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ABSTRACT 

 

The Role of Heterogeneity During Development and Stem Cell Differentiation 

by 

 

Mahdi Golkaram 

 

Heterogeneity is an integral property of many biological responses from molecular 

scales to members of a population of one species. While several recent studies have 

demonstrated the extent of the underlying heterogeneity on different scales, its origin, 

regulation, and consequences have not been thoroughly understood. In this dissertation, first 

we draw a general picture of how heterogeneity accompanies most biological responses from 

molecular to tissue scale, then we uncover the factors that can cause or contribute to non-

uniformity. We explore the regulation of variation of biological systems as well as its 

consequences and illustrate the pivotal role that molecular, cellular and tissue heterogeneity 

plays in survival of an organism. 

First, we seek to elucidate the role of macromolecular crowding in transcription and 

translation. It is well known that stochasticity in gene expression can lead to differential gene 

expression and heterogeneity in a cell population. Recent experimental observations by Tan 

et al. (Nature nanotechnology. 2013 Aug;8(8):602) have improved our understanding of the 

functional role of macromolecular crowding. It can be inferred from their observations that 

macromolecular crowding can lead to robustness in gene expression, resulting in a more 

homogeneous cell population. 
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We introduce a spatial stochastic model to provide insight into this process. Our results 

show that macromolecular crowding reduces noise (as measured by the kurtosis of the 

mRNA distribution) in a cell population by limiting the diffusion of transcription factors (i.e. 

removing the unstable intermediate states), and that crowding by large molecules reduces 

noise more efficiently than crowding by small molecules. Finally, our simulation results 

provide evidence that the local variation in chromatin density as well as the total volume 

exclusion of the chromatin in the nucleus can induce a homogenous cell population.  

Next we incorporate three-dimensional (3D) conformation of chromosome (Hi-C) and 

single-cell RNA sequencing data together with discrete stochastic simulation, to explore the 

role of chromatin reorganization in determining gene expression heterogeneity during 

development. While previous research has emphasized the importance of chromatin 

architecture on activation and suppression of certain regulatory genes and gene networks, 

our study demonstrates how chromatin remodeling can dictate gene expression distribution 

by folding into distinct topological domains. We hypothesize that the local DNA density 

during differentiation accentuates transcriptional bursting due to the crowding effect of 

chromatin. This phenomenon yields a heterogeneous cell population, thereby increasing the 

potential of differentiation of the stem cells. 

Finally, we depict the interplay between microRNAs and mRNAs and how this network 

can regulate human fetal brain development. microRNAs (miRNAs) regulate many cellular 

events during brain development by interacting with hundreds of mRNA transcripts. 

However, miRNAs operate non-uniformly upon the transcriptional profile with an as yet 

unknown logic. Shortcomings in defining miRNA-mRNA networks are limited knowledge 

of in vivo miRNA targets, and their abundance in single cells. By combining multiple 

complementary approaches: AGO2-HITS-CLIP, single-cell profiling, and innovative 



 

 xi 

computational analyses using bipartite and co-expression networks, we show that miRNA-

mRNA interactions operate as functional modules that often correspond to cell-type 

identities and undergo dynamic transitions during brain development. These networks are 

highly dynamic during development and over the course of evolution. One such interaction 

is between radial glia-enriched ORC4 and miR-2115, a great ape specific miRNA, which 

appears to control radial glia proliferation rates during human brain development.  
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CHAPTER 1 

 

Overview 

 

For decades, biologists have been studying living organisms by identifying the average 

behavior of a population in different conditions. Often, sampling from a population several 

times was a convincing approach to describe the average changes between conditions and 

thus to neglect the inherent variations present in different biological systems. For many 

reasons, namely a lack of interest in the intrinsic variations across the individual members of 

a biological system, the absence of quantification tools with single cell resolution, the void 

of rigorous statistical methods to decipher noisy information in order to render a clear 

picture from one side, and the vast amount of information encoded in the population scale 

measurements discouraged researchers from thoroughly investigating the heterogeneity in 

the biological systems.  

By successful completion of the Human Genome Project on 2003, researchers took the 

first step toward determining the sequence of nucleotide base pairs that make up human 

DNA, identifying and mapping all of the genes of the human genome. This was proceeded 

with the 1000 Genome Project, launched on 2008 with a global interest to establish by far 

the most comprehensive catalogue of human genetic variation. In this project, scientists 

aimed to sequence the genomes of at least one thousand anonymous participants from a 
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variety of ethnic groups from all over the world. This can be considered to be the first 

pivotal study that attracted the attention of the scientific community toward the variations 

embedded in human biology. Namely, discovering thousands of nucleotide variations 

between different individuals (also known as single nucleotide polymorphism or SNPs), 

enabled scientists to map the genetic information of human population to different traits such 

as eyes and skin color, bone structure, height, as well as variable propensity to certain 

diseases such as Alzheimer`s disease, certain types of cancer, diabetes, etc.  

Understanding the structural variants such as gene copy number variation, gene 

inversion, short and long repeats, etc. and scrutinizing databases such as 1000 Genome 

Project have had a dramatic contribution to our understanding on why certain ethnicities are 

more likely to acquire certain disease. Furthermore, investigating short tandem repeats 

(STR) – short sequences consisting of a unit of two to thirteen nucleotides repeated hundreds 

of times in a row on the DNA strand - has been referred to as a must in forensic analysis. 

Forensic science takes advantage of the population`s variability in STR lengths, enabling us 

to distinguish one DNA from another.  

Aside from the encoded variability in our genome, how genes are expressed can entail 

drastic variability which is referred to as cellular noise. The central dogma of molecular 

biology states that genes are transcribed into RNAs and RNAs are translated into proteins. 

Today our knowledge of molecular systems biology stipulates that the path from genotype to 

phenotype is much more complex. Indeed, due to several evolutionary devised mechanisms, 

cells utilize several layers of regulation, so that the final response can significantly diverge 

from this path. For instance, not all genes are transcribed simultaneously but presence of cis- 

(distant regulatory sites on one DNA molecules that are brought together to activate or 
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inactivate the expression of a gene) and trans- (regulation by binding and unbinding of 

regulatory elements to the DNA strand) regulatory elements can dictate gene expression.  

One might date the interest in heterogeneity in biology back to late 20th century, but it is 

fair to call the seminal study by Elowitz et al. 1 to be the hallmark of scientific curiosity in 

single cell variability. Elowitz and his colleagues, in a bottom-up approach, demonstrated 

that due to the underlying stochasticity of gene expression and protein translation, an 

isogenic (having the same or similar genotype) population of cells exhibit high level of 

variability that can propagate through out the tissue or in some cases the organism. As it will 

be discussed in Chapter 2, cellular noise is often investigated in the framework of intrinsic 

and extrinsic noise. While the precise definition of intrinsic versus extrinsic noise can 

depend on the context, generally intrinsic noise refers to variation in regulation of a certain 

gene within one cell and extrinsic noise refers to differences in the regulation of the same 

gene between cells. The factors that can contribute to intrinsic noise include low copy 

number, particle diffusion, noise propagation in a reaction network e.g. noise amplification 

in signaling networks. Extrinsic noise arises from cellular age, cell cycle (mitosis and 

meiosis), inter cellular signaling gradient, local micro-environment, organelle distribution, 

etc. Therefore, Chapter 2 describes the causes and the contributing factors to cell-to-cell 

variability. We will show how both cis- and trans- regulatory elements can regulate gene 

expression variation by limiting the diffusion of transcription factors (molecules, mainly 

proteins, that can activate one or more genes). We also will demonstrate that crowdedness of 

the cellular environment can dramatically influence the diffusion of particles and thus 

transcriptional variation. 

Recent technological advancement has enabled us to study biological systems at single 

cell resolution. Rapid improvements of RNA and protein quantification methods within the 
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last two decades provided researches the opportunity to study the behavior of several genes 

in parallel. The introduction of high throughput messenger RNA (mRNA) sequencing tools 

such as microarray, and next generation sequencing methods 2 such as RNA-seq, ChIP-seq, 

ATAC-seq, methylation-seq, etc. facilitated massively parallel identification of several 

layers of regulation on a population scale.  

Besides the traditional staining methods that have been used to show the variability of 

the expression of one gene in different cells in both mRNA and protein levels, methods such 

as single molecule fluorescent in situ hybridization (smFISH), and single cell quantitative 

polymerase chain reaction (sc-qPCR) are two example methods that are designed to 

accurately quantify gene expression at single cell resolution. Despite the applicability and 

accuracy of these methods, the introduction of single cell RNA-seq (scRNA-seq) by Tang et 

al. on 2009 3 revolutionized our understanding of the biology of single cells. Within the last 

decade, different researchers have been able to modify scRNA-seq such that today we are 

able to analyze the transcriptome of single cells of a population of thousands of cells in 

parallel fast and with relatively low cost (Fig. 1.1).  

 

 

Figure 1.1. The evolution of single cell RNA sequencing 
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In Chapter 3, we explore the consequences of population heterogeneity and explain the 

context in which heterogeneity can be fatal, essential, or provide a selection advantage. The 

main focus of this chapter is to address the role of heterogeneity during early embryonic 

development. Embryonic stem cells (ESCs) are pluripotent stem cells (i.e. they can divide, 

differentiate and give rise to almost all cell types of a species) derived from the inner cell 

mass of blastocyst, an early-stage of pre-implantation embryo. Embryonic stem cells of the 

inner cell mass can differentiate into three primary germ layers: ectoderm, endoderm, and 

mesoderm. Ectoderm forms the exoskeleton, mesoderm develops into organs, and endoderm 

forms the inner lining of organs. For example, ectoderm (outer layer) includes central 

nervous system and neurons of brain, and epidermal cells of skin, endoderm (middle layer) 

includes bone tissues, blood cells, and kidney cells, and finally endoderm (internal layer) can 

give rise to lung, muscle, and stomach cells (Fig. 1.2). We will show how the local density 

of chromatin (the material of which the chromosomes of organisms other than bacteria i.e. 

eukaryotes are composed which includes DNA, RNA, proteins and histones) alters during 

early development and how this can contribute to population heterogeneity. We will show 

the factors that can potentiate the differentiation capabilities to one cell type over another. 
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Figure 1.2. Formation of the three primary germ layers: Ectoderm, Endoderm, and Mesoderm. 

 

In Chapter 4, we focus on one of the three primary germ layers, ectoderm layer and 

mainly brain cells. We will discuss the development of brain from fetal to adult stages and 

what roles heterogeneity plays in this context. In week 3 of human development the neuro-

ectoderm appears and forms the neural plate along the dorsal side of the embryo. Two 

distinct cell types stem from neural plate: neurons and glial cells of the central nervous 

system (CNS). While glia cells can proliferate and replenish their peers, neurons once fully 

matured will no longer divide (i.e. they are post-mitotic). The brain is a diverse collection of 

cell types. Even though most brain cells can be categorized as either neuron or glia, each 

category can be further divided into a dozen distinct cell types. For example, glia cells 

comprise oligodendrocytes, astrocytes, ependymal cells, Schwann cells, microglia, and 
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satellite cells each of which has a critical function whose absence can be, if not fatal, leading 

to certain disease. As a matter of fact, the distribution of these cell types across different 

brain regions is highly regulated. Hence this chapter focuses on the consequences of cell type 

variability and heterogeneity in an organism and depicts how proper function of a species 

depends on the underlying variability.  

In order to thoroughly understand the regulation of the distribution of each cell type in 

early brain development, we will introduce a new layer of regulation by small non-coding 

RNAs. As highlighted earlier, the central dogma of molecular biology can no longer fully 

capture the complexity of living organisms in that it refuses to acknowledge the other 

regulatory elements such as post transcriptional and translational modifications (adding or 

removing small molecules to mRNAs or peptides which can alter the cellular response), 

alternative splicing (tissue dependent mRNA post processing by which segments of the 

transcripts are spliced out), epigenetic markers (methylation, chromatin modification, etc.) 

and non-coding RNAs. Later constructs a large family of RNAs that even though the 

corresponding gene is encoded in our genome and can be transcribed into RNAs under 

certain conditions, there won`t be any subsequent translation of these RNAs into proteins. 

Namely, small interfering RNAs (siRNAs) – evolutionarily acquired by some virus to inhibit 

the expression of certain genes in the host cell, small nuclear RNA (snRNA), small nucleolar 

RNA (snoRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and miRNA (microRNA) 

(Fig. 1.3).  
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Figure 1.3. RNAs divide into two major classes of messenger RNAs and non-coding RNAs. 

Several non-coding RNAs have been discovered and demonstrated to participate in gene 

regulation. 

 

miRNAs have been shown to be involved in several biological functions and diseases such 

as regulating several developmental processes, cell cycle, metabolism, which explains their 

involvement in cancer, mental disorders, etc. miRNAs are short (~22 nucleotides) sequences 

that target mRNA transcripts by recognizing regions that match a segment of their own (a 

segment of 7-8 nucleotides i.e. miRNA response element or MRE) and hybridizing to target. 

This can lead to inactivation of translation of the target mRNAs into proteins. In Chapter 3 

we elaborate on the functions of miRNAs and illustrate how miRNAs contribute to tissue 
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heterogeneity. We will construct networks of mRNAs and miRNAs and by recruiting state 

of the art computational tools will reveal the information encoded in the miRNA-mRNA 

regulatory network that can shed light on modulation of cell-type-specificity of developing 

human brain.  

 

References: 

 1.  M. B. Elowitz, A. J. Levine, E. D. Siggia, P. S. Swain, Stochastic gene 

expression in a single cell. Science 297, 5584 (2002). 

 2. T. van der Straaten. Next‐Generation Sequencing: Current Technologies and 

Applications. Edited by J. Xu. ChemMedChem. 10, 2 (2015). 

 3. F. Tang, et al. mRNA-Seq whole-transcriptome analysis of a single cell. 

Nature methods 6.5, 377 (2009). 
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CHAPTER 2 

 

Macromolecular crowding regulates the gene expression profile by 

limiting diffusion 

 

Introduction:  

Even in an isogenic cell population under constant environmental conditions, significant 

variability in molecular content can be observed. This variability plays an important role in 

stem cell differentiation 1, cellular adaptation to a fluctuating environment 2, variations in 

cellular response to sudden stress 3, and evolutionary adaptations 4. However, it can also be 

detrimental to cellular function and has been implicated as a factor leading to dangerous 

diseases such as haploinsufficiency 5, cancer 6, age-related cellular degeneration, and death 

in tissues of multicellular organisms 7.  The variability stems both from stochasticity inherent 

in the biochemical process of gene expression (intrinsic noise) and fluctuations in other 

cellular components (extrinsic noise), namely, stochastic promoter activation, promoter 

deactivation, mRNA, and protein production and decay, as well as cell-to-cell differences in, 

for example, number of ribosomes 8-13. One consequence of biological noise in gene 

expression is transcriptional bursting, which is observed in both prokaryotes 14 and 

eukaryotes 12-15. Transcriptional bursting can bring about a bimodal distribution of mRNA 

abundance in an isogenic cell population 16-18. Therefore, understanding critical factors that 
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influence noise in gene expression can provide us with a new tool to tune cellular variability 

19-24. 

The cellular environment is packed with proteins, RNA, DNA, and other 

macromolecules. It is estimated that 30-40% of the cell volume is occupied by proteins and 

RNA 25. Macromolecular crowding has been studied extensively in the last few decades 26, 27 

and has been ingeniously utilized for numerous medical purposes 28-30. It is well established 

that macromolecular crowding can reduce diffusion rates and enhance the binding rates of 

macromolecules 31, which can change the optimal number of transcription factors 32, the 

nuclear architecture 33, and the dynamical order of metabolic pathways 34.  

It is known that manipulating the binding and unbinding rates (kon and koff) can affect 

the likelihood of observing transcriptional bursting 42, 43. Higher values of kon and koff lead to 

a bimodal distribution and transcriptional bursting, while keeping the basal (i.e. in the 

absence of the bursts) protein abundance constant. It is also known that macromolecular 

crowding can alter diffusion and reaction rates 44. Together, it is implied that 

macromolecular crowding can have an impact on protein production in a cellular 

environment.  

In a previous study 35, crowding has been modeled by the direct manipulations of 

reaction rates using experimentally fitted relations. In contrast, we model macromolecular 

crowding explicitly by altering the effective diffusion rate of transcription factors. This 

approach is similar to recent studies performed by Isaacson et al. 46 and Cianci et al. 51; 

however, we also consider the effects of the artificial crowding agents, in order to capture 

analogous experimental conditions performed by Tan et al. 35. 

It has been observed experimentally 35 that macromolecular crowding can influence cell 

population homogeneity and gene expression robustness. In this experiment 35, the influence 
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of the diffusion of macromolecules on transcriptional activity is studied by synthesizing 

artificial cells in which inert dextran polymers (Dex) assume the role of the artificial 

crowding agent in the system. To capture the impact of the size of the crowding agent, the 

experiments are performed on two different sizes of Dex molecules, here referred to as Dex-

Big and Dex-Small. It can be inferred from this experiment that a highly crowded 

environment results in a narrow distribution of fold gene-expression perturbation, suggesting 

that molecular crowding decreases the fluctuation of gene expression rates due to the 

perturbation of gene environmental factors.  

 However, the mechanism by which cellular crowding can control gene expression has 

not been elucidated. We demonstrate through modeling that macromolecular crowding 

reduces the noise (kurtosis of the mRNA distribution) in gene expression by limiting the 

diffusion of the transcription factors. This increases the residence time of the transcription 

factor on its promoter, thereby reducing the transcriptional noise. As a consequence, unstable 

intermediate states of gene expression pattern will diminish. Furthermore, our model reveals 

that small crowding agents reduce noise less than large crowding agents do, which is in 

agreement with the experimental observations 35. Finally, our simulation results provide 

evidence that local variation in the chromatin density, in addition to the total volume 

exclusion of the chromatin in the nucleus, can alter gene expression patterns. 

 

Results: 

A simple and well-studied model was employed to simulate transcription and 

translation. The model includes: a) one transcription factor (TF) placed randomly in the 

simulation domain, b) TF diffusion in order to find the gene locus, c) binding and unbinding 

of TF to its promoter, d) mRNA production, and destruction and e) protein production and 
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destruction. This model and its corresponding parameters were adopted from Kaeren et al. 8 

for the sake of comparison. (see Methods.)  

We assume that the initial concentrations of mRNA and the target protein are zero, and 

use spatial stochastic simulation to investigate the gene expression pattern, a model that has 

been widely used and verified by both theoretical 36-39 and experimental 39, 40 observations. 

To account for crowding, we developed a modified next subvolume method (NSM) to 

approximately solve the reaction-diffusion master equation (RDME) 41 capable of explicitly 

treating the crowding agent amount, distribution, and interactions (see Methods).  

The NSM method was modified so that the mesoscopic diffusion coefficient is linearly 

dependent on the crowding density in the destination voxel. In our model, the 

macromolecular crowding stems from two primary sources: chromatin structure and 

artificial crowding agents, akin to the Tan et al. experiment 35. We utilized the 3-

dimensional structured illumination microscopy data from 50 to model the chromatin 

structure. To account for chromatin structure, the crowding density in each voxel was 

assumed to be proportional to DAPI (4',6-diamidino-2-phenylindole) intensities in that 

voxel, similar to the method introduced by Isaacson et al. 46. To account for different levels 

of crowding, we added artificial crowding agents distributed randomly in our simulation 

domain. We define the crowdedness parameter θ as the probability for each voxel to be 

occupied by an artificial crowding agent. Thus, we are able to explicitly account for different 

amounts of crowding in our simulation domain by changing θ. To interpret  correctly, let`s 

consider the extreme case where  = 1. In this case all voxels would be occupied by one and 

only one crowding agent. Then, crowding reduces the diffusion coefficient depending on the 

size of the crowding agent (90% reduction for a large crowder vs. 40% reduction for a small 

crowder.). Note that under no condition would any voxel be completely blocked (i.e. 100% 
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crowded). For any other , approximately N crowding molecules are randomly distributed 

in N voxels, where N is the total number of the voxels. A convergence study demonstrates 

that our conclusions are independent of voxel size for a sufficiently small mesh, see 

(Supplementary Fig. 2.4). 

To validate the model, the simulation was run for 1000 minutes with the same 

parameters as in 8 while θ = 0, i.e. with no artificial crowding agent or chromatin present. As 

in 8, this resulted in transcriptional bursts. A direct quantitative comparison is not trivial due 

to the fact that our model is spatially inhomogeneous (Supplementary Fig. 2.2). 

Next, we included the artificial crowding agent and the chromatin in our model and 

investigated mRNA abundance in our simulation domain for low and high θ values (θ = 0% 

vs. θ = 100%). It can be seen that the system switches more frequently between active and 

inactive states for low θ values than it does for high θ values (Figs. 2.1a and b). We 

hypothesized that adding the artificial crowding agent limited the diffusion of the TF. Thus, 

the TF tends to stay in either of the two stable states (active or inactive states) for a longer 

period of time. This increase in the residence time of the TF on the promoter results in 

reduced transcriptional bursting. 

Next we studied the effect of the artificial crowding agent on biochemical rates, by 

comparing the distributions of active state duration (ton) for 3200 trajectories of 1000 min 

simulations (Figs. 2.1c and d). Fig. 2.1c and d show a significant (p-value < 0.001) decrease 

in ton for θ = 100%. Likewise, given ton + toff  = 1000 min, we observe a significant increase 

in toff for θ = 100%. Therefore, using gene activation rate constant k+ ~ < toff>-1 (<.> denotes 

the mean), our simulation results suggest a 12% decrease in k+ (in agreement with 65) and a 

23% increase in the deactivating rate constant (k-). Our model predicts a smaller reduction in 

k- compared to 65, and thus, predicts a 29% decrease in equilibrium constant (Keq=k+/k-) 
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whereas 65 predicts an increase in Keq. This discrepancy might be due to the assumption in 65 

that the association rates are always diffusion limited. It would be interesting to repeat 

 

Figure 2.1. Macromolecular crowding can increase the transcriptional bursting by limiting the 

diffusion and increasing the residence time of TF on the promoter. a) gene expression dynamics in the 

presence of chromatin as the only volume exclusion factor. b) gene expression dynamics when a large crowding 

agent (e.g. Dex) is added. c) comparison between the distributions of active state duration (ton) for θ = 0% vs. θ 

= 100% (*** p-value < 0.001). d) qq-plot of distributions of ton for θ = 0% vs. θ = 100%. Significant deviation 

between quantiles of ton distributions (fitted red line) and the Null distribution implies a reduction in average ton. 
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e) effective two states well-mixed gene model. c and d are obtained by 3200 trajectories of 1000 min 

simulations. f) the power spectrum of mRNA obtained by the spatial model is in agreement with a well-mixed 

model using the effective rate constants. 

similar simulations using particle level methods such as molecular dynamics to obtain a 

more precise estimate of the change in the equilibrium constant. Our finding is in qualitative 

agreement with the experimental observation that a crowded condition of heterochromatin 

can repress gene expression 49 (Fig. 2.1e). 

Van Paijmans and Ten Wolde 60 showed that in general the abovementioned 

biochemical system can be reduced to a well-mixed model if there is a clear separation of 

time scales between rebinding and binding of molecules from the bulk, which can be 

deduced from the power spectrum of the mRNA expression. Briefly, a characteristic knee in 

the low-frequency regime (corresponding to Markovian switching at long times), which is 

well separated from the regime corresponding to the rebindings at higher frequencies renders 

it possible for a spatially resolved biochemical system to be reduced to a well-mixed system. 

To explore whether our system can be reduced into a well-mixed system, we used the 

effective biochemical rate constants obtained by measuring the transcriptional activity (Fig. 

2.1e). By comparing the power spectrum of the spatial model for the special case when θ = 

100% with the corresponding well-mixed model, we conclude that once the effective 

biochemical rate constants are measured using our spatial model for a given configuration 

(i.e. distinct crowding size and distribution), spatial model can be reduced into a well-mixed 

model (Fig. 2.1f). Note, however, as shown later in this study, these biochemical rate 

constants depend strongly on the size and the distribution of the crowding agent molecules, 

and the local chromatin density. Hence, a spatial model is required to measure these 

constants. 
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To analyze the consequences of macromolecular crowding on a cell population, we 

simulated 16000 isogenic cells in an analogous situation for different values of θ. We 

observed (Fig. 2.2a) that while low θ values can diversify the cell population and result in  
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Figure 2.2. a) A large crowding agent can homogenize a cell population effectively. Adding a crowding agent 

diminishes the probability of the intermediate states (i.e. 100<mRNA<400) and results in a more uniform cell 

population that lies in either of the two stable states (p-value < 0.01). The results illustrate a strong correlation 

between the concentration of the crowding agent and the kurtosis of the distribution of mRNA abundance. Each 

distribution represents 16000 data points and was obtained using kernel-density estimate (KDE) 52. b) A small 

crowding agent is incapable of producing a uniform cell population (p-value > 0.01). Intermediate states remain 

intact after crowding the cells by a small crowding agent. Each distribution represents 16000 data points and 

was obtained using kernel-density estimate (KDE). The histograms show the total number of the cells with 

certain expression levels. Here only histograms for θ = 100%, large crowding agent (a) and θ = 0% (b) which 

provide the least and the most intermediate states are shown. σ1 and σ2 are the approximate standard deviation 

corresponding to the first and the second mode, respectively. 
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intermediate states (two peaks correspond to two stable states, i.e. active and inactive states), 

with higher values of θ we observed a more homogeneous population (no intermediate 

states). This observation is in agreement with recent experimental results 35. In this situation, 

the average number of mRNA is close to the number of mRNA obtained when noise is 

removed from gene expression (deterministic models). Our simulation results show that 

adding the crowding agent to the simulation domain replaces the intermediate states by two 

more stable states. The two stable modes (mRNA abundance = 50 and 500) are intact after 

crowding the simulation domain (Fig. 2.2a). It can be inferred from our linear model that 

there is a statistically significant correlation between kurtosis of the mRNA distribution and 

the amount of the crowding agent (p-value < 0.01).  

We should stipulate that the kurtosis values define the noise in our system. Low kurtosis 

values correspond to a cell population in which mRNA expression in each cell is near either 

the first or the second peak (i.e. ~50 and 500). Conversely, high kurtosis corresponds to a 

cell population in which certain cells have mRNA expression levels that lay between the 

peaks (i.e. intermediate states). Likewise, a more homogenous cell population can be 

obtained by removing the intermediate states (i.e. higher kurtosis value and narrower 

distributions or lower noise). 

It has been observed experimentally 35 that the larger crowding agents (Dex-Big) can 

contribute robustness to the gene expression pattern more effectively than the smaller 

crowding agents (Dex-Small). To examine whether our model would reproduce this 

observation, we repeated the previous simulations using smaller crowding agents (~2 times 

smaller by volume fraction). Larger crowding agents occupy more volume in a voxel and 

reduce the diffusion coefficient more effectively than smaller crowding agents (90% 
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reduction in the diffusion coefficient for larger crowding agents compared to 40% reduction 

for smaller crowding agents). However, by occupying more voxels (~2 times as many voxels 

as in the larger crowding agent case), a similar level of volume exclusion can be achieved by 

smaller crowding agents. Note that in order to assess the effect of the artificial crowding 

agent size, one should compare the kurtosis of mRNA distributions for θ values that 

correspond to similar total volume exclusion for Dex-Big vs. Dex-Small (e.g. Dex-Big and θ 

= 60% vs. Dex-Small and θ = 100%). 

Our diffusion-limited gene expression model is capable of reproducing the same 

experimental observations (Fig. 2.2b). Our simulation results suggest that the intermediate 

states do not vanish, despite adding a substantial amount of small crowding agents. Our 

linear regression model illustrates a small correlation between the kurtosis of the mRNA 

distribution and the amount of the crowding agent (p-value > 0.01). Therefore, we can 

conclude that, in agreement with experimental observations, our model shows that the 

smaller crowding agents cannot homogenize the cell population effectively. This is not 

surprising since small molecules exist in the cellular environment in high concentrations but 

their impact on gene expression is negligible compared to histones, mRNAs and regulatory 

proteins.  

Next, we analyzed the impact of chromatin reorganization, to understand how the local 

volume exclusion of chromatin can influence the gene expression patterns of specific genes. 

Three different genes were selected (Genes 1-3) to account for super dense (Gene 1), dense 

(Gene 2) and sparse chromatin area (Gene 3). Identical model and simulation parameters 

were used for all three genes to control for other effects except the volume exclusion of 

chromatin. By comparing the mRNA distributions of cell populations consisting of 16000 

cells, our simulation results suggest that diffusion-limited gene expression can alter mRNA 
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production in a cell population (Fig. 2.3). Here, the two-sample (all compared to Gene3) 

Kolmogorov-Smirnov (KS) test (Bonferroni-adjusted) was used to compare different mRNA 

distributions and a statistically significant difference was obtained (p-value < 0.01).  

To demonstrate that macromolecular crowding reduces the gene expression noise 

primarily by volume exclusion, thus limiting the diffusion, we repeated the simulations in 

the absence of the crowding agents but using different diffusion coefficients. This was 

implemented by replacing the diffusion coefficients (D) with the effective diffusion 

coefficient (D*) (see Methods). Each data point (X, Y) in Fig. 2.4 was found by running the 

simulation for different D values (X) and evaluating the kurtosis of mRNA distributions. 

Then the corresponding D* values (Y) were obtained by Eq 7. We hypothesized that if 

macromolecular crowding is capable of reducing the noise of gene expression primarily by 

slowing down the diffusion of TF, we should expect to see a linear fit in our data points with 

the hypothetical line (Fig. 2.4, red dotted line). As shown in Fig. 2.4 our simulation results 

support this hypothesis for a physical range of  values (0-100%), for a large crowding 

agent. 

 As previously discussed, the size of the crowding agent plays a vital role in obtaining a 

homogeneous cell population. By comparing the kurtosis values of the mRNA distributions 

obtained using a large crowding agent ( = 60%) vs. a small crowding agent from Fig. 2.2 ( 

= 100%), where the total volume exclusion is similar, different phenotypes can be observed 

(kurtosis value of ~10 vs. ~4). Furthermore, the position of the gene within the chromatin 

matters. It can be inferred that although the overall volume exclusion effect is similar for all 

three genes, the local chromatin density can alter the time a TF requires to reach its target. In 

sum, our study suggests that macromolecular crowding can influence the gene expression 

noise significantly, both locally and globally (Fig. 2.3, yellow curve, p-values < 0.01).  
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Figure 2.3. Effect of the chromatin structure on the gene expression pattern. Not only does the 

chromatin structure reduce the diffusion rate due to the macromolecular crowding effect, it also can determine 

the transcription pattern of different genes due to their location. Each distribution is compared to gene 3 (red 

curve) using Kolmogorov-Smirnov test (Bonferroni-adjusted for multiple comparisons). p-values show 

significant difference between distributions (each distribution is obtained by 16000 data points). Histograms 

show the total number of the cells with certain Gene2 expression levels, indicating the intermediate states for 

this gene. 

 

Discussion:  

A significant portion of cell volume is occupied by proteins, RNAs and other 

macromolecules. To obtain a complete understanding of the pattern of gene expression, a 

comprehensive understanding of the impacts of macromolecular crowding is essential. In 

this study, we have proposed a simple model similar to that of 46 to account for 

macromolecular crowding in the cellular environment. We utilized the NSM method for 

simulation of the reaction-diffusion master equation, to include macromolecular crowding. 

We have avoided any direct manipulation of reaction rates to account for macromolecular 



 

 23 

crowding 35. In addition, our method facilitates an explicit treatment of macromolecular 

crowding, in that geometric dependency of chromatin structure on gene expression is 

addressed, and interactions between the crowding agent and different molecules can be 

considered. This provides a platform to assess how the chromatin structure impacts gene 

expression. Our model accounts for the addition of the artificial crowding agent and its size, 

and demonstrates that macromolecular crowding can homogenize a cell population by 

limiting the diffusion of TFs. Therefore, it improves our understanding of the underlying 

sources of gene expression noise from that of the earlier models 35, 46.  

Our model predicts that a large crowding agent (Dex-big), reduces the diffusion 

coefficient of TF more effectively than a small crowding agent (Dex-small), in agreement 

with the experimental observations by Tan et al. Likewise, it can be inferred from other 

experimental observations by Phillies et al. 69 that the molecular weight and concentration of 

crowding molecules can change the diffusion coefficient considerably, whereas the size of a 

TF has insignificant impact. Finally, although Muramatsu and Minton 68 observed an inverse 

correlation between the size of the crowder and that of the diffusion coefficient, Phillies et 

al. 69 has shown the opposite (this controversy is discussed in 68 as well). 

It is worth noting that Isaacson et al. 46 used spatial stochastic simulation to show that 

the first passage time (the time required for TF to find the gene locus) decreases to a 

minimum at first, and then increases again as the volume exclusion due to chromatin 

increases further. That study suggests that crowding can accelerate or decelerate the 

diffusion depending on the density of the crowding agent, leading to faster or slower 

chemical kinetics, respectively. Our study, on the other hand, demonstrates the mechanism 

by which crowding can reduce the transcriptional noise of gene expression. For an intuitive 

understanding of the gene expression noise reduction mechanism, first note that as shown by 
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van Zon et al. 47, TF diffusion is the dominant source of gene expression noise. Also, 

macromolecular crowding can effectively partition the available space into smaller 

compartments, which not only linearizes the input–output relation, but also reduces the noise 

in the total concentration of the output. In fact, by partitioning the space, macromolecular 

crowding isolates molecules, as a result of which the molecules in the different 

compartments are activated independently, thereby reducing the correlations in the gene 

expression switch. Consequently, this removal of correlations can lower the output noise 48. 

We suggest the following function for the macromolecular crowding, by which a uniform 

cell population can be obtained. By comparing Figs 2.1a and b, it can be inferred that 

macromolecular crowding can increase the average residence time of TF on its promoter. As 

a consequence, transcriptional bursts are attenuated which leads to elimination of the 

intermediate states in the mRNA distributions. 

Our findings demonstrate the importance of spatial simulations to fully capture several 

experimental observations. Morelli et al. 65 studied the effect of macromolecular crowding 

on a gene network by rescaling the association and dissociation constants into a well-mixed 

model. Here, on the other hand, we provide strong evidence (Figs. 2.2,3 and Supplementary 

Fig. 2.4) that the impact of crowding structure and distribution cannot be fully understood 

using well-mixed models. 

Furthermore, our model sheds light on how to develop engineered cells to achieve 

advantages in gene expression, cellular computing and metabolic pathways 35. Investigations 

of other epigenetic factors show that DNA methylation and chromatin structure may be 

linked to transcriptional activity, both in single cells and across populations. Gene silencing 

by histone modification or formation of repressed chromatin states (heterochromatin) are 

good examples of how nature has exploited macromolecular crowding and inherent 
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stochasticity in gene expression to display new traits 49. Our methodology can be utilized to 

further assess heterochromatin and euchromatin functional differences at a reasonable 

resolution. 

 

Figure 2.4. Impact of the diffusion-limited gene expression on the cell population diversity (D* is 

the effective diffusion coefficient). The red dotted line shows the hypothetical line that explains the variability 

in a cell population completely as a result of diffusion-limited gene expression. The blue line is a logarithmic fit 

to our simulation results and supports the hypothesis of robust gene expression as a result of diffusion-limited 

gene expression (a large crowding agent was used). 

 

 

Methods: 
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We used a well-known, simple model to describe transcription and translation 8.  

Transcription factor (TF) was added to that model to account for spatial effects of TF 

diffusion in a crowded environment. Given a cubic domain in which protein production 

takes place, gene expression begins by TF diffusion and finding the locus of the gene of 

interest. Upon binding/unbinding of TF to/from its promoter, the gene switches between 

active and inactive states. Without loss of generality, the gene of interest is placed in the 

center of a box with a characteristic length L. One and only one TF can activate the 

promoter.  Thus, the chemical system of protein production can be written as: 

 

 

 

 

 

 

The simulation parameters were adopted from 8 for the sake of comparison with non-

spatial methods (Table 2.1).  
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Table 2.1. Model Parameters 

 

 

Simulation Algorithm 

The inherent stochastic characteristics of gene expression, along with the failure of 

deterministic models to produce transcriptional bursting, lead us to consider a spatial 

stochastic model. A modified next subvolume method (NSM) 41 was used to simulate the 

stochastic reaction-diffusion system, using the implementation in PyURDME on the 

MOLNS software platform 57. We developed the following modifications to account for 

crowding (for access to the software implementation, see URL in 58). 

Inside the cell, the chromatin, histones, etc., are crowding the nucleus. Note that we are 

ignoring dynamic addition and reduction of newly synthetized proteins (P) and mRNAs (M) 

since they are negligible when compared to the chromatin. Given a domain which is 

discretized into N uniform voxels, each voxel is occupied with the artificial crowding agent 

with a probability θ. The diffusion between two adjacent voxels is linearly dependent on the 

crowding density of the destination voxel, consisting of the chromatin and the artificial 

crowding agent. This model assumption is analyzed in detail and compared with the 

available experimental data in Supporting Information (Supplementary Fig. 2.1). This model 

does not explicitly take into account lock-in effects, that crowding in the origin voxel may 

affect the diffusion rate to adjacent voxels, or that the effective reaction rate in a voxel may 
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depend on the local crowding and configuration of the chromatin and crowders. For instance, 

Friedman 66 showed that hydrodynamic effects cause a 15% reduction in the computed rate 

constant for neutral species or ions in water. The impacts of the electrostatic forces have 

been widely studied and considered primarily in molecular level simulations 67. Specific 

chromatin configurations can affect the hopping rate of particles differently. Namely, even in 

low chromatin concentrations, distinct configurations might be able to fully trap the particle 

and reduce the hopping rates significantly. However, we believe that our model is 

sufficiently accurate to study the qualitative effects of crowding.  

It is worth mentioning that our model ignores any non-specific interaction between DNA 

and TF. Paijmans and ten Wolde 60 showed quantitatively that even in the presence of 1D 

sliding along the DNA, which makes rebinding events not only more frequent but also 

longer, the effect of diffusion can still be captured in a well-stirred model by renormalizing 

the rate constants. However, renormalization does not account for the architecture of 

chromatin and how it can influence the rate constants. Although several studies suggest that 

such non-specific interactions can help TF to slide on the DNA strand (facilitated diffusion) 

to find the target faster 61, 62, recent work by Wang F et al. 63 provides evidence that the 

promoter-search mechanism of E. coli RNAP is dominated by 3D diffusion. Moreover, in 

another work 64 the sliding length of TF on DNA is measured to be ~30-900 bps. In our 

simulation, on the other hand, each voxel contains ~Mbps and therefore, on the length scale 

of our model, facilitated diffusion is insignificant.  

The size of the crowding agent is modeled by the parameter i. We assume that smaller 

crowders reduce the diffusion less than large crowders. In our simulations we let i = 0.6 for 
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smaller crowding agents, i = 0.1 for larger crowding agents, and i = 1 when no crowding 

agent is present. Thus, the diffusion rate into voxel i is computed as  

 

 

where ci models the crowding due to the chromatin in voxel i. It is unknown exactly how 

the concentration of chromatin affects the effective diffusion, but as a simple model we 

assume that 

 

The diffusion rate thus depends linearly on the DAPI intensity, and we assume that the 

voxel with the highest intensity of DAPI is fully blocked. For simplicity we assume that 

neither the chromatin nor the crowding agent diffuses between voxels. 

The TF molecule is initially placed randomly in the domain. During the simulation it will 

diffuse to the gene locus and activate transcription. Recent studies 46, 51 have proposed more 

complicated relations to obtain the effective diffusion coefficient in the presence of 

macromolecular crowding. Here, we use a linear relation to calculate the TF diffusion 

coefficient as a function of the total crowdedness (i.e. the effects of both chromatin structure 

and artificial crowding agents included). This simple relation can capture physiologically 

relevant trends and suffices for the purpose of our simulations. 

 

Effective Diffusion Rate Calculation: 

Considering the total effect of the artificial crowding agent as 
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where i is the voxel index and N is the total number of voxels in the domain. For a large 

crowding agent, Eq 7 leads to D* = [θ0.1 + (1- θ) 1]D = (1-0.9 θ)D. Using the linear 

model presented in Fig. 2.2a (Kurtosis(θ) = 15 θ), we obtain (for D = 1) 

D* = 1- 0.06  Kurtosis                 (8)  

to calculate the effective diffusion rate. Each data point (X, Y) in Fig. 2.4 is found by 

running the simulation for different D values (X) and evaluating the kurtosis of the mRNA 

distributions. Then the corresponding D* values (Y) are obtained by Eq 8.  

In summary, in order to obtain the effective diffusion as illustrated in Fig. 2.4, the 

following procedure has been followed: 

1. We performed different simulations by varying the diffusion coefficient D in the 

absence of any crowding, and the kurtosis values of mRNA distributions were 

calculated.  

2. Next, in order to pinpoint the corresponding effective diffusion D* that leads to the 

same kurtosis value as D in the presence of a crowder, we need to determine the 

crowding parameter ().  can be estimated using a linear regression model as shown 

in Fig. 2.2a, Kurtosis(θ) = 15 θ.  

3. Finally, by substituting  into D* = [θ0.1 + (1- θ) 1]D = (1-0.9 θ)D from Eq 2.7, 

D* can be obtained using Eq 8.  

4. 1-3 should be applied to all D values to obtain a set of (D, D*) in order to produce 

Fig. 2.4. 
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Supporting Information: 

Impact of macromolecular crowding on the diffusion coefficient 

 To model the impact of crowding on the diffusion coefficient, we assume a linear 

relation between the diffusion coefficient and the concentration of the crowding. Given Eq 5, 

we have 

 

where Ii is the DAPI concentration in voxel i. Comparison between Eq S1 for the right 

choice of the normalization factor Imax and the available experimental data for Hemoglobin 68 

over physiological crowding ranges shows a good agreement between the model assumption 

and the experimental observations (Supplementary Fig. 2.1). 

 

Supplementary Figure 2.1.  The validity of a linear relation between the diffusion 

coefficient and the crowder concentration over physiological crowding ranges.  
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Transcriptional bursting in the absence of macromolecular crowding  

To verify our model with the previous non-spatial stochastic simulations 8, gene 

expression in the absence of the crowding agent and the chromatin structure (i.e. Di = 

D0) was studied. It can be seen (Supplementary Fig. 2.2) that our model is capable of 

producing transcriptional bursting similar to that reported for well-mixed stochastic 

simulation results 8.  

Supplementary Figure 2.2. Transcriptional bursting in the absence 

of macromolecular crowding. 
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Impact of Macromolecular Crowding on Translational Bursting 

To assess how translational bursting can be affected by macromolecular crowding, 

we present a quantitative description of noise for different values of crowdedness 

(Supplementary Fig. 2.3). Our analysis suggests that macromolecular crowding has an 

insignificant impact on translational bursting (standard deviation (SD) is used to 

compare the gene expression noises).  

 

 

Study of voxel size effects 

To assess the effects of voxel size on the results of our model, we performed a mesh 

refinement study. The results are shown in Supplementary Fig. 2.4. We ran our model 

Supplementary Figure 2.3. Comparison between translational 

bursting and gene expression noise for various amounts of crowding 

agents. Macromolecular crowding has an insignificant impact on 

translational bursting and gene expression noise. 

0    20           40       60      80         100 
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for three different crowdedness parameters. For each θ value, we ran our model for 

different mesh sizes to determine the extent of phenotype dependency on mesh 

resolution. As can be seen in Supplementary Fig. 2.4, the kurtosis of the mRNA 

distributions converges as we refine the mesh. The kurtosis tends to near zero as the 

number of voxels tends to 1, as expected since 1 voxel is a well-mixed simulation. This 

demonstrates the importance of the use of inhomogeneous stochastic simulation to 

capture the noise reduction by macromolecular crowding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2.4. Convergence study of modified NSM 

method. The kurtosis of the mRNA distributions converge as we refine the 

mesh; however, a coarser mesh is incapable of showing diffusion-limited gene 

expression noise reduction (i = 0.1). 
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CHAPTER 3 

 

The Role of Chromatin Density in Cell Population Heterogeneity 

during Stem Cell Differentiation 

 

Introduction:  

Recent advances have enabled mapping of the local structure of chromatin by 

analyzing the complement of DNA-associated proteins and their modifications along 

chromosomes. The introduction of the chromosome conformation capture (3C) methods by 

Dekker et al. 1 opened new windows toward a better understanding of chromatin structure. 

Using spatially constrained ligation followed by locus-specific polymerase chain reaction 

(PCR), 3C provides information regarding long-range interactions between specific pairs of 

loci. Other researchers extended the 3C technique to develop chromosome conformation 

capture (3C)-on-chip (4C) 2, 3, and 3C-Carbon Copy (5C) 4 as fast and unbiased technologies 

to further study the nuclear architecture. The introduction of the Hi-C method by Lieberman 

et al. 5 facilitated obtaining the frequency of interactions between all genomic loci in a single 

experiment. Finally, Fullwood et al. 6 presented chromatin interaction analysis by paired-end 

tag sequencing (ChIA-PET) for direct analysis of chromatin interactions exclusively to those 

formed between sites bound by a given DNA- or chromatin-interacting protein. 
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Recently, Hi-C data has been extensively used to explore chromatin reorganization, 

by primarily focusing on topologically associating domains (TAD). Such studies revealed 

the underlying principles of chromatin organization 5 and its variability across single cells of 

the same population 7, among distinct human cell lineages 8, 9, and between different species 

10, 11. The importance of chromatin remodeling in gene regulation 12-15 has provided 

compelling evidence that chromatin remodeling can activate or suppress certain genes and 

can control gene expression profiles, in particular during embryonic stem cell differentiation 

16-18. However, the role of chromatin in inducing heterogeneity in a cellular population has 

been underappreciated. Here we introduce local chromatin (DNA) density to describe how 

chromatin condenses differentially in the vicinity of certain gene loci and how this can 

influence the gene expression profile. 

It is well established that phenotypic cell-to-cell variability observed in a clonal cell 

population is due to gene expression fluctuations 19-22. Substantial evidence 22-26 supports 

fast binding and unbinding of RNA polymerase II and transcription factors in transcriptional 

bursting, which contributes to such fluctuations (noise) at the population level. However, 

these fluctuations can serve regulatory roles 27-29. For instance, the experimental reduction of 

protein expression noise in Bacillus subtilis ComK, the regulator for competence for DNA 

uptake, leads to a decrease in the number of competent cells 27. Moreover, stochastic 

activation of both, either one or none of the two alleles of a gene in a heterozygote organism 

can contribute to the phenomenon of hybrid vigor 28, or as demonstrated by many reports, 

gene expression noise can lead to differentiation of unicellular organisms into two distinct 

states of gene expression such as lysis-lysogeny decision in lambda phage-infected E. coli as 

well as the lac operon in E. coli 28. 
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Chang et al. 30 showed that in clonal populations of mouse haematopoietic progenitor 

cells, those with higher and lower Sca-1 expression are capable of reconstituting the whole 

population distribution of Sca-1 expression, suggesting hidden multi-stability within one cell 

type. In particular, several studies have highlighted the vital function of gene expression 

heterogeneity in cell fate decision 31. However, despite the convincing evidence 

underpinning the necessity of heterogeneity in a cell population for stem cells to 

differentiate, the direct mechanism that governs this heterogeneity and its association with 

chromatin reorganization during development has not been determined.  

 

Results: 

In 32 we illustrated that macromolecular crowding can control gene expression 

fluctuations. Here we present a model based on the macromolecular crowding effects of 

chromatin structure to reveal the underlying principles of population heterogeneity and its 

regulation. By employing Hi-C interaction data 8, we identify the DNA density as a novel 

element playing a vital role in modulation of gene expression heterogeneity. We verify our 

model predictions using several new experiments as well as recent single cell RNA-seq data 

33. Our model predicts an increase in population heterogeneity during development, an 

increased chromatin density of the majority of genes, and an increase in bimodal behavior. 

Contrary to the current paradigm of epigenetic regulation, the role of chromatin is beyond a 

mere on and off switch for certain genes: it contains information, even in the unoccupied 

space of the nucleus, that serves regulatory purposes to control population heterogeneity. In 

this work we mainly focus on genes with differential heterogeneity but similar mean 

expression.  
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Recent discoveries that analyze TADs and chromatin looping interactions 34, as well 

as recent tools to facilitate building a three-dimensional model of chromatin, allow an 

unprecedented accuracy 35-39. Here we first introduce the idea of chromatin density as a 

regulatory component of gene expression in a cell population. Interphase chromatin is 

compartmentalized into tightly packed (heterochromatin) and less compact domains 

(euchromatin) which are localized primarily to the peripheral and inner nucleus, 

respectively. Gene repression and activation are highly associated with this packaging, and 

controlled by histone modifications. Trimethylation at H3K4, H3K36, or H3K79 can result 

in an open chromatin configuration and is, therefore, characteristic of euchromatin, whereas 

condensed heterochromatin is enriched in trimethylation of H3K9, K3K27, and H4K20 40. 

Furthermore, DNA methylation, histone modification and variants contribute strongly to 

gene activation and repression during early embryonic development 41. Aside from this 

paradigm, the importance of local variation of the chromatin density even within the same 

chromatin state – heterochromatin or euchromatin – and its regulatory role have not been 

fully addressed.  

We introduce  as a parameter for quantification of the local chromatin density 

(which we will henceforth simply refer to as density) as follows. For any gene X at a certain 

genomic coordinate j, we imagine a small sphere with a radius R centered at j, and count the 

number of base pairs (bps) that lie inside this sphere. To be more precise, suppose that x 

coincides with the transcription start site (TSS) of a gene X. Due to the relatively low 

resolution of the current Hi-C experiment (~40 Kbps) – which will be discussed later – the 

center of the density sphere (DS) will be approximated as the start or the end of the genomic 

coordinates of gene X, depending on whether transcription occurs on the positive or the 
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negative strand. The second assumption in the evaluation of the density is that any inter-

chromosomal interactions are neglected. This assumption is of course valid only due to the 

lack of entanglement and insignificant inter-chromosomal interactions, as shown by the 

fractal globule model 5. This can also be verified using Markov Chain Monte Carlo 

(MCMC) sapling simulation results 38 (Fig. 3.1a shows the lack of inter-chromosomal 

entanglement). Given that bps in proximity tend to show stronger interactions, it has been 

proposed that the physical distance of two bps is proportional to 1/IFij
e, where e is a constant 

38. IFij is the (i, j)th element of the interaction frequency matrix of the chromosome in which 

gene X is located as obtained by Hi-C data. Rousseau et al. 38 used leave-one-out cross-

validation and MCMC to show that e ~ 1-3 is the best range for e (e = 1 is used in this study 

for simplicity). The density j can then be computed as: 

 

where U(t) is the characteristic function defined as 1 for t > 0 and 0 otherwise. One might 

simply discard those elements of the interaction frequency matrix with zero interaction 

(insignificant interactions are also often set to zero during the quality control step of the Hi-

C data preparations). Note that the density  = d1 therefore corresponds to d1 * 40,000 base 

pairs in the DS. The drawback of the above definition of the density is its dependence on the 

radius of the density sphere R. While larger radii account for more bps around the gene of 

interest, they do not properly reflect the local variation in the chromatin compactness. We 

define the cumulative radial distribution function c(R) as /V, to assess the sensitivity of  

to R (V is the volume of the density sphere).  
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In this study, publicly available, normalized intra-chromosomal Hi-C data by Dixon 

et al. 8 for five cell lines (H1 human embryonic stem cell (hESC) and H1-derived cells 

including neural progenitor cell (NPC), mesenchymal stem cell (MSC), mesendoderm cell 

(MES), and trophoblastic cells (TRO)) were used to obtain the DNA densities. Figure 3.1b 

illustrates a significant change in c(R) at the SOX2 promoter site for hESC vs NPC cell  
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Figure 3.1. Macromolecular crowding model of gene expression. (a) MCMC simulations show a lack of 

inter-chromosomal entanglement. Schematic illustration of the density sphere around an arbitrary gene locus is 

provided on the right. (b) cumulative radial distribution function of DNA bps around the SOX2 gene locus 
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demonstrates the local density variation between hESC and NPC. (c) density increases significantly during 

hESC differentiation (*** p-value < 0.001). (d) binary model of gene expression for gene activating and 

repressing transcription factors. (e and f) bifurcation diagrams of gene expression for transcriptionally activated 

(e) and repressed (h) genes. (f) pulse frequency analysis of transcriptional bursting. (g) bimodality inspection 

during chromatin condensation by Hartigan's Dip test. (i) population heterogeneity induced by transcriptional 

bursting and chromatin condensation. (j) steady state gene expression distribution variation during stem cell 

differentiation aroused from chromatin condensation.  

 

lines. It can be seen from Fig. 3.1b and 16 that chromatin is condensing in the vicinity of the 

SOX2 gene during differentiation from hESC to NPC, which is particularly interesting 

because hESC and NPC show similar expression levels of SOX2 42. A relatively 

decondensed chromatin state in hESC can also be inferred by comparing c(R) at the SOX2 

gene locus and unfolder polymer (it can be shown that c(R) ~1/R2 for an unfolder polymer). 

We then investigated the density around all genes using R = 2 (recommended by 43) (Fig. 

3.1c), suggesting a significant global increase in the density among all of the four 

differentiated cell lines studied (p-value << 0.001) (Table S3.1). Further analysis showed 

that this conclusion is insensitive to R for R ~ 1-3 (Fig. 3.1b shows a similar trend in the 

density of the SOX2 gene during NPC differentiation regardless of R i.e. the model is robust 

with respect to the choice of R in this range). Note that given the experimental value of 

0.0123bp/nm3 for the density of human nuclei, R=1 can be scaled to a physical distance of 

~250nm (similar scale as an average TAD). One might argue that single-cell variation in 

chromatin interactions can affect this study and therefore, this mode should be trained using 

single-cell Hi-C data. However, as suggested by 7 individual chromosomes maintain domain 

organization at the megabase scale (size of a DS) and cell-to-cell variations in chromosome 
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structure occur at larger scales. We conclude that chromatin experiences a global 

condensation during differentiation, measured by the density parameter . In addition, we 

should mention that by analyzing the high resolution promoter capture Hi-C data from the 

recently published research by Freire-Pritchett et al.63, we observed that the measured 

densities are significantly correlated (p-value of correlation test < 2.2e-16) with our 

previously measured densities from 40kb resolution Hi-C 8, demonstrating that our 

conclusions are robust to the resolution of Hi-C data.  

Higher levels of chromatin looping in differentiated cells is not surprising. For 

example, it has been shown that regions of condensed heterochromatin form during 

pluripotent embryonic stem cell differentiation, and silencing histone marks accumulate 16, 

which result in differential expression in daughter cells. However, we also found density 

changes in highly expressed genes (i.e. SOX2) and in genes whose mean expression levels 

remain unchanged, as shown below. These results suggest that, beyond our understanding of 

the role of the chromatin reorganization limited to gene silencing and activation, chromatin 

conformation might be involved in other types of gene regulation such as gene expression 

heterogeneity. 

The cellular environment is packed with DNA, RNA, proteins and other 

macromolecules hindering the diffusion of other molecules such as transcription factors and 

RNA polymerases. Several studies 32, 44, 45 have demonstrated the impact of macromolecular 

crowding on the rebinding time of DNA binding proteins (DBP), leading to heterogeneity in 

gene expression. In particular, in vitro experimental studies by Muramatsu et al. 46 show that 

macromolecular crowding can alter the diffusion and the biochemical rates of globular 

proteins in concentrated protein solutions. It has been suggested by Morelli et al. 47 that the 
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effect of crowding can be taken into account by merely scaling the association (kon) and 

dissociation rate constants (koff) of DBPs. Thus, 

 

where kon
0 and koff

0 are the basal association and dissociation constants of DBP and where  

 0.36 (Table S3.2). Note that kon
0 and koff

0 are chosen such that the obtained kon and koff 

using Eq 2 for a gene with an average local DNA density lies within the range of the 

reported experimental data for association and dissociation rate constants of DNA binding 

protein (Table S3.2). Equal kon
0 and koff

0 are considered for all genes which can be explained 

due to the diffusion-limited kinetics of DBPs. In other words, while association and 

dissociation rates of DBPs to DNA can vary due to factors such as promoter sequence, DNA 

methylation pattern, etc., the influence of these factors is negligible compared to the effect of 

the variation the diffusion rates of DBPs which is explained by parameter . The following 

major assumptions have been made in our macromolecular crowding (MMC) model: 1) 

macromolecular crowding is directly correlated to the DNA density. DNAs are wrapped 

around histone complexes and are bound by many proteins such as RNA polymerases, 

transcription factors, mediators, and cofactors. Therefore, we assume that the DNA density 

is correlated with local molecular crowding. Hence, we assume that high density regions of 

chromatin are enriched in other proteins, histones and other molecules. The DNA density 

alone, therefore, can simply represent the concentrations of other bound molecules as well. 

2) RNA polymerases and/or TFs will only diffuse locally during any rebinding events. In 

other words, we assume that the diffusive particles are less likely to exit the density sphere 

with radius R, due to the highly packed chromatin structure which restricts the diffusive 
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particle to the vicinity of the promoter 43. 3) basal association and dissociation biochemical 

rates do not vary significantly among different genes. 4) 1D sliding of TF on DNA is 

ignored. The sliding length of TF on DNA has been measured to be ~30-900 bps 48. Given 

the current resolution of Hi-C data (40 Kbps), precise analysis of the impact of the density 

alteration on 1D sliding of TF on a DNA strand is not feasible. 

We utilized the described simple model to study the influence of the chromatin 

density on the gene expression patterns by simulating a two state (binary) system (Fig. 3.1d). 

The Gillespie stochastic simulation algorithm (SSA) 49 was used (See Methods) to simulate 

the constructed biochemical system (note that here we assume a time-homogeneous Markov 

process in order to use SSA). We then inspected the transcriptional bursting behavior for 

different DNA densities by exploring the pulsing frequency, the coefficient of variation (CV) 

of RNA distributions, and the bimodality of gene expression in a cell population (Fig. 3.1e-

j). Our simulation results show a general decrease in pulse frequency, suggesting slower 

expression kinetics, which could be expected due to the limited diffusion of TF (or RNA 

polymerase) by crowding. Figure 3.1j depicts steady state RNA distribution variation caused 

by the increase in DNA density. At very low densities, the MMC model predicts a unimodal 

normally distributed cell population with a relatively low variation induced by gene intrinsic 

noise. During stem cell differentiation, chromatin condenses and the DNA density around 

several promoters increases. Chromatin condensation is followed by transcriptional bursting 

and heterogeneity in a cell population generating a long tail RNA distribution with high 

variation. Ultimately, a second cell state emerges due to high RNA variation (measured by 

CV), resulting in a bimodal RNA distribution. Further increase in the DNA density gradually 

eliminates the intermediate states 32, indicated by a decrease in the CV (Fig. 3.1i). While Fig. 
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3.1i initially illustrates an increase in the CV, upon emergence of the second cell state 

(determined by Hartigan's Dip test for unimodality 50), the CV tends to decrease. Our 

simulation results suggest an analogous trait whether the gene is transcriptionally turned on 

or off (Fig. 3.1e and h). While both undergo a bifurcation, repressive TFs endow a second 

state with a lower expression level. The bifurcation predicted by our model is consistent with 

the previous reports on several developmental genes, namely, GATA-1 and PU.1 in a 

myeloid progenitor cell 51. All in all, it can be inferred from the MMC model that chromatin 

reorganization can alter the excluded volume around certain gene loci and thereby can 

modify the rebinding kinetics of TFs, leading to distinct gene expression patterns. This 

explains how unoccupied space of the nucleus encodes vital information regarding gene 

expression heterogeneity. While only one state is accessible at lower densities, increasing the 

densities can increase the accessibility of other states by rendering wider RNA distributions. 

Further increase in the densities imposes an all or nothing response which entails a 

bifurcation toward a second stable state with lower or higher expression levels depending on 

whether the gene is transcriptionally activated or repressed. 

Based on our simulation results, we hypothesize the following:  

1. During differentiation the macromolecules accumulate around the promoters of different 

genes, intensifying the effect of macromolecular crowding. 

2. An increase in the chromatin density increases transcriptional bursting due to 

macromolecular crowding. 

3. Transcriptional bursting increases the CV of RNA expression in a cell population. Hence, 

the CV increases during differentiation and several genes undergo a bifurcation 
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stochastically, allowing a portion of cells to enter a new cell state while the remainder retain 

their current cell state. 

4. This process creates the potential for pluripotent cells to differentiate.  

To test how density changes are related to gene expression variation during stem cell 

differentiation, we focused on NPC differentiation. We used scRNA-seq data by Chu et al. 33 

to assess gene expression variation in H1 hESC and H1-derived NPC because they used the 

same dual SMAD inhibition method 52 to differentiate hESC to NPC with Dixon et al., 

which enables direct comparison between DNA density and gene expression variation. First, 

raw scRNA-seq data of H1 hESC (212 cells) and NPC (173 cells) were counts per million 

(CPM) normalized. A significant dependency of the CV of RNA expression distributions on 

their mean expression can be seen, which is due to inherent high technical noise of scRNA-

seq experiments (Supplementary Fig. 3.1a and b). To account for any bias, we first 

discretized the expression levels of all genes within each cell line into 50 logarithmically-

spaced intervals, assuming that the mean expression level of those genes that lie inside each 

interval is similar. For each interval, the biological variation of the genes with low CV is 

strongly confounded by their technical variation. Therefore, we exclude any genes with CV 

less than 3 standard deviations (CV < 3stdev), generating a list of genes with high biological 

variation. Note that since the technical variations of the genes with similar mean expression 

levels can be assumed to be similar, the obtained list of genes includes only those genes 

whose biological variations are significant compared to their technical noise. Finally, to 

account for the technical variation among cell lines, we analyzed only genes whose mean 

expression is not statistically different (q-value > 0.01) between two cell lines (hESC and 

NPC).  
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Figure 3.2a demonstrates that the majority of the genes are more heterogeneous 

during differentiation, resulting in higher CV in NPC compared to hESC, as predicted by our 

model. This is not due to non-NPC contamination because Chu et al. sorted out SOX2-

positive NPCs for scRNA-seq 33. Note that all of the genes remaining in the obtained gene  
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Figure 3.2. Analysis of gene expression heterogeneity during development. (a) CV increases during NPC 

differentiation for the majority of genes. (b) long tailed steady state gene expression distributions appear as a 

result of chromatin condensation, as predicted by the MMC model. (c) unimodal to bimodal switch during NPC 

differentiation due to significant density increase (*** p-value < 0.001). 
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list have a unimodal RNA distribution, thus the model predicts a steady state long tail 

unimodal RNA distribution with increasing variation from hESC to NPC. This is illustrated 

in Fig. 3.2b for 9 sample genes with high gene expression variations.  

 Another prediction of the MMC model of gene expression is an increased number of genes 

with a bimodal distribution. We argue that although as previously discussed, the CV values 

are confounded by the technical noise, RNA expression bimodality is less likely to be 

affected by that. Thus to study the bimodality we dropped out the CV>3stdev criterion for 

the gene list selection and compared the number of genes which are bimodal in each cell line 

(p-value of Hartigan's Dip test for unimodality < 0.01). Interestingly, as predicted by our 

model, not only do all the bimodal genes in hESC remain bimodal in NPC, but also a 45% 

increase in the number of bimodal genes was observed. We then analyzed the density values 

of the genes that undergo a bimodal distribution switch during NPC differentiation. Again, 

as predicted by our MMC model, there is a significant increase in the density of the genes of 

interest (Fig. 3.2c).  

We introduce density-CV coordinates to facilitate an efficient assessment of the 

model predictions. A vital prediction of the MMC model is the direction of differentiation in 

this coordinate plane (Fig. 3.3a). Each arrow represents one gene pointing from hESC to 

NPC (toward differentiation). The validity of the model can be tested by incorporating Hi-C 

data (to obtain the densities) and scRNA-seq data (to obtain the CVs). As predicted by our 

model, 83% of the genes experience an increase in both the density and CV during NPC 

differentiation. 13% of the genes show an increase in their density while their CVs are 

slightly reduced (Fig. 3.3b). This 13% discrepancy can be due to the assumptions in the 
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MMC model and ignoring post transcriptional modifications, cell cycle dependent genes, 

etc. Another explanation for the decrease in the CV of 13% of the genes is the emergence of  

 Figure 3.3. Direction of differentiation.  (a) representation of differentiation arrows in CV-Density 

coordinates. (b) the majority of genes experience increases in both density and CV during NPC differentiation. 

(c) genes with the highest density exhibit the highest CV in hESC (quartiles are estimated using bootstrapping, 
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*** p-value < 0.001). (d) hierarchical clustering shows a functional role for chromatin condensation. (e) gene 

ontology explains the role of chromatin condensation and the gene expression heterogeneity in development, 

metabolism, and cell death. 

the bimodal genes during chromatin condensation which corresponds to the second regime 

in Fig. 3.1i (a negative correlation between CV and the density is expected). However, since 

the analysis of scRNA-seq data shows that only a small fraction of genes illustrates a 

bimodal behavior, we will focus on the 83% of the genes where the CVs and densities are 

positively correlated. Also it is critical to note that our model doesn’t exclude several other 

factors that can also affect the CVs but instead emphasizes the critical role of the local DNA 

density on gene expression variation. This observation implies that chromatin condensation 

is a driving force to render a heterogeneous cell population and thus exciting other silenced 

cell states. One might argue that this general principle could be employed to study the genes 

within even one cell type. We tested this hypothesis in hESC by comparing the densities of 

the genes whose CVs are greater than 3 stdev of all CVs within the corresponding interval 

(as defined previously) with the rest of the genes. This approach enables us to minimize the 

impact of the technical noise and gene networks on our conclusions. As predicted by the 

MMC model (Fig. 3.3c) the set of all genes with high CV in each interval manifest 

significantly higher densities compared to low CV genes (p-value < 0.001). These results are 

also confirmed in NPC (Supplementary Fig. 3.1c). In addition, we analyzed the recently 

published Assay for Transposase-Accessible Chromatin with high throughput sequencing 

(ATAC-seq) data by Liu et al.64 to compare the chromatin accessibility of low versus high 

CV genes in hESCs and did not see a major difference. These results suggest that chromatin 

accessibility is not related to gene expression variation. We can conclude that one function 
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of chromatin remodeling proteins is to locally condense chromatin in the vicinity of the 

genes destined for heterogeneous expression. 

Moreover, we perform hierarchical clustering with genes whose DNA densities 

change during stem cell differentiation. DE genes were excluded across hESC, NPC, and 

MES using publically available population RNA-seq data by Jang et al. 42. The first gene 

cluster (444 genes) (Fig. 3.3d) depicts the highest modification in the densities during stem 

cell differentiation. Using gene ontology analysis, we found that this gene cluster is 

significantly associated with cell differentiation, metabolism and cell death (Fig. 3.3e). 

Namely, several key transcription factors (PRDM16, HES3, HES5, ID3) and epigenetic 

modifiers (KDM1A) are related to cell differentiation. The mammalian target of rapamycin 

(mTOR), a master regulator of cellular metabolism is in the term “Negative regulation of 

cellular metabolic process” together with other important metabolic genes (ENO1, CDA, 

PEX14). Finally, programmed cell-death related genes include PINK1, CAS9, and MUL1. 

These results suggest that density changes during stem cell differentiation potentially affect 

expression variation of genes that are involved in key biological processes.  

OCT4, SOX2, and NANOG are core pluripotency genes that play key roles in early 

stem cell differentiation 53, 54. OCT4 and NANOG strongly repress NPC differentiation, 

while promoting differentiation into MES cells. In stark contrast, SOX2 is necessary for a 

NPC fate, but suppresses MES differentiation. This is consistent with the expression of these 

genes during stem cell differentiation, with their roles with high OCT4 and NANOG 

expression in MES and high SOX2 expression in NPC 42. Given the importance of these 

genes for stem cell differentiation, we studied how density changes affect single cell 

expression patterns during NPC or MES differentiation. We limited our analysis to OCT4 
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and NANOG in MES differentiation and SOX2 in NPC differentiation, to exclude the 

potential impact of dramatic changes in mean expression levels on gene expression 

variation. There were no significant changes in the densities of OCT4 and NANOG during 

MES differentiation (Fig. 3.4a). Consistent with our model, when single cell expression 

patterns were analyzed by immunostaining, there were no substantial changes in CV and 
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 Figure 3.4. Relationship between density changes and gene expression variation in core 

pluripotency genes. (a) The densities of OCT4, NANOG, and SOX2 change during stem cell differentiation. 

(b-d) hESC was differentiated to NPC and MES, followed by immunostaining of OCT4, NANOG, and SOX2. 

CV (b) and gene expression distribution (d) were calculated from fluorescence intensity measured from 

individual cells (n=315 for OCT4 in hESC, n=351 for OCT4 in MES, n=294 for NANOG in hESC, n=365 for 

NANOG in MES, n=308 for SOX2 in hESC, and n=343 for SOX2 in NPC).  Representative images are shown 

in (c).  

 



 

 64 

gene expression distributions (Fig. 3.4b-d, Supplementary Fig. 3.2). In contrast, the density 

of SOX2 underwent a dramatic increase in NPC compared to hESC (Fig. 3.4a). This change 

was consistent with increased CV and broadened distribution of gene expression during 

NPC differentiation (Fig. 3.4b-d). NPC derivation is also confirmed by PAX6 expression, 

suggesting that heterogeneous expression of SOX2 is not due to inefficient NPC 

differentiation (Supplementary Fig. 3.2b). These results suggest that differentiation-induced 

local chromatin condensation controls heterogeneous expression of core pluripotency genes. 

 

Discussion: 

We have provided substantial evidence that population heterogeneity can be 

modulated by altering the local chromatin density in single cells. The current model of 

epigenetics suggests that gene activation and repression occur via modifications of histone 

H3 methylation and acetylation. Our study elucidates the functional role of higher order 

chromatin looping, which is regulated by CCCTC-binding factor (CTCF). Our MMC model 

suggests that aside from the orthodox view of loop formation in down regulation (or up 

regulation) of the developmental genes such as OCT4 and NANOG in NPC differentiation 

55, chromatin looping can modulate expression heterogeneity of other developmental genes 

(e.g. SOX2 in NPC differentiation) by adjusting the genome-wide long range interactions as 

well. One particular function of chromatin looping is its impact on the neighboring genes. 

For example, the expression variation of certain genes can be influenced by inactivation of a 

neighboring gene, resulting in a new, more crowded environment. It is important to note that 

our results show that the density not necessarily alters gene expression heterogeneity by 
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changing the mean expression level, but that, increased densities can increase the gene 

expression heterogeneity even at similar expression levels. 

It is also noteworthy that the current approach to study the chromatin organization by 

probing TADs is incapable of revealing the vast amount of information hidden in the 

unoccupied space of the chromatin. As illustrated by our study, chromatin reorganization can 

alter rebinding kinetics of TFs, through which the gene expression pattern can be modified. 

Recent studies 56-58 suggest that TADs are highly conserved, not only among different cells 

of the same clonal population, but also across different cell types. Our study, on the other 

hand, expresses the local DNA density deviations among distinct cell types, specifically 

across progenitor and embryonic stem cells, suggesting that the local DNA density changes 

might play more dynamic roles than TAD reorganization during development.  

 

Methods: 

hESC culture and differentiation 

H9 hESCs (WiCell) were maintained in mTeSR1 medium (Stem Cell Technologies) on 

Matrigel (BD Biosciences)-coated tissue culture plates. H9 cells were passaged every 5 days 

by ReLeSR (Stem Cell Technologies). For NPC differentiation, hESCs were passaged as 

single cells using Accutase (Life Technologies) on Matrigel with ROCK inhibitor (Y-27632, 

Millipore) and induced to differentiate with SB431542 (10 µM, Tocris Bioscience) and 

NOGGIN (200 ng/ml, PeproTech) 52. To derive MES, hESCs were plated on Matrigel-

coated plates as single cells and induced to differentiate with mTeSR1 containing 5 ng/ml 

hBMP4 (R&D) 59. 



 

 66 

 

Immunofluorescence 

Samples were fixed with 4% paraformaldehyde for 15 min, followed by 

permeabilization with 0.25% Triton X-100. After blocking with 10%FBS in PBS, cells were 

immunostained with primary antibodies for OCT4 (Santa Cruz), NANOG (R&D), and 

SOX2 (Millipore) overnight at 4ºC. Staining with secondary antibodies, Alexa Fluor 555-

donkey anti-mouse IgG, Alexa Fluor 555-donkey anti-rabbit IgG, Alexa Fluor 488-donkey 

anti-goat IgG, was done for 1h at room temperature. Images were taken using Olympus IX71 

fluorescence microscope. 

 

RNA isolation and quantitative PCR 

Total RNA was extracted using TRIzol (Life Technologies), followed by cDNA 

conversion with the SuperScript III First-Strand Synthesis System (Life Technologies). 

Quantitative real-time PCR was performed using a QuantStudio 12K Real-Time PCR 

System (Life Technologies) with Power SYBR Green PCR Master Mix (Applied 

Biosystems). GAPDH was used as a normalization control.  

 

Data Acquisition and Analysis 

Publically available scRNA-seq data for H1 hESC and NPC cell lines were obtained 

from GEO using accession number GSE75748. In this study expected counts of 212 hESC 

cells and 173 cells NPC have been used to investigate gene expression variation 33.   

Processed FPKM-normalized RNA-seq data from H9 hESC, NPC, and MES (three 

replicates per cell line) 42 were acquired from GEO using accession number GSE69982. 
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 Hi-C intra-chromosomal interaction frequencies for 5 cell lines (H1 hESC, NPC, 

MES, MSC, and TRO) have been obtained used using accession number GSE52457, 

mapped to human genome (hg19) and normalized as described by Dixon et al. 8.  

All of the computations were performed using IPython 5.0, R version 3.2.2 and the 

BioConductor (3.3), qvalue (3.2.3), limma (3.2.4), diptest (3.2.0), GenomicRanges (3.2.3), 

edgeR (3.2.0), and genefilter (3.2.3). All of the figures were made using basic R graphics 

and packages gplots (3.2.4), and vioplot (3.2.0). All scripts used here are available from the 

authors upon request.  

Gene ontology analysis has been performed using the web-based gene set analysis 

toolkit WebGestalt 60. 

 

Details of simulations and computational modeling.  

In our study, gene expression is described using the following set of biochemical 

reactions: 

 

 

 

where kon and koff can be found as 
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The simulation parameters and the initial conditions are provided in the Supplementary Data 

Table 3.2. The stochastic simulation algorithm (SSA) was used to simulate the above 

biochemical system using the implementation in GillesPy 61 on the MOLNS software 

platform 62. For each  (0 <  <100), 1,000 trajectories are simulated each for 1,000 

minutes.  
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Supplementary Figure 3.1. Analysis of scRNA-seq variations due to mean expression and DNA 

density variations for hESC and NPC. (a, b) scRNA-seq data show that CV strongly depends on mean 

expression due to technical noise in both hESC and NPC. (c) genes with the highest density exhibit the highest 

CV in NPC obtained (quartiles are estimated using bootstrapping, *** p-value < 0.001). 
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Supplementary Figure 3.2. Validation of lineage-specific differentiation. (a) the expression of NPC 

(PAX6, OTX1, ZBTB16) and MES (EOMES, BRACHURY, SOX17) markers confirms highly specific 

differentiation of hESC to each lineage (n=4). Error bars represent SD. (b) NPC was immunostained for SOX2 

and PAX6. 
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CHAPTER 4 

 

Regulation of Cell-Type-Specific Transcriptomes by miRNA Networks 

During Human Brain Development 

 

Introduction: 

Recent studies utilizing single cell mRNA sequencing (scRNA-seq) to characterize cell-

type diversity in tissues have highlighted the need for multi-modal analyses of cellular 

phenotypes by unbiased classification schemas, particularly in developing systems where 

complex gene regulatory networks control orthogonal sources of transcriptional variation, 

including morphology, physiology, maturation, differentiation, and spatial position1-4. While 

mRNA expression levels can be used directly to define putative cell types using unbiased 

clustering, inferring cell identities and determining cell identity boundaries requires either 

prior knowledge or additional modalities. MicroRNAs (miRNAs) are an inherently complex 

network of interactions that can serve as an additional feature of cellular identity with 

important implications for protein expression. Changes in miRNA expression patterns are 

characteristic decision nodes during cell differentiation5, suggesting that their cell type- 

specific abundance may represent an important parameter in cell type classification and 

provide insights that extend beyond cell-type classification to the dynamic regulation of 

differentiation. Previous studies ablating miRNA-processing enzyme Dicer1 emphasized the 
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pleiotropic roles for this pathway related to tissue specificity, anatomical and cellular 

compartments, evolutionary relationships, developmental time points, and even specific cell 

types6-11, but the underlying framework for these differences are poorly understood. Profiling 

of miRNA abundance in developing human brain tissue samples suggested developmental 

regulation of miRNA expression12, but these studies could neither distinguish cell-type 

specific patterns of miRNA abundance, nor dynamic cell fate transitions during development 

at the single cell level. To characterize the in vivo miRNA-mRNA interactions during human 

brain development, and to contextualize these networks in the framework of developmental 

transitions and cell identity, we leveraged three complementary datasets: high-throughput 

sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP)13 with an 

AGO2 antibody, simultaneous single cell profiling of mRNAs and miRNAs, and single-cell 

mRNA sequencing (scRNA-seq) data. Our study revealed a dynamic network involving cell-

type specific enrichment of miRNA expression patterns across diverse cell types, and 

dynamic miRNA target acquisition and loss in which the population of targeted mRNAs 

keeps pace with the dynamics of tissue development, cell diversity, and lineage progression 

during human brain development. 

 

Results: 

AGO2-HITS-CLIP identifies miRNA-mRNA interactions during prenatal human 

brain development 

To identify the landscape of miRNA-mRNA interactions occurring in developing human 

brain in vivo, we performed high-throughput sequencing of RNA isolated by crosslinking 

immunoprecipitation (HITS-CLIP) 13 with AGO2. AGO2 bound profiles were generated for 

primary tissue samples of the developing human brain from stages corresponding to peak 
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neurogenesis (GW15 and 16.5 – early stage) and early gliogenesis (GW19-20.5 – late stage), 

nine samples in total were harvested from prefrontal cortex (PFC), motor cortex area one 

(M1), visual cortex area one (V1) and other regions (Supplementary Table 1). AGO2-bound 

miRNAs and mRNAs were identified after sequencing (Fig. 4.1a, Supplementary Table 4.1-

2, see Methods for details).  In total, 921 human miRNAs were detected and 10505 Ago2 

binding sites were identified from both protein-coding genes and non-coding genes, 

including lncRNAs (Supplementary Table 4.2). Approximately 43% of sites were in three 

prime untranslated regions (3’UTR) and 27% of sites were in coding DNA sequence (CDS). 

For further analysis, we considered only sites identified in the CDS and the 3’UTR, 

reflecting canonical miRNA-mRNA interactions. We identified 3693 and 2705 genes at 

early and late stages of development, respectively, actively targeted by miRNAs through 

CDS or 3’UTR parts of the transcript (Supplementary Fig. 4.1). We validated a subset of the 

canonical AGO site interactions using luciferase reporter assays in human cells in vitro 

(Supplementary Figure 4.1, Supplementary Table 4.3). Among the detected interactions were 

previously validated ones, such as miR-9 with FOXG1 and HES1 and miR-210 with CDK7, 

thereby confirming the strength of the method.  

Unbiased enrichment analysis using the total expressed gene set in human developmental 

brain as the background, revealed that transcription factors, chromatin modifiers, and 

signaling pathway components were enriched among miRNA targets (Supplementary Table 

4.4). Surprisingly, hundreds of in vivo miRNA targets we identified were well-established 

markers of distinct cell types14-16, regulators of neurogenesis, migration, axonogenesis, 

synaptogenesis, and neuronal subtype specification. Broadly, single miRNAs target many 

mRNAs and single mRNAs are targeted by far fewer miRNAs (Supplementary Fig. 4.2), 
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representing a bipartite network of interactions between miRNAs and their direct target 

mRNAs (Fig. 4.1b). Using a bipartite community detection  
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Figure. 4.1: High Throughput Profiling of miRNA-mRNA Interactions. (a) Experimental design. 

Autoradiogram of 32P-labelled RNA tags crosslinked to AGO2 protein obtained from human prenatal brain 

homogenates. 110 kDa and 130 kDa bands are visible in samples with AGO2-immunoprecipitation as 

compared to IgG control. (b) The complete bipartite network analysis of miRNA-mRNA interactions shown as 

a correlation matrix in the lower panel and a segment of the bipartite network shown in the upper panel that 

illustrates the inhomogeneity of the targeting miRNAs and the relative homogeneity of the targeted mRNAs. (c-

d) Enrichment of bipartite modules according to cell-type identities. (c) Cellular specificity of genes expressed 

in the developing human brain according to published single-cell mRNA-sequencing dataset, with row names 

representing cell clusters described in the source study26. (d) Enrichment of cell-type-specific genes among 

bipartite network modules. Enrichment scores represent Bonferroni-corrected –log10(p-value). 

 

algorithm17, we revealed modules of miRNA-mRNA interactions (Fig. 4.1b, Supplementary 

Fig. 4.2-3, Supplementary Table 4.5, see Methods for details). To contextualize these 

interactions in the framework of cell diversity we projected bipartite graph modules onto 
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cell-type specificity information, calculated from published scRNA-seq datasets (Fig. 4.1c-d, 

Supplementary Table 4.6). Our analysis revealed striking enrichment for cell-type specific 

transcripts among bipartite graph modules, suggesting that miRNAs acquire targets 

according to the cognate transcriptional landscape of individual cell-types. Interestingly, the 

average abundance of a bound miRNA correlated negatively with the total number of 

different miRNAs bound in each module (Supplementary Fig. 4.4), suggesting that miRNA 

targeting utilizes two strategies: (a) target with one or a very few abundant miRNAs; (b) 

target with multiple low abundance miRNAs. 

 

Cell-type enrichment of miRNAs revealed by single-cell miRNA profiling 

To investigate further how miRNA-mRNA interactions relate to the emerging diversity 

of cell types in the primary developing tissues, we developed an innovative protocol for 

combined detection miRNAs and mRNAs in the same single cells using an automated 

microfluidic platform to perform automated cell capture, reverse transcription and targeted 

preamplification of mRNA and miRNA (Fig. 4.2a-c, Supplementary Table 4.7-8). In 

addition to long-established markers of distinct cell types in the developing cortex, we 

selected mRNA targets according to the specificity of their expression for distinct cell types 

(Fig. 4.2b) as determined in Pollen AA et al., 14. We profiled single cells isolated from 

primary human cortical tissue samples at gestational week (GW) 14 (deep layer 

neurogenesis) and GW17 (upper layer neurogenesis). To enrich for progenitor cells and 

newborn neurons, we microdissected samples from the cortical germinal zone (GZ), and to 

capture maturing neuron populations and interneurons, we microdissected cortical plate 

regions (CP). 
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Figure. 4.2. Single-cell miRNA Expression Profiling Reveals Patterns of Cell-type Enrichment. (a-c) 

sc-qPCR profiling of mRNA and miRNA abundance in the same cell. (a) Schematic outlining experimental 

approach and cell types expected to be enriched in microdissected brain regions. (b) tSNE plot of single-cell 

data generated calculated using Seurat40 based on mRNA marker gene abundance. Colors represent unbiased 

clustering (see Methods for details). (c) Heatmap of mRNA target genes used to interpret cell identities. (d) 

Heatmap representing cell-type enriched miRNA expressions profiled (one-tailed U-test) (e) Weighted gene co-

expression network analysis reveals modules of co-expressed miRNAs across single-cells profiled in a-b. 

Network plot shows miRNAs assigned to this network based on correlation of abundance across single cells. 

Module blue and turquoise are enriched in mDLN and IPC, respectively. (f) Enrichment of targets of co-

expressed miRNAs across bipartite network modules. * p<0.05, ** p<0.01, *** p<0.001 (Bonferroni corrected 

for multiple comparison). RG: radial glia, nIPC: IPC-neuron, dIPC: dividing intermediate progenitor cells, 

nDLN: newborn deep layer neurons, mDLN: maturing deep layer neurons, nULN: newborn upper layer 

neurons, mULN: maturing upper layer neurons, IN: interneurons.  
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In total, we retained data from 312 cells with more than 10 genes detected. Clustering 

analysis performed based on marker gene abundance revealed 11 clusters (Supplementary 

Table 4.7). We inferred the identities of individual cell clusters as radial glia, intermediate 

progenitors, upper and deep cortical layer neurons, and interneurons (Fig. 4.2b-c). 

Furthermore, spatial microdissections supported further refinement of our interpretations 

with respect to neuronal maturation state (newborn neurons captured from the GZ and 

maturing neurons captured from the CP) (Fig. 4.2c). Next, for every miRNA profiled, we 

quantified the abundance in every cell and calculated an expression enrichment score for 

every cell type (Fig. 4.2d). Surprisingly, the vast majority of miRNAs we profiled showed 

significant enrichment in at least one cell type, suggesting robust variation in miRNA 

abundance across closely related cells of the developing brain. For example, miR-221/222 

and miR-92a were found enriched in cortical IPCs, in line with recent reports18 and 

consistent with their proposed roles in controlling proliferation19, while miR-124 was 

enriched in postmitotic neurons, consistent with its proneural role in development20. 

Furthermore, we grouped miRNAs according to the shared pattern of abundance across 

single cells using weighted gene co-expression network analysis (Supplementary Table 4.8). 

Some of these specific miRNA coexpression modules operate within specific cell types, 

whereas others are broadly distributed across multiple cell-types (Fig. 4.2e). Our analysis 

revealed dynamic changes in miRNA abundance in concordance with neuronal 

differentiation and maturation, a critical axis of transcriptional variation in the developing 

brain. 

Dual nature of miRNA-mRNA interactions 

During mouse brain development, miRNAs are involved in regulating cell-type 

transitions7, but analogous regulatory mechanisms during human brain development have 
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largely not been investigated. To address this limitation, we projected targets of miRNAs 

found to be co-expressed using sc-qPCR (Fig. 4.2e) onto bipartite co-regulatory modules 

inferred from HITS-CLIP (Fig. 4.1b). This analysis revealed a striking enrichment of targets 

of co-expressed miRNAs among bipartite network modules (Fig. 4.2f). Interestingly, we 

found examples of interactions where miRNAs were enriched in neurons (WGCNA module 

‘blue’, Fig. 4.2e), and their targets fell into a regulatory module enriched for neuronal 

markers (bipartite module ‘yellow’, Fig. 4.1d, 4.2f). This interaction includes DNM1, a 

GTPase involved in synaptic vesicle recycling21, and NOVA1, a neuron specific RNA 

binding protein22. Presence of miRNAs and target mRNAs in the same cell type was also 

observed when we correlated the abundance of miRNAs and their targets across single cells 

(Supplementary Fig. 4.4b). Similarly, enrichment of miR-92 and its direct target EOMES in 

the same cell type as reported in the developing cerebral cortex 18,23, suggests a subset of 

interactions in which control over the target counters the expected effects of miRNA, which 

usually leads to transcript degradation.  

In addition, we also found interactions, in which a miRNA co-expression module was 

enriched in neurons (WGCNA module ‘green’, Fig. 4.2e), but their targets show moderate 

enrichment for proliferating progenitors (bipartite module ‘lightgreen’, Fig. 4.1d, 2f). This 

interaction includes genes such as H2AFZ, involved in cell cycle regulation24, and PHGDH, 

a radial glia specific gene involved in L-serine biosynthesis25. Another example, miRNA co-

expression module ‘turquoise’ is enriched in intermediate progenitor cells (Fig. 4.2e), 

whereas their targets are enriched in bipartite modules that include neuronal and radial glia 

genes, and genes expressed in both (Fig. 4.1d, 2f). For example, CC2D1B is expressed 

highly in radial glia and neurons26, and has been previously implicated in serotonergic 
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signaling in neurons27, but also regulates EGFR expression and could regulate cell 

proliferation28. In these cases, miRNAs appear to be suppressing cell identity. 

Together, these examples highlight dynamic rewiring of miRNA-mRNA interactions 

during neuronal differentiation and maturation in the developing human cerebral cortex. In 

particular, co-modularity miRNA-mRNA interactions as contextualized in the framework of 

gene and miRNA coexpression seems to follow at least two broad patterns: miRNAs are 

recruited in a cell type to repress genes not normally expressed in that cell type in some cases 

or miRNAs are expressed in a cell type to regulate the expression of genes expressed in that 

same cell type. Further refining these dual roles may emerge from higher resolution temporal 

data that synchronizes single cell developmental transitions with miRNA target degradation 

kinetics.  

 

Dynamic changes in miRNA-mRNA network during development 

Next, we explored the temporal axis of miRNA-mRNA interactions. We compared the 

abundance of miRNAs at two stages of development - GW15-16.5 and GW19-20.5 and 

found 69 differentially expressed miRNAs between these two stages including recently 

evolved miRNAs (Fig. 4.3a-b, Supplementary Fig. 4.6-11, and Supplementary Table 4.9). 

Two miRNAs, miR-449a and miR-449b-5p, which control mitotic spindle orientation during 

mammalian brain development 29,30 showed the highest overall fold change in expression 

level between GW15-16.5 and GW19-20.5. We confirmed the expression of miR-2115, 

miR-449c, miR-455 and miR-362 by in-situ hybridization (Fig. 4.3b, Supplementary Fig. 

4.5-7). In addition, we also identified miRNAs, miR-1286, miR-142 and miR-548aa, as 

enriched in the occipital lobe compared to the frontal lobe (Supplementary Fig. 4.8-10, 
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Supplementary Table 4.2) suggesting, in line with recent studies31, that miRNAs may 

regulate regionally divergent transcriptional states in the developing human cortex.  

By independently performing bipartite network analyses for samples at each of the two 

stages studied, we found a striking preservation of most co-regulatory modules, as well as a 

set of distinct interactions present predominantly at one stage (Fig. 4.3c, Supplementary Fig. 

4.11a, Supplementary Table 4.10). Interestingly, many of these modules were also highly 

preserved when compared to adult human brain interactions previously surveyed using the 

same experimental strategy31,32 (Supplementary Fig. 4.11b). Together, our findings suggest 

that miRNA-mediated regulation forms a developmentally dynamic network of interactions 

related to cell type, developmental stage, and cortical area specificity.   

Recent studies suggest that perturbations in miRNA expression may underlie human 

developmental neuropsychiatric disorders33,34, but the specific molecular consequences 

remain poorly understood. Interestingly, genes implicated in autism spectrum disorders 

(ASD), are enriched in the magenta module (Supplementary Fig. 4.12). In addition, we 

found that the expression of several miRNAs recently implicated in ASD33 was biased 

towards expression in excitatory neurons in the developing mid-gestational human samples 

(Supplementary Fig. 4.12), although their expression patterns may change over the course of 

brain development35. Genes targeted by miR-137 in developing brain differ greatly from 

targets identified in adult human brain tissue32, suggesting that in vivo target interactions of 

these miRNAs may also change substantially during development (Supplementary Table 

4.11). To explore this observation more broadly, we considered whether individual miRNAs 

dynamically change their target landscape during development. We intersected cell type 

specificity of miRNA targets at either stage of development and found miRNAs whose  
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 Figure. 4.3. Dynamic changes in miRNA regulatory networks during development.  (a) 

Differential expression analysis identifies miRNAs differentially expressed between GW15-16 and GW19-20 

developing human cortex. Red dots indicate primate-specific miRNAs. (b) Validation of differentially 

expressed miRNAs by in-situ hybridization in the developing human neocortex sections. Images show staining 
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in the outer sub-ventricular zone. (c) Module preservation analysis demonstrates significant similarity between 

most modules obtained for networks generated across GW15-16 and across GW19-20 samples. GW15-16 

module names are used to compare GW15-16 modules with their homologues in GW19-20. (d) Stage-specific 

changes in miRNA targets according to their specificity to distinct cell types of the developing brain identified 

using single-cell RNA-seq26.  

 

targets are enriched in one cell type during early development, and in a different cell type 

later in development (Fig.4. 3d). We found many miRNAs, such as miR-181d-5p, miR-129-

5p, miR-9 and miR-616-5p, whose targets were enriched in different cell types between 

early developmental stages and late developmental stages thereby indicating changing roles 

for these miRNAs during brain development. miR-1260a, miR-758-3p and miR-376c-3p 

targets were enriched in excitatory neurons only in late stages. miR-376c-3p is of interest 

because it can significantly enhance neural differentiation of in vitro pluripotent stem cell 

models36. Targets of miR-92b-3p, let-7-5p, miR-421, and miR-137 were enriched for radial 

glial markers or excitatory neurons only at early stages. Both miR-92b-3p and miR-130b-5p 

have been reported to be specifically associated with neural progenitors12. These examples 

further underscore the dynamic remodeling of miRNA interaction networks during 

development and suggest that further analysis of these interactions may reveal previously 

unappreciated cellular vulnerabilities of miRNA-mRNA interactions to disease mutations. 

Understanding cell-type-specific miRNA expression profiles, and their respective targets 

may highlight cellular patterns of selective vulnerability to disorders affecting miRNA 

expression by highlighting gene regulatory networks that might be perturbed in disease 

states. 

 

Recently evolved miR-2115 regulates cell cycle in human radial glia 
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The developmental transition between GW15-16.5 and GW19-20.5 coincides with changes 

in proliferation rates of radial glia, and depletion of proliferative capacity in the human 

ventricular zone37. Among the top five miRNAs differentially expressed between these 

stages, a great ape specific miRNA, miR-2115, was prominently upregulated at GW19-20 in 

the germinal zones (Fig. 4.3a-b, Supplementary Fig. 4.5, 7). Among miR-2115 targets, 

ORC4, a known regulator of DNA replication38, was enriched in radial glia at early stages of 

development 14,16, and is a member of the turquoise module which is enriched for GW19-

20.5 HITS-CLIP interactions within a segment corresponding to a putative miR-2115 

response element (Fig. 4.3c, Supplementary Table 4.11). Mutations in ORC4 are linked to 

Meier-Gorlin syndrome, which is frequently associated with abnormal head circumference, 

suggesting that this gene may play an important role in normal brain 

development_ENREF_1739. We hypothesized that miR-2115 acts through a radial glia 

enriched gene regulatory network involving ORC4 to regulate cell cycle dynamics and 

thereby influences cortical progenitor cell function. To test this hypothesis, we first 

confirmed the binding of the ORC4 miRNA response element and miR-2115 using reporter 

assay and inhibitor studies (Fig. 4.4a-d, Supplementary Fig. 4.1). Next, we overexpressed a 

synthetic mmu-miR-2115 (see Methods) in developing mouse cortex and found an increased 

proportion of radial glia, but fewer radial glia in mitosis, among the electroporated cells 

(Supplementary Fig. 4.13). Similarly, manipulation of miR-2115 expression influenced the 

development of human primary radial glia cells in vitro. Both overexpression and inhibition 

of miR-2115 changed the proportion of cells expressing PAX6, indicating a possible role for 

this miRNA in proliferation or differentiation (Fig. 4.4c-d). To more specifically test for a 

possible cell cycle phenotype, we performed a cumulative BrdU incorporation assay (Fig.  
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Figure. 4.4. miRNAs contribute to cell-type-specific function. (a) Predicted miR-2115 interaction with 

ORC4 mRNA in the CDS. (b) Luciferase reporter assay (**** p<0.0001, unpaired t-test). (c) miRNA-2115 

influences radial glia development in human primary cells. (d) Quantification of immunopositive cells (N = 3 

biological replicates). “miR-1” – GFP-miR1 small RNA overexpression control construct, “miR-2115” – GFP-

miR2115 overexpression construct, “WT-ORC4” – reporter construct with wild type miR-2115 response 

element containing sequence, “MT-ORC4” – reporter construct lacking miR-2115 response element, “anti-
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miR-2115” – miR-2115 inhibitor co-transfected with GFP expression construct. All constructs and reagents are 

described in the Methods. (e) Experimental design of cumulative BrdU labeling in primary human cells in vitro. 

(f) Immunostaining of human cultured primary cells. Arrowheads indicate GFP and SOX2 double positive 

cells. Scale bar 10μm (g-h) Quantification of BrdU labeling of PAX6 positive cells (g) and estimates of S-

phase length (Ts) and cell cycle length (Tc) (h) relative to control conditions (N = 3 biological replicates). *-

p<0.05, student’s t-test.    

 

4.4e-g), and showed that miR-2115 expression regulates normal cell cycle duration in 

primary human radial glia (Fig. 4.4h). Together, these findings suggest that miR-2115 

emerged recently in evolution and integrated into post-transcriptional regulatory networks 

controlling cell cycle dynamics during human cortical development. 

 

Discussion: 

Our study revealed three distinct mechanisms by which miRNA regulatory pathways 

contribute to human brain development. Our novel single cell profiling approach revealed 

dynamic changes in miRNA expression during neuronal differentiation, suggesting that 

miRNA abundance profiles may further contribute to unbiased cell type classification in 

complex tissues. Moreover, by intersecting high throughput profiling of miRNA-mRNA 

interactions with cell type specific gene expression profiles, we demonstrate that many 

miRNAs, including those expressed in multiple cell types, can regulate important aspects of 

cell identity by directly regulating cell-type-specific gene expression. Furthermore, by 

projecting cell-type-specific miRNA and mRNA expression patterns against the modular 

framework of the bipartite network of miRNA-mRNA interactions, our study revealed 

dynamic developmental remodeling of miRNA-mRNA interaction networks involving 

conserved and recently evolved miRNAs, as well as cell-type-specific miRNA regulatory 
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networks operating in the developing human brain (Supplementary Table 4.12). 

Comprehensive understanding of cell-type-specific miRNA-mRNA interactions may reveal 

previously unappreciated patterns of selective vulnerability of cell-types in 

neurodevelopmental disorders, including Autism Spectrum Disorders.      
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Methods: 

 

Tissue Samples  

De-identified human tissue samples were collected with patient consent in strict 

observance of the legal and institutional ethical regulations from elective pregnancy 

termination. Protocols were approved by the Human Gamete, Embryo, and Stem Cell 

Research Committee (UCSF institutional review board) at the University of California, San 

Francisco. The prenatal brain tissue processing for dissociation as well as fixation, 

cryosectioning, and long-term storage was performed as described before 1.  

 

Mice  

All mice in this study were obtained from Simonsen Laboratories and maintained 

according to protocols approved by the Institutional Animal Care and Use Committee at 

UCSF. 

 

AGO2-HITS-CLIP 

The experiments were performed as described earlier 2 except for a few modifications. 

Monoclonal anti-Ago2 antibody (Sigma, 11A9 clone, SAB4200085) was used to perform 

immunoprecipitation of protein on protein G dynabeads (Invitrogen, 100-03D). For the 

negative control, goat anti-rat IgG antibody (Sigma, A9037) was used. RNase dilution of 

1:50,000 was used after optimization. Primary tissue samples at stages corresponding to 

peak neurogenesis (gestational weeks GW 15-16.5), and at stages corresponding to upper 
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layer neurogenesis and early gliogenesis were analyzed. Sample quality and data processing 

metrics were comparable to previously published results for adult human brain HITS-CLIP 

study 3. 3258 genes were actively targeted by miRNAs through protein coding (CDS) or 3’ 

untranslated regions (3’UTR) of the transcript. Strikingly, close to 80% of gene targets were 

detected in at least two samples, suggesting that we recovered the majority of in vivo mRNA 

targets. 

 

Library Preparation for Sequencing RNA tags on Ion-Torrent 

For library preparation, all steps were performed as described before 2, except that the 

primers with adapter sequences were modified according to the Ion Torrent sequencing 

platform.  

Primers with Adapter sequences -  

DSFP5 - 5’- 

CCATCTCATCCCTGCGTGTCTCCGACTCAGAGGGAGGACGATGCGG -3’ 

DSFP3 - 5’- CCTCTCTATGGGCAGTCGGTGATCCGCTGGAAGTGACTGACAC -

3’ 

 

The bands corresponding to AGO2:miRNA:target complexes (130 kDa) were cut. 

miRNA libraries and target mRNA libraries were made separately. 

 

Plasmid Constructs 

gBlocks gene fragments for the respective target sites or miRNAs (table S4.3) with the 

restriction site(s) at their ends were purchased from IDT. Restriction site cloning was 

performed using the standard method. ORC4 expression plasmid was generated using gene 
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synthesis and cloned into CAG-IRES-GFP vector using the GeneArt service (Thermo 

Fisher).  

 

Luciferase Activity Assay 

Luciferase activity assay was performed as described earlier 4 in HEK293 cells. The 

target sites were cloned in psiCHECK2 (Promega) plasmid (table S4.3) and miR-2115 and 

miR-9 were cloned in pCAG-GFP (Addgene 11150) plasmid (table S4.2). miRNA mimics 

(Life Technologies) were used for other miRNA assays.  

 

Preprocessing and Mapping of AGO2-HITS-CLIP Tags 

Barcodes were identified and reads were separated into each sample. Adapter sequences 

at both ends of reads were removed using Cutadapt 5. Trimmed reads were mapped to the 

human genome (hg19) with novoalign (http://www.novocraft.com/). Identical alignments 

were collapsed in each sample to remove PCR replicates. Strand specific read coverage was 

then calculated using the alignments from each sample. 

 

miRNA profiling and Differential Expression Analysis 

Adapter-trimmed AGO2 reads from miRNA libraries were mapped to human miRNA 

precursors from miRBase version 21 by using miRdeep2 6. DESeq2 was used to identify 

differentially expressed miRNAs between 2 developmental stages 7.  

 

Peak Calling and Identification of Clusters/AGO Footprint 

Piranha and zero-truncated negative binomial model (ZTNB) were used to calculate the 

significance of read coverage at each mapped genomic position in each samples 3,8. In 

http://www.novocraft.com/
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summary, the read heights for each mapped genomic position were assumed to be sampled 

from an underlying ZTNB distribution, and parameters for ZTNB probability density 

functions were estimated using read height measured at all positions of the genome. P-values 

were calculated as the probability of observing a read height as large as the height in 

question and assigned to each position. We used Fisher’s method to calculate the joined p-

values at each genomic position across all samples. Positions with a joined FDR <5% were 

deemed significant. Significant positions within 50 nts of one another were merged into a 

single contiguous interval as single AGO binding site, and resulting regions of less than 50 

nts were symmetrically extended to 50 nts as accounting for the AGO binding footprint (9). 

AGO binding sites were then annotated according to their overlapping gene structures from 

GENCODE annotation Version 19. 

 

Identification of miRNAs for each AGO binding sites  

In order to identify miRNAs that bind each AGO site on mRNAs and lncRNAs, all types 

of canonical binding sites including 7mer-1A,7mer-m8 and 8mer 10 for all prenatal brain 

expressed miRNAs were searched within the full length AGO binding sites defined as 

above. miRNAs with miRNA recognition elements (MREs) within each AGO binding site 

were counted.  

 

Primary human cell dissociation and culture 

Primary human cortical cells were dissociated using Papain (Worthington labs) and 

cultured on matrigel (BD Biosciences) coated tissue culture treated plates. Cells were plated 

at approximately 100,000-200,000 cells per well of a 12 well plate. Culture media used in 

this experiment consisted of DMEM (Invitrogen, 11965) supplemented with N2 (Invitrogen, 
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12587-010) and B27 (17502-048), as well as Penicillin and Streptomycin, but no serum. At 

the time of plating, culture media was spiked with recombinant human FGF-basic (10ng/ml, 

Peprotech, AF-100-18B). Approximately 24-48 hours after plating, cells were transfected 

with plasmids using Lipofectamine 2000 (Life Technologies) following manufacturer 

protocol. BrdU (Sigma) was diluted in the culture media for dissociated cells (DMEM, 

supplemented with B27 and N2, with Penicillin-Streptomycin) at 50 μg/ml. 

 

Single-cell qPCR Analysis 

The capture of single-cells was done using the C1 Single-Cell Auto Prep Integrated 

Fluidic Circuit (IFC), which uses a microfluidic chip to capture the cells, perform lysis, 

reverse transcription and cDNA amplification in nano-liter reaction volumes of miRNA and 

mRNA species at the same time. The details of the cell capture protocol used are described 

in protocol 100-6667 at http://www.fluidigm.com/.  During the reverse transcription step, 

miRNAs are reverse-transcribed to cDNA using stem loop RT primers from the Megaplex 

RT primer pool (Life Technologies) that are specific for mature miRNA species and reagents 

from the Single-cell-to-CT kit (Life Technologies). mRNA species are reverse-transcribed at 

the same time during this process using mRNA primers which are present in the Single-Cell 

VILO RT. Megaplex primers and mRNA primers are added at the recommended 

concentrations. 

During the PCR step, products are uniformly amplified from cDNA templates using the 

Megaplex PreAmp Primers (Life Technologies), a pool of DELTAgene primers and Single-

Cell Preamp mix from the Ambion Single-Cell-to-CT kit (Life Technologies). 

 

http://www.fluidigm.com/
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After pre-amplification PCR, the amplicons were diluted 1:4 with C1 DNA Dilution 

Reagent (Fluidigm 100-5317) and stored in -20°C until needed. qPCR was carried out using 

the 96.96 dynamic array (Fluidigm Corporation) following the manufacturer's protocol (100-

3909 and 100-9792). Gene expression analysis was done using the Fluidigm Real-Time PCR 

Analysis Software (v.3.0.2). Ct values were obtained and then square root normalized to 

stabilize the variance. 

Clustering of single-cells was performed using a recently developed method combining 

Louvain clustering of single-cell sample coordinates with Jaccard distance metric 11. T-

stochastic neighbor embedding (tSNE) was used to visualize cells in two dimensions.  

 

WGCNA Analysis 
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To detect groups of co-expressed miRNAs, we used the WGCNA R package 12. Cells 

analyzed using sc-qPCR were included in this analysis. 

 

Cell-type-specificity and Enrichment Analysis for miRNAs in single-cell data 

We performed one-tailed Wilcox/Mann-Whitney-U Test to detect differential enrichment 

of each miRNA in each cell-type against the other cell-types. A miRNA is defined to be 

enriched in a cell-type, if it is expressed significantly higher in that cell-type (FDR<0.05). 

 

Correlation with target mRNA levels  

To correlate the relative abundance of co-expressed miRNAs and their targets across the 

major cell-types of the developing brain, we calculated the average module eigen-gene for 

modules detected in fig. S4.2 across radial glia, intermediate progenitors, neurons and 

interneurons. In parallel, we used published scRNA-seq data 13 and the cell-type assignments 

therein for radial glia, interneurons, intermediate progenitors, and excitatory cortical 

neurons, to calculate cell-type-wise average expression level of the genes identified as 

AGO2 bound miRNA targets as well as non-targets. We then correlated the average module 

eigen-gene with all of the gene targets predicted by HITS-CLIP and non-targets, and we 

calculated the average correlated for each in Fig. 4.2G. To compare the average correlations, 

we first converted correlation to z-scores using Fisher transformation. The differences 

between average z-scores (for targets and non-targets) were divided by the joint standard 

errors and significance was calculated based on normal distribution.    
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In-situ hybridization 

In situ hybridization in primary tissue sections was performed as described before 14, 

with the exception that we did not perform a probe linearization step. Locked nucleic acid 

probes for miRNA were purchased from Exiqon. 

. 

In-utero electroporation 

Survival in utero surgery was performed in strict observance of protocols and 

recommendations approved by the Institutional Animal Care and Use Committee at UCSF. 

Plasmids were injected at approximately 1.5 μg/μl as described before 15,16. Although the 

ORC4 protein sequence is highly conserved, the miR-2115-5p MRE sequence is not fully 

conserved in mouse. We generated a mutant miR-2115-5p hairpin sequence (mmu-miR-

2115) whose seed would be complementary to the mouse ORC4 mRNA coding sequence at 

the site homologous to the human miR-2115-5p MRE.   

 

Immunofluorescence 

Thin 20 μm cryosections were collected on superfrost slides (VWR) using Leica 

CM3050S cryostat. Immunohistochemistry based detection of specific antigens was 

performed according to standard protocols. In short, heat-mediated antigen retrieval was 

performed in 10mM sodium citrate for 15 min. Cells were permeabilized in phosphate 

buffered saline (pH = 7.4, PBS) supplemented with 2% Triton X-100. Blocking buffer 

consisted of PBS supplemented with 10% donkey serum, 0.2% gelatin and 2% Triton X-100. 

The antibodies used in this study included chicken anti-GFP (1:1000, Aves Labs GFP-1020), 

rabbit anti-PAX6 (1:300, Covance prb-278p), and mouse anti-pHH3 (1:100, Abcam 
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ab1791). Secondary antibodies used were from Life Technologies. Nuclei were 

counterstained with DAPI (Sigma).   

After cell fixation, BrdU epitope was unmasked using 2N hydrochloric acid, neutralized 

using 0.1M boric acid, and stained using a rat anti-BrdU [BU1/75 (ICR1)] antibody (1:50, 

Abcam ab6326). Coverslips were mounted with Aqua-mount (Lerner Laboratories)  

 

Images were collected with a Leica DMI 4000B microscope using a Leica DFC295 camera 

Leica TCS SP5 X Confocal microscope. Quantification of immune-positive cells was 

performed in Adobe Photoshop. Mouse embryonic electroporation cortical staining was 

quantified as described before 15. Quantification results for every biological replicate 

(embryo) represent an average of quantification across three non-adjacent sections. 

Replicates were drawn from at least two independent litters. Quantification of BrdU 

incorporation into PAX6 positive primary cells in culture was performed by imaging 

randomly selected fields in the well using tile-scanning feature. GFP positive cells were first 

evaluated for expression of PAX6, and only after that, BrdU immunoreactivity was assessed. 

Between 100 and 200 PAX6/GFP double-positive cells were evaluated per well. 

Quantification of cell cycle phenotypes was performed by fitting linear regression, and cell 

cycle parameters were calculated as described before 17. 

 

Gene Enrichment Analysis 

Transcriptome data from similar prenatal brain tissues 18 was downloaded and the 

expressed genes were used as a better background set for gene enrichment analysis. 

The p-value was calculated with hypergeometric test, and adjusted using the 

Benjamini–Hochberg (BH) method. To formally demonstrate that cell-type-specific 
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genes are regulated by miRNAs, we used published scRNA-seq datasets to calculate 

cell-type specificity scores using ideal vector correlation for every miRNA target 

identified by HITS-CLIP (Supplementary Table 4.7). Genes with a Pearson correlation 

above 0.3 were considered cell-type-specific 1. Strikingly, a high fraction of all genes 

specific to radial glia or neurons are targeted by miRNAs, with ~75% of radial glia 

specific genes, and ~32% neuron-specific genes bound by AGO2. 

 

Bipartite Community Detection Analysis 

An unweighted (binary) bipartite network was constructed such that there exists an 

edge between each miRNA-mRNA pair if and only if such interaction is detected by 

AGO2-HITS-CLIP. First, this network was shown to be scale-free (P < 0.001), and 

then by generating random networks while constraining the number of edges and nodes 

to the original miRNA-mRNA network and calculating Barber`s modularity score 19 

(Null distribution), the miRNA-mRNA network shows to be significantly modular (P 

for permutation test < 2e-16). Label Propagation followed by the Bipartite Recursively 

Induced Modularity (LP-BRIM) algorithm 20 was used for community detection in this 

bipartite network. Due to stochasticity of this method, we obtained robust communities 

by repeating LP-BRIM 2500 times and determining the overlap among all the 

iterations. 

Bipartite network construction 

The bipartite networks were generated using all detected target genes (3463 nodes in 

mode I) and all miRNA (514 nodes in mode II). An edge exists between only one node in 

mode I and one node in mode II if such interaction is present in HITS-CLIP data set (Table 



 

 111 

S4.2) (no edge is allowed between nodes in mode I (or mode II)). Hence in this study, three 

distinct networks were built using GW15-16, GW19-20 and the combined GW15-16/19-20 

HITS-CLIP data set with 31859, 20734, and 36176 total edges, respectively. 

 

Bipartite network modularity statistics 

First, the R “bipartite” package 21 was used to show that the constructed network is 

scale-free. For consistency with the literature definition of scale-free networks, we 

showed that this network significantly obeys power law, truncated power law, and 

exponential distribution (Supplementary Fig. 4.11 A and B, P < 0.001). Next to 

demonstrate that these networks are significantly modular, we first generated a null 

distribution by randomly shuffling the edges between the nodes and calculating 

Barber`s modularity score. Finally, we showed that the network is significantly 

modular using a permutation test (P < 2e-16).  

 

Bipartite community detection 

We used R “lpbrim” package 22 to detect communities in the described networks. 

Due to stochasticity of the method, we ran the community detection algorithm 25 times 

and obtained the best solution among all 25 runs (with maximum Barber`s modularity 

score). We repeated this procedure 100 times, and found the consensus clustering as 

follows: 

1) We first defined the Overlap Rate Matrix (ORM) as a symmetric N by N matrix 

where N is the total number of miRNA and target genes combined. Each entry 

ORMij shows the probability (or rate) of which target gene (or miRNA) i lies within 

the same cluster as target gene (or miRNA) j upon 100 runs. 
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2) The obtained ORM was further clustered using hierarchical clustering 

(Supplementary Fig. 4.11 C and D). Each obtained diagonal block after hierarchical 

clustering represents one community (contains both target genes and miRNAs that 

have significant intra-modular interactions compared to their inter-modular 

interactions with target genes (or miRNAs) in other communities.).  

3) Finally, dynamic branch cutting implemented in “dynamicTreeCut” R package was 

used for tree cutting and assigning cluster ids to each node (Supplementary Fig. 4.11 

E and F). 

4) We repeated this procedure to show that the obtained clusters are robust and 

reproducible (Supplementary Fig. 4.11 C and D). 

 

Bipartite module preservation analysis 

In order to determine whether each identified module in GW15-16 network is 

statistically preserved in GW19-20, we first find the closest module in GW19-20 to 

GW15-16 in terms of the number of shared nodes in that module. Then, using the 

hypergeometric test, module preservation statistics were obtained and corrected using 

the BH method for multiple comparison. As shown in Fig. 4.3F, two homolog modules 

in GW15-16 and GW19-20 have similar interaction levels suggesting preserved 

topology of modules as well. Note that names of GW15-16 module colors are used to 

label Fig. 4.3F. 

 

Inference of evolutionary history of miR-2115 

To infer the evolutionary history of miR2115, we used genome sequences obtained from 

the UCSC Genome Browser (the most recent genome assemblies used). Alignments were 
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done using the Geneious® bioinformatics platform (version 9.1.8). Human SPINK8 gene 

sequence is annotated with introns, exons, CDS and UTR regions and miR-2115 location 

according to “NCBI RefSeq” track on the UCSC Genome Browser. SPINK8 gene orthologs 

were located in chimpanzee, gorilla, orangutan, and gibbon genomes using “Other RefSeq” 

track on UCSC Genome Browser. We excluded Bonobo because of the poor quality of 

genome assembly at the area of interest. Primate SPINK8 sequences were aligned with 

human SPINK8 sequences individually using the MUSCLE Alignment algorithm. Primate 

SPINK8 sequences were annotated with introns, exons, CDS and UTR regions and miR-

2115 location according to alignment with the annotated human SPINK8 sequence. 

Originally primate SPINK8 genes were annotated according to the “Other RefSeq” track on 

UCSC Genome Browser but this yielded varied and unreliable results. Presence or absence 

of miR-2115 was determined based on alignment of human miR-2115 to the orthologous 

primate sequence (with mature transcript and seed region taken into consideration). 

Annotated human, chimpanzee, gorilla, orangutan, and gibbon SPINK8 intron 3/4 (intron 

miR-2115 is located in) sequences were aligned together to visualize changes in intron 

sequences between species. Boundaries of insertions and deletions in SPINK8 intron 3/4 

occurring between species defined based off evolutionarily chronological alignments of 

SPINK8 intron 3/4 sequences (e.g. gibbon and orangutan alignment, orangutan and gorilla 

alignment, etc.). Evolution of the SPINK8 intron 3/4 was predicted using the fewest number 

of mutations that would give rise to observed insertions and deletions. 
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Supplementary Figure. 4.1. Gene co-expression network analysis of miRNAs across single-cells. (a) 

Heatmap of single-cell qPCR expression data for selected genes informative for cell-type classification. 

In particular, progenitor cells expressed QKI, POU2F1, CNN3, but radial glia (RGC) further expressed 
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HES1, PAX6, PALLD14,23,24, while intermediate progenitors (IPC) expressed higher levels of 

ASCL125,26. Cells expressing high levels of BCL11B, TUBB3 were interpreted as deep layer neurons 

(DLN)27, while cells enriched for the expression of NRP1, CUX2, and RBFOX3 were considered to be 

upper layer neurons (ULN)28. Cells expressing high levels of GAD1 and ACSL1 were considered to 

represent interneurons (IN)29, and the single-cell expressing NKX2-2 and SOX10 is considered to be an 

oligodendrocyte precursor (OPC)30,31. (b) Heatmap of cell type enriched miRNAs (see also Fig. 4.1d). 

(c) Violin plots of module eigen-gene values of miRNA co-expression networks across cell-types.      
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Supplementary Figure. 4.2. Validation of the interaction between miRNA and mRNA identified by 

HITS-CLIP. (a) Example of AGO2-HITS-CLIP peaks mapping to a previously validated interaction between 

miR-9 and the 3’UTR of HES1 (32). (b) Distribution of HITS-CLIP reads. Several long non-coding RNAs 

(lncRNAs) were also identified among AGO2-bound transcripts (Supplementary Table 2), including 9 

lncRNAs previously annotated as cell type specific18. (c) Luciferase reporter assay showing the down-

regulation of luciferase, fused to respective genes, measured 48 h after the overexpression of respective 

miRNA(s) in HEK293T cells (see Methods for details). *- p<0.05, **- p<0.01, *** - p<0.001, **** - p<0.0001. 
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Supplementary Figure. 4.3 Important regulators of cell type identity are targeted by miRNAs. 

MicroRNAs regulate the expression of genes critical during neuronal differentiation. Examples of cell 

type enriched genes regulated by microRNAs during peak stages of neurogenesis in human cerebral 

cortex. Among both ventricular and outer radial glia- enriched genes, microRNAs target many critical 

components of developmental signaling pathways, including Notch (HES1), Sonic Hedgehog (GLI3, 

FZD8), Wnt (SFRP1), as well as pathways involved in radial glia subtype specification, such as 

LIF/LIFR and PTN/PTPRZ1 or TNF/TNFRSF19. Regulation of these pathways by microRNA likely 

contributes to important aspects of radial glia development. Among intermediate progenitor cell enriched 

genes, pathways involved in IPC specification and maintenance (EOMEs, HES6, INSM1) are targeted 

along with proneural factors (NEUROD1, ELAVL4), suggesting that miRNAs may control important 

aspects of transit amplification and neuronal differentiation. Among excitatory cortical neurons, miRNAs 

regulate the expression of upper (BHLHE22) and deep layer (TBR1) identity, as well as many genes 

involved in axon guidance and projection type development (SATB2, SEMA3C, ROBO2, DCC, 

L1CAM). Interestingly, Both ROBO1 and SLIT1 lay in the turquoise module (combined analysis, see 

Table S8) that which seems to be enriched for cortical interneurons (Fig. 4.3B) in agreement with 

33. Moreover, ROBO1 and ROBO2 both lay in the turquoise module in GW19-20 network. This module 

is homologous to module blue, which is one of the 4 differentially regulated modules during 

development (Fig. 4.3F) demonstrating their role in developmental processes. In addition, SLIT1 lays in 
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the grey module in GW19-20, which is not preserved and arises from module brown of GW15-16 that is 

also differentially regulated and has developmental significance (Fig. 4.3f). Overall, all three ROBO1, 

ROBO2, and SLIT1 are associated with modules that have developmental role.  

 

 

 

Supplementary Figure. 4.4: miRNA-mRNA node degree distribution. (a-b) each node in mode I 

(target genes, a) has significantly less connections with the opposite mode than mode II (targeting miRNA, 

b). (c) miRNA abundance shows a long-tailed distribution. (d) Abundance of miRNA members of each module 

is illustrated. Modules tend to either recruit several low-abundant miRNAs or few high-abundant miRNAs. 
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Supplementary Figure. 4.5. Bipartite network analysis. (a-b) Both GW15-16 and GW19-20 

networks illustrate a scale-free topology (Dark, median and light grey lines refer to exponential, power 

and truncated power law, respectively. P < 0.001). (c-d) Overlap rate matrix after hierarchical clustering 
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for GW15-16 (c) and GW19-20 (d). For each gestational stage two replicates are produced to ensure the 

robustness of the community detection algorithm. (e-f) Dynamic branch cutting of panel c and d.  

 

 

 

 

Supplementary Figure. 4.6. miRNA regulation of Autism Spectrum Disorders linked genes. (a) 

Bipartite network module greenyellow is significantly enriched for genes annotated associated with 

ASD. (b) StringDB representation of ASD relevant genes from bipartite module greenyellow along with 

highlighted targets of miR-137 and miR-218, recently associated with ASD 34. (c) Heatmap shows sc-

qPCR expression values for several of the cell-type markers also shown in fig. S1, and for 3 miRNAs 

recently associated with ASD 34, miR-708, miR-218, and miR137. Notably, expression of miR-137 and 

miR-218 is highly correlated and enriched in early maturing (MEF2C- positive) deep layer neurons 

(TUBB3 and BCL11B double-positive). Expression of miR-708 is enriched in deep layer neurons. 

Violin plots show distribution of expression levels organized according to inferred cell-types.  
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Supplementary Figure. 4.7. Relationship between miRNA and target mRNA abundance. (a) Plot 

represents coefficient of variation (CV) 35 for every mRNA profiled using sc-qPCR in relation to the 

number of HITS-CLIP reads reflecting interaction levels. Red points indicate genes not detected in 

HITS-CLIP. Next, to extend these findings beyond the set of genes we selected for the sc-qPCR, we 

leveraged published scRNA-seq data 1 to correlate miRNA co-expression module (Supplementary Fig. 

4.1) abundance across cell-types with average expression of miRNA targets of that module and non-

targets (see Methods). (b) Correlation analysis between average module eigengene value across cell-

types detected in Fig. S1 and average expression level of HITS-CLIP target and non-target mRNAs 

across the same cell-types determined using sc-RNAseq in previously published study 1 (see Methods for 

details). (c) Moreover, for each HITS-CLIP associated mRNA we calculated the average abundance of 

the miRNAs predicted to target that mRNA, and related this average miRNA abundance to the cell type 

enrichment. Interestingly, cell-type enriched genes are less likely targeted by high abundance miRNAs 

than genes not enriched in any cell type, suggesting that mRNAs coding for cell-type-specific genes 

escape suppression by highly abundant miRNAs. Plot representing cellular specificity of HITS-CLIP 

target mRNA (see Fig. 4.2d) and average abundance of targeting miRNAs. 
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Supplementary Figure. 4.8. Expression of miR-2115 is enriched in late cortical development. In 

situ hybridization for miR-2115 in human cortex reveals increasing expression levels during 

development, reflecting sequencing results. Bottom panels, also shown in Fig. 4.3, show magnified view 

of the cortical OSVZ. 
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Supplementary Figure. 4.9. Expression of miR-362 is enriched in early cortical development. In 

situ hybridization for miR-362 in human cortex reveals declining expression levels during development, 

reflecting sequencing results. Bottom panels, also shown in Fig. 4.3, show magnified view of the cortical 

OSVZ. 
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Supplementary Figure. 4.10. Evolution of miRNA-2115 in the primate lineage. (a) Phylogeny tree of 

upper primates (Bonobo excluded due to poor read sequence quality in region of interest). Star represents 

presence of miR-2115. I) Alignment of SPINK8 intron 3 - Grey represents agreement to consensus. Black 

represents disagreement to consensus. Lines indicate gaps compared to consensus. II) Sequence of miR-2115 in 

higher primates. Highlighting indicates disagreement to consensus. miR-2115 is predicted to be present in 

Orangutans but is absent in Gibbons. b) Intron 3 is significantly smaller in Gibbons than higher primates (~¼ 

the length) and more closely matches Intron 3 of mice. There is a ~7100 nucleotide section present in 

Hominidae but absent in Gibbons, likely arising from an insertion occurring in Hominidae after the divergence 

of Gibbons. This insertion likely carried miR-2115. There is a 367 nucleotide section directly downstream of 

miR-2115 present in Orangutans but not Great Apes, indicating it was lost in the Great Apes common ancestor 

after the divergence of Orangutans. There is a 1832 nucleotide section present only in Orangutans occurring 

after their divergence from the Great Apes. The great mobility in this intron is likely not due to transposable 

elements judging from the lack of inverted repeats in the area. (c) Expression of novel miRNAs that were not 

annotated in latest miRBase 36 across the samples. In this study, we found 36 of them expressed in prenatal 

brain samples. Of the expressed miRNAs, 31 of them were either human-specific or primate-specific, and 4 of 

them were specific expressed at GW15.  
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Supplementary Figure. 4.11. Expression of miR-1286 is enriched in human occipital cortex. In situ 

hybridization for miR-1286 in human prefrontal (PFC) and visual cortex (V1) reveals strong signal in 

the occipital cortex. Bottom panels show magnified view of the cortical OSVZ. 
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Supplementary Figure. 4.12. Expression of miR-142 is enriched in human occipital cortex. In situ 

hybridization for miR-142 in human prefrontal (PFC) and visual cortex (V1) reveals strong signal in the 

occipital cortex. Bottom panels show magnified view of the cortical OSVZ. 
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Supplementary Figure. 4.13. Expression of miR-548aa enriched in human occipital cortex. In situ 

hybridization for miR-548aa in human prefrontal and visual cortex reveals strong signal in the occipital 

cortex. 
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Supplementary Figure. 4.14. Bipartite network modules are preserved between GW15-16 samples 

and GW19-20. Module preservation statistics shown on x-axis suggest a significant preservation of 

modules (modules with higher interaction levels show higher preservation as well). Modules turquoise 

and blue are the two least preserved modules, suggesting developmental stage-specific changes. GW15-

16 module names are used to compare GW15-16 modules with their homologues in GW19-20 (see 

Methods for details). Module assignments are listed in Table S4.6.  
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Supplementary Table S4.7: Cell-type-specificity scores using ideal vector correlation from published 

scRNA-seq data 

Supplementary Table S4.8: Modules obtained from Bipartite Network Analysis of all the miRNA-mRNA 

interactions identified by HITS-CLIP 

Supplementary Table S4.9: miR-137 Targets in Prenatal and Adult Brain Tissue Identified by HITS-CLIP 

Supplementary Table S4.10: Differentially expressed miRNAs between two stages of brain development 

identified by DESeq2. 

Supplementary Table S4.11: Analysis of targets of recently evolved miRNAs 36.  

Supplementary Table S4.12: Bipartite Network Analysis of miRNA-mRNA interactions identified 

independently at GW15-16 and GW19-20 stages. 
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