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RESEARCH ARTICLE BIOPHYSICS AND COMPUTATIONAL BIOLOGY

Selection pressures on evolution of ribonuclease H explored with
rigorous free–energy–based design
Ryan L. Hayesa,b,1 ID , Charlotte F. Nixonc ID , Susan Marquseec,d,e ID , and Charles L. Brooks IIIb,f,1 ID

Edited by José Onuchic, Rice University, Houston, TX; received July 14, 2023; accepted November 22, 2023

Understanding natural protein evolution and designing novel proteins are motivating
interest in development of high-throughput methods to explore large sequence spaces.
In this work, we demonstrate the application of multisite � dynamics (MS�D),
a rigorous free energy simulation method, and chemical denaturation experiments
to quantify evolutionary selection pressure from sequence–stability relationships and
to address questions of design. This study examines a mesophilic phylogenetic clade
of ribonuclease H (RNase H), furthering its extensive characterization in earlier
studies, focusing on E. coli RNase H (ecRNH) and a more stable consensus sequence
(AncCcons) differing at 15 positions. The stabilities of 32,768 chimeras between these
two sequences were computed using the MS�D framework. The most stable and least
stable chimeras were predicted and tested along with several other sequences, revealing
a designed chimera with approximately the same stability increase as AncCcons,
but requiring only half the mutations. Comparing the computed stabilities with
experiment for 12 sequences reveals a Pearson correlation of 0.86 and root mean
squared error of 1.18 kcal/mol, an unprecedented level of accuracy well beyond less
rigorous computational design methods. We then quantified selection pressure using a
simple evolutionary model in which sequences are selected according to the Boltzmann
factor of their stability. Selection temperatures from 110 to 168 K are estimated
in three ways by comparing experimental and computational results to evolutionary
models. These estimates indicate selection pressure is high, which has implications for
evolutionary dynamics and for the accuracy required for design, and suggests accurate
high-throughput computational methods like MS�D may enable more effective protein
design.

protein folding | consensus sequence | free energy | selection pressure | ribonuclease H

There is a growing interest in exploring the large protein sequence spaces that arise
from many mutations using high-throughput techniques. These studies are useful for
understanding evolutionary history through ancestral sequence reconstruction (1–3),
improved protein design (4), knowledge of the distribution of stability effects of mutations
(5–8), and design of new functions (9, 10).

The large sequence spaces encountered in ancestral sequence reconstructions and
their corresponding extant protein families are useful both for protein design, because
mutations have already been screened by evolution (11–13), and for studying protein
evolution, because sequences reveal evolutionary pathways and selection pressures (1, 14).
Consensus sequences, which include the most common mutations in extant members
of a protein family, are a common means of protein design from multiple sequence
alignments. Consensus sequences are usually more stable than extant sequences and
often even functional (13), but sometimes are less stable (15). Whether this loss in
stability is due to a few deleterious mutations, epistatic coupling between mutations
(12), or other effects, and how to restore stability are all questions that can be addressed
with high-throughput methods.

Studies of proteins resurrected from ancestral sequence reconstructions can also provide
valuable insight into evolutionary processes. Such studies not only identify evolutionary
pathways but also inform the mechanism by which epistatic coupling between mutations
can block other pathways (16, 17). In this work, we focus on bacterial ribonuclease
H1 (RNase H) because it is a well-characterized system for which many proteins in the
reconstructed ancestral phylogeny have been studied. RNase H studies have identified
selective pressures present during evolution: In thermophiles, thermostability is selected,
but the mechanism of stabilization fluctuates between residual structure and core contacts
(1), and while kinetic stability is initially low, it increases as evolution progresses (14).
While these estimates of selection pressure are qualitative, simple quantitative estimates
of selection pressure have been made using models derived from multiple sequence
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alignments of protein families (18, 19). These estimates assume
the probability of observing a particular sequence is Boltzmann
distributed according to its folding free energy

P(S) ∝ exp(−ΔG(S)/kTs), [1]

and the temperature Ts of the distribution quantifies selection
pressure for stability; lower selection temperatures imply more
stringent selection (20).

While experimental methods exist and continue to be devel-
oped to characterize the large sequence spaces from ancestral se-
quence reconstruction, design libraries, and random mutagenesis
(2, 3, 5–8, 10), the ability to explore these spaces computationally
provides a complement useful in informing and directing both
the design of new proteins (4, 9) and studies of natural proteins
(21, 22). There are many computational tools for predicting
the effect of protein mutations and for protein design. For
computational efficiency, protein design tools typically estimate
the effect of a mutation using several approximations. These
approximations include using a single or a few structures rather
than a full ensemble and using more approximate interaction
potentials. A widely employed design tool is Rosetta (23), which
has been used effectively for many different design tasks (24–27)
and to predict protein folding or binding free energies (28–31).
Several other design methods exist based on similar principles
(32–35), and entirely different methods based on deep learning
are beginning to appear (36–38). In addition, other tools, such
as FoldX (39), are employed to predict mutational folding
free energy changes with reasonable accuracy utilizing methods
based on physical interactions, statistical observations from
databases, or machine learning (28). All of these techniques have
shown utility in protein design problems, but make significant
approximations in their estimates of changes in free energy due
to introduced mutations.

In contrast to these tools, alchemical free energy methods make
rigorous free energy estimates using more accurate interaction
potentials and full molecular ensembles obtained from molecular
dynamics simulations. The ΔΔG for a slow physical process like
protein folding is computed by evaluating the difference in free
energy of a chemical transformation such as mutation in two
physical ensembles. This removes the need for long simulations
that sample the slow physical transition between ensembles.
These methods have been demonstrated to possess the necessary
accuracy to be useful during lead optimization in computer-
aided drug design (40–42) and have also shown promise in initial
studies of protein folding and binding free energies (43–49).

There are a wide variety of alchemical free energy methods,
including free energy perturbation (50), thermodynamic integra-
tion (51), nonequilibrium methods (52), enveloping distribution
sampling (53, 54), and multisite � dynamics (MS�D) (55, 56).
Most alchemical methods require many simulations to compare
two sequences, typically differing by a point mutation, and are
not sufficiently scalable to address large protein sequence spaces.
MS�D, however, requires only a single simulation to compare
combinatorial sequence spaces arising from permutations of
many mutations and thus is uniquely well suited for high-
throughput studies of large protein sequence spaces and for
protein design. MS�D compares sequences in this combinatorial
space by sampling chemical degrees of freedom in addition to the
spatial degrees of freedom typically sampled by molecular dynam-
ics. Since its inception (55), MS�D has undergone a renaissance
that includes technical developments like the generalization from
single site to multisite � dynamics and the introduction of
implicit constraints (56, 57), biasing potential replica exchange

and adaptive landscape flattening to improve sampling (58, 59),
and soft-core interactions and PME electrostatics to improve the
accuracy and robustness of results (49, 59, 60). These studies have
set the stage for application of MS�D to large protein sequence
spaces.

Earlier studies have shown MS�D has comparable accuracy
to other alchemical methods (43–45, 47, 49) and comparable
or higher accuracy than the approximate approaches used by
Rosetta (30, 61) and can accurately predict the effect of up
to five simultaneous mutations (49). While these results were
notable, obstacles in sequence substitutions of proline, glycine,
and charge perturbations, as well as obstacles in sampling large
sequence spaces needed to be addressed. Perturbations between
E. coli RNase H (ecRNH) and the ancestor C clade consensus
sequence of RNase H (AncCcons) comprise 15 concurrent
mutations, including proline, glycine, and charge-changing
mutations (Fig. 1) (15), and spurred development of methods
to overcome these obstacles (62, 63). Determining sequence–
stability relationships and designing proteins with improved
stability within this space of 15 mutations is a challenging task;
Fig. 1 shows all mutations are surface mutations, over half are
in loops, most are conservative, and all are likely to have small
effects because they are essentially evolutionary noise.

The purpose of this study is twofold: First, we focus on
determining the magnitude of this evolutionary noise to quantify
selection pressure rather than on explaining the small effects
of individual mutations; second, we seek to optimize these
conservative mutations to design for stability. Because of the
small magnitude of effects of individual mutations, it is likely that
otherwise successful design methods may fail at this task, even
though the 2.1-kcal/mol stability difference between ecRNH
and AncCcons reveals there are stability gains to be made
by optimizing surface residues. While such gains are modest
compared to the stability gains sometimes observed with protein
design (67), realizing them would signify the ability to fine tune
natural or designed proteins, and optimizing conservative surface
mutations is desirable in some contexts (68).

A

B

Fig. 1. (A) Sequence alignment of ecRNH and AncCcons with fully conserved
residues denoted with asterisks, strongly similar residues denoted with
colons, and weakly similar residues denoted with periods (64). The 15 muta-
tions between the sequences are highlighted with red boxes. (B) Chimera
rendering of ecRNH (PDB entry 2RN2) with the 15 mutation side chain
residues labeled and shown as red ball and stick (65, 66).
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Within this sequence space of modest mutations, we identified
and tested the most and least stable chimeras to assess MS�D
sequence design capacity, along with several other mutants to
assess MS�D convergence and Rosetta design capacity. The
designed chimera utilized half as many mutations to achieve
roughly the same stability improvement over ecRNH as AncC-
cons. The agreement of MS�D with experiment for 12 sequences
was excellent, with a Pearson correlation of 0.86 and a root
mean squared error (RMSE) of 1.18 kcal/mol. As a control, the
leading protein design algorithm Rosetta struggled with these
tasks, designing a chimera with only a quarter of the stability
improvement of MS�D, and showing poor correlation with
experiment. The selection temperature is estimated globally for
the RNase H family as 140 to 168 K by finding the energy scale
of a dimensionless fitness score derived from multiple sequence
alignments through comparison with experiment or with MS�D.
The selection temperature is also estimated locally between the
two sequences as 110 to 146 K from the SD predicted by
MS�D for the 15 selected point mutations. These estimates
indicate relatively stringent selection compared to the accuracy of
conventional stability prediction methods and the distribution of
possible mutational effects (7), but corroborate previous estimates
for selection temperature by other methods (18, 19). The ability
of MS�D to predict the effect of up to 15 mutations with
kcal/mol level accuracy and provide insight into evolutionary
selection pressures in large sequence spaces will be useful in future
studies of protein evolution, biophysics, and design.

Results
In order to explore the ability to design in a large sequence
space and gain insight into RNase H evolution, MS�D was used
to predict the stability of chimeras between ecRNH (sequence
1) and AncCcons (sequence 2), a 2.13-kcal/mol more stable
sequence differing by 15 mutations (see Table 1 and Fig. 1 for
sequence identities). There are 215, or 32,768, chimeras for all
permutations of mutations, and this is a two orders of magnitude
increase over the largest sequence space of 240 sequences (49)
or chemical space of 512 ligands (69) previously studied with
MS�D. Consequently, preliminary simulations were needed to
determine the amount of sampling required to obtain robust
results. From 5 independent trials of 100 ns of free energy
sampling with MS�D, we identified the most stable single
mutants (sequences 3 to 4) and the least stable single mutant
(sequence 5), as well as the most stable chimera (sequence 6)

and the least stable chimera (sequence 7). These sequences were
expressed and experimentally tested for stability, and the results
were used to assess convergence for varying levels of sampling
with MS�D.

Results from the five independent 100-ns simulations in-
dicated poor convergence due to both statistical noise and
insufficient relaxation of the protein structure, as running more
independent trials or longer trials improved agreement for
sequences 1 to 7 (Fig. 2A). While the Pearson correlation of 0.78
between prediction and experiment was satisfactory, the RMSE
of 2.05 kcal/mol was larger than that expected from previous
studies (49). Sampling these large chemical spaces is facilitated
by an adaptive procedure that identifies biases that permit the
full space to be explored as efficiently as possible (49, 59, 63).
Thus, we reoptimized the biases to better facilitate sampling and
ran another 5 trials of 100 ns, which resulted in rather different,
but not significantly improved, results due to statistical noise.
Running another 15 independent 100-ns trials for both the first
and second sets of biases substantially reduced statistical noise,
and averaging the results of both sets of 20 trials of 100 ns together
gave a Pearson correlation of 0.76 with experiment and an RMSE
of 1.42 kcal/mol. Finally, 12 simulations of 400 ns each were
run and yielded a Pearson correlation of 0.72 and RMSE of 1.03
kcal/mol for sequences 1 to 7. While the 12×400-ns simulations
comprised roughly the same amount of sampling as the 40×100-
ns simulations, the longer duration of the simulations allowed
the system, especially the flexible C terminus, to relax more fully,
resulting in more accurate predictions.

Having determined that 12×400 ns was a sufficient amount of
sampling, new predictions for the most stable chimera (sequence
8) and least stable chimera (sequence 9) were made. Experimen-
tally characterizing these sequences revealed significantly more
stabilization and destabilization than observed in the previously
predicted sequences (6 and 7). Furthermore, sequence 8 was as
stable as sequence 2, to within experimental uncertainty, meaning
that our methodology enabled design of a sequence as stable as
the most stable known sequence, but differing by 8 mutations.
Including these sequences and the Rosetta sequences described in
the next paragraph, MS�D agreement with experiment improved
to a Pearson correlation of 0.86 and an RMSE of 1.18 kcal/mol
(Fig. 2B).

Since MS�D enabled effective design within this sequence
space, for comparison we examined the ability of Rosetta, the
leading computational protein design package, to design in this
space. Because of its speed, Rosetta can readily handle much

Table 1. Relative folding free energies of various sequences at 25 °C
# Sequence (S)* Experiment ΔΔG(S)† MS�D 5× 100 ns ΔΔG(S)† MS�D 12× 400 ns ΔΔG(S)† Rosetta ΔΔG(S)‡

1 000000000000000 0.00± 0.40 0.00± 0.43 0.00± 0.44 0.00± 0.36
2 111111111111111 −2.13± 0.60 −2.60± 0.12 −0.97± 0.34 −6.91± 0.33
3 000010000000000 0.11± 0.13 −0.75± 0.21 −0.72± 0.47 −1.03± 0.49
4 000000100000000 −0.81± 0.95 −1.06± 0.33 −1.15± 0.34 0.49± 0.34
5 000000010000000 0.29± 0.27 1.12± 0.39 1.02± 0.41 3.69± 0.39
6 010110100111011 −1.37± 0.32 −5.11± 0.26 −2.87± 0.31 −2.54± 0.44
7 100001011001001 0.38± 0.53 4.11± 0.56 1.99± 0.30 −2.40± 0.34
8 000111100110100 −2.00± 0.40 −4.85± 0.26 −3.97± 0.30 −4.70± 0.50
9 110001011101101 1.20± 0.30 3.05± 0.68 3.55± 0.15 −8.63± 0.30
10 100000000000000 0.57± 0.29 2.22± 0.48 0.76± 0.48 −8.15± 0.45
11 110011000100100 1.16± 0.32 0.40± 0.32 1.27± 0.19 −17.36± 0.29
12 111101100101000 −0.47± 0.63 −1.35± 0.18 −0.52± 0.24 −11.22± 0.44
*Sequences indicate either ecRNH (0) or AncCcons (1) at each position listed in Fig. 1.
†Experimental and MS�D free energies are in kcal/mol.
‡Rosetta free energies are in Rosetta Energy Units, which are roughly 0.2 to 0.35 kcal/mol.
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Fig. 2. (A) Convergence of MS�D results on the first 7 sequences with
increased sampling. Every sequence except sequence 2 approaches the
y = x line with increased sampling and longer simulations. (B) Agreement of
MS�D predictions with experiment for all 12 sequences. The solid line is y = x.
(C) Agreement of Rosetta predictions with experiment for all 12 sequences.

larger sequence spaces, but for the sake of comparison, it was
limited to this sequence space. Rosetta ΔΔG calculations were
used to identify the most stable single mutant (sequence 10)
and most stable chimera (sequence 11). Notably, half of the
stabilization in sequence 11 is attributed to the single mutation
in sequence 10, underlining the importance of this mutation to
Rosetta. While Rosetta can predict ΔΔG, it is more optimized

for designing sequences, so Rosetta was also used to design
an optimized sequence (12). Experimentally, both the single
mutant and the chimera identified by Rosetta ΔΔG calculations
as stabilizing turned out to be destabilizing, leading to a negative
Pearson correlation with experiment of −0.24 over the full
dataset (Fig. 2C ). The designed sequence 12 showed a small
degree of stabilization relative to ecRNH, but this stabilization of
0.47 kcal/mol is only a quarter of the 2.00 kcal/mol stabilization
of the MS�D chimera. Since the Rosetta reference energy is
parameterized to reproduce natural amino acid abundances (30),
and these abundances are affected by factors beyond stability (8),
an evolutionary preference correction was computed from the
data in ref. 8 (SI Appendix, Table S1), but adding this correction
to the experimental stability did not improve the agreement
between Rosetta and experiment.

The unprecedented accuracy of MS�D simulations provides
an opportunity to evaluate selection pressure in different ways
from previous studies. A dimensionless fitness score EPotts can be
obtained by fitting a Potts model of single site hi and pairwise
interaction Jij terms to the probability distribution P of a multiple
sequence alignment.

EPotts =
∑
i

hi(Si) +
∑
i<j

Jij(Si, Sj) [2]

P(S) ∝ exp(EPotts(S)). [3]

If desired, Eq. 3 may be viewed as a Boltzmann factor where
the temperature has been absorbed into the fitness score because
no energy scale is defined in the purely bioinformatic fitting
procedure. Comparison with Eq. 1 reveals the dimensionless
fitness score is equal to the stability ΔG(S) over −kTs up
to an additive constant. Previous works have subsequently
determined the selection temperature by comparing fitness scores
to experimental stabilities for several sequences (18, 19), by
comparing fitness score and coarse-grained force field predictions
of the difference between natural and random sequences (18),
and by examining the SD of random point mutation effects on
fitness score (19). In this work, we again evaluate the selection
temperature by comparing the fitness score with experimental
results for our 12 sequences, but we also evaluate it in two
additional ways utilizing MS�D predictions. First, the fitness
score is compared with stability predictions over all 32,768
chimeras. Second, the selection pressure is estimated without
reference to the fitness score by evaluating the predicted root
mean square effect of the 15 evolutionarily selected mutations
and comparing it to a simple model.

We first evaluate selection temperature by comparing the
fitness score with the 12 experimental measurements (Fig.
3A). The slope of the best-fit line is equal to −1/kTs, but
determining the best-fit line depends on the independent variable
and the sources of noise. In standard linear regression, the
independent variable is placed on the x-axis, and vertical errors
�EPotts caused by noise on the y-axis are minimized, but if the
x-axis is the dominant source of noise, it is more appropriate
to minimize the horizontal errors �ΔG(S), and both lines
are shown in Fig. 3A. The ratio between these two slopes
(corresponding to Ts = 99 K and 140 K) is the square of
the Pearson correlation (−0.840), which is comparable to the
correlation of −0.84 previously observed between fitness score
and experiment (18). In principle, the selection temperature is
used to predict how much the dependent variable of fitness
changes in response to the independent variable of stability.
Furthermore, the experimental errors are small (around 0.3
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https://www.pnas.org/lookup/doi/10.1073/pnas.2312029121#supplementary-materials


-4 -2 0 2 4
Experiment [kcal/mol]

340

345

350

355

Po
tts

 F
itn

es
s

Ts = 140.4 K
Min δEPotts
Min δΔG

-4 -2 0 2 4
MSλD Prediction [kcal/mol]

340

345

350

355

Po
tts

 F
itn

es
s

Ts = 167.9 K
Min δEPotts
Min δΔG

A

B

Fig. 3. Selection temperature from fitting the fitness score to (A) experi-
mental measurements and (B) MS�D predictions. Best-fit lines minimizing
y-axis noise (min �EPotts) and x-axis noise (min �ΔG) are shown in yellow and
red, respectively. Best-fit lines accounting for relative noise on both axes are
shown in black with the corresponding selection temperature. Open black
circles indicate ecRNH and AncCcons.

kcal/mol), so experimental measurements closely match the
independent variable of stability. The primary source of noise
is the fitness score, both from fitness effects beyond stability,
such as function, and from approximations in fitted parameters
and functional form of the fitness score. Consequently, the line
minimizing vertical errors �EPotts with a slope corresponding to
Ts = 140 K is most appropriate.

Before using the computational results to estimate selection
pressure, it is necessary to determine the statistics of the com-
putational error, because this noise affects both computational
estimates of selection temperature. The error statistics cannot be
directly determined from experimental results, because the set
of 12 measured sequences was biased by selection for sequences
predicted by MS�D to be most or least stable. These sequences
are statistically enriched in errors that bias them to appear more
or less stable than experiment, respectively (see SI Appendix for
discussion of overprediction). Instead, the degree of overpredic-
tion for the optimal sequences is used to estimate the statistical
properties of the error. Sites are assumed to be independent,
and both the true effects of point mutations as well as the
computational errors are assumed to be Gaussian distributed with
SDs of �1 and �2 (Materials and Methods). Simulations reveal
that the approximation that sites are independent is reasonable
(SI Appendix). Expectation values for the predicted and true
stabilities of extremal sequences can be calculated analytically

under these approximations (SI Appendix), and comparison with
their measured values implies the SD of point mutations is
�1 = 0.41 kcal/mol for their true effect and �2 = 0.48 kcal/mol
for the computational error.

While these parameters were calculated from only the differ-
ence between sequences 8 and 9, they are consistent with other
measured sequences. Evaluating the SD of the 15 point mutation
predictions and SD of the four point mutation measurements
(corrected for selection bias) on sequences 3, 4, 5, and 10 reveals
the statistics of the data match analytical predictions to within
10%. The model also allows prediction of relevant quantities (see
SI Appendix for derivations). First, the Pearson correlation of 0.86
observed between MS�D and the 12 experimentally measured se-
quences is biased relative to the space of all 32,768 sequences due
to selection of sequences with large stability effects. The expected
correlation with experiment if all sequences were measured is
0.652. Second, the expectation value for the stability of the true
most stable sequence is predicted to be −2.80 kcal/mol, though
the identity of the most stable sequence remains unknown. In
light of this, the ability to design sequence 8 with a stability within
1 kcal/mol of the most stable sequence is quite remarkable.

With a statistical description of computational errors, one can
estimate the selection temperature by comparing fitness scores
and computational predictions for all 32,768 sequences (Fig. 3B).
The computational errors in the stability predictions along the
x-axis are significantly larger than the experimental errors in Fig.
3A, which lowers the Pearson correlation to−0.513 and suggests
it is not appropriate to treat either axis as the independent variable
in fitting. Instead, both the x-axis and the y-axis are correlated
to the independent variable of true stability, and the best-fit line
must weigh noise from both axes appropriately. Since switching
independent and dependent variables changes the slope by a
factor of R2, the desired slope that minimizes the vertical errors in
fitness as a function of true stability can be found by multiplying
the slope minimizing the horizontal deviation of the true stability
as a function of fitness by the square of the correlation between
fitness and true stability. The Pearson correlation between
the true stability and the computational prediction over all
sequences is analytically predicted to be 0.652. The Pearson
correlation (−0.513) between two dependent variables (fitness
score and stability prediction) both independently correlated to
an independent variable (true stability) is the product of their
individual correlations, which suggests a correlation of −0.787
between fitness and the true stability. The slope minimizing
horizontal errors of predicted stability as a function of fitness
score is independent of noise on the x-axis and also minimizes
the horizontal errors of the unknown true stabilities as a function
of fitness score. Multiplying this slope of−4.84 (kcal/mol)−1 by
(−0.787)2 gives the desired slope and corresponds to Ts = 168
K. Notably, this estimate of the selection temperature required
quantification of the computational error, but only used it to
estimate the correlation between fitness and true stability.

Finally, one can estimate the selection temperature indepen-
dent of the fitness function by noting that the 15 point mutants
studied are all tolerated by evolution, and the SD of selected
mutations will be a function of the selection temperature. We
determine this relationship for a simple idealized model with
completely independent sites and a Gaussian distribution of
stability changes available to evolution. SI Appendix, Fig. S1
reveals that as long as the SD of available mutations is above
a threshold of roughly 1.25kTs, the SD of selected mutations
between two sequences lies within roughly 15% of a limiting
value. If both sequences are selected, this limit is

√
7/2kTs,
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whereas if one sequence is selected and the other is the optimal
sequence, this limit is

√
2kTs. The RNase H system lies between

these two limits because ecRNH was selected, while AncCcons
is an average over the phylogenetic clade with fewer destabilizing
mutations. Consequently, measurement of the root mean square
effect of mutations results in a range of selection temperatures
between these limits. The root mean square effect of the 15
point mutations in this space could be measured experimentally
by testing 11 more sequences but would be complicated by the
experimental uncertainty of roughly 0.3 kcal/mol that is compa-
rable in magnitude to the small effect of the point mutations. The
effect of point mutations is already available from MS�D as 0.61
kcal/mol but is similarly inflated by computational error. Using
the fitted value of 0.41 kcal/mol for the SD of true point mutant
effects implies a selection temperature range of 110 to 146 K.

Discussion
The results we have presented have biophysical implications for
evolution. The selection temperature model, in which extant
sequences are Boltzmann distributed by their stability (20),
is a simplistic model but quantifies the selection temperature
in RNase H as 110 to 168 K. How stringent these selection
pressures are depends on how large the corresponding energies
of 0.22 to 0.33 kcal/mol are relative to other relevant energies.
The energetics of random mutations or of epistatic couplings
between mutations that produce barriers between fitness optima
(3, 17, 70, 71) are relevant because they define the fitness
landscape within which thermal selection allows a protein to
evolve. The SD of random mutations is 1.5 kcal/mol in one
protein (7), and similar in others (19), which is much larger than
the selection pressures we measured, indicating tight selection.
In computational protein design, errors in stability predictions
are relevant because they play an analogous role to selection
temperature by driving the sequence away from fitness optima.
The magnitude of these errors depends on the dataset and is
obscured by unit differences but is comparable to the magnitude
of random mutations, implying natural selection is much more
stringent than computational design. This presents a protein
design paradox because computational protein design should
produce sequences more random and less stable than evolution,
but studies have shown (67) computationally designed proteins
are often more stable than evolved sequences.

The results presented here underline this paradox by corrob-
orating previous estimates of the selection temperature (18, 19).
One notable difference between the present study and previous
studies is that this study uses naturally occurring mutations, while
previous studies used random point mutations (19) or sequences
(18). Random mutations are more likely to occupy regions of
sequence space that are not robustly parameterized, leading to
greater errors in the fitness score. One study estimated selection
temperatures by fitting the fitness score and a coarse-grained
energy function (18). Comparison between the fitness score and
the coarse-grained model was performed by sampling sequences
in the random and evolved basins. Estimates between 60 and 125
K were obtained for most families with an outlier at 220 K (18).
Another study estimated the selection temperature from the ratio
between the SDs of stability and fitness score for random single
nucleotide point mutations (19). Selection temperatures ranged
widely from 60 to 280 K, with a median value of 115 K. The SD of
stability was calibrated in the PDZ protein family by mutational
studies and assumed to be the same in all protein families.
However, the SD of stability was also measured for three other

families and varied by up to a factor of 1.6 below the assumed
constant value, suggesting this is a fairly crude method and that
these estimates are on the high side. While the wide variation
in selection temperatures observed by these previous studies is
surprising, and may be due to underdetermined parameters in the
fitness scores, our study provides consistent estimates of selection
temperature compared with these two published works.

In this study, the selection temperature is estimated both by
fitting experimental results or MS�D predictions to a fitness
score and by fitting MS�D predictions to a model of point
mutation effects. These two estimates give global and local
perspectives on selection pressure within a protein family. The
fitness score is derived from a multiple sequence alignment,
which requires a few thousand protein sequences to give robust
results (72), and averages selection pressures over all sequences
in the alignment to give a global estimate of selection pressure.
In contrast, fitting to the simple model of mutations between
a pair of sequences is local by nature, and the two sequences
must be fairly close in sequence space; otherwise, the assumption
that sites are independent is suspect. This method can give
information about clade-specific differences in selection pressure
and provides an alternative means of estimating selection pressure
without the fitness score. Looking forward, MS�D calculations
and fitness scores can estimate the selection temperature without
knowledge of the computational error using the methods from
Fig. 3B if the correlation between fitness score and true stability is
known. Other hybrid approaches are possible: using fully random
sequences as in ref. 18, but with MS�D, or using MS�D to verify
the assumption in ref. 19 that all protein families have the same
distribution of random mutation effects. Thus, the approaches we
have presented together with previous methods form a versatile
toolbox for quantifying selection pressure.

Protein fitness is a consequence of protein function, but
many features modulate protein function. Properties like protein
stability, solubility, and degradation indirectly affect function by
modulating the amount of protein in functionally competent
configurations. Some mutations directly affect function by
modulating binding or catalysis, while others affect specificity
against other toxic functions. In principle, there is selection
pressure for each of these features, but mutations affecting
stability are much more common than mutations affecting
other features. Consequently, the selection temperature model
approximates stability as the sole driver of evolution and other
features as noise, which is justified by the strong correlation
of roughly 0.8 between stability and fitness score. Fig. 3B
shows sources of noise can affect the estimation of selection
temperature and must be carefully quantified. Other selected
features, especially direct modulation of function, may have
opposite effects when estimating selection temperature from
random mutations and evolutionarily selected mutations. On
average, random mutations degrade both stability and other
selected features, leading to a correlation between stability and
other features that underestimates selection temperature. In
contrast, selected mutations often embody a tradeoff between
stability and other selected features (73) that overestimates
selection temperature. This may explain why our estimates of
selection temperature with selected mutations are slightly higher
than previous studies using random mutations. However, the
rough agreement between estimates shows this effect is small and
confirms stability is the primary driver of fitness.

Quantification of the selection temperature suggests new lines
of inquiry. First, further study of the selection temperature may
help resolve the protein design paradox. The agreement between
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multiple estimates of the selection temperature strengthens this
paradox, even as new datasets (8) become available to study
evolutionary selection. Resolving this paradox may give deeper
insights into protein design or protein evolution. These insights in
turn may foreshadow the benefit that can be expected from more
accurate design methods like MS�D or allow one to anticipate in
advance whether a particular design method applied to a design
target is likely to be successful. Second, the selection temperature
quantifies how tightly evolution selects for stability, and in
thermostable proteins, it might be expected that selection for
stability is stronger. It is therefore an interesting question whether
point mutations in the thermophilic T. thermophilus clade might
suggest a lower selection temperature with tighter selection than
the point mutations we examined in the mesophilic E. coli
clade. Finally, the large variability in selection temperature over
various protein families is surprising, and further quantification
of selection temperature in these families may indicate if these
differences are robust and provide insight into the molecular
causes of differences in selection temperature.

The results presented here also have clear implications for the
use of MS�D in determining sequence–stability relationships
and exploring design questions in large sequence spaces. As
mentioned in the introduction, the small magnitude of individual
mutations made this a difficult design task, which was underlined
by the results of our attempts to use Rosetta in this context.
Rosetta has shown spectacular success designing useful proteins
in less constricted sequence spaces (9, 27), so accuracy in
optimizing surface residues may seem gratuitous, but such fine
tuning is useful in many contexts, including optimizing antibody
thermostability (68). Rosetta has previously been shown to yield
results in good agreement with experiment for point mutations
(with a Pearson correlation of 0.74) (30), and yielded a Pearson
correlation of 0.66 for a set of 32 T4 lysozyme buried point
mutants we previously studied (49) (SI Appendix, Fig. S2).
Thus, the poor correlation found with Rosetta in this study
likely arises because errors over the large number of concurrent
surface mutations compound to overshadow their small effect.
In contrast, MS�D was able to predict the effect of up to 15
mutations with kcal/mol level accuracy.

The accuracy observed in the MS�D calculations is impressive
and unprecedented and comes at an increased computational
cost. The 12 × 400-ns MS�D simulations took 27 d on
12 GTX1080 Ti GPUs, or 8,000 total GPU hours. The
Rosetta designs took one to three orders of magnitude less
time, depending on the sequence, and only required CPUs
(SI Appendix). Future MS�D calculations will be more rapid,
as a basic lambda dynamics engine (BLaDE) has been recently
developed that brings the execution time for these calculations
from 27 d to under 4 d (74). Together with hardware advances,
BLaDE will enable the accuracy MS�D to be applied routinely
to free energy and design calculations in large sequence spaces.

The increased accuracy of MS�D will allow such calculations
to carve out a unique niche. Complementary use of MS�D
and Rosetta is the most immediate application. Rosetta designs
frequently fail, and success rates of 1% are not uncommon (4, 9).
This is typically not a problem, as hundreds or thousands of
designs are often proposed and tested, but is undesirable for
time-consuming assays or ambitious design targets. A hierarchical
design strategy, either drawing candidate mutations for MS�D
simulations from Rosetta, or screening promising Rosetta designs
for defects with MS�D, may raise success rates. In the longer
term, MS�D has potential for exploring larger sequence spaces of
engineering and biophysical interest. Comparably sized combina-
torial experimental libraries of 60,000 to 160,000 sequences have

already provided profound insights into evolution and design
(3, 70, 75), and larger sequence spaces are well within the reach
of MS�D since the computational cost for a desired precision
scales like the square of the number of sites considered (63).
Furthermore, the ability of MS�D to predict the effect of 15
simultaneous mutations with kcal/mol accuracy is highly relevant
for biocatalyst design, where final optimized designs are often
30 to 40 mutations from the starting sequence (76). Looking
forward, computational protein design is being revolutionized by
deep learning approaches (36–38, 77). Deep learning approaches
typically design a single stable structure or interface, and physics-
based approaches (78) like MS�D can play a complementary
role to deep learning by designing for protein dynamics or
kinetics around that structure, designing for or against multiple
structures, and by designing for unusual ligands or non-natural
amino acids where training data is sparse.

Conclusions
In this work, we applied MS�D predictively to design ribonucle-
ase H variants and to understand the effects of selection on natural
sequence variability. These methods are broadly applicable to
many protein systems and the evolutionary insights are general.
We successfully designed a chimera roughly as stable as AncCcons
utilizing only half as many mutations. We obtained unprece-
dented agreement with experiment for large jumps in sequence
space of up to 15 mutations, obtaining a Pearson correlation
of 0.86 and an RMSE of 1.18 kcal/mol. The space of 32,768
sequences explored in this work is two orders of magnitude
larger than any space previously explored with MS�D and,
together with the treatment of prolines and glycines and the high
accuracy of our results, opens new frontiers for MS�D to explore
large sequence spaces in protein biophysics and design. Finally,
our estimate of the selection temperature serves to corroborate
previous estimates of the selection temperature and opens new
questions about evolution within these large sequence spaces.

Materials and Methods
AncCcons Sequence Design. AncCcons is a designed RNase H sequence
consisting of the most frequent amino acid at each position of the multiple
sequence alignment from the extant sequences in the AncC clade of the RNase
H family (1).

RNase H Expression and Purification. Chimera RNase H gBlock gene frag-
ments were purchased from Integrated DNA Technologies (IDT) and restriction
cloned into the pET-27b(+) expression vector. Site-directed mutagenesis was
used to generate single-point mutants in the ecRNH background. Sequences
were confirmed by Sanger sequencing. RNase H expression and purification
were performed as described (79), and the purity and mass were confirmed as
a single band by SDS/PAGE and mass spectrometry.

Circular Dichroism Spectroscopy. Circular dichroism (CD) experiments were
performed using an Aviv 410 CD spectrometer. Urea melts were performed
using samples containing 0.04 mg/mL protein and various urea concentrations
in 20 mM sodium acetate and 50 mM potassium chloride, pH 5.5. The samples
were equilibrated overnight, and the signal at 222 nm was averaged over one
minute with stirring in a 1-cm path length Starna Cells cuvette at 25 ◦C. Urea
melts were obtained in triplicate, and the data were fitted to a two-state model
with a linear free-energy extrapolation (80).

MS�DCalculations. MS�D simulations calculateΔΔGby taking the difference
between the ΔG of a mutation in the final ensemble (the folded state), and
the ΔG of that same mutation in the initial ensemble (the unfolded state).
MS�D simulations of the folded state were performed starting from the crystal
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structure PDBID: 2RN2 (65) with all three cysteines mutated to alanine. For
the folded ensemble, all 15 mutations were simulated simultaneously. The
unfolded ensemble was broken up into several short pentapeptides centered
on each mutating residue, as done previously (49). In cases where multiple
mutating residues would have been present in the same pentapeptide (e.g.,
R29K, G30Q, and R31H), all mutations were evaluated in a longer peptide
fragment with two non-mutating residues on each end (e.g., R27 through K33).
The effects of mutations in different peptide fragments were treated as additive.

Obtaining converged estimates of the free energy requires many transitions in
alchemical sequence space facilitated by biasing potentials that remove barriers
between alchemical endpoints. Adaptive landscape flattening was used to obtain
the biasing potentials (59); the recently developed least squares approach (49)
was augmented to flatten couplings between sites with intersite  , � , and
! terms as described in ref. 63. After initial flattening runs, 5 parallel 5-ns
simulations followed by 5 parallel 20-ns simulations were carried out to further
refine the biases.

Previously, simulations included a copy of each side chain at a mutation site
with interactions scaled by their respective �, all bonded to a single copy of the
backbone (49). This approach is not viable for glycine and proline mutations
because the parameters and even connectivity of the backbone atoms change.
An alternative perturbation strategy that includes a copy of each whole residue
and breaks proline rings with soft bonds (81, 82) while rigorously avoiding the
artifacts described in ref. 83 was designed specifically for this study and has
been described in detail elsewhere (62).

Multiple alchemical free energy studies have shown that charge-changing
mutations in proteins suffer from lower accuracy (45, 49). When simulations are
treated with particle mesh Ewald (PME) electrostatics (60, 84, 85) and the net
charge of the system before mutation is neutralized with counterions, an additive
correction dominated by the discrete solvent term gives improved results inde-
pendent of simulation box size (60, 86). Free energy estimates were corrected
by the discrete solvent term, which was 0.688 kcal/mol in our simulations.

The sequence space explored in this study is two orders of magnitude larger
than any space previously explored with MS�D (41, 49, 69) and required
development of a new free energy estimator to analyze results (63). The Potts
model estimator, which only includes single site terms hi and pairwise coupling
terms Jij, was borrowed from direct coupling analysis (DCA), which uses it to
predict protein contacts from multiple sequence alignments (87, 88). The Potts
model is defined as

ΔΔG(S) =
∑
i

hi(Si) +
∑
i<j

Jij(Si, Sj), [4]

where the model parameters hi and Jij are fit to the data, in this case, the �
trajectories, by likelihood optimization. The application of the estimator to MS�D
is described in more detail elsewhere (63). While most couplings are small, the
6 couplings larger than 0.2 kcal/mol do make a substantial contribution to the
free energy. Furthermore, the predicted couplings are precise; experimental
measurement of the couplings is subject to larger errors.

SimulationDetails. Simulations were run in the CHARMM molecular dynamics
package (89, 90) using DOMDEC GPU acceleration (91) and the CHARMM 36
protein force field (92). Folded simulations were run in roughly 72 Å boxes, and
unfolded peptides were run in roughly 40 Å boxes, which allowed a 10 Å margin
between the solute and the box edge. Simulation conditions were designed
to mimic the 50 mM KCl and 20 mM CH3COONa and pH = 6.5 experimental
conditions. The simulation volumes were solvated with TIP3P water (93) and
solvated with 70 mM KCl. Each system was neutralized by adjusting K+ and Cl−

ions by opposite amounts. Protonation states of titratable residues at pH = 6.5
were determined by using ProPKA (94) in the folded state and their reference
pKa in the unfolded state. In the folded state, H114 was the only deprotonated
histidine, and D10 and E48 were the only protonated aspartic and glutamic
acids. The folded N and C termini were given standard charged caps (NTER and
CTER), while peptide N and C termini were given neutral CH3CO- and -NHCH3
caps (ACE and CT3). Simulations used PME electrostatics with an interpolation
order of 6, � =0.32 Å−1, a cutoff of 10 Å, and roughly one grid point per

angstrom (60, 84, 85). Van der Waals interactions utilized force switching with
a switch radius of 9 Å and a cutoff of 10 Å (95). Soft core interactions were used
as previously described (59), including this time 1–4 nonbonded interactions as
well (62).

Rosetta Calculations. Rosetta’s cartesian_ddg tool was used to predict ΔΔG,
similar to previous work (30, 96). The reported free energy changes were the
average of 20 independent cartesian_ddg calculations. For each independent
calculation, the relax function was run 20 times, and the lowest energy pose was
used as an input for cartesian_ddg. We found that running the relax function
20 times for each independent cartesian_ddg prediction was critical. Using the
same optimal structure from relax for all 20 cartesian_ddg trials resulted in
higher errors relative to experiment and underestimation of uncertainty. Both
relax and cartesian_ddg used a cutoff of 9 Å, which has previously been found to
improve agreement with experiment when used with the ref2015_cart scoring
function. We note Rosetta reference energies are calibrated for 6 Å cutoffs, and
using a longer cutoff with these reference energies will overstabilize larger amino
acids. Since larger residues are generally less common than would be expected
from stability alone (8), use of this longer cutoff likely partially compensates for
the fact Rosetta is parameterized to reproduce natural amino acid frequencies
rather than stabilities. Future work should give more attention to calibration of
the Rosetta reference energy. Only 14 mutations were considered with Rosetta
because the C terminal deletion V155- was harder to model; it was treated
as V155 for all sequences. (MS�D simulations suggest V155- has a negligible
effect). In order to identify the most stable chimera, the effect of all single mutants
in the ecRNH background was computed, and the best additive combination of
single mutants was chosen as a starting point. From this starting point, the most
stabilizing single mutation was made iteratively until no stabilizing mutations
remained, evaluating all point mutations in each new sequence background. A
total of three mutations were made before convergence.

In addition to designing by computing ΔΔG, Rosetta fastdesign was used
to design an optimal sequence without explicit calculation of ΔΔG. A script
provided by Brian Kuhlman and Andrew Leaver-Fay was used to simultaneously
optimize side chain identity and rotameric state in a relax-like procedure starting
from the ecRNH crystal structure. The standard ref2015 scoring function and
cutoff of 6 Å were used. The consensus sequence of 20 design attempts was
taken as the optimal designed sequence, and only the R31H site showed any
variation between attempts.

Fitness Score. The multiple sequence alignment for the RNase H family
(PF00075) was accessed from the Pfam database on 1 February 2022 (97).
Any of the 18,650 sequences with more than 20 deletions or more than
20 insertions relative to ecRNH were removed from the multiple sequence
alignment, leaving 12,529 sequences. The fitness score was optimized using
asymmetric pseudolikelihood maximization (72) and averaging the Jij and Jji
coupling terms. The last four mutation sites explored in this study are not present
in PF00075 and thus do not affect the fitness score.

Data, Materials, and Software Availability. Potts models used to generate
MS�D results are included in the SI Appendix. MS�D setup and sim-
ulation scripts, Rosetta scripts, and selection temperature scripts are
available at https://github.com/RyanLeeHayes/PublicationScripts/blob/main/
2023RNaseH.tgz (98). Updated MS�D scripts are available in References 62
& 63, and updated MS�D ALF scripts are available at https://github.com/
RyanLeeHayes/ALF (99).
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