arrange the ASICs on the PCB.

Our results are computed by building physical models of
each component in the server and simulating each configu-
ration using the ANSYS Icepak version 16.1 Computational
Fluid Dynamic (CFD) package. Based on these configura-
tions, we built a validated Python model. After completing
our Pareto study, we resimulated the Pareto-optimal config-
urations to confirm calibration with Icepak.

6.3.1 Power Delivery & ASIC Packaging

Power is delivered to the ASICs via a combination of the
power supply, which goes from 208V to 12V, and an array of
DC/DC converters, which go from 12V to chip voltage. One
DC/DC converter is required for every 30A used by the sys-
tem. The ASICs and onboard DC/DC converters are the ma-
jor heat sources in our ASIC server model (Figure 3). Host
processor heat is negligible in the ASIC Servers we consider.

We employ Flip-Chip Ball Grid Array (FC-BGA) with di-
rect heat sink attach for ASIC packaging because of its su-
perior thermal conductivity and power delivery performance
relative to alternative wire-bond based technologies.

6.3.2 Optimizing the Heat Sink and Fan

Thermal considerations have a great impact on a packaged
ASIC’s power budget and the server’s overall performance.
The heat sink’s cooling performance depends not only on its
dimensions and materials but also on how those ASICs and

Parameters | Value
Width < 85mm (Limited by ASIC density)
Height 35 mm (Limited to 1U height) o
A heat spreader of 3 mm thick is included
Depth <100 mm (Limited by the PCB depth)
Fin thickness | 0.5 mm
# of fins > 1 mm between two fins
Materials Al (200 W /mK) for fins
Al or Copper (400 W /mK) for heat spreader
Air Volume Determined by static pressure and fan curve

Table 2: Essential parameters of an ASIC heat sink.
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Figure 6: Heat sink performance versus die area. The thermal
resistance for small dies is dominated by TIM. Bigger dies make
the most out of the heat sink. However, acceptable power density
decreases as the die area increases, resulting in smaller area for a
higher power density design.

heat sinks are arranged on the PCB because of the airflow.
This section looks closely into the cooling capability of a
heat sink, and airflow is considered in the next section.

The ASIC’s forced-air cooling system comprises a heat
spreader glued to a silicon die using a thermal interface ma-
terial (TIM). Fans blow cool air over fins that are welded to
the heat spreader. The fins run parallel to air flow to maxi-
mize heat transfer. Table 2 shows the key parameters.

Heat conducts from a die to a larger surface through a TIM
and a heat spreader. Increasing heat spreader size increases
the surface area for better cooling, and provides more area
for fins to improve the total heat resistance. Larger silicon
dies can dissipate more heat since the thermal resistance in-
duced by TIM is the dominant bottleneck because of its poor
thermal conductivity and inverse proportionality to die area
(Figure 6). However, increasing fin count and depth enlarges
the pressure drop induced by the heat sink, resulting in less
airflow from the cooling fans.

Commercial fans are characterized by a fan curve that de-
scribes how much air it can supply under a certain pressure
drop due to static pressure. Our model takes as input a fan
curve and ASIC count per row and evaluates the heat sink
dimensions that achieve maximum power dissipation as a
whole for a certain die area. According to the evaluation,
the number of ASICs in a row affects the depth of each heat
sink. As the number of ASICs increases, the heat sinks be-
comes less deep to reduce pressure drop and keep the airflow
rate up. Generally, the densest packed fins are preferable.

6.3.3 How should we arrange ASICs on the PCB?
In this section, we analyze the impact of ASIC place-
ment on the PCB for our ASIC server. The PCB layout
matters when the server houses multiple high-power com-
ponents with large heat sinks. Those components make the
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Figure 7: PCB Layout Candidates. (a) Grid pattern (b) Staggered
pattern to reduce bypass airflow (c) Deploying ducts that surrounds
ASICs in a column to further reduce bypass airflow (DUCT layout)
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Figure 8: Power comparison of three PCB layouts. The stag-
gered layout improves by 64 % in removable heat over the normal
layout while DUCT gains an additional 15 %. DUCT is superior
because it results in less bypass airflow between two ASICs. In
each layout, the optimal heat sinks are attached on top of the dies.
All layouts use the same fans.

Normal

Staggered

server design more challenging not only due to heat flux but
also because they behave as obstacles that disturb smooth
airflow coming from the fans. The result is inefficient air-
flow that induces a lot of bypass airflow venting out of the
server without contributing to cooling. In other words, in-
effective PCB layout requires more fans and fan power to
remove the same amount of heat.

We examine three different PCB layouts for our ASIC
server, shown in Figure 7. For this experiment, we assume
1.5kW high-density servers with 16 ASICs on a PCB, em-
ploying the same number and type of fans. The ASIC is
assumed to be 100 mm? with an optimal heat sink. All the
ASICs consume the same power.

In Normal and DUCT layout, ASICs are aligned in each
column, while in the Staggered layout, ASICs of odd and
even rows have been staggered to maximally spread hot air
flows. The DUCT layout has four enclosures ("ducts") that
constrain all the airflow supplied by a corresponding fan to
ASICs in the same column. The fan is directly abutted to the
front of the enclosure, and hot air is exhausted out the rear.

Employing identical cooling fans, iterative simulations grad-

ually increase the ASICs’ power until at least some part of
one die reaches the maximum junction temperature of the
process, 90 °C. Figure 8 shows the results.

By moving from Normal layout to Staggered layout, 65 %
more heat per chip can be removed with no additional cost.
The DUCT layout is even better, allowing 15 % more heat
per chip than the Staggered layout, because almost all air-
flow from the fans contributes to cooling. Although Stag-
gered layout is more efficient than the Normal layout, wide
temperature variation is observed in the Staggered because
of uneven airflow to each ASIC and the ASIC receiving the
poorest airflow would constraint the power per chip. In DUCT
layout, inexpensive enclosures gain 15 % improvement in
consumable power for the same cooling. Accordingly, we
employ the DUCT layout in our subsequent analysis.

6.3.4 More chips versus fewer chips

In the design of an ASIC Server, one choice we have is,
how many chips should we place on the PCB, and how large,
in mm? of silicon, should each chip be? The size of each chip
determines how many RCAs will be on each chip.

In a uniformly distributed power layout in a lane, each
chip receives almost the same amount of airflow, while the
chip in downstream receives hotter air due to the heat re-
moved from upstream ASICs. So, typically the thermally
bottlenecking ASIC is the one in the back.
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Figure 9: Max power per lane for different number of ASICs in
a lane. Increasing the number of ASIC dies while keeping the total
silicon area fixed increases the total allowable power, because heat
generation is more evenly spread across the lane. Greater total area
also increases the allowable power since there is more TIM.

Intuitively, breaking heat sources into more smaller ones
spreads heat sources apart, so having many small ASIC should
be easier to cool than a few larger ASICs. This intuition is
verified in Figure 9. We hold the total silicon area used in
each row to be fixed, and evaluate the influence of spreading
the silicon by using more chips. In our analysis, we reduce
the depths of the heat sinks as chip count increases in order
to keep airflow up and maximize cooling. Additionally, as
we increase the total amount of silicon area, our capacity to
dissipate heat also increases. This is because the thermal in-
terface glue between die and heat spreader is a major path
of resistance to the outside air, so increasing die size reduces
this resistance. Thus, placing a small total die area in a lane
is ineffective, because limited surface area between die and
spreader becomes the dominant bottleneck.

From a TCO point of view, increasing the number of chips
increases the cost of packaging, but not by much. Using Flip
Chip, the packaging cost is a function of die size because of
yield effects. Pin cost is based on the number of pins, which
is set by power delivery requirements to the silicon. Our
package cost model, based on input from industry veterans,
suggests the per-chip assembly cost runs about $1.

6.4 Linking Power Density & ASIC Server Cost

Using the server thermal optimization techniques described
in the previous subsection, we can now make a critical con-
nection between an RCA’s properties and the number of RCA’s
that we should place in an ASIC, and how many of those
ASICs we should place in an ASIC Server.

After designing an RCA using VLSI tools, we can com-
pute its power density (W/mm?) using simulation tools like
Primetime. Then, using our server thermal design scripts,
we can compute the ASIC Server configuration that mini-
mizes $ per op/s; in particular how many total RCA’s should
be placed in an ASIC Server lane, and also how many chips
the RCAs should be divided into.

Figure 10 shows the results, which are representative across
typical ASIC Cloud designs. In this graph, Watts (W) is a
proxy for performance (ops/s); given the same RCA, maxi-
mizing Watts maximizes server performance. If power den-
sity is high, then very little silicon can be placed in a lane
within the temperature limits, and it must be divided into
many smaller dies. As power density decreases, then more
silicon can fit per lane, and fewer chips can be used. Sensi-
bly, moving left, silicon area cost dominates total server cost;
moving right, PCB, cooling and packaging costs dominate.

In the next section, we will continue by connecting volt-
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Figure 10: Minimizing cost by optimizing the number of RCA’s

per ASIC Server lane (measured in 7mm?), and the number of
chips it should be divided into. Point series with equal silicon
area start from the right with the maximum number of chips, 20,

and decrease until individual chip sizes hits the limit of 600 mm?.
Low power density RCA’s are dominated by silicon costs, while
high power density RCA’s are dominate by cooling, packaging and
server component overheads.

age scaling of the RCA’s to our model. By adjusting voltage,
we can change the power density of the RCA’s to traverse
the X axis in Figure 10, creating a spectrum of tradeoffs be-
tween the two key metrics for ASIC Servers: $ per op/s and
W per op/s. The next section will also incorporate DC/DC
converter costs, which are application dependent.

7. BITCOIN ASIC CLOUD DESIGN

In this section, we specialize our generic ASIC Cloud ar-
chitecture to the architecture of a Bitcoin ASIC Cloud. Ar-
chitecturally, the Bitcoin RCA repeatedly executes a Bitcoin
hash operation. The hash operation uses an input 512 bit
block that is reused across billions of hashes; and then re-
peatedly does the following: It mutates the block and per-
forms a SHA256 hash on it. The output of this hash is then
fed into another SHA256 hash, and then a leading zero count
is performed on the result and compared to the target lead-
ing zero count to determine if it has succeeded in finding a
valid hash. The two SHA256 hashes comprise 99% of the
computation. Each SHA256 consists of 64 rounds.

There are two primary styles for implementing the Bitcoin
RCA. The most prevalent style is the pipelined implemen-
tation, which unrolls all 64 rounds of SHA256 and inserts
pipeline registers, allowing a new hash to be performed ev-
ery cycle by inserting a new mutated block each cycle [25,
18]. The less prevalent style, used by Bitfury, performs the
hash in place, and has been termed a rolled core.

We created an industrial quality pipelined Bitcoin RCA
in synthesizeable RTL. We searched the best design param-
eters such as the number of pipeline stages and cycles per
stage to realize the best energy efficiency, Watts per GH/s,
by iteratively running the designs through the CAD tools and
performing power analysis with different parameter values.

The Bitcoin implementation is fully-pipelined and con-
sists of 128 one-clock stages, one per SHA256 round.

The RTL was synthesized, placed, and routed with the
1.0V UMC 28nm standard cell library and Synopsys Design
Compiler and IC Compiler. We performed parasitic extrac-
tion and evaluated dynamic power using PrimeTime. The
resulting delay and capacitance information are used to eval-
uate the clock latency and power consumption of the design.

Our final implementation occupies 0.66 mm? of silicon in
the UMC 28-nm process. At the UMC process’s nominal
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Figure 11: Bitcoin Voltage versus Cost Performance. Each se-
ries represents a fixed total amount of silicon per lane, while going
from right to left decreases chip count from 20. Due to Bitcoin’s
high power density, voltage over 0.6 V is suboptimal for $/GH/s
because of high cooling overheads and small silicon per server.

voltage 1.0V, it runs at 830 MHz, and attains a staggering
power density of 2W per mm?. Because SHA256 is com-
prised of combinational logic and flip-flops, and contains no
RAMs, the energy density is extremely high. Moreover, data
in cryptographic circuits is essentially random and has ex-
tremely high transition activity factors: 50% or higher for
combinational logic, and 100% for flip flops.

7.1 Building a Bitcoin ASIC Cloud

Though Bitcoin performance scales out easily with more
RCA’s, it is a near-worst case for dark silicon, and high
power density prevents full-frequency implementations.

Using the infrastructure we developed in Section 6, we
ran simulations exploring the design space of servers for a
Bitcoin ASIC Cloud Server. Figure 11 shows an inital set of
results, comparing $ per GH/s to power density, W/mm?, as
the amount of silicon is varied and the number of chips de-
creases from 20 going from right to left. The corresponding
core voltages that with frequency adjustment tune the RCAs
to that particular power density are given. These voltages
represent the maximum voltage that that server can sustain
without exceeding junction temperatures. In non-thermally
limited designs, we would expect higher voltage systems to
be lower cost per performance; but we can see that Bitcoin
ASICs running at higher voltages are dominated designs, be-
cause the power density is excessive, and server overheads
dominate. All Pareto-optimal designs are below 0.6 V.
Pareto-Optimal Servers. Although power density (W/mm?)
and voltage are important ASIC-level properties, at the ASIC
Cloud Server level, what we really want to see are the trade-
offs between energy-efficiency (W per op/s) and cost-perf, ($
per op/s). To attain this, we ran simulations that exhaustively
evaluated all server configurations spanning a range of set-
tings for total silicon area per lane, total chips per lane, and
all operating voltages from 0.4 up in increments of 0.01V,
and pruning those combinations that violate system require-
ments. In Figure 12, we show a subset of this data, which
shows for servers with 10 chips per lane, the relationship be-
tween silicon area per lane and voltage. Points in a series
start on the top at 0.4V and increase down the page. Note
that these points represent voltage-customized machines rather
than the metrics of a single system under DVFS.

Generally, as more silicon is added to the server, the op-
timal voltages go lower and lower, and the server energy ef-
ficiency improves. Initially, $ per op/s decreases with in-
creasing silicon as server overheads are amortized, but even-
tually silicon costs start to dominate and cost starts to rise.
Cost-efficiency of the smaller machines declines with lower
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Figure 12: Bitcoin Cost versus Energy Efficiency Pareto.
Servers with 10 chips per lane. Each point series shows total silicon
per lane and voltage increases from top to bottom points. Diagonal
lines represent equal TCO per GH/s, with min. TCO at lower left.

voltage because performance is decreasing rapidly and many
PCB- and server-level cost overheads remain constant.

Table 3 shows the Pareto-optimal points that represent
energy-optimal and cost-optimal designs across all simula-
tion points. These are the end points of the Pareto frontier.

In the most energy-efficient design, the server runs at ultra-
low near-threshold voltages, 0.40V and 70 MHz, and occu-
pies 6,000 mm? of silicon per lane spread across 10 chips of
maximum die size, 600 mm?. Since it employs almost a full
12" wafer per server, the cost is highest, at $2.49 per GH/s,
but energy efficiency is excellent: 0.368 W per GH/s.

In the most cost-efficient design, the server is run at a
much higher voltage, 0.62V and 465 MHz, and occupies less
silicon per lane, 530 nmm?, spread across 5 chips of 106 mm?.
$ per GH/s is minimized, at $0.833, but energy efficiency is
not as good: 0.788 W per GH/s.

Figure 13 shows the cost breakdown for these two Pareto-
optimal servers. In the energy-optimal server, silicon costs
dominate all other costs, since high energy-efficiency min-
imizes cooling and power delivery overheads. In the cost-
optimal server, large savings in silicon cost gained by higher
voltage operation are partially offset by much higher DC/DC
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Figure 13: Bitcoin servers cost breakdown.

Table 3: Bitcoin ASIC Cloud Optimization Results.

W/GH/s | TCO/GH/s $/GH/s

Optimal Optimal | Optimal
# of ASICs per lane 10 10 5
# of Lanes 8 8 8
Logic Voltage (V) 0.40 0.49 0.62
Clock Frequency (MHz) 70 202 465
Die Size (mm?) 600 300 106
Silicon/Lane (mm?) 6,000 3,000 530
Total Silicon (mm?) 48,000 24,000 4,240
GH/s/server 5,094 7,341 2,983
W /server 1,872 3,731 2,351
$/server 12,686 7,901 2,484
W/GH/s 0.368 0.508 0.788
$/GH/s 2.490 1.076 0.833
TCO/GH/s 4.235 3.218 4.057
Server Amort./GH/s 2.615 1.130 0.874
Amort. Interest/GH/s 0.161 0.069 0.054
DC CAPEX/GH/s 0.884 1.222 1.895
Electricity/GH/s 0.319 0.441 0.684
DC Interest/GH/s 0.257 0.355 0.550

converter expenses, which are the dominate cost of the sys-
tem. PSU and fan overheads also increase with voltage.
TCO-Optimal Servers. A classic conundrum since the be-
ginning of energy-efficiency research in computer architec-
ture has been how to weight energy efficiency and perfor-
mance against each other. In the absence of whole system
analysis, this gave birth to such approximations as Energy-
Delay Product and Energy-Delay”. A more satisfying inter-
mediate solution is the Pareto Frontier analysis shown ear-
lier in this section. But, which of the many optimal points is
most optimal? This dilemma is not solely academic. In Bit-
coin Server sales, the primary statistics that are quoted for
mining products are in fact the exact ones given in this pa-
per: $ per GH/s and W per GH/s. Many users blindly chose
the extremes of these two metrics, either over-optimizing for
energy-efficiency or for cost-efficiency.

Fortunately, in the space of ASIC Clouds, we have an easy
solution to this problem: TCO analysis. TCO analysis incor-
porates the datacenter-level constraints including the cost of
power delivery inside the datacenter, land, depreciation, in-
terest, and the cost of energy itself. With these tools, we
can correctly weight these two metrics and find the over-all
optimal point (TCO-optimal) for the ASIC Cloud.

In this paper, we employ a refined version of the TCO
model by Barroso et al [21]. Electricity is $0.06 per KWh.
In Figure 12, we annotate lines of equal TCO according to
this model. The lowest TCO is found on the bottom left. As
we can see, TCO is most optimized for large silicon running
at relatively low, but not minimal, voltages.

The TCO-optimal design is given in Table 3. The server
runs at moderate near-threshold voltages, 0.49V and 202
MHz, and occupies 3,000 mm? of silicon per lane spread
across 10 chips of moderate die size, 300 mm?. Cost is be-
tween the two Pareto-optimal extremes, at $1.076 per GH/s,
and energy efficiency is excellent but not minimal: 0.508 W
per GH/s. The TCO per GH/s is $3.218, which is signifi-
cantly lower than the TCO with the energy-optimal server,
$4.235, and the TCO with the cost-optimal server, $4.057.
The portion of TCO attributable to ASIC Server cost is 35%;
to Data Center capital expense is 38%, to electricity, 13.7%,
and to interest, about 13%. Finally, in Figure 13, we can see
the breakdown of Server components; silicon dominates, but
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Figure 14: Litecoin Cost versus Energy Efficiency Pareto.
Servers with 12 chips per lane. Each point series shows total silicon
per lane and voltage increases from top to bottom points. Diagonal
lines represent equal TCO per MH/s, with min. TCO at lower left.

DC/DC is not insignificant.

Voltage Stacking. Because DC/DC power is significant,
some Bitcoin mining ASIC Clouds employ voltage stacking,
where chips are serially chained so that their supplies sum
to 12V, eliminating DC/DC converters. We modified our
tools to model voltage stacking. The TCO-optimal voltage-
stacked design runs at 0.48V and 183 MHz, employs the
same chips, and achieves 0.444 W per GH/s, $ 0.887 per
GH/s, and a TCO per GH/s of $2.75, a significant savings.

8. LITECOIN ASIC CLOUD DESIGN

The Litecoin cryptocurrency is similar to Bitcoin, but em-
ploys the Scrypt cryptographic hash instead of the Bitcoin
hash, and is intended to be dominated by accesses to large
SRAMs. We implemented a Scrypt-based Litecoin repli-
cated compute accelerator in RTL and pushed it through a
full synthesis, place and route flow using Synopsys Design
Compiler and IC Compiler. We applied our ASIC Cloud de-
sign exploration toolkit to explore optimal Litecoin server
designs. Our results show that because Litecoin consists of
repeated sequential accesses to 128KB memories, the power
density per mm? is much lower, which leads to larger chips at
higher voltages versus Bitcoin. Because Litecoin is so much
more memory intensive, performance is typically measured
in megahash per second (MH/s). SRAM V,,;,, is set to 0.9V.

Pareto and TCO analysis is in Figure 14 and stats for the
final designs are given in Table 4.

Litecoin results are remarkably different from Bitcoin. In
the most energy-efficient design, the server runs at moderate
near-threshold voltages, 0.47V and 169 MHz, and occupies
6,000 mm? of silicon per lane spread across 10 chips of max-
imum die size, 600 mm?>. Since it employs almost a full 12"
wafer per server, the cost is highest, at $36.67 per MH/s, but
energy efficiency is excellent: 2.011 W per MH/s.

In the most cost-efficient design, the server is run at a

Table 4: Litecoin ASIC Server Optimization Results.

W/MH/s | TCO/MH/s | $/MH/s

Optimal Optimal | Optimal
# of ASICs per lane 10 12 10
# of Lanes 8 8 8
Logic Voltage (V) 0.47 0.70 0.91
Clock Frequency (MHz) 169 615 849
Die Size (mm?) 600 500 300
Silicon/Lane (mm?) 6,000 6,000 3,000
Total Silicon (mm?) 48,000 48,000 24,000
MH/s/server 319 1,164 803
W /server 641 3,401 3,594
$/server 11,689 12,620 7,027
W/MH/s 2.011 2.922 4.475
$/MH/s 36.674 10.842 8.750
TCO/MH/s 48.860 23.686 27.523
Server Amort./MH/s 38.508 11.384 9.188
Amort. Interest/MH/s 2.366 0.700 0.565
DC CAPEX/MH/s 4.835 7.024 10.759
Electricity/MH/s 1.746 2.537 2.886
DC Interest/MH/s 1.405 2.041 3.126

much higher voltage, 0.91V and 849 MHz, and occupies
less silicon per lane, 300 mm?, spread across 10 chips of
300 mm?*. $ per MH/s is minimized, at $8.75, but energy
efficiency is not as good: 4.475 W per MH/s.

The TCO-optimal server operates at moderate super-threshold

voltage, 0.70V and 615 MHz, and also occupies 6,000 mm?
of silicon per lane spread across 12 chips of large die size,
500 mm?. Cost is between the two Pareto-optimal extremes,
at $10.842 per MH/s, and energy efficiency is excellent but
not minimal: 2.922 W per MH/s. The TCO per MH/s is
$23.686, which is significantly lower than the TCO with the
energy-optimal server, $48.86, and the TCO with the cost-
optimal server, $27.532. The portion of TCO attributable to
ASIC Server cost is 48.1%; to Data Center capital expense
is 29.7%, to electricity, 10.7%, and to interest, about 11.5%.
Qualitatively, these varying results are a direct consequence
of the SRAM-dominated nature of Litecoin, and thus the re-
sults are likely to be more representative of accelerators with
a high percentage of memory. The current world-wide Lite-
coin mining capacity is 1,452,000 MH/s, so 1,248 servers
would be sufficient to meet world-wide capacity.

9. VIDEO TRANSCODING ASIC CLOUDS

Video transcoding is an emerging planet-scale computa-
tion, as more users record more of their lives in the cloud,
and as more governments surveil their citizens. Typical video
services like YouTube receive uploaded videos from the user,
and then distribute frames across the cloud in parallel to
re-encode in their proprietary format. We model an ASIC
Cloud, XCode, that transcodes to H.265 (or HEVC), and
model the RCA based on parameters in [26]. For this de-
sign, the RCAs on an ASIC share a customized memory
system: ASIC-local LPDDR3 DRAMSs to store the pre- and
post- transcoded video frames. Thus, this RCA is most rep-
resentative of accelerators that require external DRAM.

In our PCB layout, we model the space occupied by these
DRAMs, which are placed in rows of 3 on either side of the
ASIC they connect to, perpendicular to airflow, and limit
the number of ASICs placed in a lane given finite server
depth. We also model the more expensive PCBs required by
DRAM, with more layers and better signal/power integrity.
We employ two 10-GigE ports as the off-PCB interface, and
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Figure 15: Video Transcoding Pareto Curve. Each point series
corresponds to 5 ASICs per lane and a certain number of DRAMs
per ASIC, and varies voltage; highest logic voltage is at lower right.
Lower-left most diagonal line indicates lowest TCO per Kfps.

model the area and power of the memory controllers assum-
ing that they do not voltage scale, and model pin constraints.

Our ASIC Cloud simulator explores the design space across
number of DRAMs per ASIC, logic voltage, area per ASIC,
and number of chips. DRAM cost and power overhead are
not insignificant, and so the Pareto-optimal designs ensure
DRAM bandwidth is saturated, which means that chip per-
formance is set by DRAM count. As voltage and frequency
is lowered, area increases to meet the performance require-
ment. One DRAM satisfies 22 RCA’s at 0.9V.

Figure 15 shows the Pareto analysis, using point series
corresponding to # of DRAMs per ASIC. Points to the up-
per left have lower voltage and higher area. To an extent,
larger DRAM count leads to more Pareto-optimal solutions
because they have greater performance per server and min-
imize overheads. The Pareto points are glitchy because of

variations in constants and polynomial order for various server

components as they vary with voltage.

Table 5 shows stats for the Pareto optimal designs. The
cost-optimal server packs the maximum number of DRAMs
per lane, 36, maximizing performance. However, increas-
ing the number of DRAMs per ASIC requires higher logic
voltage (1.4V!) to stay within the max die area constraint,
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Figure 16: Video Transcoding Server cost breakdown.

Table 5: Video Transcoding ASIC Cloud Optimization Results.

W/Kfps | TCO/Kfps $/Kfps

Optimal Optimal | Optimal
# of DRAMs per ASIC 3 6 9
# of ASICs per lane 8 5 4
# of Lanes 8 8 8
Logic Voltage (V) 0.53 0.80 1.40
Clock Frequency (MHz) 163 439 562
Die Size (mm?) 595 456 542
Silicon/Lane (mm?) 4,760 2,280 2,168
Total Silicon (mm?) 38,080 18,240 17,344
Kfps/server 127 159 190
W /server 1,109 1,654 3,216
$/server 10,779 6,482 6,827
W /Kfps 8.741 10.428 16.904
$/Kfps 84.975 40.881 35.880
TCO/Kfps 129.416 86.971 107.111
Server Amort. /Kfps 89.224 42.925 37.674
Amort. Interest/Kfps 5.483 2.638 2.315
DC CAPEX/Kfps 21.015 25.07 40.639
Electricity /Kfps 7.590 9.055 14.678
DC Interest/Kfps 6.105 7.283 11.806

resulting in less energy efficient designs. Hence, the energy-
optimal design has fewer DRAMs per ASIC and per lane
(24), while gaining back some performance by increasing
ASICs per lane which is possible due to lower power den-
sity at 0.53V. The TCO-optimal design increases DRAMs
per lane, 30, to improve performance, but is still close to the
optimal energy efficiency at 0.8V, resulting in a die size and
frequency between the other two optimal points.

Figure 16 shows the cost breakdown. Silicon always dom-
inates, but DRAMs and DC/DC occupy a greater percentage
as performance and voltage are scaled up, respectively.

10. CONVOLUTIONAL NEURAL NET
ASIC CLOUD DESIGN

We chose our last application to be Convolutional Neu-
ral Networks (CNN), a deep learning algorithm widely used
in data centers. We based our RCA on DaDianNao [22]
(DDN), which describes a 28-nm eDRAM-based accelerator
chip for Convolutional and Deep Neural Networks. In their
chip design, they have HyperTransport links on each side al-
lowing the system to gluelessly scale to a 64-chip system in
an 8-by-8 mesh. We evaluate ASIC Cloud servers that im-
plement full 8-by-8 DDN systems, presuming that the max-
imum CNN size is also the most useful. Our RCA is iden-

o 2 systems per server ® 3 systems per server
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Figure 17: Convolutional Neural Net Pareto Curve. Twelve pos-
sible ASIC Cloud designs for 8x8 DaDianNao. The parenthesized
numbers show number of RCAs per chip in each direction. Lower
left diagonal line represents min. TCO per TOps/s.



Table 6: Convolutional Neural Network ASIC Cloud Results.

W/TOps/s | TCO/TOps/s | $/TOps/s

Optimal Optimal | Optimal

Chip type 4x2 4x2 4x1
# of ASICs per lane 2 2 6
# of Lanes 8 8 8
Logic Voltage (V) 0.90 0.90 0.90
Clock Frequency (MHz) 606 606 606
Die Size (mm?) 454 454 245
Silicon/Lane (mm?) 908 908 1,470
Total Silicon (mm?) 7,264 7,264 11,760
TOps/s/server 235 235 353
W /server 1,811 1,811 3,152
$/server 2,538 2,538 3,626
W /TOps/s 7.697 7.697 8.932
$/TOps/s 10.788 10.788 10.276
TCO/TOps/s 42.589 42.589 46.92
Server Amort./TOps/s 11.327 11.327 10.790
Amort. Interest/TOps/s 0.696 0.696 0.663
DC CAPEX /TOps/s 18.506 18.506 21.474
Electricity /TOps /s 6.684 6.684 7.756
DC Interest/TOps/s 5.376 5.376 6.238

tical to one DDN chip, except that we sensibly replace the
HyperTransport links between RCAs with on-chip network
links, if the RCAs are co-located on the same ASIC. Hyper-
Transport interfaces are still used between chips. The more
RCAs that are integrated into a chip, the fewer total Hyper-
Transport links are necessary, saving cost, area and power.
In this scenario, we assume that we do not have control over
the DDN micro-architecture, and thus that voltage scaling is
not possible. RCAs are arranged in 8x8 arrays that are par-
titioned across an equal or smaller array of ASICs. ASICs
connect over HyperTransport within a lane and also nearest-
neighbor through the PCB across lanes. For example, a 4x2
ASIC has 4 nodes in the lane direction and 2 nodes in the
across-lane direction. 2 ASICs per lane and 4 lanes would
be required to make a complete 8x8 system. We then pack
as many 8x8 systems as thermally and spatially possible, and
provision the machine with multiple 10-GigE off-PCB links.
Up to 3 full 64-node DDN systems fit in a server.

TCO analysis in Figure 17 shows the results for the 12
different configurations, and Table 6 shows the Pareto and
TCO optimal designs. Similar to the XCode ASIC Cloud,
performance is only dependent on the number of 8x8 DDN
systems, making the system more cost efficient by putting
the most possible number of systems on a server. We allow
partial chip usage, e.g. arrays that have excess RCA’s that
are turned off, but these points were not Pareto Optimal.

The cost-optimal system used ASICs with fewer RCAs, so
3 systems to be squeezed in. The energy- and TCO- optimal
system only fit two 8x8 systems per server, but had a larger,
squarish array of RCAs (4x2), removing many HyperTrans-
port links, and thus minimizing energy consumption.

11. CLOUD DEATHMATCH

In Table 7, we step back and compare the performance
of CPU Clouds versus GPU Clouds versus ASIC Clouds for
the four applications that we presented. ASIC Clouds out-
perform CPU Cloud TCO per op/s by 6,270x; 704x; and
8,695x for Bitcoin, Litecoin, and Video Transcode respec-
tively. ASIC Clouds outperform GPU Cloud TCO per op/s
by 1057x, 155x, and 199x, for Bitcoin, Litecoin, and Con-
volutional Neural Nets, respectively.
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Figure 18: Breakeven point for ASIC Clouds.
12.  WHEN DO WE GO ASIC CLOUD?

Given these extraordinary improvements in TCO, what
determines when ASIC Clouds should be built? In this pa-
per, we have shown some clear examples of planet-scale ap-
plications that could merit ASIC Clouds. The key barrier is
the cost of developing the ASIC Server, which includes both
the mask costs (about $ 1.5M for the 28 nm node we consider
here), and the ASIC development costs, which collectively,
we term the non recurring engineering expense (NRE).

We propose the two-for-two rule. If the cost per year (i.e.
the TCO) for running the computation on an existing cloud
exceeds the NRE by 2X, and you can get at least a 2X TCO
per op/s improvement, then going ASIC Cloud is likely to
save money. Figure 18 shows a wider range of breakeven
points. Essentially, as the TCO exceeds the NRE by more
and more, the required speedup to breakeven declines. As
a result, almost any accelerator proposed in the literature,
no matter how modest the speedup, is a candidate for ASIC
Cloud, depending on the scale of the computation.

The promise of TCO reduction via ASIC Clouds suggests
that both Cloud providers and silicon foundries would bene-
fit by investing in technologies that reduce the NRE of ASIC
design, including open source IP such as RISC-V, in new
labor-saving development methodologies for hardware and
also in open source backend CAD tools. With time, mask
costs fall by themselves, and in fact older nodes such as 40
nm are likely to provide suitable TCO per op/s reduction,
with half the mask cost and only a small difference in per-
formance and energy efficiency from 28 nm.

Governments should also be excited about ASIC Clouds
because they have the potential to reduce the exponentially
growing environmental impact of datacenters across the world.
Foundries should be excited because ASIC Cloud low-voltage
operation leads to greater silicon wafer consumption than
CPUs within environmental energy limits.

13. RELATED WORK

GF11 [27] was perhaps one of the first ASIC Clouds, ac-
celerating physics simulation with custom asics. Catapult [11]
pioneered the creation of FPGA Clouds.

ASIC Cloud-worthy accelerators with planet-scale appli-
cability are numerous, including those targeting graph pro-

cessing [28], database servers [29], Web Search RankBoost [30],

Machine Learning [31, 32], gzip/gunzip [33] and Big Data
Analytics [34]. Tandon et al [35] designed accelerators for
similarity measurement in natural language processing. Many
efforts [36, 37, 38, 39] have examined hardware acceleration
in the context of databases, key value stores and memcached.
Other research has examine datacenter-level power and
thermal optimization. Skach et al [40] proposed thermal
time shifting for cooling in datacenters. Facebook optimized



Table 7: CPU Cloud vs. GPU Cloud vs

. ASIC Cloud Deathmatch.

Application Perf. Cloud HW Perf. | Power | Cost ($) | lifetime Power/ Cost/ TCO/
metric (W) (years) op/s. op/s. op/s.
Bitcoin GH/s C-i7 3930K(2x) 0.13 310 1,272 3 2,385 9,785 20,192
Bitcoin GH/s AMD 7970 GPU 0.68 285 400 3 419 588 3,404
Bitcoin GH/s 28nm ASIC 7,341 3,731 7,901 1.5 0.51 1.08 322
Litecoin MH/s C-17 3930K(2x) 0.2 400 1,272 3 2,000 6,360 16,698
Litecoin MH/s AMD 7970 GPU 0.63 285 400 3 452 635 3,674
Litecoin MH/s 28nm ASIC 1,164 3,401 12,620 1.5 2.92 10.8 23.7
Video Transcode | Kips Core-i17 4790K 0.0018 155 725 3 88,571 414,286 756,489
Video Transcode | Kifps 28nm ASIC 159 1,654 6,482 1.5 10.4 40.9 87.0
Conv Neural Net | TOps/s | NVIDIA Tesla K20X 0.26 225 3,300 3 865 12,692 8,499
Conv Neural Net | TOps/s | 28nm ASIC 235 1,811 2,538 1.5 7.70 10.8 42.6
power and thermals in the context of general-purpose data- [18] M. Taylor, “Bitcoin and the age of bespoke silicon,” in CASES, 2013.

centers [41]. Pakbaznia et al [42] examined ILP techniques
for minimizing datacenter power. Lim et al [43] examined
wimpy cores, cooling, thermals and TCO.

14.

SUMMARY

‘We propose ASIC Clouds, a new class of cloud for planet-
scale computation architected around pervasive specializa-
tion from the ASIC to the ASIC Cloud Server to the ASIC
datacenter. We examined the architectural tradeoffs in ASIC
Clouds, and applied the results to four types of ASIC Clouds.
We believe that the analysis and optimizations in this paper
will speed the development of new classes of ASIC Clouds.
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