Lawrence Berkeley National Laboratory

LBL Publications

Title

ELECTRON-TRANSFER REACTIONS OF TRIVALENT URANIUM; PREPARATION AND STRUCTURE OF (MeC5H4) 3U=NPh AND [(MeC5H4) 3U]2[u-n1, n2-PhNCO].

Permalink https://escholarship.org/uc/item/4bg4n48g

Authors Brennan, J.G. Andersen, R.A.

Publication Date

1984-09-01

UNIVERSITY OF CALIFORNIA RECEIVED

Materials & Molecular Division OCT 17 1984

LIBRARY AND DOCUMENTS SECTION

Submitted to the Journal of the American Chemical Society

ELECTRON-TRANSFER REACTIONS OF TRIVALENT URANIUM; PREPARATION AND STRUCTURE OF $(MeC_5H_4)_3U=NPh$ AND $[(MeC_5H_4)_3U]_2[\mu-\eta^1,\eta^2-PhNCO]$

J.G. Brennan and R.A. Andersen

September 1984

81-1835

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

LBL-18353

Electron-Transfer Reactions of Trivalent Uranium; Preparation and Structure of $(MeC_5H_4)_3U=NPh$ and $[(MeC_5H_4)_3U]_2[\mu-\eta^1, \eta^2-PhNCO]$

John G. Brennan and Richard A. Andersen*

Chemistry Department and Materials and Molecular Research Division of Lawrence Berkeley Laboratory, University of California Berkeley, California 94720

*Address correspondence to this author at Chemistry Department, UCB.

Abstract:

Reaction of either Cp₃U(thf) or $(MeC_5H_4)_3U(thf)$ with PhN₃ or Me₃SiN₃ yields the organoimides, Cp₃U=NSiMe₃ or $(MeC_5H_4)_3U=NR$ (R is Ph or Me₃Si) and N₂. The crystal structure of $(MeC_5H_4)_3U=NPh$ is described. In contrast, PhNCO reacts with $(MeC_5H_4)_3U(thf)$ to give the coordination complex $[(MeC_5H_4)_3U]_2-[\mu-\eta^1,\eta^2-PhNCO]$, the result of electron transfer since the uranium atoms are tetravalent. The complex was characterized by X-ray crystallography.

In contrast to the large number of d-metal organoimides, 1 $\dot{\mathbb{M}}$ - $\ddot{\mathbb{N}}$ - \mathbb{R} \longleftrightarrow $M=\ddot{\mathbb{N}}-\mathbb{R}$ \mathbb{R} \longleftrightarrow $\dot{\mathbb{M}}=\ddot{\mathbb{R}}-\mathbb{R}$, only one f-metal organoimide, $Cp_3UNC(Me)C(H)PPh_2Me^{2a}$ prepared by insertion of acetonitrile into $Cp_3U(CH)PPh_2Me$, 2b has been reported. The U-N distance of 2.06(1) Å and the U-N-C angle of 163(1)° suggests that the U-N bond order is between two and three. Organoimides are of considerable interest relative to structure³ and reactivity studies⁴ and rational synthetic reactions need to be developed before the reaction chemistry can be explored systematically. Reaction of a trivalent uranium compound with either an organic azide or isocyanate to give a pentavalent uranium organoimide derivative with evolution of either nitrogen or carbon monoxide, respectively, is a rational and potentially general synthetic reaction for these interesting complexes.^{1,5} In this communication we describe the reaction of $U(C_5H_4Me)_3$ thf with organic azides to give $U(C_5H_4Me)_3NR$, or organoisocyanates to give $[U(C_5H_4Me)_3]_2[PhNCO].$

The uranium metallocene, $U(C_5H_4Me)_3(thf)$,⁶ reacts with Me_3SiN_3 or PhN_3 in diethyl ether at room temperature with evolution of nitrogen over 30 minutes to give red $U(C_5H_4Me)_3UNR$, $R = Me_3Si^8$ or Ph,⁹ on crystallization from hexane in <u>ca</u>. 50% isolated yield. The $Cp_3UNSiMe_3$ was prepared similarly and crystallized from diethyl ether.¹⁰ An ORTEP diagram for the phenylimide complex is shown in Figure I. The most important feature is the presence of the imido functional group with a U-N distance of 2.019(6) Å and a U-N-C(1) angle of 167.4(6)°. The U-N distance is the shortest U-N distance ever reported. The U-N (single) bond distance in triscyclopentadienyluranium complexes ranges from 2.29(1) Å in $Cp_3UNPh_2^{11a}$ to an average of 2.38(1) Å in Cp_3U (pyrazolate).^{11b} If we assume a standard U-N single bond distance of 2.30 Å, then the U-N distance in the organoimide of 2.02 Å is 0.28 Å or 12% shorter. Similar shortening is observed in comparing M-NR₂ relative to M=NR

or M=NR distances in the transition metal series.^{1,12} The essentially linear UNC angle suggests that both lone-pairs of electrons on the nitrogen atom are involved in bonding to uranium and the U-N bond is best viewed as a triple bond.

We can account for the bonding in a very crude symmetry orbital picture in the following way.¹³ Assume that the molecule has C_{3v} symmetry and that the 5f, 6d, and 7s orbitals on uranium are available for bonding to the Cp and NR functional groups. Assume further that the 7p orbitals are too high in energy for useful bonding interactions.^{13c,d} The e₁ (pm) orbitals of the 3 Cp rings give rise to four SALC's that transform as a₁, a₂, 2 x e and the a₁(pm) orbitals of the 3 Cp rings give rise to two SALC's that transform a₁ and e. The metal AO's transform as a₁ [s, z^2 , z^3 , and $x(x^2-3y^2)$], a₂ [y(3x²-y²)], and e [xy, x^2-y^2 , xz, yz, xz^2 , yz^2 , xyz, $z(x^2-y^2)$]. If we let the 9 Cp orbitals overlap with the a₁ [s, z^2 , $x(x^2-3y^2)$], a₂ and e [xy, x^2-y^2 , xz, yz, xyz, $z(x^2-y^2)$] metal AO's, then we have left over the 2a₁ + e AO's to overlap with the a₁ + e set on the -NR fragment. In this way we can account for the M-NR triple bond since the 6 electrons on the (NR)²⁻ unit are donated into the 2a₁ + e AO's of the (Cp₃U)²⁺ unit which contains one electron.

In contrast to the reaction of the organoazides with the trivalent metallocene, $U(C_5H_4Me)_3(thf)$, reaction of phenylisocyanate does not give the phenylimide with evolution of carbon monoxide, but gives the red 2:1 complex, $[(C_5H_4Me)_3U]_2[[\mu-n^1,n^2-PhNCO]]$.¹⁴ An ORTEP drawing is shown in Figure II. The structural feature of most interest is the $[PhNCO]^{2-}$ unit that is bridging the two tetravalent uranium, $U(C_5H_4Me)_3$, fragments in a $n^1[U(2) - 0]$, $n^2[U(1)NC(1)]$ fashion. The U(1) - N distance of 2.36(2) Å is similar to that found in Cp_3U (pyrazolate)^{11b} of 2.38(1) Å, the U(1) - C(1) distance of 2.42(2) Å is similar to that found in Cp_3U (n-Bu) of 2.43(2) Å^{15a} and the U(2)

- O distance of 2.11(1) Å is similar to that found in $[(Me_5C_5)_2U(OMe)]_2PH$ of 2.05(1) Å.^{15b} The bond length data support the view that the uranium atoms in the $U(C_5H_4Me)_3$ units are tetravalent and that the bridging phenylisocyanate is best represented by the valence bond structure, $PhN=\overline{C}-O^-$, the result of a one electron-transfer from each $(MeC_5H_4)_3U$ molecule. The PhNCO complex does not liberate CO on heating to 80°C, nor do the nonequivalent MeC_5H_4 groups undergo site exchange.

<u>Acknowledgments</u> This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under contractDEAC-03-76SF00098. We also thank Dr. F.J. Hollander, staff crystallographer of the U.C. Berkeley, College of Chemistry X-ray facility (CHEXRAY) for doing both crystal structures. The CHEXRAY facility was set up by a departmental grant from N.S.F.

<u>Supplementary Material</u>. Complete listing of bond lengths and angles for both crystal structures and positional and thermal parameters. Ordering information is given in any current masthead page (13 pages).

References

(1)	Nugent, W.A.; Haymore, B.L. <u>Coord. Chem. Rev.</u> 1980, <u>31</u> , 127-175.
(2)	(a) Cramer, R.E.; Panchanatheswaran, K.; Gilje, J.W. J. Am. Chem. Soc.
	1984, 106, 1853-1854. (b) Cramer, R.E.; Maynard, R.B.; Paw, J.W.; Gilje
	<u>Organometallics</u> , 1983 , <u>2</u> , 1336-1340.
(3)	Thorn, D.L.; Nugent, W.A.; Harlow, R.L. <u>J. Am. Chem. Soc</u> . 1981, <u>103</u> , 357-
	363.
(4)	(a) Chong, A.O.; Oshima, K.; Sharpless, K.B. <u>Ibid</u> . 1977 , <u>99</u> , 3420-3426.
	(b) Chin, K.W.; Wong, W.K.; Wilkinson, G.; Galas, A.M.R.; Hursthouse,
	M.B. <u>Polyhedron</u> , 1982 , <u>1</u> , 37-44.
(5)	(a) Cenini, S.; La Monica, G. <u>Inorg. Chem. Acta</u> 1976 , <u>18</u> , 279-293. (b)
	Rocklage, S.M.; Schrock, R.R. <u>J. Am. Chem. Soc.</u> 1980, <u>102</u> , 7809-7811.
(6)	Prepared from UCl $_3^7$ and NaC $_5H_4$ Me in thf, followed by crystallization from
	hexane: thf (50:1) as dark (black) needles in 33% yield, mp 136-140°C.
	<u>Anal.</u> Calcd for C ₂₂ H ₂₉ OU: C, 48.3; H, 5.33. Found: C, 47.9; H, 5.31.
	¹ HNMR (C_6D_6 , δ 7.15, 27.5°C): δ - 11.6(bH)6H), - 14.0 (4H), -14.4(6H),
	-15.6 (9H), -31.1 (4H). The second and fifth resonances undergo exchange
	with added thf showing that these resonances are due to coordinated thf.
(7)	Andersen, R.A. Inorg. Chem. 1979 18, 1507-1509.
(8)	<u>Anal</u> . Calcd for C ₂₁ H ₃₀ NSiU: C, 44.8; H, 5.38; N, 2.49. Found: C, 45.2;
	H, 5.39; N, 2.30 mp. 132-140°C. ¹ HNMR (C_6D_6 36°C): $\delta 6.72$ (9H) $u_{/2}^{=11}$ Hz,
	3.03 $y_{2}=10$ Hz (9H), -1.96 $y_{2}=37$ Hz (6H), -10.4 $y_{2}=29$ Hz (6H). ¹³ C{ ¹ H}:
	δ 121.0, 117.4, 100.9, 73.26, -2.28. The first three resonances and the
	last resonance are due to the MeC_5H_4 carbon atoms.
(9)	Anal. Calcd for C24H26NU: C, 50.9; H, 4.63; N, 2.47. Found: C, 50.1; H,

4.77; N, 2.07. M⁺, 566 amu, mp 108-110°C. ¹HNMR (C₆D₆ +32°C): δ18.5 $y_{2}=15$ Hz (2H), 4.20 $y_{2}=2$ Hz,t,J=7 Hz (1H), 3.67 $y_{2}=19$ Hz (9H), -2.40 $y_{2}=8$ Hz (2H), -3.39 $\psi_{2}^{=45}$ Hz (6H), -10.8 $\psi_{2}^{=45}$ Hz (6H). ¹³C{¹H}: The methylcyclopentadienyl carbons appear at δ 118, 99.3, 82.0, -3.9 and the phenyl carbons appear at 6122.7, 97.6, 108.4 and the ipso carbon resonance was not observed. Crystal Data (-95 \pm 5°C): orthorhombic, a = 8.4113(14), b = 10.0701(19), c = 22.9639(33) Å, Space Group, $P2_12_12_1$, F_{rr} = 566.5, V = 1945.1(10) Å³, $\rho(calc) = 1.93 \text{ g cm}^{-3}$, Z =4, $\mu(Mo-K_{\alpha}) = 79.2$ cm⁻¹, $\lambda = 0.71073$ Å, The 1505 raw intensity data were converted to structure factor amplitudes and their esd's by correction for scan speed, background, and Lorentz and polarization effects. Inspection of the azimuthal scan data showed a variation I min $(I max)^{-1} = 0.51$ for the average curve. An empircal correction for absorption, based on the azimuthal scan data, was applied to the intensities since the crystal did not have well-developed faces, crystal size was 0.15 x 0.28 x 0.42 mm. Removal of systematically absent data left 1484 unique data. The structure was solved by Patterson methods and refined by least squares and Fourier techniques. One of the C5H4Me groups, C19-C24, refined poorly and it was constrained to have C-C distances of 1.40 Å in the ring, a Me-C distance of 1.50 Å and an internal angle of 108°. Refinement with this model revealed an alternate orientation of the ring, which was also refined with constrained distances and angles and it's occupancy was linked to the first ring so that they summed to one full ligand. Refinement of the enantiomeric structure dropped R by 1.2%. In the difference Fourier map calculated following this refinement, peaks corresponding to the expected positions of most of the hydrogen atoms were found. The hydrogens were included in the structure factor

calculations for the ordered ligands in their expected positions based upon idealized bonding geometry but not refined in least squares. The final residuals for 231 variables refined against 26 constraints and the 1405 data for which $F^2 > 3\sigma$ (F^2) were R = 0.0212, R_w = 0.0293 and GOF = 1.803. The R-value for all 1484 data was 0.0248. The occupancy factor of the majority component of Cp (3) refined to 0.63.

- (10) <u>Anal.</u> Calcd for $C_{18}H_{24}NSiU$: C, 41.4; H, 4.65; N, 2.69. Found: C, 41.5; H, 4.80; N, 2.56. M⁺ = 520 amu, mp = 207-208°C, µ=1.98 B.M. (4-300K). ¹HNMR (C_6D_6 , 32°C): $\delta 6.96 \frac{1}{2}$ Hz (9H) and $-6.47 \frac{1}{2}$ Hz (15H). ¹³C{¹H}: $\delta 108.1$ (d, J = 150 Hz), 72.27 (q, J = 118 Hz.).
- (11) (a) Unpublished results, as quoted in footnote 13 in ref. 4. (b)
 Eigenbrot, C.W.; Raymond, K.N. <u>Inorg. Chem.</u> 1981, <u>20</u>, 1553-1556.
- (12) (a) Nugent, W.A.; Harlow, R.L. J. Chem. Soc. Chem. Comm. 1978, 579-580.
 (b) Chiu, K.W.; Jones, R.A.; Wilkinson, G.; Galas, A.M.R.; Hursthouse, M.B. J. Chem. Soc. Dalton Trans. 1981, 2088-2097. (c) Jones, T.C.; Nielson, A.J.; Rickard, C.E.F. J. Chem. Soc. Chem Comm. 1984, 204-205.
 (d) Goedken, G.W.; Haymore, B.L. Inorg. Chem. 1933, 22, 157-167.
- (13) (a) Reynolds, L.T.; Wilkinson, G. J. Inorg. Nucl. Chem. 1956, 2, 246253. (b) Tatsumi, K.; Hoffmann, R. Inorg. Chem. 1984, 23, 1633-1634.
 (c) Green, J.C.; Payne, M.P.; Streitwieser, A. <u>Organometallics</u>, 1983, 2, 1707. (d) Rösch, N.; Streitwieser, A. J. Am. Chem. Soc. 1983, 105, 7237-7240.
- (14) <u>Anal.</u> Calcd for $C_{43}H_{47}NOU$: C, 48.3; H, 4.43, N, 1.31. Found: C, 47.8; H, 4.37; N, 1.33, μ =3.58 B.M. (90-300K) per molecule. ¹HNMR (C_7D_8 , 29°C), Inequivalent C_5H_4 Me resonances: δ 12.6 (6H), 4.39 (6H), -3.14 (9H), -7.86 (6H), -18.6 (6H), and -21.7 (9H); phenyl resonances: 6.40 (1H, t, J=7 Hz), 3.06 (2H, m) -24.9 (2H, d, J = 7 Hz). The width at half-height is

1-2 Hz for allof the resonances. Crystal data (25°C): monoclinic, a = 17.596 (6), b = 13.882 (3), C = 16.312(6) Å, β = 113.11(3)°, Space Group $P2_{1/c}$ (No. 14), $F_w = 1069.9$, V = 3665(4) Å³, ρ (calc) = 1.94 g cm³, Z = 4, $\mu(Mo-K_{\alpha} = 84.0 \text{ cm}^{-1}, \lambda = 0.71073 \text{ Å}$, crystal size: 0.09 x 0.21 x 0.25 The data were collected on a Picker FACS-1 diffractometer and mm. corrected for Lorentz and polarization effects and crystal decomposition. Systematic absences were consistent only with space group $P2_{1/c}$ and these reflections were removed from the data set. The 9636 data were averaged before absorption correction with residuals R(I) =0.106 for all 4810 unique data. An absorption corrections based upon the measured size and shape of the crystal and an 6 x 10 x 12 Gaussian grid of internal points was applied to the data after solution of the structure confirmed the contents of the unit cell, $T_{max} = 0.589$, $T_{min} =$ 0.195. After absorption correction the averaged residual was 0.056 and no reflections were more than 3 esds away from their average. The structure was solved by Patterson methods and refined by least squares and Fourier techniques. Refinement of all non-hydrogen atoms with isotopic thermal parameters converged to R = 0.10. Refinement of the uranium atoms with anisotropic thermal parameters (all others isotropic) gave a residual of 0.044. Attempts to refine the remaining non-hydrogen atoms with anisotropic thermal parameters initially reduced the residuals, but failed to converge. In the final cycles of least squares the uranium atoms were refined with anisotropic thermal parameters and all other atoms with isotropic thermal parameters. The final residuals for 199 variables refined against 2089 data for which $F^2 > 3\sigma$ (F^2) were R = 0.0435, R_{y} = 0.0483, and GOF = 1.254. The R-value for all of the 4810 data was 0.124.

(15) (a) Perego, G; Cesari, M.; Farina, F.; Lugli, G. <u>Acta Cryst.</u> 1976, <u>32B</u>, 3034-3036. (b) Duttera, M.R.; Day, V.W.; Marks, T.J. <u>J. Am. Chem. Soc</u>. 1984, <u>106</u>, 2907-2912.

Figure I

An ORTEP diagram for $(MeC_5H_4)_3$ UNPh. One MeC_5H_4 ring is disordered, see footnote 9. The averaged U-C (7-11) = 2.758 ± 0.024 Å, U-C (13-17) = 2.734 ± 0.023 Å, and U-C (19-23) = 2.759 ± 0.036 Å (for the 63% occupancy ring). The averaged U-ring centroid distance is 2.48 Å. There is no bond between C(2) and C(14), the line from C(2) is the bond to hydrogen.

Figure II

An ORTEP diagram for $[(MeC_5H_4)_3U]_2[PhNCO]$. MeC_5H_4 groups are labelled Cp (1...6) for clarity. The averaged U(1) - C (Cp 1, 2, 3) and U(2) - C (Cp 4, 5, 6) distance is 2.80(3) Å and 2.76(2) Å, respectively. The averaged U(1) ring centroid (Cp 1, 2, 3) and U(2) - ring centroid (Cp 4, 5, 6) distance is 2.53 Å and 2.48 Å, respectively, and the averaged ring centroid - U(1) - ring centroid and ring centroid - U(2) - ring centroid angle is 113.8° and 116.5°, respectively. C(1)-N(1) = 1.31(2) Å, C(1)-O = 1.36(2) Å, U(1)-N-C(2) = 152.5(13)°, C(1)-N-C(2) = 130.1(16)°, N(1)-C(1) - O = 118.9(16)°, U(1)-C(1) -O = 168.1(13)°, C(1)-O-U(2) = 164.0(12)°. The torsional angles between Cp(1)-U(1)-U(2)-Cp(4) is 176.0° and between C(2)-N-U(1)-Cp(1) is -8.7°.

XBL 847-3151

Figure I

Supplementary Material for

Electron-Transfer Reactions of Trivalent Uranium; Preparation and Structure of $(MeC_5H_4)_3U = NPh$ and $[(MeC_5H_4)_3U]_2[\mu-n^1, n^2 - PhNCO]$

J.G. Brennan and R.A. Andersen

Chemistry Department and Materials and Molecular Research Division of Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

	Atom	× -	<u>y</u>	Z	.2 B(A)
(a) C19-	U N C1 C2 C3 C4 C5 C6 C7 C8 C9 C1Ø C11 C12 C13 C14 C15 C16 C17 C18 C19 (a) C2Ø C21 C22 C23 C24 C19 (b) C2Ø' C21 C22 C23 C24 C22 C23 C24 C22 C23 C24 C22 C23 C24 C22 C23 C24 C22 C23 C24 C22 C23 C24 C22 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10	Ø.22638(4) Ø.Ø795(9) -Ø.Ø43(1) -Ø.137(1) -Ø.257(1) -Ø.283(1) -Ø.19Ø(2) -Ø.Ø74(1) Ø.49Ø(1) Ø.49Ø(1) Ø.362(1) Ø.362(1) Ø.362(1) Ø.362(1) Ø.348(1) Ø.348(1) Ø.348(1) Ø.348(1) Ø.348(1) Ø.48Ø(1) Ø.48Ø(1) Ø.48Ø(1) Ø.466(2) Ø.0125(3) -Ø.Ø849(3) -Ø.Ø849(3) -Ø.Ø849(3) -Ø.Ø617(3) Ø.Ø454(3) Ø.Ø454(3) Ø.Ø454(2) Ø.2669(3) Ø.1149(2) Ø.1544(2) Ø.518(2) -Ø.Ø518(2) -Ø.Ø137(2) -Ø.Ø987(4) 000000000000000000000000000000000000	Ø.4Ø291(3) Ø.5432(8) Ø.6156(9) Ø.563(1) Ø.638(1) Ø.765(1) Ø.765(1) Ø.7448(9) Ø.541(1) Ø.541(1) Ø.543(1) Ø.436(1) Ø.463(1) Ø.583(1) Ø.632Ø(9) Ø.765(1) Ø.363(1) Ø.363(1) Ø.363(1) Ø.363(1) Ø.363(1) Ø.363(1) Ø.363(1) Ø.2182(9) Ø.2182(9) Ø.2182(9) Ø.2182(9) Ø.2182(2) Ø.3611(2) Ø.2289(2) Ø.2114(1) Ø.1558(2) Ø.2289(2) Ø.3376(2) Ø.3	Ø.35853(1) Ø.399(3) Ø.4133(3) Ø.4575(4) Ø.483Ø(4) Ø.483Ø(4) Ø.483Ø(4) Ø.4186(4) Ø.3947(4) Ø.3947(4) Ø.291Ø(4) Ø.291Ø(4) Ø.272Ø(4) Ø.272Ø(4) Ø.3482(4) Ø.3482(4) Ø.3482(4) Ø.4285(4) Ø.4285(4) Ø.4285(4) Ø.4522(5) Ø.4219(4) Ø.3922(6) Ø.4219(4) Ø.3922(6) Ø.27654(7) Ø.32382(7) Ø.36734(7) Ø.32382(7) Ø.36734(7) Ø.32699(7) Ø.36734(7) Ø.3255(1) Ø.29Ø61(6) Ø.25922(8) Ø.25922(8) Ø.307Ø9(8) Ø.3931(1)	2.774(6) 3.7(2) 3.1(2) 4.2(2) 4.9(2) 5.9(3) 5.4(3) 4. \emptyset (2) 4. \emptyset (2) 4. 2 (2) 4. 2 (2) 4. 2 (2) 3.2(2) 5. \emptyset (2) 3.9(2) 3.9(2) 3.9(2) 3.7(2) 4.3(2) 5.5(3) 4.6(2) 9. \emptyset (4) 3.8(3)* 4.2(3)* 4.9(4)* 3.9(3)* 5.2(4)* 3.9(5)* 3.9(6)* 3.7(5)* 5.7(7)*
(b) C19 (a) and * Atc	(b) - cor oms refine	ve occupancie istraints wer ed with isotr	s of Ø.366. e applied to opic thermal	force ideal parameters.	ized geometry.
Anisotro isotrop (4/3) *	opically r ic equival 2 [a *B(1,1	refined atoms lent thermal 2 l) + b *B(2,2	are given i parameter de 2) + c *B(3,3	n the form o fined as:) + ab(cos g	f the amma)*B(1,2)
+ ac(cos	s beta)*B(1,3) + bc(co	s alpha)*B(2	,3)]	
	Atom	× -	<u>, 7</u>	Z -	.2 B(A)
	H2 H3 H4 H5 H6 H7 H8 H1 H1 H1 H1 H1 H1 H1 H1 H1 H1 H1 H1 H1	-Ø.1195 -Ø.3194 -Ø.3646 -Ø.2Ø98 -Ø.Ø115 Ø.5758 Ø.5571 Ø.3297 Ø.1971 Ø.4Ø88 Ø.2385 Ø.3781 Ø.5829 Ø.41Ø9 Ø.1629 Ø.1758 Ø.5136 Ø.3683 Ø.55245	Ø.4744 Ø.6Ø29 Ø.818Ø Ø.9Ø42 Ø.7819 Ø.5496 Ø.3592 Ø.4115 Ø.6223 Ø.8324 Ø.7853 Ø.7853 Ø.7853 Ø.7853 Ø.3549 Ø.5172 Ø.3978 Ø.1722 Ø.Ø439 Ø.Ø494 Ø.1221	Ø.47Ø3 Ø.5139 Ø.48Ø3 Ø.405Ø Ø.3643 Ø.36Ø8 Ø.2899 Ø.22Ø6 Ø.2561 Ø.3298 Ø.3455 Ø.3455 Ø.3881 Ø.4139 Ø.47Ø4 Ø.457Ø Ø.457Ø Ø.419Ø Ø.3775 Ø.36Ø9	5.0** 6.0** 7.0** 5.0** 5.0** 5.0** 5.0** 5.0** 7.0** 7.0** 5.0** 5.0** 5.0** 5.0** 10** 10.0**

Positional and Thermal Parameters for $(MeC_5H_4)_3UNPh$

** -- Atoms included but not refined.

		(MeCsH	$(4)_3 UNPL$				
Name	B(1,1)	B(2,2)	B(3,3)	B(1,2)	B(1,3)	B(2,3)	Beqv
U	2.18(1)	2.35(1)	3,79(1)	Ø.Ø8(1)	-1.Ø2(1)	Ø.2Ø(1)	2.774(6
N	2.2(3)	4.6(4)	4.3(3)	Ø.4(3)	Ø.5(3)	Ø.7(3)	3.7(2)
C 1	2.4(3)	4.4(5)	2.6(3)	Ø.3(4)	-Ø.2(3)	-Ø.1(4)	3.1(2)
C2	2.3(4)	4.8(5)	5.6(4)	-Ø.5(4)	-Ø.4(4)	1.1(4)	4.2(2)
C 3	2.2(4)	7.9(6)	4.5(4)	-1.0(5)	Ø.3(4)	-1.2(4)	4.9(2)
C 4	5.0(5)	7.Ø(6)	5.6(5)	3.4(5)	-1.4(5)	-3.1(4)	5.9(3)
C5	6.9(6)	4.5(5)	4.8(4)	2.1(5)	-1.0(5)	-Ø.7(4)	5.4(3)
C 6	3.9(5)	4.3(5)	3.8(4)	Ø.8(4)	-Ø.6(4)	Ø.3(4)	4.0(2)
C7	3.2(4)	5.Ø(5)	3.8(4)	-Ø.8(4)	-Ø.3(4)	Ø.2(4)	4.0(2)
C8	3.2(4)	5.7(6)	3.8(4)	1.2(4)	Ø.8(4)	-1.1(4)	4.2(2)
C 9	4.7(5)	7.2(6)	2.3(3)	Ø.5(5)	Ø.1(4)	-Ø.5(4)	4.7(3)
C1Ø	3.3(4)	5.1(5)	3.6(4)	1.3(5)	-Ø.1(3)	Ø.8(4)	4.0(2)
C11 -	2.8(4)	3.9(5)	3.0(3)	-Ø.4(4)	-Ø.1(3)	Ø.9(3)	3.2(2)
C12	5.1(5)	3.4(4)	6.7(5)	-1.2(4)	3.5(4)	-1.2(4)	5.0(2)
C13	3.0(4)	5.6(5)	3.2(4)	Ø.3(4)	-Ø.9(4)	Ø.5(4)	3.9(2)
C14	3.8(4)	4.6(5)	2.5(3)	Ø.5(4)	-Ø.2(3)	-Ø.1(4)	3.7(2)
C15	3.6(5)	5.3(5)	3.9(4)	Ø.8(4)	Ø.8(4)	1.7(4)	4.3(2)
C16	5.7(6)	4.5(5)	6.2(5)	-1.8(5)	-1.4(5)	2.2(4)	5.5(3)
C17	6.0(5)	3.1(4)	4.6(4)	2.2(4)	-1.8(4)	-Ø.7(4)	4.6(2)
C18	13.5(9)	5.1(5)	8.3(6)	5.9(6)	-5.2(6)	-2.0(6)	9.0(4)

Table of General Temperature Factor Expression

÷,

+ 2klb*c*B(2,3))] , where a*,b*, and c* are reciprocal lattice constants.

Bond Lengths and Angles for $(MeC_5H_4)_3UNPh$

	Distances		•			
ATOM 2	DISTANCE		Intramo	olecular	Angles	· .
C8 C9 C1Ø C11 C7 C12	1.397(11) 1.417(12) 1.414(12) 1.398(11) 1.384(12) 1.531(10)	· · · · · · · ·	ATOM 1 N N N	ATOM 2 U U U	ATOM 3 CP1 CP2 CP3	ANGLE 1ø3.24(18) 1ø1.92(18) 92.63(19)
C14 C15 C16 C17 C13 C18	1.423(12) 1.36Ø(12) 1.36Ø(12) 1.4Ø6(14) 1.379(12) 1.475(12)	· · ·	N CP1 CP1 CP2 CP2 CP3	U U U U U U U	CP3 CP2 CP3 CP3 CP3 CP3 CP3' CP3'	105.28(19) 115.07(1) 122.17(1) 108.25(1) 115.17(1) 120.82(1) 16.34(1)
C2Ø C24	1.400(1) * 1.500(1) *		U N	N C 1	C1 C2	167.4(6) 12Ø.1(7) 121.6(7)
C2Ø' C24'	1.400(1) * 1.500(1) *	· · · ·	C6 C1 C2 C3 C4	C1 C2 C3 C4 C5	C2 C3 C4 C5 C6	118.3(8) 12Ø.8(8) 119.Ø(8) 12Ø.Ø(8) 12Ø.9(8)
ances in	Cp3 and Cp3' were	•	C5	C6	C1	121.Ø(8)
ATOM 2	DISTANCE	· · ·	CP1, et five-ca	tc. are t arbon cyc	he centro lopentad	olds of the lene rings.
N CP1 CP2 CP3	2.Ø19(6) 2.485(1) 2.47Ø(1) 2.489(1)		Intramo	olecular	Angles	
CP3'	2.541(1)		ATOM 1	ATOM 2	ATOM 3	ANGLE
C1 C2 C3 C4 C5 C6 C1	1.363(1Ø) 1.392(11) 1.391(12) 1.372(12) 1.39Ø(14) 1.337(12) 1.394(1Ø)		C11 C7 C8 C9 C7 C7	C7 C8 C9 C1Ø C11 C11	C8 C9 C1Ø C11 C1Ø C12	1Ø9.3(7) 1Ø7.Ø(8) 1Ø7.6(7) 1Ø7.7(7) 1Ø8.2(7) 128.1(7)
C7 C8 C9 C1Ø C11	2.762(8) 2.727(8) 2.744(8) 2.74Ø(7) 2.8Ø3(8)		C17 C13 C14 C15	C13 C14 C15 C16	C12 C14 C15 C16 C17	11Ø.Ø(8) 1Ø6.3(8) 1Ø8.7(9) 11Ø.8(9)
C13 C14 C15	2.751(8) 2.7Ø9(7) 2.7Ø3(7)		C13 C16	C17 C17 C17	C18 C18	127.4(1Ø) 128.4(11)
C16 C17	2.732(8) 2.775(8)		C23 C19	C19 C23	C2Ø C24	1Ø8.Ø2(9) * 126.ØØ(11) *
C19 C2Ø C21 C22 C23	2.711(14) 2.769(14) 2.797(13) 2.803(13) 2.717(11)		C23' C19'	C19' C23'	C2Ø' C24'	1Ø8.ØØ(9) * 126.ØØ(11) *
C19' C2Ø' C21' C22'	2.862(2Ø) 2.878(21) 2.794(2Ø) 2.717(23)	· ·	* Angle	es in Cp3	and Cp3'	were fixed.
	ATOM 2 C8 C9 C10 C11 C7 C12 C14 C15 C16 C17 C13 C18 C20 C24 C24 C24 C24 C24 C24 C24 C24	ATOM 2 DISTANCE C8 1.397(11) C9 1.417(12) C1Ø 1.414(12) C11 1.398(11) C7 1.384(12) C12 1.531(1Ø) C14 1.423(12) C15 1.36Ø(12) C16 1.36Ø(12) C17 1.4Ø6(14) C13 1.379(12) C18 1.475(12) C2Ø 1.4ØØ(1) * C2Ø 1.4ØØ(1) * C2 1.5ØØ(1) * C2 1.390(1) * C2 1.392(1) CP 2.485(1) CP 2.485(1) CP 2.485(1) CP 2.489(1) CP 3.2.541(1) C1 1.363(1Ø) C2 1.392(11) C3 1.391(12) C4 1.372(12) C5 1.39Ø(14) C6 1.337(12) C1 1.394(1Ø) C7 2.762(8) C8 2.727(8) C9 2.744(8) C10 2.739(7) C11 2.8Ø3(8) C13 2.751(8) C14 2.709(7) C15 2.7Ø3(7) C15 2.7Ø3(7) C15 2.7Ø3(7) C16 2.732(8) C17 2.762(8) C19 2.711(14) C20 2.862(2Ø) C20 2.878(21) C21 2.794(20) C21 2.794(20) C22 2.878(21) C21 2.794(20) C22 2.777(23) C23 2.776(20)	ATOM 2 DISTANCE C8 1.397(11) C9 1.417(12) C10 1.414(12) C11 1.398(11) C7 1.384(12) C12 1.531(10) C14 1.423(12) C15 1.360(12) C16 1.360(12) C16 1.360(12) C17 1.406(14) C13 1.379(12) C18 1.475(12) C20 1.400(1) * C24 1.500(1) * C1 2.485(1) CP3 2.489(1) CP3 2.489(1) CP3 2.489(1) C1 1.363(10) C2 1.392(11) C3 1.391(12) C4 1.372(12) C5 1.390(14) C6 1.337(12) C1 1.394(10) C7 2.762(8) C8 2.727(8) C9 2.744(8) C1 2.803(8) C13 2.751(8) C14 2.709(7) C15 2.703(7) C15 2.703(7) C16 2.732(8) C19 2.711(14) C20 2.797(13) C22 2.803(13) C23 2.717(11) C19 2.867(20) C24 2.776(20) C25 2.777(23) C22 2.803(13) C23 2.717(11) C19 2.867(20) C21 2.794(20) C22 2.774(20) C22 2.774(20) C22 2.774(20) C22 2.774(20) C22 2.777(23) C22 2.777(23) C23 2.777(23) C24 2.776(20) C25 2.777(23) C25 2.777(23) C25 2.777(23) C27 2.776(20) C27 2.7	ATOM 2 DISTANCE Intrame C8 1.397(11) ATOM 1 C9 1.417(12) N C10 1.414(12) N C11 1.398(11) N C12 1.531(10) N C14 1.423(12) CP1 C15 1.360(12) CP2 C16 1.360(12) CP2 C17 1.406(14) CP2 C18 1.475(12) CP3 C20 1.400(1) * N C21 1.500(1) * N C220 1.400(1) * C C21 1.500(1) * C C221 1.500(1) * C C220 1.400(1) * C C24 1.500(1) * C C24 1.500(1) * C cances in Cp3 and Cp3' were C c3 C.392(11) C11 C71 2.485(1) C CP1 2.485(1) C CP2 2.770(1) C14 C221 1.392(11) C11	ATOM 2 DISTANCE Intramolecular C8 1.397(11) ATOM 1 ATOM 2 C10 1.414(12) N U C11 1.398(11) N U C12 1.531(10) N U C14 1.423(12) CP1 U C15 1.360(12) CP1 U C16 1.360(12) CP1 U C17 1.406(14) CP2 U C13 1.379(12) CP3 U C20 1.400(1) * N C1 C2 C21 1.500(1) * N C1 C2 C224 1.500(1) * N C1 C2 C24 1.500(1) * C5 C1 C2 C3 C4 C5 C5 C6 C4 C5 C5 C6 C1 C7 2.489(1) Intramolecular C9 C92 2.478(1) C1 C2 C2 C201 2.489(1) Intramolecular C6 C93<	ATOM 2 DISTANCE Intramolecular Angles C8 1.397(11) ATOM 1 ATOM 2 ATOM 3 C1# 1.414(12) N U CP1 C1# 1.4396(12) N U CP2 C1 1.531(1#) N U CP2 C14 1.423(12) CP1 U CP3 C14 1.423(12) CP1 U CP3 C15 1.368(12) CP1 U CP3 C16 1.368(12) CP1 U CP3 C17 1.4486(14) CP2 U CP3 C18 1.475(12) CP1 U CP3 C24 1.588(1) CP2 U CP3 C24 1.588(1) C1 C2 C2 C2 C24 1.588(1) C C1 C2 C2 C2 C4 C5 C4 C5 C6 C1 C2 C2 C3 C4 C5 C24 1.588(1) C C1 C2 C3

CP1.etc. are the centroids of the five-carbon cyclopentadiene rings.

TABLE I

Crystal and Data Collection Parameters

```
Compound: (C_5H_4 - CH_3)_3U = N - C_6H_5
```

A) Crystal Parameters at $-95\pm5^{\circ}C$ [a,b] a = 8.4113(14) Å Space Group: $P2_{1}2_{1}2_{1}$ b = 10.0701(19) Å Formula Weight = 566.5 amu c = 22.9639(33) Å Z = 4 V = 1945.1(10) Å³ d_c = 1.93 g cm⁻³ d_a = _____ μ (calc.)= 79.2 cm⁻¹ Size of crystal : 0.15 x 0.28 x 0.42 mm

B) Data Measurement Parameters [8] Radiation : Mo K α (λ = 0.71073 Å) Monochromator: Highly-oriented graphite (20 = 12.2°) Detector: Crystal scintillation counter, with PHA. Reflections measured: + h. + k, + £ 20 Range: 3 ° -> 45° Scan Type : 0-20 Scan speed: 0.72 -> 6.7 (0, °/min) Scan width: $\Delta 0$ = 0.6 + .347 tan(0) Background : Measured over 0.25($\Delta 0$) added to each end of the scan. Aperture -> crystal = 173 mm Vertical aperture = 3.0 mm Horizontal aperture = 2.0 + 1.0 tan(0) mm (variable). No. of reflections collected: 1505 No. of unique reflections: 1484 Intensity standards: (264), (535), (0,0,14); measured every

2 hours of x-ray exposure time. Over the data collection period no decrease in intensity was observed.

Orientation: 3 reflections were checked after every 250 measurements.

Crystal orientation was redetermined if any of the reflections were offset from their predicted positions by more than 0.1° . Reorientation was not needed during data collection.

[a] Unit cell parameters and their esd's were derived by a least-squares fit to the setting angles of the unresolved Mo K α components of 24 reflections with 20 between 27° and 30°.

[b] In this and all subsequent tables the esd's of all parameters are given in parentheses, right-justified to the least significant digit(s) given.

Positional and Thermal Parameters of $[(MeC_5H_4)_3U]_2[PhNC0]$

• .	Atom	× _	<u>у</u>	Z -	.2 B(A)
	U1 U2 ON C1 C2 C3 C4 C5 C6 C7 C9 C11 C12 C13 C12 C13 C12 C13 C12 C13 C12 C13 C12 C13 C12 C13 C12 C13 C12 C12 C13 C12 C12 C13 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12				$\begin{array}{c} 4.22(2) \\ 4.60(2) \\ 5.6(4) \\ * \\ 3.4(4) \\ * \\ 3.4(4) \\ * \\ 4.4(5) \\ * \\ 6.1(6) \\ * \\ 7.2(7) \\ * \\ 5.9(6) \\ * \\ 5.9(6) \\ * \\ 5.9(6) \\ * \\ 5.9(6) \\ * \\ 5.9(6) \\ * \\ 5.9(6) \\ * \\ 5.9(6) \\ * \\ 5.9(6) \\ * \\ 5.9(6) \\ * \\ 5.9(6) \\ * \\ 5.9(6) \\ * \\ 5.3(5) \\ * \\ 5.3(5) \\ * \\ 5.3(5) \\ * \\ 5.3(6) \\ * \\ 5.3(6) \\ * \\ 5.3(6) \\ * \\ 5.3(6) \\ * \\ 5.3(6) \\ * \\ 5.3(6) \\ * \\ 5.3(6) \\ * \\ 5.3(6) \\ * \\ 5.9($
Atc	oms refl	ned with isotr	opic therma	l parameters	•
nisotro	pically	refined atoms	s are given	in the form	of the
4/3) *	2 . [a *B(1	2,1) + b *B(2.2	2 2) + c *B(3.3	3) + ab(cos)	gamma)*B(1,2)
ac(cos	s beta)*	B(1,3) + bc(cc	os alpha)*B(;	2,3)]	-
CP1 CP2 CP2 CP2 CP2 CP2	L 2 3 4 5 6	Ø.1842 Ø. Ø.4105 Ø. Ø.2786 Ø. Ø.3892 Ø. Ø.1361 Ø. Ø.2851 Ø.	1164 -Ø 2633 Ø 2616 Ø 6633 Ø .7212 Ø .7226 -Ø	.Ø64Ø * .Ø144 * .1848 * .1516 * .Ø2Ø8 * .1277 *	★ ★ ★ ★ ★
- Centr	roids of	the five~memt	pered cyclop	entadiene ri	ngs.

Bond Lengths and Angles for $[(MeC_5H_4)_3U]_2[PhNCO]$

þ

 \mathbf{E}

Intra	molecula	Distanc	es	Intramo	olecular	Distances
ATOM	1 ATOM 2	2 DISTA	NCE	ATOM 1	ATOM 2	DISTANCE
U1 U1 U1 U1 U1	N C 1 C P 1 C P 2 C P 3	2.364 2.422 2.533 2.5Ø8 2.544	(15) (19) * *	C8 C9 C1Ø C11 C12 C12	C9 C1Ø C11 C12 C8 C13	1.42(3) 1.37(3) 1.36(2) 1.46(3) 1.35(3) 1.6Ø(3)
U2 U2 U2 U2	0 CP4 CP5 CP6	2.106 2.479 2.488 2.486	(14) * * ; *	C14 C15 C16 C17	C15 C16 C17 C18	1.42(3) 1.39(2) 1.44(3) 1.39(3)
0 C1	C1 N	1.36(2) 2)	C18 C18	C14 C19	1.38(3) 1.58(4)
C2 C3 C4 C5 C6 C7	C2 C3 C4 C5 C6 C7 C2	1.44(1.41(1.43(1.34(1.35(1.49(1.40(2) 3) 3) 3) 3) 2)	C2Ø C21 C22 C23 C24 C24	C21 C22 C23 C24 C2Ø C25	1.41(3) 1.42(3) 1.46(3) 1.39(3) 1.39(2) 1.47(3)
* CPn the	(n=1,6) cyclopen	are the c tadienide	entroids of rings.	C26 C27 C28 C29 C3Ø C3Ø	C27 C28 C29 C3Ø C26 C31	1.39(3) 1.34(3) 1.38(3) 1.43(3) 1.42(3) 1.49(4)
	Intramo	lecular [)istances	C32	C33	1.38(3)
	ATOM 1	ATOM 2	DISTANCE	C33 C34 C35	C34 C35 C36	1.45(3) 1.38(3) 1.42(3)
	U1 U1 U1 U1	C8 C9 C1Ø C11	2.82(2) 2.76(2) 2.76(2) 2.78(2)	C36 C36	C32 - C37	1.41(3) 1.61(3)
	U1	C12	2.86(2)	C39 C4Ø	C4Ø C41	1.41(3) 1.45(3)
	U1 U1 U1 U1 U1	C14 C15 C16 C17 C18	2.766(19) 2.73(2) 2.84(2) 2.79(2)	C41 C42 C42	C42 C38 C43	1.42(3) 1.4Ø(3) 1.49(3)
	U 1 U 1 U 1 U 1 U 1 U 1	C2Ø C21 C22 C23 C24	2.839(19) 2.8Ø(2) 2.79(2) 2.81(2) 2.83(2)			
	U2 U2 U2 U2 U2	C26 C27 C28 C29 C3Ø	2.76(2) 2.72(2) 2.76(2) 2.75(2) 2.75(2)			
	U2 U2 U2 U2 U2 U2	C32 C33 C34 C35 C36	2.79(2) 2.75(2) 2.71(2) 2.77(2) 2.8Ø(2)			
	U2 U2 U2 U2	C38 C39 C4Ø C41 C42	2.77(2) 2.79(2) 2.78(2) 2.73(2) 2.75(2)			

 $\left[\left(MeC_{S}H_{a}\right)_{3}U\right]\left[PhNCO\right]$

Intramolecular Angles

C38

C41

C42

C42

C43

C43

ANGLE ATOM 1 ATOM 2 ATOM 3 ATOM 1 ATOM 2 C12 C 9 1Ø4.3(21) С8 Ν U1 С8 C 9 CIØ 110.7(21) Ν U1 109.0(20) C9 CIØ C11 Ν U1 1Ø4.7(19) CIØ C11 C12 C 1 U1 111.Ø(22) C11 C12 C8 C1 U1 C8 C12 C13 124.6(23) C 1 U1 C11 C12 C13 124.4(21)C1 U1 CP1 U1 C15 1Ø6.5(21) C18 C14 CP1 U1 1Ø6.8(2Ø) C15 C16 C14 CP2 U1 C15 C16 C17 110.5(19) C16 102.7(22) C17 C18 0 U2 C17 C14 113.3(24) C18 0 U2 C19 134.3(25) C14 C18 0 U2 C17 C18 C19 112.0(24) CP4 υ2 CP4 U2 C24 C2Ø C21 1Ø5.9(2Ø) CP5 U2 C2Ø 111.2(2Ø) C21 C22 C21 C22 C23 104.1(20) U 1 N C22 C23 C24 107.9(20) C 1 01 C24 C2Ø C23 110.9(22) U2 0 C2Ø C24 C25 126.2(23) C24 122.7(22) C23 C25 0 C 1 C1 Ν C3Ø C26 C27 1Ø7.6(24) N C2 C26 C27 C28 109.8(24) C2 Ν C27 C28 109.1(23) C29 C2 C7 C28 C29 C3Ø 1Ø7.9(2Ø) C2 C3 C29 C3Ø C26 105.4(23) C4 С3 116.7(26) C26 C3Ø C31 C4 C5 137.6(25) C29 C3Ø C31 C5 C6 C6 C7 C36 C32 C33 104.9(21) C32 C33 C34 107.6(20) C33 C34 C35 111.4(20) C35 102.3(20) C34 C36 C35 C36 C32 113.7(20) 123.6(21) C32 C36 C37 C35 C36 C37 122.6(21) C42 C38 C39 1Ø9.1(22) C38 C39 C4Ø 1Ø3.8(21) C39 C4Ø C41 112.3(21) C4Ø C41 C42 1Ø4.1(21) C41 C42 C38 110.4(24)

118.Ø(25)

131.3(26)

C2 152.5(13) \cap 168.1(13) C 1 164.Ø(12) Ν 118.9(16) C2 130.1(16) 121.2(18) СЗ C7 117.9(18) 120.9(19) Ċ3 C4 119.1(21) С5 119.3(23)C6 124.8(24) C7 118.3(21) C2 117.5(19)

ATOM 3

CP1

CP2

CP3

CP1

CP2

CP3

CP3

CP3

CP4

CP5

CP6

CP5

CP6

CP6

N CP2 ANGLE

*

*

*

*

93.6 *

110.6

1Ø9.2

125.2

93.Ø *

95.3 *

112.9 *

113.4 *

99.3 *

1Ø1.7 *

1Ø1.8 *

115.1 *

118.7 *

115.6 *

115.Ø

31.7(5)

Intramolecular Angles

* CPn (n=1,6) are the centroids of the cyclopentadienide rings.

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable. TECHNICAL INFORMATION DEPARTMENT LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720

ø