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PAPER

A mathematical model of the evolution of individual differences
in developmental plasticity arising through parental bet-hedging

Willem E. Frankenhuis,1 Karthik Panchanathan2 and Jay Belsky3

1. Behavioural Science Institute, Radboud University Nijmegen, The Netherlands
2. Department of Anthropology, University of Missouri, USA
3. Human Ecology, University of California, Davis, USA

Abstract

Children vary in the extent to which their development is shaped by particular experiences (e.g. maltreatment, social support). This
variation raises a question: Is there no single level of plasticity that maximizes biological fitness? One influential hypothesis states
that when different levels of plasticity are optimal in different environmental states and the environment fluctuates unpredictably,
natural selectionmay favor parents producingoffspringwith varying levels of plasticity. The current article presents amathematical
model assessing the logic of this hypothesis – specifically, it examines what conditions are required for natural selection to favor
parents to bet-hedge by varying their offspring’s plasticity. Consistent with existing theory from biology, results show that between-
individual variation in plasticity cannot evolve when the environment only varies across space. If, however, the environment varies
across time, selection can favor differential plasticity, provided fitness effects are large (i.e. variation in individuals’ plasticity is
correlated with substantial variation in fitness). Our model also generates a novel restriction: Differential plasticity only evolves
when the cost of being mismatched to the environment exceeds the benefits of being well matched. Based on mechanistic
considerations, we argue that bet-hedging by varying offspring plasticity, if it were to evolve, would be more likely instantiated via
epigenetic mechanisms (e.g. pre- or postnatal developmental programming) than genetic ones (e.g. mating with genetically diverse
partners). Our model suggests novel avenues for testing the bet-hedging hypothesis of differential plasticity, including empirical
predictions and relevant measures. We also discuss several ways in which future work might extend our model.

Research highlights

• We formalize Jay Belsky’s bet-hedging hypothesis of
differential plasticity.

• Results support the hypothesis’ logical coherence, but
only under restrictive conditions.

• Our model suggests novel avenues for empirically
testing the bet-hedging hypothesis.

• We suggest multiple theoretical extensions of our
model.

. . . it is advisable to divide goods which are exposed to
some danger into several portions rather than to risk them
all together. (Daniel Bernoulli, 1738 (trans. 1954), p. 30)

Put all your eggs in one basket and then watch that basket.
(Mark Twain, 1894, Pudd’nhead Wilson and Other Tales)

Introduction

Developmental plasticity – the ability to adjust develop-
ment based on experience – is ubiquitous in nature
(Schlichting & Pigliucci, 1998), and evolves because it
allows organisms to adaptively tailor their phenotypes to
a range of environmental states (Dall, Giraldeau, Ollson,
McNamara & Stephens, 2005; West-Eberhard, 2003).
Empirical studies of humans show that the degree of
plasticity itself may vary across individuals (‘differential
plasticity’); that is, some individuals are shaped more
than others by the same kinds of experiences (Belsky,
1997, 2005; Belsky & Pluess, 2009a, 2009b; Boyce & Ellis,
2005; Ellis, Boyce, Belsky, Bakermans-Kranenburg &
van IJzendoorn, 2011; for studies of non-human ani-
mals, see Dingemanse & Wolf, 2013). In some cases,
highly plastic individuals are also more susceptible to
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experience: that is, they are more adversely affected by
harmful environments as well as benefit more from
supportive circumstances (‘differential susceptibility’;
Belsky, Jonassaint, Pluess, Stanton, Brummett et al.,
2009; Boyce, Chesney, Alkon, Tschann, Adams et al.,
1995; Pluess & Belsky, 2011, 2013; Ellis et al., 2011).
Such for-better-and-for-worse susceptibility (Belsky, Bak-
ermans-Kranenburg & van IJzendoorn, 2007) implies
that children may benefit or suffer differentially from
such experiences as nurturance or abuse (Belsky &
Pluess, 2009a, 2009b; Boyce et al., 1995), as well as from
prevention and intervention efforts (Belsky & van
IJzendoorn, 2015; van IJzendoorn, Bakermans-Kranen-
burg, Belsky, Beach, Brody et al., 2011). It is crucial to
recognize that for better and for worse, in this context,
refers to mental-health outcomes, not fitness payoffs. We
note this up front because we will later propose that, in
fitness terms, plastic individuals achieve relatively fixed
payoffs (rather than variable payoffs) across environ-
mental conditions, because plasticity enables the devel-
opment of locally adaptive phenotypes (increasing
fitness), but also comes at a cost (reducing fitness).
A theoretical question is why between-individual var-

iation in plasticity exists. Explanations of differential
plasticity include differences in genes and epigenetic
regulation (Belsky et al., 2009; Belsky & Pluess, 2009a,
2009b), aswell as differences in prior experiences (Boyce&
Ellis, 2005; Ellis et al., 2011; Frankenhuis & Panchana-
than, 2011a, 2011b; Pluess & Belsky, 2011). This article
focuses on Belsky’s proposal (1997, 2005; Belsky&Pluess,
2009a) that, when different levels of plasticity are optimal
(in terms of biological fitness) in different environmental
states and the environment fluctuates unpredictably,
natural selection may favor parents producing offspring
with varying levels of plasticity. Before proceeding, a note
on terminology: There is no implication that parents
deliberately weigh their options after estimating environ-
mental variability and then decide on their offspring’s
levels of plasticity. Rather, reproductive decisions result
from mechanistic processes that are the products of
natural selection; organisms need not be consciously
aware of these processes. Accordingly, when we refer to
parental ‘decisions’ or ‘choices’ – for instance, to produce
particular proportions of fixed and plastic offspring – we
are referring to observable outcomes (epiphenomena) that
result from the entire array of causal mechanisms that
determine behavior (from molecules to neural networks),
including but not limited to cognitive processes.

Mechanisms of bet-hedging

Belsky (2005; Pluess & Belsky, 2009, 2011) stipulated two
mechanisms by which parents could diversify their

offspring: one genetic by producing genetically diverse
offspring, the other experiential through pre- and post-
natal regulation of offspring plasticity. Belsky’s experi-
ential version of the bet-hedging hypothesis was inspired
by the work of Boyce and Ellis (2005), who first
proposed that between-individual variation in biological
sensitivity to context – i.e. reactivity of neurobiological
stress systems – can result from differences in experience
(discussed below). In this paper, however, we are not
primarily concerned with the biological mechanisms that
instantiate plasticity, or with the pathways through
which parents influence their offspring’s levels of plas-
ticity. We provide references here (Belsky & Pluess, 2013;
Ellis et al., 2011), and elsewhere in the paper, for readers
seeking more information about these mechanisms and
processes.

Motivating the model

Our main goal is to present a mathematical model that
evaluates the logical coherence of Belsky’s (1997, 2005;
Belsky & Pluess, 2009a) bet-hedging hypothesis of
differential plasticity. Specifically, we examine what are
the necessary conditions for natural selection to favor
parents to hedge their bets by varying offspring plastic-
ity. The idea that diversification of investments can be
adaptive in an unpredictably fluctuating environment is
not novel: In both biology and economics, well-devel-
oped literatures have addressed this issue, even if
psychologists – Belsky’s (1997, 2005; Belsky & Pluess,
2009a) intended audience – have not thought in such
terms. Economists have focused on the conditions in
which investors should diversify their portfolio so as to
maximize their profit in a temporally fluctuating market
(Bernoulli, 1738, trans. 1954; Markowitz, 1952; Stearns,
2000). Biologists have focused on strategies that optimize
organisms’ reproductive success in randomly varying
environments (reviewed in Childs, Metcalf & Rees, 2010;
Donaldson-Matasci, Bergstrom & Lachmann, 2013;
Donaldson-Matasci, Lachmann & Bergstrom, 2008;
Ellis, Figueredo, Brumbach & Schlomer, 2009; Meyers
& Bull, 2002; Simons, 2009, 2011). As we will show
below, Belsky’s (1997, 2005; Belsky & Pluess, 2009a)
version of the bet-hedging argument is formally similar
to some classical bet-hedging models from biology (e.g.
Moran, 1992; Philippi & Seger, 1989; extended in
Starrfelt & Kokko, 2012).
In biology, bet-hedging is typically discussed in the

context of fixed traits, which are non-responsive to local
conditions. Biologists have shown, for instance, that
parents might bet-hedge by producing offspring of
variable sizes (Hopper, 1999; Olofsson, Ripa & Jonz�en,
2009), or variable developmental delay times (i.e.
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diapause; Childs et al., 2010; Cohen, 1966). In contrast,
Belsky applies the logic of bet-hedging to developmental
plasticity itself (i.e. to contexts where trait development
depends on local conditions). In this sense, Belsky’s
hypothesis is qualitatively distinct from existing bet-
hedging accounts. If bet-hedging theory can be applied
to developmental plasticity, this is interesting and may be
empirically fruitful, because plasticity is a property of
many physiological systems in many species (Fischer,
Van Doorn, Dieckmann & Taborsky, 2014). Moreover,
developmental plasticity is a basic property of many
mechanisms of the human mind and hence a long-
standing focus of inquiry in psychology in general (e.g.
the effects of early-life experience on later-life outcomes)
and developmental psychology in particular.

Our contribution is to capture and analyze Belsky’s
hypothesis within a formal specialist-generalist, bet-
hedging framework. We conceptualize low-plasticity
strategies (which produce the same phenotype despite
variable environmental conditions) as specialists adapted
to a particular niche, and high-plasticity strategies (which
produce different phenotypes in different environmental
conditions) as generalists across niches (see Wilson &
Yoshimura, 1994). This interpretation roots developmen-
tal psychologists’ growing interest in differential plastic-
ity within a well-developed body of bet-hedging theory
from evolutionary biology, and it could facilitate inte-
gration between models of bet-hedging and models of
frequency-dependent selection that include specialists
and generalists (Ellis, Jackson & Boyce, 2006; Ellis et al.,
2011; Wilson & Yoshimura, 1994). We regard this as
important given the general lack of consideration of
evolutionary principles – and of evolutionary modeling in
particular – in the field of developmental psychology,
which hinders much-needed theoretical integration with –
and consilience across – the life sciences. Our work might
also inspire biologists to consider between-individual
differences in plasticity as a product of bet-hedging.

Applying the logic of bet-hedging to plastic traits is
reasonable when (a) phenotypic development is not fully
reversible and (b) individuals use imperfect cues to
estimate the environmental state, resulting in maladap-
tive developmental programming in some individuals. If
both conditions hold, then within any generation some
individuals develop phenotypes that are well matched to
the environment, and others do not. On Belsky’s (1997,
2005; Belsky & Pluess, 2009a) account, well-matched
individuals are those whose genetic composition is well
suited to the environment and/or those whose early-life
cues accurately predicted their adult environment; mis-
matched ones are those whose genetic composition is
poorly suited to the environment and/or those whose
early-life cues failed to predict their adult environment.

Before presenting the model, we first chronicle indi-
vidual differences in susceptibility to environmental
influences (for more extensive review, see Aron, Aron
& Jagiellowicz, 2012; Bakermans-Kranenburg & van
IJzendoorn, 2007, 2011; Belsky & Pluess, 2009a; Kim-
Cohen, Caspi, Taylor, Williams, Newcombe et al., 2006),
including related theory. Because our main goal is to
formalize and analyze Belsky’s (1997, 2005; Belsky &
Pluess, 2009a) bet-hedging hypothesis of differential
plasticity, we will not compare theories (see Ellis et al.,
2011).

From risk alleles to plasticity genes

The notion that individuals differ in their susceptibility
to environmental effects has a long history in psychiatry
and psychology (Belsky & Pluess, 2009a). In fact, most
gene–environment interaction (G9E) research con-
ducted over the past decade has been informed by the
so-called diathesis-stress or dual-risk framework (Zuck-
erman, 1999), which stipulates that some individuals are
especially susceptible to negative effects of contextual
adversity. The focus of the differential-susceptibility
model, including G9E, differs from the diathesis-stress
framework. Whereas the latter focuses exclusively on
vulnerability, the former stipulates that some individuals
are not just more vulnerable to contextual adversity, but
also benefit more from supportive environmental condi-
tions. This appears to be the case for some polymor-
phisms long regarded as ‘vulnerability genes’ or ‘risk
alleles’, leading to the proposal that they be regarded as
‘plasticity genes’ instead (Belsky et al., 2009) – with
‘plasticity’ referring to phenotypic outcomes, not fitness
payoffs (as noted earlier, we will argue below that plastic
individuals attain moderate, not variable, fitness pay-
offs). Notably, two recent meta-analyses of G9E
research support the differential susceptibility theorizing:
one focused on dopamine-related genes carried by
children 10 years of age or younger (Bakermans-Kran-
enburg & van IJzendoorn, 2011), and the other on the 5-
HTTLPR polymorphism in Caucasian children under
18 years of age (van IJzendoorn, Belsky & Bakermans-
Kranenburg, 2012). Both of these meta-analyses indicate
that children carrying putative plasticity alleles are more
susceptible to both the negative effects of environmental
adversity and the positive effects of social support (in
terms of mental health).

Importantly, recent experimental human intervention
work that involves randomly assigning individuals to
alternative contextual conditions (Belsky & Van IJzen-
doorn, 2015), thereby overcoming the risk that G9E
findings are an artifact of gene–environment correlation,
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provides additional support to the claim that some long-
regarded vulnerability genes function as plasticity genes
(for review, see Belsky & Pluess, 2013). Indeed, a recent
meta-analysis of experimental interventions designed to
promote well-being while chronicling truly causal envi-
ronmental effects reveals that DRD4 and 5-HTTLPR
function as plasticity genes, such that carriers of certain
allelic variants of these polymorphisms benefit more – in
mental-health terms – from these efforts (e.g. to promote
early literacy, to prevent teen alcohol abuse) than do
others (van IJzendoorn & Bakermans-Kranenburg,
2015). From an evolutionary perspective, two hypotheses
have been proposed to explain genetic variation in
plasticity that undergirds, by hypothesis, individual
differences in susceptibility.

Frequency-dependent selection

One hypothesis posits that frequency-dependent selec-
tion maintains genetic variation in plasticity (Ellis et al.,
2006, 2011; Wilson & Yoshimura, 1994; see also Wolf,
van Doorn & Weissing, 2008, 2011). Frequency-depen-
dent selection refers to conditions in which a pheno-
type’s fitness is dependent on its frequency relative to
other phenotypes in a population. Individual differences
in plasticity can persist due to frequency-dependent
selection when plastic phenotypes attain higher fitness
than less-responsive phenotypes in a population com-
posed mostly of the latter – and vice versa (Ellis et al.,
2006, 2011; Wilson & Yoshimura, 1994).

Parental bet-hedging

The current article focuses on the bet-hedging hypothesis
of differential plasticity (Belsky, 1997, 2005; Belsky &
Pluess, 2009a). This hypothesis states that it might be
adaptive for parents to produce offspring with varying
levels of developmental plasticity because different levels
of plasticity may be optimal in different environmental
states. Since the future is uncertain, natural selection
might favor parents who spread their investments and
associated risk by producing offspring that vary in their
sensitivity to environmental influences, including par-
enting (Belsky, 1997, 2005; Belsky & Beaver, 2011; Ellis
et al., 2011; Pluess & Belsky, 2010, 2013; see also
Figueredo & Wolf, 2009).

Experiential regulation of plasticity

As noted, between-individual variation in plasticity may
result from between-individual differences in prior expe-
riences (Boyce & Ellis, 2005; Del Giudice, Ellis &

Shirtcliff, 2011; Ellis et al., 2011; Pluess & Belsky,
2011). This view is central to Boyce and Ellis’ (2005)
theory of Biological Sensitivity to Context (BSC), which
regards physiological reactivity as a contextually regu-
lated plasticity factor.

Biological sensitivity to context

Boyce and Ellis (2005) argue that individuals growing up
under extreme environmental conditions may benefit
from developing heightened BSC (Ellis & Boyce, 2008;
Ellis, Essex & Boyce, 2005; Ellis et al., 2011). Such
heightened reactivity can augment vigilance to dangers
and threats in stressful environments and enhance the
benefits derived from support and care in protective ones
(Del Giudice et al., 2011; Ellis et al., 2006). In environ-
ments with an intermediate level of stress, individuals
may down-regulate reactivity, thus avoiding the costs
associated with persistently elevated levels of physiolog-
ical reactivity when the benefits do not outweigh the cost
(Ellis & Boyce, 2008).

Prenatal programming of plasticity

A related view, developed by Belsky (1997, 2005; Belsky &
Pluess, 2009a; Belsky et al., 2007), stipulates that negative
emotionality in infants and young children – a known
correlate of physiological reactivity – also functions as a
plasticity factor. Children manifesting high levels of
negativity (e.g. fear, distress, inhibition) prove not just
more susceptible to the adverse effects of negative
environments (e.g. harsh parenting, maternal depression),
but also benefit more from supportive ones (in terms of
mental health, not fitness). Children’s developmental
experiences, including exposure to prenatal stress (e.g.
Huizink, Bartels, Rose, Pulkkinen, Eriksson et al., 2008;
O’Connor, Ben-Shlomo, Heron, Golding, Adams et al.,
2005; Pesonen, R€aikk€onen, Strandberg & J€arvenp€a€a,
2005), appear to influence both their physiological reac-
tivity (e.g. Claessens, Daskalakis, van der Veen, Oitzl, de
Kloet et al., 2011; Ellis & Boyce, 2008; Kaiser & Sachser,
2009), even when measured in adulthood (Heim, New-
port, Wagner, Wilcox, Miller et al., 2002), and their
negative emotionality (Belsky, Fish & Isabella, 1991).

Consistency in early experiences

Frankenhuis and Panchanathan (2011a, 2011b) recently
proposed a third experiential process that may contribute
to individual differences in plasticity: stochastic sam-
pling. In some developmental domains, organisms may
face a tradeoff between sampling more cues to the
environmental state and tailoring their phenotypes to
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local conditions. In these domains, some individuals may
receive a homogeneous sample set, resulting in a
confident estimate about the environmental state, leading
such individuals to specialize early in life, and thereby
sacrifice plasticity (assuming that phenotypic develop-
ment is not fully reversible). In contrast, others may
receive a heterogeneous set of cues, resulting in a less
confident estimate, leading them to defer ‘phenotypic
commitment’ (in order to avoid mismatch), keep sam-
pling, and specialize later. As a consequence, individuals
may come to differ in their levels of plasticity.

Developing the model

In building a model of Belsky’s (1997, 2005; Belsky &
Pluess, 2009a) bet-hedging argument of differential plas-
ticity, our first challenge is to translate for-better-and-for-
worse outcomes, which are typically defined in terms of
mental health, quality of life, and social desirability, into
biological fitness (Belsky, 2008; Ellis, Del Giudice, Dish-
ion, Figueredo, Gray et al., 2012; Frankenhuis & Del
Giudice, 2012; Frankenhuis & de Weerth, 2013; Manuck,
2010). In biology, traits are considered beneficial to
organisms to the extent that they increase individuals’
relative survival and reproductive success. In contrast,
developmental psychologists tend to view distressing or
socially undesirable behavior as inherently maladaptive,
and behaviors enhancing well-being and social integration
as inherently adaptive. These different notions of ‘adap-
tive’ are conceptually orthogonal: desirable behavior may
(but need not) enhance reproduction, and fitness-enhanc-
ing behavior may (but need not) have desirable features.

Fitness payoffs

Individuals who are relatively sensitive to their environ-
ment are ‘plastic’. They adaptively match their pheno-
types to local conditions more than their peers,
developing danger-adapted phenotypes (e.g. high stress)
in dangerous environments and safe-adapted phenotypes
(e.g. low stress) in safe environments. Whereas danger-
adapted phenotypes are considered maladaptive from a
mental-health perspective, but biologically adaptive in
a dangerous environment, safe-adapted phenotypes in a
safe environment are considered adaptive from an
evolutionary as well as a mental-health perspective.
From a fitness viewpoint, this raises a question: If plastic
individuals match their phenotypes to local conditions,
shouldn’t they attain the same or higher fitness than
individuals who do not adjust development (i.e. fixed
types), hence outcompete them?

This depends on the costs to plasticity, which might
include (a) phenotypic–environment mismatch resulting
from prediction error (i.e. during developmental pro-
gramming, cues may imperfectly indicate current or
future environmental states, resulting in a suboptimal
phenotype; Donaldson-Matasci et al., 2013; Nettle,
Frankenhuis & Rickard, 2013; Rickard, Frankenhuis &
Nettle, 2014), (b) constitutive costs (e.g. energy required
for building and maintaining the neural-cognitive
machinery required for plasticity), (c) information search
costs (e.g. time spent sampling environmental cues), and
(d) a lower degree of phenotypic integration (e.g. add-
ons may be less effective than the same phenotypic
element integrated early in development) compared with
fixed phenotypes that specialize from birth to fit a
particular environmental state (for reviews, see Auld,
Agrawal & Relyea, 2010; DeWitt, Sih & Wilson, 1998;
Relyea, 2002).

We will not consider these costs in detail here, but
assume that there is some cost to plasticity. This cost is
such that within any generation the fitness of plastic
individuals is lower than that of (fixed) specialists
matching the environmental state. However, the cost of
plasticity is low enough for the fitness of plastic individ-
uals to be higher than that of (fixed) specialists not
matching the environmental state. We capture this idea in
our model by assuming that plastic individuals accrue a
fitness of 1 in each environment, which is intermediate
between that of specialists who match the environmental
state – and attain a fitness payoff of 1 + b – and that of
specialists who do not match the environment and thus
attain a payoff of 1�c. We assume that all plastic
individuals attain a fitness of 1 (instead of some attaining
1 + b and others 1�c) because we want to ensure that
plastic individuals, as a group, are always situated in
between matched and mismatched specialists. Plas-
tic individuals are thus ‘generalists’, sacrificing specific-
ity for breadth (Wilson, 1994; Wilson & Yoshimura,
1994).

In contrast, specialists are less malleable, adapting
their phenotypes less to context, developing relatively
similar phenotypes even in different environments (com-
pared with plastic individuals). When their phenotype
matches the environmental state, they thrive because
they achieve a viable phenotype–environment fit without
paying a cost for plasticity; in this case, specialists attain
higher fitness (1 + b) than plastic individuals. However,
when the phenotypes of specialists are not well matched
to the environment, they suffer, attaining lower fitness
(1�c) than plastic individuals. Specialists thus sacrifice
breadth for specificity (Wilson, 1994; Wilson & Yoshim-
ura, 1994).
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Bet-hedging by varying offspring plasticity 255



Spatial and temporal environmental variation

The bet-hedging hypothesis of differential plasticity
(Belsky, 1997, 2005; Belsky & Pluess, 2009a) is based
on the idea that parents cannot predict with certainty
what environmental state their offspring will experience.
However, environments can be unpredictable in different
ways, and these may result in different selection pres-
sures, hence different adaptations (in our case, different
offspring compositions; see below). Here we examine two
kinds of environmental variation well known in evolu-
tionary biology: spatial and temporal environmental
variation (some use the terms individual-level and popu-
lation-level; e.g. Bergstrom & Godfrey-Smith, 1998;
Donaldson-Matasci et al., 2008); we do not analyze
their combination (see, e.g. Carja, Furrow & Feldman,
2014). The appropriate fitness calculations under spatial
and temporal environmental variation constitute a rich
field of inquiry in biology; such calculations depend on
the intricacies and degree of realism of assumptions
about organisms and their physical and social environ-
ments. In this article, we will discuss just two stylized
scenarios. We recommend the following works to readers
seeking more information or interested in developing
more refined follow-up models (Frank, 2011; Leimar,
2009; McNamara, Trimmer, Eriksson, Marshall &
Houston, 2011).

Spatial environmental variation

In environments that vary exclusively spatially (and not
temporally), the world is divided into different patches,
each with a particular state (e.g. dangerous or safe).
Within a given generation, any offspring may develop in
either patch, and the associated probabilities are equal
for all individuals (i.e. juveniles disperse from their natal
patch and settle on a new patch at random); some
offspring will develop in one patch (e.g. safe), others in
another patch (e.g. dangerous), and so forth (if there are
more than two patches). Across generations, however,
individuals always face the same spatial distribution, and
so parents attain the same expected fitness within each
generation – and thus also across generations; that is,
there is no variance in parents’ fitness across genera-
tions.1 In this scenario, parents’ fitness can be computed

as the arithmetic mean of the fitness of all their
offspring2: the fraction of offspring in the safe patch
multiplied by their fitness, plus the fraction of offspring
in the dangerous patch multiplied by their fitness (and so
forth, if there are more patches). This calculation implies
that even if some offspring attain low fitness (e.g. they
die), parents might still do well, depending on the fitness
attained by their other offspring.

Temporal environmental variation

In contrast, in environments that vary only temporally
(and not spatially), within a single generation all individ-
uals confront the same environmental state (e.g. danger-
ous); however, in the next generation, their offspring may
face a different state (e.g. safe). Thus, if the environment
fluctuates temporally, the entire population experiences
variation across generations. In such environments, long-
term fitness depends on the fitness of one generation,
multiplied by the fitness of the next generation, and so
forth. The average fitness of this series will not be the
arithmetic mean, but the geometric (i.e. multiplicative)
mean – the n-th root of the product of n fitness values3

(Dempster, 1955; King & Masel, 2007; Lewontin &
Cohen, 1969). Unlike with spatial variation, fluctuations
in success can be catastrophic when the environment
varies temporally. If an entire set of offspring is mis-
matched to its environment in one generation and fails to
reproduce, this lineage will be wiped out.

Formal definition of bet-hedging

Variance in fitness across environments lowers the
geometric mean, but not the arithmetic mean. Indeed,
the geometric mean is often approximated by the
arithmetic mean minus a variance term – most com-
monly, the variance divided by two times the arithmetic
mean4 (Frank, 2011; Starrfelt & Kokko, 2012; Stearns,

1 This expectation being identical across generations assumes that
genotypes produce an infinite number of offspring. If genotypes
produce a finite number of offspring (as they do in reality), they will
experience variance in fitness across generations (Starrfelt & Kokko,
2012). Because this variance becomes very small at even modest
population sizes (Hopper, Rosenheim, Prout & Oppenheim, 2003), we
will ignore it here.

2 We assume discrete, non-overlapping generations, which consist of a
single selective life stage: organisms are born and reproduce; mature
individuals die; and the cycle repeats. Parents and offspring do not
coexist (see also General Discussion section).
3 This assumes an infinitely large and well-mixed population (Starrfelt
& Kokko, 2012). When populations are finite, variance in offspring
number reduces fitness in proportion to the inverse of the population
size (see Frank & Slatkin, 1990, Gillespie, 1974, and Proulx & Day,
2001, for discussions of geometric mean fitness in finite populations,
particularly small ones; for a discussion of the evolution of bet-hedging
in large, structured populations, see Lehmann & Balloux, 2007).
4 This approximation assumes that the fitness of individuals does not
deviate much from the average fitness of their genotype within a given
generation (Starrfelt & Kokko, 2012). If it does, a structurally similar,
albeit less succinct, approximation may be preferable.
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2000; see Young & Trent, 1969, for other approxima-
tions). The long-term fitness of genotypes thus depends
not only on their immediate (arithmetic) expectation for
the next generation, but also on variance in their fitness
across generations (Dempster, 1955). This insight formed
the foundation of bet-hedging theory in biology (Slatkin,
1974). A mean–variance tradeoff exists if an increase in a
strategy’s short-term (i.e. next-generation) expected
arithmetic mean also increases its long-term (i.e. across
generations) expected fitness variance. Bet-hedging strat-
egies are those which, when confronting this tradeoff,
sacrifice short-term fitness to reduce long-term fitness
variance (Seger & Brockmann, 1987; Philippi & Seger,
1989).

Diversified vs. conservative bet-hedging

We will focus on situations in which parents hedge their
bets by producing diverse offspring (i.e. a mixture of
types); this is known as ‘diversified’ bet-hedging (cap-
tured by the idiom: ‘Don’t put all your eggs in one
basket’). Formally, ‘bet-hedging’ applies to any strategy
that increases geometric mean fitness while sacrificing
short-term arithmetic mean fitness. If, for instance,
parents are selected to produce only plastic offspring in
order to reduce variation in fitness, despite a reduction in
short-term arithmetic mean fitness, this is bet-hedging,
too; it is called ‘conservative’ bet-hedging (captured by
the idiom: ‘A bird in the hand is worth two in the bush’)
because individuals avoid extreme payoffs.

Diversified bet-hedging can be instantiated in different
ways: by producing genetically diverse offspring, or by
producing genetically homogenous offspring each of
which randomly develops a phenotype (as if drawn from
a fixed probability distribution). The latter is called
‘adaptive coin flipping’ because, metaphorically, each
individual flips a coin to determine what phenotype he or
she will develop: e.g. specialist or generalist (Cooper &
Kaplan, 1982; Kaplan & Cooper, 1984; Salath�e, Van
Cleve & Feldman, 2009). We defer further discussion of
instantiation to the General Discussion section.

A gambling metaphor

Before introducing the mathematical model, we intro-
duce a gambling metaphor in order to introduce key
concepts, develop intuitions, and preview results. Imag-
ine a casino with a large number of identical roulette
wheels. All wheels are spun simultaneously throughout
the night (e.g. every five minutes). Each spin of the
wheels corresponds to a generation and the outcome of a
spin corresponds to the environmental state experienced

by developing offspring in the model we later present.
Each roulette wheel has a certain number of red pockets
and a certain number of black pockets, where black
pockets correspond to a safe environment and red
pockets to a dangerous environment (we ignore numbers
associated with different pockets). The fraction of black
pockets is given by the probability p. For example, if
p = .75 there are three times as many black pockets as
red pockets for each and every roulette wheel in the
casino.

Next to each wheel is a felt table with three squares,
one black, one red, and one white. Before each spin,
gamblers place their chips on these squares. A gambler
represents a parent and the set of all gamblers in the
casino represents an evolving population of parents.
Each chip represents a child. Just as a gambler chooses
to bet on black, red, or white, a parent can have a child
that is a safe-specialist, a danger-specialist, or a gener-
alist. A chip bet on the white square returns back that
same chip regardless of the outcome of the spin (i.e. no
gain, no loss). A chip bet on the black square returns
1 + b chips if the wheel comes up black (where b
represents a fraction of one chip, varying between 0 and
1) and 1�c chips if the wheel comes up red (where c
represents a fraction between 0 and 1). Similarly, a chip
bet on red returns 1 + b chips if the outcome is red and
1�c if the outcome is black.

Gamblers must bet all of their chips every time the
wheels spin (i.e. they cannot reserve chips, though betting
on white results in the same outcome). Each gambler has
a strategy she uses in placing her bets. Some strategies
will, over time, do better than other strategies. And we
might expect that most gamblers end up deploying
similar strategies. There is, after all, a uniquely best
strategy for any combination of values for p, b, and c.
Note: we chose roulette as a metaphor, rather than
poker, because our model assumes that the payoff of a
strategy is not dependent on its frequency relative to
other strategies in the population. We leave an extension
of our model that incorporates frequency-dependent
selection – in which parents are playing games not only
against nature, but against each other as well – for a
future study.

On some nights, the casino limits gamblers such that
they can only bet one chip on each wheel every time the
wheels spin (e.g. if a gambler has 20 chips, she must place
20 bets on 20 different roulette wheels). On other nights,
the casino forces gamblers to place all of their chips on
just one wheel each time the wheels spin (e.g. the gambler
must now place all 20 of her chips on just one of the
roulette wheels).

In the first version, in which separate bets are placed
on separate wheels, a gambler does best by betting all of
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her chips on just one color (i.e. red, black, or white); she
should never bet on different colors. To understand why,
we need to calculate the expected return in any round
for betting on each of the three colors. If a gambler bets
on black, her expected payoff is 1 + pb � (1�p)c (see
Appendix for details). When this expectation is greater
than 1, the gambler will, over time, make more money
betting on black than betting on white, which is the safe
bet. If, instead, a gambler bets on red, her expected
payoff is 1 + b(1�p) � pc. Again, if this is greater than
1, she will make more money, on average, by betting on
red than on white. If both of these expectations (i.e.
betting on red and betting on black) are less than 1, the
gambler does poorly betting on either black or red; her
best play is to bet on white and preserve her chips. If
one expectation (e.g. betting on red) is greater than 1
and the other expectation less than 1 (e.g. black), she
should bet on the color that has an expected rate of
return greater than 1. And if both are greater than 1,
she makes the most money betting on the color with the
higher expected rate of return. In this game, because
gamblers bet each chip on a separate wheel and because
the outcomes across wheels are independent, losing at
any particular wheel is no big deal, especially when
betting a large number of chips each time. What
matters, in the long run, is the arithmetic average across
wheels. In this case, that average is maximized by
betting on just one color, depending on the values of p,
b, and c.
Things are less simple in the second version of the

game, in which a gambler must place all of her chips on
just one wheel each time the wheels spin. If, for
example, she places all of her chips on the red square
and black comes up, she stands to lose money; the
larger the value of c, the more the gambler loses. When
c = 1, the most it can be, the gambler is wiped out.
Rather than placing all of her chips on a single color,
she must be more cautious in this version of the game,
especially when the value of c is large, hedging her bets
to insure against catastrophe. In this type of game, a
gambler seeks to maximize the geometric mean payoff,
not the arithmetic mean (see above section Spatial and
Temporal Environmental Variation). To maximize the
geometric mean, the gambler must take into account
variation in her payoffs across gambles. How to
maximize the geometric mean exactly depends on the
values of p, b, and c.
To preview results for this second version of the game

(which we describe in more detail below), when the
benefit of a correct bet exceeds the cost of an incorrect
bet (b>c), a gambler does best by placing all her chips on
the black square, all her chips on the red square, or
distributing her chips between black and red squares; she

should never place any chips on the white square. The
precise distribution between red and black depends on
the values of p, b, and c. When the cost of being wrong
exceeds the benefit of being correct (c>b), a gambler
sometimes does best by placing some chips on the white
square and the remainder on either the black square (if
p > .5) or the red square (if p < .5), but never both.
These betting strategies ensure a good payoff without
suffering catastrophic failure.
This gambling metaphor has fundamental similarities

with the problem faced by parents in choosing the
developmental strategies of their offspring when the
environment fluctuates across time and space. The nights
in which gamblers can bet only one chip per roulette
wheel corresponds to a purely spatially varying ecology,
whereas the nights in which gamblers must place all their
chips on just one wheel corresponds to a purely
temporally varying ecology.

The mathematical model

In our model, parents can produce plastic offspring
(generalists), who can adapt their phenotype to local
conditions, attaining a payoff of 1 in each of the two
environmental states. Parents can also produce fixed
offspring (safe- and danger-specialists), who are less
able to adapt to local conditions, attaining high payoffs
(relative to generalists) in environments matching their
phenotypes (1 + b), and low payoffs (relative to
generalists) in environments not matching their pheno-
types (1�c). We assume that b and c range between 0
and 1; this assumption ensures that mismatched
specialists do not attain negative fitness, and implies
that well-matched specialists can at most attain double
the fitness of generalists. This assumption is justified
because empirical work shows that fitness effects of
natural phenotypic variation virtually always fall
within this range in humans (reviewed in Keller &
Miller, 2006; Nettle & Pollet, 2008; Penke, Denissen &
Miller, 2007; Stearns, Byars, Govindaraju & Ewbank,
2010), as well as other organisms (reviewed in Endler,
1986; Hoekstra, Hoekstra, Berrigan, Vignieri, Hoang
et al., 2001; Kingsolver, Hoekstra, Hoekstra, Berrigan,
Vignieri et al., 2001; Morrissey & Hadfield, 2012;
Siepielski, Gotanda, Morrissey, Diamond, DiBattista
et al., 2013).

Optimal offspring distribution

Our goal is to compute the fraction of safe-specialists
(x), danger-specialists (y), and plastic individuals (z) that
natural selection favors parents to produce. Each of these

© 2015 John Wiley & Sons Ltd

258 Willem E. Frankenhuis et al.



fractions ranges between 0 and 1, and all three must sum
to 1. We are particularly interested in the region where
0 < z < 1, because there natural selection favors paren-
tal bet-hedging via the production of both fixed and
plastic offspring. The optimal values of x, y, and z will
depend on features of the evolutionary ecology; that is,
on the probabilities of a safe (p) and dangerous
environment (1�p), and the magnitude of fitness effects
(b and c). These fitness effects specify how much better
or worse specialists do compared with generalists if their
phenotypes match or do not match the environmental
state. We assume that environmental parameters (p, b,
and c) are extrinsic, meaning that parents and offspring
cannot control them. We leave an extension of our model
that incorporates developmental niche construction
(Flynn, Laland, Kendal & Kendal, 2013) – in which
parents and/or offspring can influence environmental
parameters – for a future study.

For simplicity, we assume that safe-specialists in a safe
environment attain the same fitness as danger-specialists
in a dangerous environment (namely, 1 + b). We also
assume that safe-specialists in a dangerous environment
attain the same fitness as danger-specialists in a safe
environment (namely, 1�c). This symmetry in payoffs
justifies limiting our analyses to cases where p ≥ 1�p
(with p < 1�p, our results would be the same, flipping x
for y). However, a future study should extend our model
to include asymmetric fitness payoffs, where the benefits
and costs of being well matched or mismatched vary by
environmental state; such asymmetries might severely
reduce the scope for bet-hedging to evolve (Salath�e et al.,
2009).

Results with spatial environmental variation

When the environment varies spatially (but not tempo-
rally), parental fitness (w) is given by equation 1 (see
Appendix for details):

w ¼ 1þ x½pb� cð1� pÞ� þ y½bð1� pÞ � pc� ð1Þ
The 1 just to the right of the equal sign represents the

payoff achieved by a generalist. If parents only produce
generalists, they will achieve a fixed payoff of 1. The
second term, x[pb � c(1�p)] represents the change in
fitness when producing safe-specialists instead of gener-
alists, in which x represents the fraction of safe-
specialists among the offspring, pb the benefit of
safe-specialists developing in a safe environment, and c
(1�p) the cost of safe-specialists developing in a
dangerous environment. The third term, y[b(1�p) �
pc], represents the change in fitness when producing
danger-specialists instead of generalists, and has a
similar interpretation to the second term. The sum of

these terms represents the arithmetic mean of fitness,
averaging across the three types of offspring.

If both the second and third terms are negative, safe-
and danger-specialists do worse, on average, than gen-
eralists. In this case, parents maximize fitness by
producing all generalists (z = 1, x = 0, y = 0). If the
second term is positive and the third negative, safe-
specialists do better, on average, than generalists, who do
better, on average, than danger-specialists. In this case,
parents should produce all safe-specialists (z = 0, x = 1,
y = 0). If the second term is negative and third term
positive, danger-specialists do best and parents should
only produce them (z = 0, x = 0, y = 1). Finally, if both
the second and third terms are positive, generalists do
worse than safe- and danger-specialists. If one of these
specialists has even a slight edge over the other, parents
should exclusively produce the specialist with the edge
(x = 1, y = 0 or x = 0, y = 1).

As with the version of roulette in which gamblers can
only bet one separate chip on each roulette wheel, when
environmental variation is only spatial, parents maxi-
mize their fitness by either producing all safe-, all
danger-specialists, or all generalists, and never a mix-
ture.5 With spatial variation, we expect no variation in
plasticity due to bet-hedging.

Results with temporal environmental variation

When the environment varies temporally (but not
spatially), selection never favors a mixture of all three
types (see Appendix for details). Instead, selection favors
the production of either only one type (safe-specialist,
x = 1; danger-specialist, y = 1; or generalist, z = 1) or a
mixture of two types (safe-specialists and danger-spe-
cialists, x+y = 1; safe-specialists and generalists, x+z = 1;
or danger-specialists and generalists, y+z = 1). Because
we assume that p ≥ 1�p, the mixture between danger-
specialists and generalists is never favored. So, for
mixtures, we have just two strategies: safe-specialists
and generalists (henceforth, ‘differential plasticity’), or
safe-specialists and danger-specialists (henceforth, ‘mix-
ture of specialists’).

5 Levene (1953) showed mathematically that spatial environmental
variation with local population regulation maintains genetic polymor-
phisms (for related theory, see Frank & Slatkin, 1990; Maynard Smith
& Hoekstra, 1980; Seger & Brockmann, 1987; for related empirical
work, see Kawecki & Ebert, 2004; Savolainen, Lascoux & Meril€a,
2013). We do not consider this case here, because the genetic
polymorphisms that evolve with local population regulation do not
result from a mean–variance tradeoff, and therefore do not qualify as
bet-hedging (see the section on Formal Definition of Bet-hedging).
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With temporal variation, differential plasticity can
sometimes be favored. In the Appendix, we provide
analytical results. Figure 1 depicts the regions of param-
eter space in which differential plasticity is uniquely
favored; that is, where it attains higher, not lower or
equal, fitness than all of the other strategies (see also
figures in Appendix).
Consistent with previous findings from biology (Don-

aldson-Matasci et al., 2008; Moran, 1992; Starrfelt &
Kokko, 2012), natural selection only favors bet hedging
when fitness effects are large (i.e. the variation in fitness
associated with different types must be large), in order to
reduce costly (or even catastrophic) variance in fitness.
We also report a novel result: Natural selection only
favors differential plasticity when the cost of being
mismatched exceeds the benefit of being well adapted
(c>b; Figure 1; see also figures in Appendix). We reflect
on these results below.

When benefits exceed costs

When the benefit of being well matched is larger than the
cost of being mismatched (b>c), selection never favors
differential plasticity (x+z = 1). Instead, selection favors
producing either all safe-specialists (x = 1) or a mixture
of specialists (x+y = 1). Producing all safe-specialists is
favored when the benefit of being well matched and the
cost of being mismatched are small (b,c << 1) or the
probability of experiencing the safe environment is high.
With small fitness effects, fitness variance is also small,
so we are back to a world that is approximately like
spatial variation; selection favors producing only the
type that has the highest arithmetic mean fitness. When p

is high, there is little point in producing a second type to
capture some benefits in the rare environment; individ-
uals do best by producing only the type that is well
matched to the common environment, despite suffering
the occasional loss. When the benefit and cost are large
(b,c >> 0) and p is not that high, selection favors
producing a mixture of specialists. A mixture of special-
ists does better than only safe-specialists because the
mixture experiences much less variation in fitness across
time. And when the environment varies temporally, what
matters is geometric mean fitness, not arithmetic mean
fitness. A high variance in payoff reduces the geometric
mean.
Focusing on the region in which selection favors a

mixture of specialists, we can ask why a mixture of
specialists beats differential plasticity (see the Appendix
for a proof). In this region, when p is not that high and b,
c >> 0, producing only safe-specialists results in too
much exposure to risk. When the environment is
dangerous, safe-specialists do very poorly. To mitigate
this risk, selection favors mixing safe-specialists with
another type, either danger-specialists or generalists.
When the benefit of being well matched exceeds the cost
of mismatch, this other type should be danger-specialists.
To understand why, we can think about the effect of

the two kinds of mixing on the variance in fitness across
environments. With a mixture of specialists, there is
always a mix that results in the same or nearly identical
payoffs in each environment (see figures in Appendix);
this is true even if the environmental state is highly
variable (e.g. p = .6). With differential plasticity, there is
no way of mixing safe-specialists and generalists to
eliminate variance in payoff across environments; the
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Figure 1 The x-axis represents the additional benefit (b) fixed specialists obtain, compared with plastic generalists, if their
phenotype matches the environmental state. The y-axis represents the additional cost (c) fixed specialists incur, compared with
plastic generalists, if their phenotype does not match the environmental state. Contour lines indicate the optimal fraction of safe-
specialists, when the probability of a safe environment equals 0.6, 0.75, and 0.9 (from left to right). In regions denoted ‘S’ (shaded
dark gray), only safe-specialists are favored; if ‘G’ (shaded medium gray), pure generalists; if ‘M’ (shaded light gray), mixtures of
specialists (i.e. safe- and danger-specialists); if ‘D’ (not shaded), differential plasticity (i.e. mixtures of generalists and safe-specialists).
If b > c, differential plasticity is never favored. If c > b, differential plasticity can be favored, especially if c is large.
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only way to eliminate fitness differences in the two
environments is to produce all generalists. Mixtures of
specialists can always reach lower variance in payoffs
than differential plasticity, which all else being equal (e.g.
the arithmetic mean) results in higher geometric mean
fitness.

When costs exceed benefits

When the cost of mismatch exceeds the benefit of being
well matched (c>b), selection sometimes favors differen-
tial plasticity. When the magnitude of benefit and cost
are small (c,b << 1), selection favors producing only
generalists when p is below some threshold (the precise
value of this threshold depends on the values of b and c).
When the magnitude of fitness effects is large (c,b >> 0),
selection often favors differential plasticity over a mix-
ture of specialists.

To understand why, we can think about gains and
losses. With differential plasticity, the safe-specialists do
somewhat better than generalists in the more common
safe environment and a lot worse in the more rare
dangerous environment. With a mixture of specialists,
the safe-specialists do reasonably well in the safe
environment and a lot worse in the dangerous environ-
ment; the danger-specialists do reasonably well in the
dangerous environment and very poorly in the safe
environment. Because the cost exceeds the benefit,
differential plasticity is exposed to smaller losses than a
mixture of specialists. As a result, differential plasticity
experiences less variance in payoffs across environments
compared to a mixture of specialists, thereby achieving
higher geometric mean fitness.

General discussion

We presented a mathematical model in order to examine
whether individual differences in plasticity could result
from parental bet-hedging. Our results support the
hypothesis’ logical coherence in that there are ecological
scenarios in which natural selection might favor differ-
ential plasticity. However, three conditions must simul-
taneously hold. First, environmental variation must
occur temporally, not exclusively spatially. Second,
fitness effects must be large (i.e. variation in individuals’
plasticity is correlated with substantial variation in
fitness). Both of these conditions are consistent with
other biological models of bet-hedging (Donaldson-
Matasci et al., 2008; Moran, 1992; Starrfelt & Kokko,
2012). Third, the costs of being mismatched must exceed
the benefits of being well matched. To our knowledge,
this result is novel and may be specific to the evolution of

differential plasticity. If these three conditions are met,
our model can account for differential plasticity (i.e. the
coexistence of plastic generalists and fixed specialists).
However, our model cannot account for a coexistence of
plastic generalists and multiple fixed specialists (i.e.
different specialists adapted to different environments).
Including density-dependence in the model will likely
change this result (see Kawecki & Ebert, 2004; Savolai-
nen et al., 2013; Wilson & Yoshimura, 1994); however, a
future study should formally examine this.

Empirical predictions

Before discussing the plausibility of large fitness effects,
we will first derive empirical predictions. We will focus
on two predictions, which apply to contemporary
populations only to the extent that individuals inhabit
environments that share properties with those environ-
ments in which parental bet-hedging may have originally
evolved (i.e. no evolutionary disequilibrium).

First, if parental bet-hedging explains differential
plasticity, we should expect large fitness consequences
of variation in plasticity. For example, at a given level of
environmental harshness, danger-specialists should
attain much higher fitness than plastic generalists who
should attain much higher fitness than safe-specialists.
Measuring fitness (even proxies) is difficult in long-lived
organisms such as humans, but it is not impossible. For
instance, fieldwork on Yanomam€o Indians of Amazonas
indicates that 88% of unokai (men who have killed) sired
at least one offspring, compared with 49% of non-unokai
(Chagnon, 1988; see also Walker & Bailey, 2013).
Accordingly, among the Yanomam€o, an individual who
develops a danger-adapted phenotype (e.g. physical
strength, high levels of vigilance) might be more likely
(than conspecifics who develop safe-adapted pheno-
types) to become unokai, and less likely to become a
victim, thus garnering fitness benefits. However, for
selection to potentially favor differential plasticity (as
opposed to only danger-specialists), at other times safe-
specialists would need to have a large advantage. In those
periods, selection pressures may resemble those faced by
the Waorani of Ecuador, among whom more aggressive
men have fewer children surviving to reproductive age
(Beckerman, Erickson, Yost, Regalado, Jaramillo et al.,
2009). Moreover, for differential plasticity to beat
mixtures of specialists, in times when aggression is
favored, the benefits of aggression must be smaller than
its costs in times when it is disfavored.

Second, we expect the extent to which individuals
differ in their plasticity levels to depend on: (a) environ-
mental variance and (b) the cost–benefit ratio (i.e. the
extent to which the costs of being mismatched exceed the
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benefits of being well matched). Specifically, populations
experiencing larger environmental variance should
include more plastic generalists, and fewer specialists,
than populations experiencing smaller environmental
variance (Figure 1; for evidence of bet-hedging plants
producing proportions of offspring types that track
frequencies of environmental states, see Graham, Smith
& Simons, 2014, and Rajon, Desouhant, Chevalier,
D�ebias & Menu, 2014; for evidence of bet-hedging
plants producing proportions of offspring types that
track both frequencies of environmental states and
ontogenetic information, see Sadeh, Guterman, Gersani
& Ovadia, 2009, and Simons, 2014). Further, we expect
the proportion of plastic generalists to be larger, and the
proportion of specialists to be smaller, in those popula-
tions in which the cost–benefit ratio is greater (Figure 1),
as larger mismatch costs penalize specialists. Having
stated predictions, we now turn to the question whether
the conditions our results point to plausibly pertain to
human evolutionary history.

Plausibility of large fitness effects

Our results indicate that selection can favor differential
plasticity, provided fitness effects are large (i.e. variation
in individuals’ plasticity is correlated with substantial
variation in fitness). Larger fitness effects increase fitness
variance (lowering geometric mean fitness), which can be
reduced by producing mixtures of types – including, if
c>b, differential plasticity. Meta-analyses of studies of
wild animal populations show that frequencies of fitness
effects are exponentially distributed, with smaller effects
being much more common than larger ones (reviewed in
Endler, 1986; Hoekstra et al., 2001; Kingsolver et al.,
2001; for studies of humans, see Keller & Miller, 2006;
Nettle & Pollet, 2008; Penke et al., 2007; Stearns et al.,
2010). Moreover, recent analyses suggest that large
fitness effects are even less common than earlier surveys
indicated (Morrissey & Hadfield, 2012; Siepielski et al.,
2013). The plausibility of large fitness effects in the
present case depends, among other things, on the extent
to which ‘plasticity levels’ are correlated across different
developmental domains. If an individual’s plasticity level
in one domain (e.g. metabolic adaptation) predicts her
plasticity levels in other domains (e.g. reproductive
development, stress responsivity), then the effects on
overall fitness could be large. In contrast, if plasticity
levels are narrowly trait-specific, their effects will be
restricted to single traits as well, reducing their impact on
overall fitness. The extent to which plasticity levels are
correlated across domains is an open and interesting
question, which has recently come into focus in studies of
humans (Aron et al., 2012; Belsky & Pluess, 2013; Del

Giudice et al., 2011) and other animals (Dingemanse,
Kazem, R�eale & Wright, 2010; Sih & Del Giudice, 2012;
Stamps & Groothuis, 2010). Initial evidence suggests
that plasticity levels are correlated across domains, but it
would be premature to draw firm conclusions (Belsky &
Pluess, 2013). Future research is needed to clarify this
important issue.

Limitations and future directions

Models are by design simplified, idealized versions of
reality, the goal of which is to capture some essential
components of a process or system. Moreover, models
may serve different kinds of purposes. One distinction is
that between general and specific models (Parker &
Maynard Smith, 1990): ‘General models promote under-
standing of qualitative features. The parameters of such
models may not be easy to measure. Specific models are
based on a particular system and have parameters that
can be measured so that predictions can be made’
(Houston & McNamara, 2005, p. 934). We presented a
general model whose goal is to: (a) explicate assump-
tions, (b) test their theoretical consequences and thus the
logical cogency of hypotheses, and (c) understand
interactions between variables that are difficult to intuit,
if not impossible, without the help of formalizations (see
Fawcett, Hamblin & Giraldeau, 2013; Frankenhuis,
Panchanathan & Barrett, 2013). We have provided one
way of capturing and analyzing the bet-hedging argu-
ment of differential plasticity (Belsky, 1997, 2005; Belsky
& Pluess, 2009a, 2009b). However, our work is imperfect
and incomplete, and we hope that future research will
address these limitations.
First, our model does not address how mechanistic

instantiation might constrain optimality (McNamara &
Houston, 2009). We assume that parents can produce
optimal proportions of offspring types, unhindered by
genetic, developmental, physiological, or cognitive con-
straints. Such an assumption of unbounded optimality is
sometimes called the ‘phenotypic’ or ‘behavioral’ gambit
(Grafen, 1984; Fawcett et al., 2013; Frankenhuis et al.,
2013). In real organisms, however, constraints abound.
To give one example: we assume that offspring can
produce exactly the same distributions of offspring types
as their parents did (‘like begets like’). This assumption
is realistic in haploid asexual organisms, where selection
happens among competing clones, but not in humans,
who have two sets of chromosomes. Diploid genetic
systems (a) constrain the offspring distributions that
parents can produce (i.e. some types of offspring may not
be producible), and (b) limit the extent to which parents
can control the distribution of those offspring types that
they can in fact produce (e.g. due to random shuffling of
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alleles, recombination, and other processes); this is why
heterozygotes, who are less susceptible to sickle-cell
anemia than homozygotes, are not universal in popula-
tions exposed to malaria.

Given the randomness inherent to sexual reproduc-
tion, it seems implausible that in species producing small
numbers of offspring, like humans, parents will diversify
their offsprings’ levels of plasticity using genetic means –
for instance, by mating with multiple, genetically diverse
partners (e.g. serial monogamy, promiscuity). Instead, it
is more likely that parental bet-hedging, if it occurs in
humans, is instantiated via epigenetic mechanisms, such
as pre- or postnatal programming (Belsky, 2005; Belsky
& Pluess, 2009a, 2011; Ellis et al., 2011; for evidence in
non-human animals, see Crean & Marshall, 2009). In
this scenario, natural selection would favor parents who
transmit to their offspring, not so much different genetic
variants, but rather variation in epigenetic settings that
determines the extent to which experience shapes phe-
notypic development (i.e. epigenetic variation in sensi-
tivity to developmental programming). An alternative
possibility is that natural selection favors adaptive ‘coin-
flipping’, in which parents produce offspring that
stochastically vary in their levels of plasticity, irrespective
of offspring experience (Bull, 1987; Cooper & Kaplan,
1982; Kaplan & Cooper, 1984; Salath�e et al., 2009).
Regardless, it would be valuable to formally examine
how diploid genetics might influence scope for differen-
tial plasticity to evolve.

A second limitation is that our model assumes
discrete, non-overlapping generations, which consist of
a single selective life stage, as these assumptions are
implicit in the way we computed geometric mean fitness:
organisms are born and reproduce; mature individuals
die; and the cycle repeats. Parents and offspring do not
coexist. This assumption does not hold for humans.
Therefore, future work should explore variants of our
model that include overlapping generations. Classical
biological models show that temporally fluctuating
selection – in which the relative fitnesses of different
phenotypes vary over time – is ineffective in maintaining
genetic variation if generations are non-overlapping (e.g.
Frank & Slatkin, 1990; but see Svardal, Rueffler &
Hermisson, 2011). However, as Del Giudice (2012) notes,
this result changes ‘in species with (a) overlapping
generations in which juveniles and adults coexist, and
(b) multiple life stages, at least [one] of which is
temporarily “shielded” from the [selective] effects of
environmental change. When these conditions are met,
temporally fluctuating selection becomes extremely
effective in maintaining genetic variation, as multiple
life stages store genetic variation and maintain it as the
environment changes’ (p. 55; for supporting references,

see Del Giudice, 2012). Although maintenance of genetic
variation in fluctuating environments does not normally
result from bet-hedging (i.e. from strategies that sacrifice
short-term mean fitness in order to reduce long-term
fitness variance), in some cases it might (Svardal et al.,
2011). It will thus be interesting to examine how
including overlapping generations affects scope for
differential plasticity to evolve.

A third limitation is that we assume discrete types of
offspring (one plastic type, and two fixed types); our
model does not consider continuous variation in the
degree of plasticity. It is uncertain whether between-
individual variation in plasticity would also evolve if
individuals could develop such continuous levels. Con-
ceivably, in that case, parents might produce all offspring
with the same, intermediate level of plasticity. This is
especially worth exploring because human G9E inter-
action research suggests that variation in plasticity may
be better characterized in terms of a gradient than in
typological terms (Belsky & Pluess, 2009a, 2009b; Belsky
& Beaver, 2011).

Fourth, our model makes specific assumptions about
rates of environmental change. It assumes that, first, the
environmental state (e.g. safe or dangerous) is stable
enough within generations for developmental program-
ming to evolve, but not perfectly stable, resulting in
maladaptive developmental programming in some indi-
viduals. Second, the environmental state is variable
between generations to an extent that parents cannot
predict the environment their offspring will experience
any better than the long-term average probabilities of
environmental states. In other words, our model assumes
high environmental auto-correlation within generations,
and no environmental auto-correlation between genera-
tions. An extension of the current model would be to
consider between-generation auto-correlation in the
environment. Recent evidence suggests that there have
been periods in human history characterized by climatic
fluctuations on the scale of decades to millennia, which is
very rapid over evolutionary timescales but rather slow
over one or even several individual lifetimes (Potts, 1998;
Richerson, Boyd & Bettinger, 2001). This means that
being born at a time of nutritional stress, or abundance,
would have predicted – albeit imperfectly – a lifetime of
such conditions for oneself and one’s offspring. There
might have been between-generation autocorrelation in
dimensions of the social environment as well. For
instance, within-society differences in social status
(determining access to resources) may have been mod-
erately stable across lifetimes in ancestral societies as
they are in many extant societies (Borgerhoff Mulder,
Bowles, Hertz, Bell, Beise et al., 2009) and in some non-
human primates (Cheney, 1977). Formal models show
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that moderate degrees of environmental stability across
generations provide favorable conditions for the evolu-
tion of systems of epigenetic inheritance (Jablonka,
Oborny, Moln�ar, Kisdi, Hofbauer et al., 1995; Lach-
mann & Jablonka, 1996). With between-generation auto-
correlation, uncertainty is reduced across generations. It
is not clear what effect this type of uncertainty reduction
will have on the scope for the evolution of bet-hedging.

Conclusions

Belsky’s bet-hedging hypothesis (Belsky, 1997) is widely
cited and is having interdisciplinary impact, inspiring
research not only in observational and experimental
studies in developmental psychology, but also in related
fields, such as clinical science, pedagogy, and public
policy (White, Li, Griskevicius, Neuberg & Kenrick,
2013). Despite its success, however, the bet-hedging
hypothesis has never been formalized, even though
related models have long existed in the biological
sciences. Here we have provided such an analysis. Results
support the argument’s logical coherence, but only under
restrictive conditions. We hope that future research will
extend and modify our work, resulting in a family of
models, with each examining the consequences of
particular assumptions.
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Appendix

Bet-hedging model

Model set up

Parents can produce plastic offspring, who are adaptable,
achieving a payoff of 1, irrespective of the environmental
state. Parents can also produce fixed offspring (special-
ists), who are less adaptable, achieving a high payoff in a
safe environment (1+b), and a low payoff in a dangerous
environment (1�c).
Our goal is to compute the fraction of safe-specialists

(x), danger-specialists (y), and plastic individuals (z) that
natural selection favors parents to produce. Each of these
fractions ranges between 0 and 1. We are particularly
interested in the region where 0<x+y<1, because there
natural selection favors parental bet-hedging via the
production of both fixed and plastic offspring. The
optimal value of x and y will depend on features of the
evolutionary environment; that is, on the probabilities of
a safe (p) and dangerous environment (1�p), and the
magnitude of fitness effects (b and c). These fitness
effects specify how much better or worse specialists do
compared with generalists if their phenotypes match or
do not match the environmental state.

We assume that safe-specialists in a safe environment
attain the same fitness as danger-specialists in a danger-
ous environment (namely, 1+b). We also assume that
safe-specialists in a dangerous environment attain the
same fitness as danger-specialists in a safe environment
(namely, 1�c). This symmetry in payoffs justifies limiting
our analyses to cases where p>1�p (with p<1�p, our
results would be a mirror image). Note that the higher p
is, the more predictable the environment is across
generations from the parents’ viewpoint; if p=1�p, the
environmental state is completely unpredictable from
one generation to the next.

Parameters

w� parental fitness
x� fraction of safe-specialists (fixed type adapted to safe

environment)
y� fraction of danger-specialists (fixed type adapted to

dangerous environment)
z�1�x�y� fraction of plastic type
p� probability of a safe environment (range: 0–1)
1�p� probability of a dangerous environment
b� benefit to a fixed individual when fitting the local

ecology (range: 0–1)
c� cost to a fixed individual when mismatched to local

ecology (range: 0–1)

Intragenerational spatial variation

In spatially varying environments, the environment
consists of different patches, each with a particular state
(e.g. safe or dangerous). Within any generation, some
offspring are born in one environmental state and other
offspring in another. In such environments, parental
fitness is given by the arithmetic mean across patches.

Fitness function

w = p(payoff in safe environment) + (1-p)(payoff in
dangerous environment)

w ¼ p ð1� x� yÞð1Þ þ xð1þ bÞ þ yð1� cÞ½ �
þð1� pÞ ð1� x� yÞð1Þ þ xð1� cÞ þ yð1þ bÞ½ � ð2Þ

A basic and simple calculation leads to a reformulation:

w ¼ 1þ x½pb� cð1� pÞ� þ y½bð1� pÞ � pc� ð3Þ
This equation has a straightforward interpretation: In

the second term, pb represents parents’ expected benefit

© 2015 John Wiley & Sons Ltd
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of well-matched safe-specialists (i.e. the probability of a
safe environment multiplied by the benefit that safe-
specialists obtain in this environment), and c(1�p)
represents the expected cost of mismatched safe-special-
ists (i.e. the probability of a dangerous environment
multiplied by the cost that safe-specialists incur in this
environment). In the third term, b(1�p) represents
parents’ expected benefit of well-matched danger-spe-
cialists (i.e. the probability of a dangerous environment
multiplied by the benefit that danger-specialists obtain in
this environment), and pc represents the expected cost of
mismatched danger-specialists (i.e. the probability of a
safe environment multiplied by the cost that danger-
specialists incur in this environment).

If both of these expectations are negative, then parents
maximize fitness (w) by producing x+y=0 (i.e. all plastic
children).

If the former expectation is positive and latter nega-
tive, then parents maximize fitness by producing x=1 (i.e.
all safe-specialists).

If the former expectation is negative and latter
positive, then parents maximize fitness by producing
y=1 (i.e. all danger-specialists).

If both expectations are positive, then parents maxi-
mize fitness by producing all offspring of the type that
has the highest expectation (i.e. either x=1 or y=1).

Thus, if environmental variation is exclusively spatial,
parents always maximize their fitness by producing
either all safe- or danger-specialists, or all plastic
individuals, and never a mixture (of both specialist
types, or of one or both of the specialist types and the
plastic type); thus, in this scenario, we would expect no
variation in plasticity due to bet-hedging.

Intergenerational temporal variation

In environments that vary temporally between gener-
ations (but which remain stable within generations),
the state of the environment changes simultaneously
for all individuals across time. For instance, in one
generation all individuals may develop in a safe patch,
their offspring in a dangerous patch, and so forth. We
assume that environmental states are independent and
identically distributed (IID) across generations. In this
case, if generations are discrete and non-overlapping,
parental fitness is given by the average of sequential
payoffs across generations. The average of n values
multiplied is the nth root of their product, their
geometric mean.

Fitness function

w ¼ ð1� x� yÞð1Þ þ xð1þ bÞ þ yð1� cÞ½ �p

ð1� x� yÞð1Þ þ xð1� cÞ þ yð1þ bÞ½ �ð1�pÞ ð4Þ

We ask what values of x and y maximize parents’ fitness.
Normally, we would find these values where the deriv-
ative of the fitness function w equals zero. However, the
current case is exceptional, as shown below. Taking the
natural log:

lnðwÞ ¼ p � ln 1� x� yþ xð1þ bÞ þ yð1� cÞ½ �þ
ð1� pÞ � ln 1� x� yþ xð1� cÞ þ yð1þ bÞ½ � ð5Þ

Simplifying within brackets:

lnðwÞ ¼ p � lnð1þ xb� ycÞ þ ð1� pÞ � lnð1� xcþ ybÞ
ð6Þ

Taking the partial derivative with respect to x:

@lnðwÞ
@x

¼ pb
1þ xb� yc

� cð1� pÞ
1� xcþ yb

ð7Þ

Taking the partial derivative with respect to y:

@lnðwÞ
@y

¼ bð1� pÞ
1� xcþ yb

� pc
1þ xb� yc

ð8Þ

Both partial derivatives equal zero when:

pb
1þ xb� yc

� cð1� pÞ
1� xcþ yb

¼ 0 ð9Þ

bð1� pÞ
1� xcþ yb

� pc
1þ xb� yc

¼ 0 ð10Þ

Rewrite as: u=1+xb�yc and: v=1�xc+yb:

pb
u
� cð1� pÞ

v
¼ 0 ð11Þ

bð1� pÞ
v

� pc
u
¼ 0 ð12Þ

Reorganizing:

pbv ¼ ð1� pÞcu ð13Þ
pcv ¼ ð1� pÞbu ð14Þ

Solve for v:

v ¼ 1� p
p

� �
c
b

� �
u ð15Þ
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v ¼ 1� p
p

� �
b
c

� �
u ð16Þ

These conditions simultaneously hold when:

1� p
p

� �
c
b

� �
u ¼ 1� p

p

� �
b
c

� �
u ð17Þ

Dividing out ð1�p
p Þ, multiplying both sides by bc, and

reorganizing:

c2u ¼ b2u ð18Þ
uðb2 � c2Þ ¼ 0 ð19Þ

uðbþ cÞðb� cÞ ¼ 0 ð20Þ

Formally, this equation has four solutions: u=0, b=c,
b=�c, and c=�b. However, the last two of these are not
biologically meaningful, so we ignore them. The second
solution is an implausible knife edge (b=c), and we will
show later that differential plasticity is never uniquely
favored in this condition. Thus, we will focus on the first
solution:

u ¼ 1þ xb� yc ¼ 0 ð21Þ
v ¼ 1� xcþ yb ¼ 0 ð22Þ

Solving each for x:

xb ¼ yc� 1 ¼) x ¼ yc� 1
b

ð23Þ

xc ¼ ybþ 1 ¼) x ¼ ybþ 1
c

ð24Þ

These conditions simultaneously hold when:

yc� 1
b

¼ ybþ 1
c

ð25Þ

Multiplying both sides by bc, and reorganizing:

y ¼ �1
b� c

ð26Þ

We obtain the corresponding x:

xb ¼ �c
b� c

� 1 ¼) x ¼ �1
b� c

ð27Þ

This equilibrium x ¼ y ¼ �1
b�c cannot be attained. If b>c,

then x<0 and y<0; if c>b, then x>1 and y>1. These results
show that selection never simultaneously favors the
optimal x and y (unless, perhaps, when b=c, discussed
later). If b 6¼c, selection will take x and y to the edges of a
triangle, bounded by points: (x=0, y=0), (x=1, y=0), and
(x=0, y=1). Within this triangle, the fitness function is

monotonically increasing or decreasing, depending on
the values of p, b and c.

Exploring the edges

For each combination of parameter values (i.e. p, b, and
c), we want to know the associated fitness of the edge
solutions. The edge solution that yields the highest
fitness for a given set will be favored by natural selection.
We find the optimal edge solution for x between points
(x=0, y=0) and (x=1, y=0) by entering y=0 into our
fitness equation ln(w).

lnðwy¼0Þ ¼ p � lnð1þ xb� 0cÞ þ ð1� pÞ � lnð1� xcþ 0bÞ
ð28Þ

Taking the partial derivative with respect to x:

@lnðwy¼0Þ
@x

¼ pb
1þ xb

� ð1� pÞc
1� xc

ð29Þ

Setting this partial derivative to zero and solving for x:

x̂y¼0 ¼ pb� cð1� pÞ
bc

ð30Þ

When 0\x̂y¼0\1, differential plasticity is favored over
only plastic individuals, and over only one type of
specialist. This is when:

c
bþ c

\p\
c

bþ c
þ bc
bþ c

ð31Þ

Next,we find the optimal edge solution for y between
points (x=0, y=0) and (x=0, y=1) by entering x=0 into ln
(w), and taking the partial derivative with respect to y:

@lnðwx¼0Þ
@y

¼ �cp
1� yc

þ ð1� pÞb
1þ yb

ð32Þ

Setting this derivative to zero, and solving for y:

ŷx¼0 ¼ bð1� pÞ � pc
bc

ð33Þ

When 0\ŷx¼0\1, a mix of y and z is favored over only
plastic individuals, and over only one type of specialist:

b
bþ c

� bc
bþ c

\p\
b

bþ c
ð34Þ

Finally, we find the optimal edge solution for x between
points (x=1, y=0) and (x=0, y=1), by entering
z=1�x�y=0 (i.e. y=1�x) into ln(w), and taking the
partial derivative with respect to x:
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@lnðwz¼0Þ
@x

¼ pðbþ cÞ
1þ xb� cð1� xÞ �

ð1� pÞðbþ cÞ
1� xcþ bð1� xÞ

ð35Þ

Setting this derivative to zero, and solving for x:

x̂z¼0 ¼ pð1þ bÞ � ð1� pÞð1� cÞ
bþ c

ð36Þ

When 0\x̂z¼0\1, a mix of specialists is favored over
either pure specialist:

1� c
2þ b� c

\p\
1þ b

2þ b� c
ð37Þ

Differential plasticity can be favored if c>b

We know that natural selection will favor edge solutions;
hence, we will consider differential plasticity (DP) as
producing safe-specialists and plastic individuals only
(not danger-specialists). DP beats Mixtures of Specialists
(MS) if:

ð1þ xbÞpð1� xcÞ1�p [ ð1þ xb� ycÞpð1� xcþ ybÞ1�p

ð38Þ

Dividing by DP:

1[
1þ xb� yc

1þ xb

� �p 1� xcþ yb
1� xc

� �1�p

ð39Þ

Taking the natural log:

0[ p � ln 1þ xb� yc
1þ xb

� �
þ ð1� pÞ � ln 1� xcþ yb

1� xc

� �

ð40Þ

Assume DP produces xdp ¼ x̂ms � ŷms (it can, because
x̂ms [ ŷmsÞ:

0[ p � ln 1þ xb� yc
1þ ðx� yÞb

� �
þ ð1� pÞ � ln 1� xcþ yb

1� ðx� yÞc
� �

ð41Þ

Distributing terms in the denominators:

0[ p � ln 1þ xb� yc
1þ xb� yb

� �
þ ð1� pÞ � ln 1� xcþ yb

1� xcþ yc

� �

ð42Þ

The left log term is negative because �yc<�yb. The right
one because yb<yc. This proof ignores (1) that the slope
of log terms <1 are steeper than that of log terms >1, and
(2) the left log term is weighted by p, which >1�p. Thus,

the proof holds for all values of p. If taken into account,
(1) and (2) strengthen DP’s superiority over MS. Barring
the strategies converging on production of only Special-
ists, DP beats MS.

Differential plasticity is never favored if b >c

We can show that when b>c, DP never beats MS:

ð1þ xbÞpð1� xcÞ1�p �ð1þ xb� ycÞpð1� xcþ ybÞ1�p

ð43Þ

If MS attains equal or higher fitness than DP in either
environment, its geometric mean fitness across environ-
ments will also equal or exceed that of DP (in which case
DP is never uniquely favored if b>c):

1þ ðx̂dpÞb� 1þ ðxmsÞb� ðymsÞc ð44Þ
1� ðx̂dpÞc� 1� ðxmsÞcþ ðymsÞb ð45Þ

Deducting 1 from all sides:

ðx̂dpÞb�ðxmsÞb� ðymsÞc ð46Þ
�ðx̂dpÞc� � ðxmsÞcþ ðymsÞb ð47Þ

Solving for xms (note: the sign flips in the bottom
equation):

ðx̂dpÞbþ ðymsÞc
b

�ðxmsÞ ð48Þ
ðx̂dpÞcþ ðymsÞb

c
�ðxmsÞ ð49Þ

Combined in one line:

ðx̂dpÞbþ ðymsÞc
b

�ðxmsÞ� ðx̂dpÞcþ ðymsÞb
c

ð50Þ

ðx̂dpÞ þ ðymsÞ
c
b

� �
�ðxmsÞ� ðx̂dpÞ þ ðymsÞ

b
c

� �
ð51Þ

c
b
� ðxmsÞ � ðx̂dpÞ

ðymsÞ
� b

c
ð52Þ

Where xms>yms. Consider x̂dp ¼ 0þ e, where e is tiny:

c
b
� xms � ð0þ eÞ

yms
� b

c
ð53Þ

c
b
� xms � e

yms
� b

c
ð54Þ

If b>c, MS can always fulfill this condition (note: since
xms>yms, the left side of the equation always holds). Now
consider x̂dp ¼ 1� e:
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ð1� eÞ þ ðymsÞ
c
b

� �
�ðxmsÞ� ð1� eÞ þ ðymsÞ

b
c

� �
ð55Þ

Now yms can be taken down to a very small number such
that xms will be between the two ends. Note that yms must
be smaller than 0+e. To see this, consider yms=0+e
(meaning that xms=1�e):

ð1� eÞ þ ð0þ eÞ c
b

� �
�ð1� eÞ� ð1� eÞ þ ð0þ eÞ b

c

� �

ð56Þ

ðeÞ c
b

� �
� 0�ðeÞ b

c

� �
ð57Þ

If, however, yms=0+d, where d<e, then:

ð1� eÞ þ ð0þ dÞ c
b

� �
�ð1� dÞ� ð1� eÞ þ ð0þ dÞ b

c

� �

ð58Þ

Subtracting 1, multiplying by �1, and simplifying (note:
the signs flip):

e� d
c
b

� �
� d � e� d

b
c

� �
ð59Þ

Dividing by d:

e
d

� �
� c

b

� �
� 1� e

d

� �
� b

c

� �
ð60Þ

Because b
c [

c
b, the right term will always be smaller than

the left term. MS can always produce a value of d that
ensures the right term is smaller than one, and the left
term larger than one. Thus, if b>c, MS can always match
or beat DP.

Arithmetic mean fitness, variance in fitness, and
geometric mean fitness

In the article, we present the regions of parameter space
in which differential plasticity is uniquely favored in a
temporally fluctuating environment (Figure 1). Here, we
present the arithmetic mean fitness, variance in fitness,
and geometric mean fitness, for three strategies (in
order): differential plasticity, mixtures of specialists, and
only safe-specialists. We do not present a separate figure
for pure generalists: its arithmetic and geometric mean
fitnesses are 1, and its fitness variance is 0, in the entire
parameter space.
In the following three figures, the x-axis represents the

additional benefit (b) fixed specialists obtain, compared
with plastic generalists, if their phenotype matches the
environmental state. The y-axis represents the additional
cost (c) fixed specialists incur, compared with plastic
generalists, if their phenotype does not match the
environmental state. The top row depicts a strategy’s
arithmetic mean fitness when the probability of a safe
environment equals 0.6, 0.75, and 0.9 (from left to right);
here, contour lines indicate the value of arithmetic mean
fitness. The middle row depicts a strategy’s variance in
fitness when the probability of a safe environment equals
0.6, 0.75 and 0.9 (from left to right); here, contour lines
indicate the value of variance in fitness. The bottom row
depicts a strategy’s geometric mean fitness when the
probability of a safe environment equals 0.6, 0.75, and 0.9
(from left to right); here, contour lines indicate the value
of geometric mean fitness. In all of the figures, in regions
denoted ‘S’ (shaded dark gray), only safe-specialists are
favored; if ‘G’ (shaded medium gray), pure generalists; if
‘M’ (shaded light grey), mixtures of specialists; if ‘D’

(not shaded), differential plasticity. If b>c, differential
plasticity is never favored. If c>b, differential plasticity
can be favored, especially if c is large.
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