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Abstract

Humans are resistant to changing their beliefs even in the face
of disconfirming evidence. The Bayesian brain theory suggests
that we should update our beliefs optimally in light of new ev-
idence, but recent research indicates that belief formation is
far from the Bayesian ideal. Individuals can exhibit “stronger-
than-rational” updating or be resistant to revising their beliefs.
The present study proposes a novel paradigm to explore per-
ceptions and preferences for belief updating patterns in stable
and dynamic stochastic environments, using an advice-taking
paradigm. In an experiment (N=567) based on a fishing task,
we introduce three advisor characters representing formal up-
dating models: Bayesian, Volatile and Rigid. We find that par-
ticipants exhibit higher trust for the Bayesian advisor than the
Rigid advisor, in the stable but not changeable environment
conditions. In the changeable environment, participants ex-
hibit higher trust for the Volatile advisor, compared to both
the Bayesian and Rigid advisors. The findings also suggest
that participants’ own learning closely mimics the pattern of
the Volatile model. This study illustrates that people can dif-
ferentiate between Bayesian updating, and its “stronger-than”
and “weaker-than” variations, and exhibit preferences for these
updating patterns, in different environment structures.

Keywords: belief updating; advice taking; social learning;
mental models; Bayesian inference

Introduction

It’s now received wisdom that evidence alone is insufficient
to drive belief revision (Ecker et al., 2022). Altogether, both
behavioural experiments and studies using naturalistic data
seem to suggest that humans are averse to epistemic change
and that our beliefs are remarkably immovable, even in the
face of disconfirming evidence (e.g., Kube & Rozenkrantz,
2021). This phenomenon could be largely attributed to the
fact that beliefs are not held in isolation but are rather part
of a cohering system. These systems can be conceptualised
as “intuitive theories” (Gerstenberg & Tenenbaum, 2020) or
“cognitive models” (Goodman, Tenenbaum, & Contributors,
2016). Analogous to scientific theories, intuitive theories are
explanatory frameworks composed of an ontology of con-
cepts and causal links relating them, that represent and model
the structure of the world within a domain. The ability to
form, maintain, and adapt theories or cognitive models of the
world is a crucial function of cognition. Determining how we
should update these models when confronted with new (espe-
cially conflicting) evidence could be the key to unlocking the
puzzle of learning.

A normative framework for belief revision

In recent years, Bayesian inference has been proposed as the
underlying principle of neural computation, representing an
“optimal” account of integrating new evidence into existing
cognitive models (Knill & Pouget, 2004). The Bayesian brain
theory proposes that the brain behaves like an intuitive sci-
entist, inferring the causes of observed data and constantly
updating its models of the world based on it. Grounded in
Bayes’ theorem, the Bayesian brain theory suggests a proce-
dure for arriving at optimally updated posterior beliefs. This
account provides a formal normative framework of inference,
where the probability of a cause (or hypothesis, %), given
the evidence (e), is proportional to the probability of the ev-
idence, given the cause, weighted by the probability of the
cause prior to observing the evidence:

P(hle) = P(h)

Over the past two decades, this theory has gained consid-
erable traction within the scientific community, with many
researchers exploring and expanding upon its implications in
many domains, including perception, planning, action, and
cognition (Vilares & Kording, 2011; Friston, 2012). Partic-
ular foci of this research have been the areas of predictive
processing and belief updating, which appeal to the notion of
the Bayesian brain to describe evidence integration in stable
and uncertain environments (Knill & Pouget, 2004; Bennett,
2015)

Beyond bias

Sensible as it sounds, the Bayesian brain theory has been a
topic of heated debate in recent years, leading to a growing
consensus that belief formation in both healthy and atypical
individuals is far from Bayesian (Kube & Rozenkrantz, 2021;
Williams, 2018). Despite some dissenting voices (Tappin &
Gadsby, 2019), it seems that the human brain’s belief updat-
ing process often falls short of the optimally rational Bayesian
ideal. Our pursuit of truth and coherence seems to often clash
with other motivational forces. This suboptimal behaviour
can manifest in two distinct directions, depending on a host
of social and cognitive factors.

On the one hand, some individuals exhibit “stronger-than-

2rational” updating in different scenarios, whereby new ev-
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idence is met with a disproportionate response that under-
weighs prior beliefs. This phenomenon, also known as “base-
rate neglect” (Benjamin, Bodoh-Creed, & Rabin, 2019; Kah-
neman & Tversky, 1973), coexists with a “recency bias”
(Ashinoff, Buck, Woodford, & Horga, 2022). Base-rate ne-
glect is more likely to manifest in cases where prior be-
liefs are weakly connected to self-concept and are generally
valence-independent.

On the other hand, in some cases, people may be more re-
sistant to revising their beliefs, clinging stubbornly to prior
convictions even in the face of overwhelming contrary ev-
idence. A large body of behavioural and neural data has
demonstrated this effect of conservatism in belief revision
(Powell, 2022; Edwards, 1968). People are especially re-
sistant to updating beliefs that challenge their self-concept
(Dunning, Meyerowitz, & Holzberg, 1989; Sanitioso, Kunda,
& Fong, 1990; Cohen, Aronson, & Steele, 2000). The well-
established phenomenon of “confirmation bias”, (Nickerson,
1998) is also connected to this tendency to maintain the orig-
inal content of beliefs and structure of cognitive models.

Consistent with this view is the account of asymmetric
valence-dependence updating, manifested in optimism bias.
People tend to update beliefs in a valence-dependent manner:
they are more likely to integrate positive news into their be-
liefs while disregarding negative news (Sharot, 2011; Sharot,
Korn, & Dolan, 2011; but see Shah, Harris, Bird, Catmur, &
Hahn, 2016). These patterns of belief revision have important
implications for understanding the cognitive processes under-
lying human decision-making and belief formation. How-
ever, a significant limitation in much of the existing litera-
ture is the lack of a comprehensive account for the revision of
cognitive models beyond isolated beliefs with weak priors in
single or small evidence samples.

Learning through others

Belief updating in the context of learning from others repre-
sents a distinct aspect of information processing. The influ-
ence of social norms on belief updating is well-documented,
as evidence that aligns with prevailing norms or is presented
as normative is more likely to be integrated into one’s be-
liefs (Vlasceanu & Coman, 2022; Orticio, Marti, & Kidd,
2022). When it comes to learning from social partners, the
perception of their competence, reliability, and the level of
trust placed in them are crucial factors that predict the ex-
tent to which individuals update their beliefs based on so-
cial information (Pilditch, Madsen, & Custers, 2020). This is
especially relevant to the study of advice-taking behaviour.
Hertz, Bell, and Raihani (2021) find that people exhibit a
stronger inclination to follow advice rather than imitate ob-
served choices, and this preference was influenced by their
level of trust in the advisor. These findings, along with the
study paradigm employed, lay the groundwork for further in-
vestigation into trust, perceptions of social partners, and the
patterns of belief updating in synchronous, sequential learn-
ing contexts.

It is worth noting that while belief updating mechanisms

have been extensively studied in isolation from social learn-
ing contexts, there is a paucity of research directly exploring
individuals’ perceptions of updating patterns in others. This
represents an important gap in the current literature. By ex-
amining how individuals perceive and interpret updating pat-
terns exhibited by social partners, we can gain a deeper un-
derstanding of the social dynamics and cognitive mechanisms
that shape belief updating processes.

Methods
Preregistration

This study’s data collection procedure, experimen-
tal design, materials and measures, as well as the
main hypotheses were registered on the Open Science
Framework (https://osf.io/4zjvn/?view_only=
9aec98dd9b874£db99e333b863£4845a).

Design

The study used a 2x4 between subjects design. The two fac-
tors examined were “environment” and “advisor”. The con-
text of the experiment was a game, where participants went
on a “fishing vacation” at a site with two lakes. There, they
were introduced to Taylor, a local fisherman who gave them
the opportunity to choose a lake to fish from, and they fish
from the other. The aim was to catch as many fish as possible
in 35 rounds of choosing between two lakes to fish from.

The “environment” factor had two levels: “stable” and
“changeable”. In the stable conditions the environment con-
sisted of two lakes represented by a Poisson distribution of
“fish” with A of 5 and 6 respectively, that remain stable
throughout the duration of the task. In the changeable con-
ditions the environment consisted of the same two lakes, but
there was a change after the 20" round, where the distribu-
tions shifted to A of 5 and 2 respectively.

The “advisor” factor had four levels: “Bayesian”,
“Volatile” (underweight priors), “Rigid” (overweighs priors),
and a “no-advisor” learning condition. In the no-advisor
learning conditions, participants were called to choose a lake
from which to fish and subsequently received feedback from
both lakes. All conditions started with five “learning” trials
where no advice was given, identical to the no-advisor learn-
ing conditions. The advisors, however, were learning behind
the scenes since round one. In the Bayesian advisor condi-
tions, after completing the first five rounds, participants were
introduced to Jamie, an expert player who would provide ad-
vice on which lake to fish from for the remaining rounds of
the task. Jamie in this case was a learning model that ad-
justs its advice output each round by updating its estimate of
each lake based on the feedback from the previous round us-
ing Bayes’ rule. In the volatile advisor conditions, the model
applies the same strategy, but weighs its priors 0.2 x, making
each new datapoint heavily influential in their estimations.
Conversely, the rigid advisor model weighs its priors 5%, re-
sulting in the first few datapoints heavily influencing their ad-
vice in all subsequent rounds. All advisors started the game
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with uniform priors that were equal for both lakes. The ad-
vice provided consisted of a binary choice between the two
lakes with no additional information shown to participants.

The experiment consisted of three phases: learning, test-
ing, and survey. The experimental task was inspired by Hertz
et al. (2021), and the materials and procedure were adapted
to address the research questions at hand.

Procedure

The study was administered through oTree, an open-source
platform for web-based behavioural experiments (Chen,
Schonger, & Wickens, 2016). Prior to the beginning of the
study, participants were informed about the nature and re-
quirements of their participation and provided their informed
consent. Participants were randomly split into one of eight
experimental conditions. They are informed that one lake is
more profitable than the other and that their, or anyone else’s,
fishing does not affect the amount of fish in each lake. A per-
formance bonus of £0.01 per five fish caught was paid to all
participants.

In the learning phase of the study, all participants were in-
troduced to the two lakes and did five rounds of fishing to
establish some expectations about the populations of fish in
each lake. In this phase, participants were called to choose a
lake from which to fish and subsequently received informa-
tion about the number of fish each lake yielded in that round,
delivered in the form of their and the fisherman’s catch. This
process was repeated for 5 rounds.

During the testing phase of the study, participants in the
“no-advisor” learning conditions performed the same task as
in the learning phase for all subsequent rounds. Participants
in the “advisor” conditions were introduced to their advisor at
this stage. The task for subsequent rounds had three elements:
advice, lake choice, feedback. The advice was visible in both
the advice and choice page to ensure participants were aware
of it while making the choice. This process was repeated for
30 rounds. After rounds 10, 20 and 35 during this phase,
participants were asked to indicate which lake they are more
likely to get the most fish from on a sliding scale ranging from
0 to 100 (0 being Bagel, 100 being Pacman). They were also
asked to indicate the lake they would like to recommend to
future players and provide a rationale for their recommenda-
tion in free text.

Finally, in the survey phase, participants were asked ques-
tions about their final estimates of the average number of
fish in each lake and their perceptions of the advisor. Study
data is publicly available on OSF (https://osf.io/4zjvn/
?view_only=9aec98dd9b874£db99e333b863£4845a). The
study falls within the remit of the approval given by the UCL
Research Ethics Committee to the Causal Cognition Labora-
tory (study number: EP/2018/005).

Materials and measures

Experimental materials. The experimental materials, in-
cluding the basic task structure, prose, and graphics, were

adapted from Hertz et al. (2021).

Environment. In all conditions, the environment consisted
of two lakes, lake “Bagel” and lake “Pacman”, each repre-
sented by a Poisson distribution of “fish”. The Poisson dis-
tribution has a single parameter, A, which represents the ex-
pected number of events that occur in a given time interval
or space. The expected value and variance of a Poisson-
distributed random variable are both equal to this parameter.
For a random discrete variable x that follows the Poisson dis-
tribution, the probability of x is given by:

B Ae
Tl

f) ;
This distribution was chosen as it is suitable for representing
natural count data, such as fish in lakes. In each round, a ran-
dom process generated a number for each lake’s distribution
as that lake’s “catch”. In all rounds for the stable environment
conditions and in rounds 1-20 for the changeable conditions
the A for lake Bagel was set to 5 and for lake Pacman to 6.
For the changeable conditions, the A shifted to 5 for lake
Bagel and 2 for lake Pacman after round 20, and remained
stable throughout rounds 21-35. The chosen parameters
were determined based on two main criteria. Firstly, they
needed to be believable and ecologically valid. Secondly,
they needed to be appropriate as a stimulus in relation to the
hypotheses that were being tested. They were finally tested in
a pilot (N=98) to ensure the difference between the original
lake payoffs was subtle, but eventually apparent after several
rounds, and that the environmental shift was noticeable to
participants.

Learning models. The learning models were utilised as
stimulus for the participants to invoke judgements of dif-
ferent belief updating patterns, presenting as expert players
providing advice. To specify the Bayesian model, we used
the Poisson-Gamma conjugate pair, for sake of simplicity
and computational tractability. Where observations xp, ...,x;
are a random sample from Poisson(A), and prior distribu-
tion for A is Gamma(a., ), the posterior distribution for A
is Gamma(a;, B;), where:

n
o =0+Y x, Bi=PB+n
i=i

For the Bayesian model, the updating followed this exact for-
mula. For the volatile model, a weighing factor was added,
multiplying Y'I"_, x; by 0.2. For the rigid model, the weighing
factor was 5. The expected value is then given by the follow-
ing formula:

O

B?
Before the game started, all models started with uniform
prior parameters 0fg = 4 and By = 2. n remained n; = 1
for all conditions in all rounds. Each round and the «

Si
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and P parameters for each lake were updated according to
the Gamma posterior hyperparameters formula (or its two
variations) based on the number of fish caught from each
lake in the previous round. Then, the expected values were
calculated using the specified formula. Finally, the models
“decided” on the lake recommendation by choosing the
lake with the higher expected value so far. If the expected
values happened to be equal the recommendation was chosen
randomly.

Participants

A power analysis determined the minimum sample size for
detecting two-way ANOVA effects as 560. Parameters in-
cluded alpha = 0.05, power = 0.95, effect size = 0.25, and 8
conditions (2x4). A final sample of 572 recruited via Pro-
lific. Participant mean age was 40 years old (range = 18, 77)
and 52% of participants were female. All participants were
paid a base rate of £9/hour, and bonus of £0.01 per five fish
caught was paid to all participants.

Results

Performance trust A 2x3 between-subjects ANCOVA, in-
cluding advisor accuracy as a covariate, found a small but sig-
nificant main effect of environment change (F(1,419) = 4.15,
p =.042,m% = .01) on advice-taking, indicating that the mean
proportion of rounds in which participants followed the ad-
visor’s recommendation was higher for the stable condition
(M = 744%, SD = 17.7), than the change condition (M =
71%, SD = 17.7). Contrary to our prediction, there was no
significant main effect of advisor pattern. The main effect of
advisor accuracy was large and significant; the more accurate
the advisor, the higher the likelihood of following the advice
(F(1,419) =70.76, p < .001, n? = .14). Advisor accuracy was
calculated as the proportion of rounds where the advisor rec-
ommended the lake with higher (or equal) payoff in a given
round for each participant.

There was a significant but small interaction effect between
environment change and advisor pattern (F(2,419) = 4.22, p
=.015,m? = .02). Post hoc comparisons using the t-test with
Bonferroni correction indicated that advice taking was sig-
nificantly lower (p < .05) for the Rigid advisor in the envi-
ronment change condition than for any other combination of
the two factors, except compared to the Volatile advisor in the
stable environment condition. There were no other significant
pairwise comparisons. Figure 1 illustrates these effects.

The results differ for the secondary outcome measures of
performance trust: perceptions of competence and trustwor-
thiness. Neither environment condition or advisor pattern had
significant effects on ratings of the advisor’s competence and
trustworthiness. Advisor accuracy had a significant and large
positive effect on both outcome measures; more accurate ad-
visors were rated as more competent (x>(1,419) = 61.07, p <
.001) and more trustworthy (x*(1,419) = 65.86, p < .001).

Change Stable

100%-

80%- | o ‘ : VY

60%- | A

40% -

Rounds advice was followed

20%-

0% -

Bayesian Rigid \Volatle Bayesian Rigid Volatile

Condition

Figure 1: Advice-taking by condition.

Identification of ‘“‘good” lake Results of a 2x4 ANOVA
indicate that neither the advisor type nor environment change
had a significant effect on the overall task performance of par-
ticipants, as measured by the proportion of rounds in which
they selected the “good” lake. A 2x4 ANOVA found a large
and significant main effect of environment change (F(1,559)
= 158.02, p = < .001, T]2 = .22) on post-hoc identification
of the “good” lake, as measured by a fixed-pie scale indicat-
ing the likelihood of getting the higher yield from each of
the two lakes. Likelihood attributed to the “good” lake was
overall higher in the stable condition M = 67.7%, SD = 25.1)
compared to the change condition M = 38.4%, SD = 29.9).
There was no significant effect of advisor condition or the
interaction term.

Choice stochasticity A 2x4 ANOVA found a moderate
and significant main effect of environment change (F(1,538)
= 84.28, p = < .001, n? = .14) on choice stochasticity, with
stochasticity being higher in the environment change condi-
tion M =0.90, SD = 0.16) compared to the stable condition M
=0.74, SD = 0.25). There was no significant effect of advisor
condition or the interaction term on choice stochasticity.

Learning pattern A preliminary analysis was performed
to explore the differences in learning patterns among partic-
ipants and formal models. In Figure 2, the learning patterns
of each formal model are compared to the actual learning pat-
tern of participants who were not given any advice (No Ad-
vice conditions). Learning is approximated by calculating the
proportion of individual agents that chose the “good” lake in
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Figure 2: Advice-taking across rounds by condition.

a given round.

In a 2x4 ANOVA, significant main effects were found for
environment change and agent type, as well as their interac-
tion. The main effect of agent type was large and significant
(F(3, 272) = 19.38, p < .001, n? = .18). Post-hoc compar-
isons reveal significant differences between all agent types
on learning pattern (with Bonferroni-adjusted t(272) ranging
from -3.87 to 7.57, p < .05), but not between the Volatile
model and Participants (t(272) = 0.77, p = 1.000). This find-
ing contradicts our initial hypothesis, which predicted that
participants’ learning would be most similar to the Bayesian
model. Based on the results, we cannot reject the null hypoth-
esis that there is a difference between the learning of partici-
pants and the Volatile model.

Discussion

In the present research, we compared different strategies of
information integration to develop a better understanding of
the factors influencing belief updating and perceptions of oth-
ers’ learning. Results suggested that, overall, people tend
to rely more on social partners in stable environments rather
than dynamic ones, albeit to a small extent. The interaction
between environment change and advisor pattern indicated
that adaptability was important in uncertain, changing envi-
ronments. Participants exhibited higher trust in the Bayesian
and Volatile advisors, though there was no effect on per-
ception of competence and trustworthiness when controlling
for advisor accuracy. The study did not find significant ef-
fects of advisor condition on task performance, but environ-
ment change affected preference for the “good” option and
increased choice stochasticity.

The results of the present study suggest that participants’

advice-taking behaviour is influenced by the combination of
environment and advisor pattern. The finding that partici-
pants were more likely to follow the advisor’s recommenda-
tion in the stable environment is consistent with previous re-
search showing that people are more likely to rely on heuris-
tics and cognitive shortcuts in familiar, stable environments
(Gigerenzer, 2020). The significant interaction between en-
vironment change and advisor pattern suggests that the effect
of advisor pattern on advice-taking is modulated by the envi-
ronment. The finding that advice-taking for the Rigid advisor
was significantly lower in the environment change condition
seems to suggest that there is a penalty for being rigid in dy-
namic environments rather than a benefit in being flexible or
optimally Bayesian in any type of environment. This is con-
sistent with previous research showing that people are more
likely to update their beliefs in response to new information
when they perceive the environment to be unpredictable or
volatile (see Nassar, Wilson, Heasly, & Gold, 2010; Fenne-
man & Frankenhuis, 2020).

Overall, these findings have important implications for un-
derstanding how change and the introduction of contradicting
evidence play into preferences for updating patterns. This
study contributes to understanding the mechanisms of belief
updating, particularly in sequential tasks, and expands on pre-
vious research by exploring social learning aspects and com-
paring participant behaviour to formal models. We illustrate
that people can differentiate between Bayesian updating, and
its “stronger-than” and “weaker-than” variations, and exhibit
preferences for these updating patterns, in different environ-
ment structures. This study differs from previous studies on
updating in three main ways. Firstly, we indirectly study the
mechanisms involved in belief updating, by examining par-
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Figure 3: Learning pattern for each model type compared to the participants by environment condition. Participant learning is
calculated based on participants in the “No Advice” independent learning condition.

ticipants’ reactions to the updating of social partners. This
social learning element of updating has not been explored
previously. Secondly, we directly compare different patterns
of updating in a task involving sequential information, rather
than single instances. Finally, we also collect data to compare
participants own updating behaviour to that of formal models
in the same task.

We show preliminary evidence that humans seem to impor-
tantly diverge from optimal Bayesian updating and adopt a
more volatile strategy, underweighing priors and putting ex-
cessive weight on new evidence, regardless of whether the
environment is stable or dynamic. This finding sheds light
on the mechanisms of belief updating in sequential tasks, and
is in line with Ashinoff et al. (2022). It contradicts findings
that suggest humans prefer volatile updating only in dynamic
or noisy environments (Nassar et al., 2010; Piray & Daw,
2020; but see Findling, Skvortsova, Dromnelle, Palminteri,
& Wyart, 2018). This finding however may be largely ex-
plained by the fact that participants have no priors or expec-
tations about the environment of the task.

It must be noted that the study’s conclusions regarding op-
timal updating and any deviations from it are constrained by
the fact that Bayesian learning might not be appropriately
characterised as “optimal” or “rational” in dynamic environ-
ments. Bayesian models assume an enviroment that is static
over time. That means that in the changeable environment
condition, we are not actually testing for the optimal model.
The Volatile Bayesian model (one that assumes a constant
drift in the payoffs of the two lakes) would be much closer to
the correct assumptions about the environment, and as such
represent optimal adaptability, as compared to the other two.

The results both on trust and learning reinforce that sugges-
tion. Future research should explore the use of models such as
a change-point detection model, which would more faithfully
correspond to optimal updating in a dynamic environment, in
the way that Bayesian updating does in a stable one. Thus,
we might conclude that individuals tend to engage in optimal
Bayesian updating, but are more likely to adapt their mental
models to accommodate the dynamic nature of their environ-
ment, always assuming the possibility of change.

There are a number of additional limitations to consider
when interpreting the findings of this study. One of the main
limitations of the study is related to the measures used. Al-
though advice-taking provides a robust behavioural measure
of trust, in this paradigm, it is not clear whether participants
always followed the advice or made choices based on their
pre-existing beliefs. Therefore, some instances of advice-
taking may not accurately reflect actual trust in the advisor.
This ambiguity could potentially be addressed in future stud-
ies by including additional measures to assess the degree to
which participants rely on the advice provided or seek it. An-
other limitation relevant to the experimental paradigm lies
in the limited exploration of parameter values for the envi-
ronment and the advisor models. Future studies may benefit
from exploring a wider range of parameter values for the en-
vironment and using a more diverse set of advisor models to
better capture the complexity of belief updating patterns in
real-world settings.

These findings contribute to our understanding of belief up-
dating and preferences for updating patterns in different envi-
ronments. Further research is needed to explore the underly-
ing mechanisms and reasons behind these effects.
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