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University of California, Riverside, Riverside, CA, United States, 3 School of Education, University of California, Irvine, Irvine,
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A key need in cognitive training interventions is to personalize task difficulty to each user

and to adapt this difficulty to continually apply appropriate challenges as users improve

their skill to perform the tasks. Here we examine how Bayesian filtering approaches, such

as hidden Markov models and Kalman filters, and deep-learning approaches, such as

the long short-term memory (LSTM) model, may be useful methods to estimate user skill

level and predict appropriate task challenges. A possible advantage of these models over

commonly used adaptive methods, such as staircases or blockwise adjustment methods

that are based only upon recent performance, is that Bayesian filtering and deep learning

approaches can model the trajectory of user performance across multiple sessions and

incorporate data from multiple users to optimize local estimates. As a proof of concept,

we fit data from two large cohorts of undergraduate students performing WM training

using an N-back task. Results show that all three models predict appropriate challenges

for different users. However, the hidden Markov models were most accurate in predicting

participants’ performances as a function of provided challenges, and thus, they placed

participants at appropriate future challenges. These data provide good support for the

potential of machine learning approaches as appropriate methods to personalize task

performance to users in tasks that require adaptively determined challenges.

Keywords: cognitive memory training, hidden Markov model, Bayesian filtering, video games, n-back training,

deep-learning

1. INTRODUCTION

Over the last decade, the scientific topic of improving cognitive capacity by leveraging the
plasticity of the brain has gathered both significant interest and controversies regarding
effectiveness (Karbach and Unger, 2014; Au et al., 2016; Melby-Lervåg et al., 2016; Simons et al.,
2016; Green et al., 2018; Soveri et al., 2018; Redick, 2019). For example, one of the most popular
approaches is to train working memory (WM), a limited-capacity system involved in temporary
storage and manipulation of information (Baddeley, 2012). Adaptive and extended WM training
often improves WM skill (Soveri et al., 2017); however, the extent to which this type of training
produces improvements that generalize far beyond the training task remains controversial (Melby-
Lervåg and Hulme, 2013; Melby-Lervåg et al., 2016). A potential reason for inconsistencies across
studies might be due to the fact that there are substantial individual differences in training
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outcomes; this might be because training trajectories are
very diverse across participants, giving rise to the possibility
that standard adaptive procedures may not provide the
optimal challenge to all participants. For example, the N-back
task (Pergher et al., 2019), which we study here, has been used
widely to ameliorate cognitive declines in populations ranging
from children with ADHD (Rutledge et al., 2012) to older
adults with cognitive declines (Stepankova Georgi et al., 2013),
however performance on the N-back ranges largely both within
and across studies, as do the methods of adaptively adjusting
task challenges to participants’ abilities (Pergher et al., 2019).
For effective cognitive training, we need better systems that
can effectively estimate participants’ capacity limits and provide
appropriate challenges near those limits (Deveau et al., 2015;
Pedullàa et al., 2016). A step in the right direction is to develop
a system that could predict a participant’s performance and use
this information to determine the next challenge, with an overall
goal to improve the participant’s cognitive functions.

In the current project, we investigate the use of machine
learning (ML) techniques to estimate participants’ cognitive
abilities during WM training and explore whether they could
provide more optimal training experiences by more effectively
aligning training challenges with participants’ needs. We note
that the current manuscript is restricted to addressing the skill
of ML models to predict performance during training and we do
not address issues of transfer. We employ a data-driven approach
that examines data collected during training of a large number of
participants and uses these sophisticated analysis tools to achieve
better estimates of the appropriate challenge needed at each time
for each participant. The key motivation of this approach is the
observation that the behavior of a participant at a certain point
of training not only depends on the momentary challenge, but
also on the history of challenges and performance across these
challenges. However, a limitation of commonly used adaptive
procedures is that they typically adjust challenges only based
upon the most recent information (e.g., a 3/1 staircase approach
only looks at the last few trials and a block-wise approach only
looks at the most recent block of trials). Thus, a participant with
a few lapses (or lucky guesses) can improperly be set far back
(or forward) in challenge level, which might be detrimental for
participants’ motivation and/or learning.

A potential solution to overcome such problems are statistical
models that can temporally encode a participant’s momentary
skill and predict their performance for future challenges. Hidden
Markov models (HMMs) are an appealing solution for such
problems where the dynamics of observations are too complex
to be directly modeled and are approximated via a discrete-
state hidden Markov process. We analyze data gathered from
WM training studies that use a variety of training approaches
including different adaptive procedures across a large number of
participants, together allowing for a broad sampling of challenges
and accompanying levels of performance across the training
experience. Our contribution is an algorithm that predicts a
participant’s performance at each time-point during training. We
compare the proposed HMMs with other filtering (the Kalman
filter) and deep-learning (LSTM) models, both of which were
attempted, but produced poorer fits than the HMM model. Our

approach sets the ground for future research that can evaluate the
extent to which the use of thesemodels to dictate challenges to the
user (beyond the scope of the present manuscript) would provide
a better training experience and/or benefits to training outcomes.

2. MATERIALS

2.1. Training Programs
The data sets were generated via N-back training software
developed at the University of California Riverside Brain Game
Center (Deveau et al., 2015). “Recall” and “Recollect the Study”
are software applications that were used to collect data in
Experiments 1 and 2, respectively. Both applications are available
as free downloads on the Apple App store for iOS and Recollect
is also available on Google Play. In both games, participants
are presented with consecutive streams of stimuli of different
shapes and colors, and the objective is to respond to stimuli that
match those presented exactly N items earlier. For example in
1-Back, participants match the current item with the one just
seen, and in 2-Back, they match the current item with the one
presented two trials ago. Higher levels of N increase WM load
and make the task more difficult. In these training programs,
task difficulty is adaptively adjusted based on performance.
The main difference between the two training programs is the
game environment: Recall is a 3D space-themed game (video
demo can be found here: https://www.youtube.com/watch?v=zx_
t6paHB3Y) in which the participant is in control of a spaceship
(Deveau et al., 2015; Mohammed et al., 2017). The participant
must zap target stimuli while also collecting fuel pods for the
space ship (non-targets). In contrast, Recollect is a platform
game (video demo can be found here: https://www.youtube.
com/watch?v=bUNrFk3eA3M) in which the participant is in
control of an astronaut that must collect resources needed to
feed a colony and keep the technology working (target stimuli),
but must avoid non-targets and other obstacles. Both Recall
and Recollect were contrasted against Tapback, a non-gamified
N-back training program in which a series of colored circles
is presented on a plain background and the participant must
tap on the circles that are the same color as those presented
N items earlier (see Figure 1). In all training paradigms, the
stimuli are presented for 3 s, 30% of the stimuli are targets,
and performance feedback is presented on every trial in the
form of tones indicating correct or incorrect responses. Here
we present data from two experiments, which differ both with
respect to condition (gamified or non-gamified) and also in task-
challenge progression (algorithm). Namely, in Experiment 1 a
single adaptive algorithm was used across Recall and Tapback
conditions, therefore we fit models on Recall and created the
test-pool on Tapback. Experiment 2 featured a multitude of
game-play-progression algorithms across Recollect and Tapback
conditions. The training set consisted of Recollect and Tapback
while the test set was on Tapback.

2.2. Participants
Two hundred and sixty-two participants at the University of
California Riverside (UCR), or University of California Irvine
(UCI), trained for 16–20 N-back training sessions of 20 min
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FIGURE 1 | (Top) Example for a two-back level in the non-gamified Tapback condition. (Middle) Example for a two-back level in the gamified Recollect condition.

(Bottom) Example for a two-back level in the gamified Recall condition (Mohammed et al., 2017).

each, with 2 sessions conducted per day with a 10 min break
between sequential sessions. Each session is broken down into
multiple blocks, where a block corresponds to a 2–3 min period
of continuous play. The two training studies took place between
Fall 2014 and Fall 2016 (Experiment 1) and between Winter
2017 and Spring 2018 (Experiment 2). In the former, the sample
consisted of 85 participants (mean age = 19.87 years, SD = 2.32;
Nfemale = 41, Nmale = 35, Nother/Unknown = 7) randomly
assigned to Recall (N = 49) or Tapback (N = 36) training.
In the latter, 177 participants (mean age = 19.79 years, SD =
1.87; Nfemale = 93, Nmale = 76, Nother/Unknown = 8) were
randomly assigned to Recollect (N = 85) or Tapback (N = 92)
training. Participants provided written informed consent and
received monetary compensation for participation. All studies
were approved by the UCR and UCI Institutional Review Boards.

3. METHODS

3.1. Filtering
We apply filtering approaches, common in statistics and signal
processing to track an unknown quantity as it changes based on

noisy measurements, as an appropriate framework for N-back
training where the unknown quantity is participants’ cognitive
skill related to the task at hand (not to be confused with
constructs such as general intelligence or even WM capacity)
and the measurements are the participants’ performances in
the game. Here we review the notation and ideas behind such
tracking, particularly as they relate to the solutions we employed.
We refer to the work of Särkkä (2013) as a good practical
introduction to the topic with more detailed information.

3.1.1. Notation
We let xt be the hidden unknown quantity at time discrete
time step t. We let yt be the observation made of xt at the
same time. One or both can be discrete or continuous, single-
valued or vector-valued. As a statistical model, all of the variables
(x1, x2, . . . , y1, y2, . . . ) are probabilistically related to each other.
In our case, xt represents the (unknown, hidden) cognitive skill
of the participant at time t and yt is the performance of the
participant at time t.

We consider Markov models (Chan et al., 2012) in which
xt captures all of the state of the system necessary for the
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future. That is, the past states, {x1, x2, . . . , xt−1}, are statistically
independent of the future states, {xt+1, xt+2, . . . }, given the
present state, xt . Similarly, the observation at time t depends
directly only on the state at time t (that is, yt is independent
of everything else, given xt). Markov models are specified by
two distributions: the transition distribution of p(xt | xt−1) that
specifies the probability of any particular one-step state change,
and the observation distribution of p(yt | xt) that specifies the
probability of any particular observation given the current state.

The goal of filtering is to calculate the distribution of xt , given
all of the evidence up to this point: p(xt | y1, y2, . . . , yt). This
completely captures the information we currently have about the
value of xt . In our case, this is the posterior distribution over
the participant’s cognitive skill, conditioned on the evidence up
to this point. As y1, y2, . . . , yt are observed and known, this is
a function of xt , specifying the probability of a particular state,
given the evidence. It is known as the belief state.

3.2. Modeling With a HMM
Hidden Markov models (HMMs) have been well validated as an
effective temporal pattern recognition tool (Rabiner, 1990). Little
to no work has previously reported on the use of HMMs to study
psychological experiments of learning (Valsiner et al., 2009).
However, based upon success of these models in similar domains,
we hypothesize that HMMs are powerfulmodels for representing
dynamic changes in participants’ training performances and for
representing latent changes in the cognitive levels with concise
state-transition paths. The Recall and Recollect datasets are well
suited for an HMM architecture. We consider each participant as
an example for the model. Time is quantified in units of blocks,
each with a constant n-level difficulty. For a participant, the
presented n-level signal (difficulty) has a dominating effect on the
performance signal. Since participant performances can exhibit
abrupt changes that are caused by external factors, the mapping
between presented n-level and performance is not smooth.

We introduce a metric for participant performance called
accBlock. Figure 2 gives examples of the true positives (TP;
collecting a target), false negatives (FN; missing a target), and
false positives (FP; collecting a non-target) in context of the
Recollect game. For all our experiments, accBlock is calculated
in Equation (1).

accBlock =
6blockTP

6block(TP + FN + FP)
(1)

In order to adapt the HMM to a cognitive training context, we
assume that (1) block-accuracy is generated by a latent state, and
(2) the state at time t is conditioned on the local history t − 1
(Rabiner, 1990). Formally, this these correspond to the emission
and a transition distributions of an HMM. The presented n-level
signal acts as a driving input, making it an input-output HMM
(IOHMM) (Bengio and Frasconi, 1994), whose dependency
diagram is shown in Figure 3.

We use the following notations.

• xt , the latent cognitive skill, is the participant’s maximal n-level
skill at time t, xt ∈ {1, 2, . . .N}.

• yt is the accuracy achieved at time t.

FIGURE 2 | A visual of how the Recollect game translates to accBlock. It

shows the 1-back task in which the player needs to collect items that match

those seen 1 trial ago. The top part shows the first item in a 1-back task, a

pink diamond (trial 1). The bottom part shows examples of responses in the

next trial: the player either collects the target (also a pink diamond; true

positive), or misses a target (false negative), or collects a non-target (yellow

gem; false positive).

• zt is the presented n-level of the task at time t.
• mt is the number of targets during the block at time t.
• t is the index of the training block, t ∈ {1, 2, . . .T}.
• A participant (an instance or training sequence) is denoted

by i. The above quantities are also subscripted with i when
necessary to distinguish between their values per participant.

Our filtered belief state over xi,t is our estimate of the maximal
N-back skill of participant i at time t.

3.2.1. Accounting for Heterogeneity
Participants’ performances are affected not only by their
own cognitive skills, but also by the difficulty of the task
presented. To incorporate this information, we use item response
theory (IRT), (Rasch, 1980) a modeling paradigm frequently
used in educational testing. Within commonly used IRT,
probabilisticmodels are used to describe the relationship between
observable item responses and unobservable psychological
abilities (Hambleton and Swaminathan, 1984). The strength
of IRT models lie in separating the effects of individuals
and specific items. The basic assumptions are as follows. (1)
The probability that a participant will score correctly on an
item (in a trial) follows a specific parametric functional form
called the item characteristic curve (ICC), which depends on
parameter(s) for that participant and the item. (2) The items are
dichotomous, and the ICC is strictly monotonic on the latent
trait scale. And, (3) given the participant’s skill, the items are
considered conditionally independent. Countless extensions and
generalizations of the IRT model have been developed, including
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FIGURE 3 | Graphical representation of the system. A block’s value corresponds to a single node in the model. This is shown in the top portion of the figure, where yt,

the accuracy achieved at time t, and zt, the presented n-level of the task at time t, are for a single block and that translates into a node in the model. The bottom is the

graphical representation of the hidden Markov model. The arrows represent direct conditional dependencies among the modeled variables. The state transition model

(from xt−1 to xt ) is described in section 3.2.3.

modeling attitudinal changes with state space models (Martin
and Quinn, 2002) and modeling growth in reading skill with
state space models (Wang et al., 2013). Notable extensions of
IRT that make it more amenable to our datasets are adaptive
item administration, and time-varying abilities. The dynamic
IRT equation we use in constructing the observation (emission)
probabilities is given by the four-parameter logistic (4PL) IRT
model (Barton and Lord, 1981):

ai,t = ci +
(di − ci)

1+ e−ρi(xi,t−zi,t)
(2)

where at block t, xi,t is the skill of the participant i; the difficulty
of a test item is given by zi,t which corresponds to the presented
n-level; ρi, ci, and di are static item parameters accounting for
the participant’s discrimination, guessing skill and carelessness
(noise), respectively; and ai,t is the Bernoulli item response
variable that corresponds to the correctness of the response to
a stimulus in an block.

3.2.2. Emission Architecture
As mentioned earlier, each stimulus or trial in a block can
either be a correct or an incorrect response and is described
by a Bernoulli random variable, whose parameter (probability
of correct response) is given in Equation (2). This IRT model
assumes that the accuracy of participant i at block t, ai,t is driven
solely by the participant’s skill at time t, xi,t and the difficulty of

the presented items, zi,t . This results in a Binomial distribution
for the overall accuracy1 of the participant during the block:

yi,t | (xi,t , zi,t ,mi,t) ∼ Bin(mt , âi,t) (3)

where âi,t would be the same as the ai,t from Equation 2.
However, we acknowledge that there are between-block

variations (in attention or fatigue, for instance) that necessitate
dependence among responses within a block, even after
conditioning on the participant’s skill and the task difficulty.
Thus, we model âi,t as not exactly equal to ai,t (but still a single
value, shared across all responses in the block). This new random
variable, âi,t , can be thought of as the per-block realization of
the participant’s skill, and it serves to couple the (otherwise
independent) responses within the block. We let âi,t be a random
variable drawn from a Beta distribution, with mean of ai,t :

âi,t ∼ Beta(αai,t ,α(1− ai,t)) (4)

where α controls the concentration of the distribution around
ai,t . In this new model, to get the probability of the observation
yi,t , given the presented n-level, zi,t and any postulated latent skill,

1We generally refer to the accuracy as the fraction of correct responses (see

Equation 1). However, for ease of notation, for the equations in this section, yt
is the numerator of that expression (the count of the number correct) and mt is

the denominator (the total number of targets).mt is fixed, so a distribution on the

count straightforwardly implies a distribution on the fraction.
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xi,t , we marginalize over possible realized abilities (skipping the
straight-forward mathematical derivation):

P(yi,t |xi,t , zi,t ,mi,t) =

∫ 1

0
P(yi,t | âi,t ,mi,t)P(âi,t | xi,t , zi,t ,mi,t) dâi,t

(5a)

=
Ŵ (α) Ŵ

(

mi,t + 1
)

Ŵ
(

αai,t
)

Ŵ
(

α(1− ai,t)
)

Ŵ
(

ai,t +mi,t

)

×
Ŵ

(

yi,t + αai,t
)

Ŵ
(

mi,t − yi,t + α(1− ai,t)
)

Ŵ
(

yi,t + 1
)

Ŵ
(

mi,t − yi,t + 1
) (5b)

While complex looking, it is simple for a computer to evaluate
using standard library functions for the gamma function (a
generalization of factorial).

3.2.3. Transition Architecture
The transitions between the states are modeled as a Markov
process. The N×N transition matrix for our system specifies the
probability of the latent state transitioning from xt−1 to xt :

Qi =















1 2 3... N

1 qi11 qi12 0 . . . 0
2 qi21 qi22 qi23 . . . 0
3 0 qi32 qi33 . . . 0
...

...
...

. . .
...

N 0 0 0 . . . qiNN















(6)

where qi,x,x′ is the probability that participant i’s hidden state
will transition from xt−1 = x to xt = x′ given that he or she
experienced n-level z and performed as y at t−1. In applying this
model in the context of n-level relationships, we put a structure
on the general transition matrix. Transitions are only allowed
between adjacent neighbors. In the context of our application,
this assumption is both behaviorally and empirically grounded.
Since consecutive hidden n-level skill jumps are at most 1, we
are forcing a smoothness to the progression (or degradation) of a
participant’s skill.

In model-1, we assume that this probability does not depend
on y or z:

q
(y,z)
i,x,x′ = qi,x,x′ =

{

0, if
∣

∣x− x′
∣

∣ > 1

qx−x′ otherwise
(7)

That is, we just have just 3 parameters: q−1, q0, q+1,
the probabilities that the participant’s latent skill will
transition down one level, stay the same, or transition up
one level2.

While this assumption reduces the number of parameters,
it fails to capture important cognitive behavior causing
change in n-levels (such behavior is viewed as just part of
the noise). As such, we introduce heterogeneity into the

2There are also four other parameters for the top and bottom row of Equation (6).

As one cannot transition lower than the top row or higher than the bottom row,

we give them their own parameters.

transitions. In model-2, we assume that a participant’s latent
skill’s propensity for transitioning between n-levels is affected
by the previous observed accuracy, and the previous n-
level challenge presented. For example, a participant at n-
level 5 and a block-accuracy of 0.9 has a higher chance of
transitioning to a level-6, when compared to a block-accuracy
of 0.5. We note here that we are describing the models’
estimate as the participants actual challenge in these data sets
depends upon the adaptive algorithms used in the training
procedure. Hence, the transition probabilities are conditional
on external variables besides xt−1. We model the effects of
two features on the transition probability, (1) the difference
between the predicted n-level and the presented n-level at the
previous time-step and (2) the observed block-accuracy from the
previous time-step.

We discretize the observed accuracy, y into 10 evenly spaced
bins. Let B(y) be the discrete bin into which y falls. Our form for
the above matrix elements is

q
(y,z)
i,x,x′ =

{

0 if
∣

∣x− x′
∣

∣ > 1 or
∣

∣z − x′
∣

∣ > 2

q(x−x′),(z−x′),B(y) otherwise
(8)

Thus, we now have 3× 5× 10 = 150 parameters: 3 transitions in
the participant’s latent skill (x−x′ ∈ {−1, 0,+1}) for 5 differences
in presented n-level and participant’s latent skill (z − x′ ∈

{−2,−1, 0, 1, 2}) and 10 different performance levels. Figure 4
shows state transitions that are additionally conditioned upon the
previous block-accuracy and presented n-level. In both models,
we also have parameters specifying the starting distribution of the
participant’s latent skill.

3.2.4. Training the HMM
To infer the most likely parameters of our model given an
observed sequence of block-accuracies, we adapt the standard
Baum–Welch expectation-maximization (EM) algorithm (Baum
et al., 1970; Dempster et al., 1977) to stimulus-dependent
emission and transition densities. The crucial differences are
that (1) the emission probabilities are fixed through IRT,
and (2) many of the parameters in the transition matrix
(Equation 6) are the same leading to tied parameters. Both
are standard extension in HMM training. In our settings, the
convergence criteria is when the slope of the log-likelihood
function falls below a threshold value. We choose this value
to be 0.001 (to allow for a little imprecision). The IRT
observation model parameters, (ρ; c; d;α) are required in
Equation (2). Since, there are only a few of them to explore,
we optimize them in a grid-search loop (outside of the Baum-
Welch algorithm).

4. RESULTS

In the first experiment, both Recall and Tapback utilized
the same game-play-progression algorithm, therefore
we fit the models on the Recall dataset, and create the
test-pool with the Tapback dataset. In Experiment 2,
a multitude of game-play-progression algorithms was
used across Recollect and Tapback conditions hence
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FIGURE 4 | Graphical representation of a history-driven HMM. Generation of yt, zt from a block remains the same as in Figure 3.

we fit the models and evaluated performance by a
80:20 split.

4.1. Experiment 1
The purpose of this experimental setup is to investigate
the generalization power of the models across different
game environments and settings using Tapback and Recall.
Both training paradigms contained a 4-item stimulus set,
although only Recall was designed to engage multiple
sensory systems. Specifically, in Tapback the participant
was presented with 4 colors whereas in Recall each of
the colors was paired with a unique shape and sound. N-
level progression was adjusted adaptively using the same
algorithm in the two training paradigms: consistent accuracy
above 85% in a block led to an advancement of N-level and
consistent accuracy below 70% in a block led to a decrement
of N-level.

A total of 49 training sequences from Recall are used and
the test-pool consists of 36 sequences from Tapback. At a
behavioral level, the two groups of participants did not differ
in mean N-level achieved in the last training session (Recall: M
= 3.38, SD = 1.19; Tapback: M = 3.65, SD = 1.56). The overall
model performance captured by test RMSE, for model-1 and
model-2 are 12.06 and 5.60%, respectively, showing that model-2
(history driven hmm) is a better fit when compared to model-
1 (hmm with a universal transition matrix). The MSE across all
participants for model-1 and model-2 are shown in Figure 5.
The universal transition matrix for model-1 is shown in 4.1.
An extremely high proportion of weights on the main diagonal,
indicates a model that is insensitive to small changes, and is likely
to maintain a participant at consistent n-levels. Since model-
2 has transition matrices that vary across each time-step and
for each participant The non-homogeneous transition matrices
for each sample participant for selective time-steps are shown
separately in the Supplementary Material section. The hyper-
parameters (IRT observation model parameters) (ρ; c; d;α) are
(1.6; 0; 1; 11.56).



















1 2 3 4 ··· 8 9

1 0.7185 0.2815 0 0 · · · 0 0
2 0.0263 0.9455 0.0282 0 0 0
3 0 0.0263 0.9455 0.0282 0 0
...

...
. . .

...
8 0 0 0 0 0.9455 0.0282
9 0 0 0 0 · · · 0.999 0.001



















Next, we detail model behavior for some selected samples from
the test dataset to help illustrate how both models fit individual
participants. SP259, SP438, and SP451 are the chosen examples,
since their N-level trajectories are illustrative of the variation that
can be found within the dataset.

4.1.1. SP438
Figure 6 shows participant SP438 performance in the Tapback
condition. The participant practices numerous blocks of trials
where n-level adapts in a blockwise fashion and improvements
in estimated WM skill is steady and at a typical rate, progressing
from 4 to 5 to 6 across training. N-level is adjusted when
performance is above .8 or below .6 within a given block.
Since accuracies for most blocks are moderate, the presented
n-levels only change occasionally. Both models adjust their
estimate of the participant’s WM skill before the actual increase
in presented n-levels happens. This behavior is seen at block
30 and block 80. Figure S1 shows the evolving transition
matrix for model-2 at this change. Model-1 maintains the
cognitive load of the participant between level 4 and 6
with a single rise to 7. The trajectory from model-2 is less
smooth with a higher tendency to promote, and then demote,
the participant.

4.1.2. SP259
Participant SP259 (Figure 7) shows a very different performance
profile, which is typical of someone who did not show learning
on the task. We note that participants like this are very common
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FIGURE 5 | Test MSE across all participants for (top) model-1 and (bottom)

model-2. The participants highlighted in red correspond to the samples picked

below for analysis.

in n-back training studies and that addressing their data is both
important to ensure that their data can be accounted for by the
models and that understanding their performance may provide
avenues toward better catering to their needs in the future.
Their assigned n-level vacillates mostly between n-level 2 and 3
with occasional episodes at 1 or 4. Further, even at n-level of 2
accuracy varies over a wide range (0.2–1.0), suggesting that this
participant may not have been consistently engaged in the task.
We see that model 2, again, more closely follows the momentary
performance of the participant, with promotions and demotions
being prominent in the trajectory of estimated WM skill. For
example, after the participant completes playing a level-4 trial
with poor accuracy at block 124, model-2 demotes him/her to
level 3, while model-1 retains him/her at level 4 for a few more
blocks. Figure S2 shows the evolving transitionmatrix formodel-
2 during this demotion. We note that the WM skill for this

participant, would be difficult to estimate for any model. Clearly,
the participant did not consistently perform at their skill. With
the data provided, it is difficult to estimate the difference between
a lapse in performance and a true change in WM skill.

4.1.3. SP451
A 3rd pattern of performance is found in SP451 Figure 8, who
showed substantial improvements on the trained task, but with
occasional set-backs and oscillations in n-level patterns at an
asymptote at n-level 8. To compare the performance of the
models, we focus on the specific sequence of patterns from block
120 to block 195, where they performed most differently from
each-other. Notice that the participant’s performance is unstable
between levels 8 and 9 and the underlying training algorithm
throws him/her back and forth based on performance. Low and
high accuracy levels correspond to presented n-levels 9 and 8,
respectively. In this circumstance, model-1 is more likely to
estimate WM skill at 8 (higher weights on the main diagonal
of the transition matrix), while model-2 estimates WM skill at
9 (effect of accuracy at the previous time-step on transitions).
Figure S3 shows model-2’s evolving transition matrix for a n-
level sequence 9-8-9. Here we note that the participant’s true
WM skill is most likely somewhere between 8 and 9, where they
could sometimes perform well at 9 but couldn’t maintain good
performance at that level.

4.2. Experiment 2
Unlike Experiment 1, where the underlying dataset consisted
of only one game-play-progression algorithm, Experiment
2 consists of Recollect and Tapback datasets, which utilized
multiple game-play-progression algorithms. Both training
paradigms contained an 8-item stimulus set, although only
Recollect was designed to engage multiple sensory systems
(each color was paired with a unique shape and sound). N-
level progression was adjusted adaptively using a multitude
of algorithms (see Table 1). The training set consisted of 142
Recollect and Tapback sequences whereas the test set consisted
of 35 Tapback sequences. The two sets did not differ in mean
N-level achieved in the last training session (Training set: M =
4.03, SD = 1.50; Test set:M = 4.13, SD = 1.43). In Table 1, errors
consists of FNs and FPs.

A few of these algorithms are more liberal in assigning
participants with challenges that are inappropriate to their skill
level, and where the models should show estimated WM skills
that are different from presented n-level. The MSE across all
participants for model-1 and model-2 are shown in Figure 9.
The test RMSE of model-1 and model-2 are 12.54 and 18.52%,
respectively. From these values, it can be inferred that both
models are equally powerful in terms of performance. For this
experiment, model-1 is a better fit. The reason for degraded
performance formodel-2 is as follows. Recollect is a high variance
dataset that needs to train relatively more number of parameters
for non-homogeneous state transitions. The number of training
sequences used in Experiment 1 were 49 and were all of only one
type of training algorithm. Even though the number of training
sequences in Experiment 2 is 142, there are six different kinds
of underlying training algorithms. Perhaps more data will aid
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FIGURE 6 | Comparing models for participant SP438. (A) Trajectory of estimated WM skill from model-1. (B) Trajectory of estimated WM skill from model-2.

(C) Prediction vs. observed block accuracy at each block from model-1. (D) Prediction vs. observed block accuracy at each block from model-2.

in effective performance. We also surmise that the underlying
training algorithms lead participants to inappropriate challenges,
that causes an increased uncertainty associated with the previous
tag (xt−1 − zt−1). As such, model-2 struggles with training
(done with respect to the previous tags). The universal transition
matrix for model-1 is shown in 9. Again, we see that higher
ratio of weights on the main diagonal contributes to consistency.
The most optimal hyper-parameters (IRT observation model
parameters) obtained are (ρ; c; d;α) are (1.7; 0; 1; 3).



















1 2 3 4 ··· 11 12

1 0.7087 0.2913 0 0 · · · 0 0
2 0.2457 0.5298 0.2245 0 0 0
3 0 0.2457 0.5298 0.2245 0 0
...

...
. . .

...
11 0 0 0 0 0.5298 0.2245
12 0 0 0 0 · · · 0.9964 0.0036



















(9)

Now, we study the trajectories of specific samples from the
test-pool to illustrate effectiveness of fits and draw comparisons
between the models. RLB102 and RLB162 are the chosen
participants for analysis.

4.2.1. RLB102
Figure 10 shows participant RLB102 from the Recollect dataset
playing Mini-block Reset. Here, the program resets to n-level 2
at the start of every training session. This is an ideal setting
to verify that our models do not simply trace trajectories that
follow presented n-levels, but instead capture an estimate of
participants’ WM abilities. The estimated n-back skill level
traces show that both models are successful in capturing
cognitive levels that widely differ from presented n-levels at the
times of reset. Model-1 has a smoother and more confident
trajectory when compared to model-2. This behavior can be
attributed to high weights on the main diagonal. However, both
models oscillate a bit given the inconsistent performance of
the participant.

4.2.2. RLB162
Figure 11 shows participant RLB162 from the Recollect dataset,
who is in a condition called Mini-block Moderate where the
n-level increases when performance is at a moderate level
(e.g., 0.6 as opposed to 0.85 for most other algorithms).
Both models represent substantial rises and falls in estimated
WM skill, likely because this algorithm maintains performance
at low accuracies, preventing a stable estimate of true
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FIGURE 7 | Comparing models for participant SP259. (A) Trajectory of estimated WM skill from model-1. (B) Trajectory of estimated WM skill from model-2.

(C) Prediction vs. observed block accuracy at each block from model-1. (D) Prediction vs. observed block accuracy at each block from model-2.

skill. Nevertheless, model-1 does a better job of achieving
relatively stable estimates at intermediate n-levels, and achieves
greater confidence in these estimates, whereas model-2 follows
experienced n-levels to a greater extent and exhibits little
confidence in its estimates. This re-affirms the superior behavior
of model-1 in keeping consistent n-levels. Figure S4 shows
the evolving transitions from block 128 to 131. Across
these blocks, the rise from n-level 5 to n-level 8 occurs in
consecutive trials.

These sample participants provide a glimpse of how the
HMMs are powerful in accurately predicting performances.
While both models provide good fits, they differ in the extent
to which they follow the momentary performance of different
individuals, with model-1 providing relatively more stable
estimates. While in Experiment 1, model-1 provides relatively
poorer fits, and may be appropriate given the participants’ true
WM skills are not expected to change quickly. This may be
more ideal for effective WM training, as an engaging algorithm
must provide an appropriate challenge and avoid dropping
or jumping based upon performance lapses or lucky streaks
in performance.

To understand how other model frameworks would address
the current dataset, we also fit an unscented Kalman filter (UKF)
and a LSTMmodel.

4.2.3. Kalman Filter Model
A Kalman filter (KF) is a special case of a Markov model where
the states are continuous-valued (in contrast to the discrete-
valued states of an HMM). The transition and observation
models therefore operate on vectors. They are linear functions,
with normally distributed, additive noise. They can be extended
(at the cost of making calculations approximate) to a general
non-linear observation function, g:

xt = Axt−1 + Bzt + vt , vt ∼ N (0,Q) (10)

yt = g(xt , ut , zt)+ wt , wt ∼ N (0,R) (11)

In our HMMmodels, we have only one item-parameter, ρ, for all
participants. This assumes all participants’ performance degrades
(or improves) in the same way as the difficulty increases (or
decreases) away from their maximum skill level. However, in a
practical scenario this assumption might not be true, and we
would like tomodel differences between participants and within a
participant over time in ρ. With the Kalman filtering framework,
we just add an extra dimension to the state variable to track the
value of ρ. Thus, our KF model gains personalization at the cost
of assuming linear dynamics in the estimated cognitive skill. The
observation model (11) is chosen to be the IRT (Equation 2).
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FIGURE 8 | Comparing models for participant SP451. (A) Trajectory of estimated WM skill from model-1. (B) Trajectory of estimated WM skill from model-2.

(C) Prediction vs. observed block accuracy at each block from model-1. (D) Prediction vs. observed block accuracy at each block from model-2.

TABLE 1 | Game-play progression algorithms used in Experiment 2.

Algorithm Level up Level down Structure

Staircase classic 3 hits 2 errors Within blocks

Staircase moderate 3 hits 3 errors Within blocks

Staircase difficult 6 hits 2 errors Within blocks

Mini-block moderate <6 errors in 40-trial block >8 errors in 40-trial block Between blocks

Mini-block difficult <3 errors in 40-trial block >6 errors 40-trial block Between blocks

Mini-block reset <3 errors in 40-trial block >6 errors 40-trial block Starts session at 2-back

Since, this is non-linear in nature, we use an unscented Kalman
filter (UKF) for estimation (Julier and Uhlmann, 1997).

In Equation (10), A is the state transition matrix (2 × 2)
applying the first-order Markov effect; B is the control input
matrix (2 × 3) that applies the effect of the control input
parameters on the states, the process noise for the parameters
in the state space framework is vt , where it is assumed to
be drawn from a zero mean multivariate normal distribution
with covariance matrix Q (2 × 2). Equation (11) describes the
measurements of the system. Function g maps the states and the
control inputs to the observations. Similar to the process noise

is the observation noise, wt , that is assumed to be zero mean
Gaussian white noise, with covariance matrix R (1 × 1). Only
the measurement sequence is observed while the state and the
noise variables are latent. The parameters that are estimated via
EM training areA, B,Q, R, x0 (initial mean of state variable), and
V0 (initial variance of the state variable).

The RMSE values for the UKF model are 18.83 and 31.52%
for Experiment 1 and Experiment 2, respectively. From these
values, it can be clearly seen that the UKFmodel performs poorly
in both experiments when compared to the HMM. High error
values in predictions for Experiment 2 re-affirms high variance
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FIGURE 9 | Test MSE across all participants for (top) model-1 and (bottom)

model-2. The participants highlighted in red correspond to the samples picked

below for analysis.

in the underlying dataset. We show behavior of the UKF for the
above chosen samples in Figures 12, 13. The predicted n-level
curves are smooth and jump less often between consecutive n-
levels. However, we see an increased error in predicting accuracy.
For example, for SP451 (Figures 12B,E), the model appears to
do a good job of estimating WM skill, with estimated memory
scores consistently midway between levels 8 and 9. However, the
gap between predicted and actual performance is large compared
to that predicted by the HMM models. Further, for participant
RLB102 (playing mini-block moderate game play progression
training algorithm) in Figure 13 shows that the predicted n-
levels appropriately vary significantly from the presented n-levels
(desirable behavior similar to the HMMs). As such, we may
conclude that despite the poor prediction of accuracy levels,

this UKF model is successful at estimating participants’ WM
skill levels, and in fact is capable of making predictions that are
intermediate between integer n-levels.

4.2.4. LSTM Model
Deep neural networks have improved the state of the art for
a wide variety of tasks, because of the availability of high
computation power. Long Short TermMemory Recurrent Neural
Networks (LSTMRNNs) (Hochreiter and Schmidhuber, 1997)
are shown to be highly effective in sequence training tasks
(Rebane, 2018). Their methods are similar to the filtering
approaches above, but with important differences. Typically, the
observed sequence {y1, y2, . . . } is linked through an unobserved
hidden state sequence {h1, h2, . . . }. The process posits a function
f that maps ht−1 and yt−1 to ht : ht = f (ht−1, yt−1). There is a
further observation function that maps ht to yt . While ht appears
to mirror the xt from the filtering framework above, critically,
f (the transition mapping) is deterministic in most deep learning
sequence frameworks. Furthermore, the past observation directly
affects the transition of the hidden state. In such deep learning
methods, f is usually chosen based on its computational and
optimization properties and is often quite flexible (has many
parameters). Note that when used, the hidden state ht directly
encodes all of the information about past observations. By
contrast, in the filtering approach, the belief state takes the same
role and thus the full distribution of xt given the evidence (not xt
itself) is analogous to ht .

We also examined the extent to which a deep neural network,
in this case an LSTM model, can fit our datasets. The input
to the model is a 2D vector with the presented n-level zt , and
the observed accuracy yt . The output is a 2D vector with the
predicted n-level xt , and the predicted accuracy yt . The input
and target tensors are processed collectively over all the samples
during training. For the sequential model, the dataset is pre-
processed as sliding windows, to effectively produce batches of
timeseries inputs and targets. The model has an LSTM layer with
32 units (number of parameters: 4,480), on top of which lies a
dense layer (number of parameters: 66) that converts the output
into the desired 2D output. This configuration was chosen as the
best by cross-validation.

The RMSE values are 9.34 and 18.77% for Experiment 1
and Experiment 2, respectively. Studying the predicted N-level
trajectories of the chosen samples in Figures 14, 15, we make the
following observations. In experiment-1, SP451 is consistently
placed at a higher n-level during the oscillations, as such the
accuracy values are also wrongly predicted. SP259 and SP438
from the same experiment show highly unstable predicted
N-level trajectories, specifically between adjacent levels. This
behavior of the model where it blindly follows presented n-
backs instead of correctly predicting the true N-level becomes
visibly prominent in the trajectory of RLB102 (playingmini-block
moderate) from experiment 2 (see Figure 15A). Even though the
RMSE values are comparable to the HMM and the UKF models,
this characteristic wherein the predicted N-level skill follows the
presented n-back levels is not always desirable, as seen from the
trajectories in Figures 14A–C, 15A,B. We therefore reiterate that
a deep-learning framework is not suitable for our application,
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FIGURE 10 | Comparing models for participant RLB102. (A) Trajectory of estimated WM skill from model-1. (B) Trajectory of estimated WM skill from model-2.

(C) Prediction vs. observed block accuracy at each block from model-1. (D) Prediction vs. observed block accuracy at each block using model-2.

with the given amount of data. In the future, with increasing
datastreams, we can experiment with larger LSTM networks
(more parameters) that will not be prone to over-fitting, as it is
in our case.

5. DISCUSSION

In this paper, multiple ML approaches are presented as
a potentially more optimal method of modeling temporal
dependencies in the context of adaptive training of WM
as compared to conventional growth modeling. We find
that all presented models provide accurate predictions of
participants’ WM skills. However, the Markov models did a
better job (compared to UKF and LSTM models) at predicting
accuracies. In comparison to the LSTM, the HMMs have
very few parameters, thereby explaining the latter’s improved
performance. We also note that even though we had access to
a relatively large WM training data set, this is small compared
to that typically needed to achieve reasonable fits with a LSTM
model. Additionally, the method estimates the input-output
mapping directly (instead of a model from which the input-
output relationship must be inferred) which has the benefit of

not solving a proxy problem, but the downside that it often
cannot be reused to solve related problems. For this problem,
the advantages of the Kalman filter model (adaptive rho value)
are outweighed by the advantages of the HMM model (non-
linear dynamics). Thus, we can conclude that the HMM model
is better for these data (that is, its biases are better aligned with
the problem).

A key benefit of these models is that they provide a principled

alternative to commonly used adaptive algorithms, such as
staircases, which are widely used in cognitive training tasks. The

key disadvantage of commonly used approaches is that they rely
only upon the most recent performance of participants and thus

momentary lapses, or lucky streaks, can place participants at

inappropriate challenges. This can lead participants to become
bored or frustrated and may explain poor performance seen
in participants such as SP259 illustrated in Figure 7. While we
have not yet demonstrated that the models fit here fully address
these issues, they do all have the benefit that their estimates rely
upon a different balance of local and past information regarding
the participants’ cognitive skills. Another key benefit of these
models is that they can be naturally extended to deal with higher
dimensional datasets, which is a challenge for standard adaptive
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FIGURE 11 | Comparing models for participant RLB162. (A) Trajectory of estimated WM skill from model-1. (B) Trajectory of estimated WM skill from model-2.

(C) Prediction vs. observed block accuracy at each block from model-1. (D) Prediction vs. observed block accuracy at each block from model-2.

FIGURE 12 | Samples from experiment 1. (A,D): SP438, (B,E): SP451, (C,F): SP259. (A–C) Estimated n-level trajectory using UKF model. (D–F) Prediction vs.

observed block accuracy at each block using UKF model.
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FIGURE 13 | Samples from experiment 2. (A,C): RLB102, (B,D): RLB162. (A,B) Estimated n-level trajectory using UKF model. (C,D) Prediction vs. observed block

accuracy at each block using UKF model.

approaches. For example, it is common in gamified approaches
to vary details of tasks, ranging from navigation challenges, uses
of stimulus sets from multiple modalities (for which there may
be differences in latent memory skill), or when multiple memory
tasks are applied. To date, research is limited regarding the most
optimal methods to adapt difficulty across a multidimensional
space and ML may provide useful and principled approaches.
A natural next step is to have challenges be generated by the
filtering models, which we hypothesize would lead to a more
optimal training experience for participants, thereby promoting
task engagement and learning.

An interesting question is the extent to which these models
can inform how we think about learning and cognitive processes.
There are increasing examples of how artificial neural networks
are being studied to understand how information may be
represented in biological neural networks (Kriegeskorte, 2015) as
well to understand the mechanisms of neural plasticity related
to learning (Wenliang and Seitz, 2018). In the context of WM
training, there is currently little understanding of the reasons
why one participant will exhibit good task learning, or for that
matter transfer of learning, while another participant may not
learn. Models like the ones presented here attempt to estimate
underlying skills that underlie participant task performance and

these in turn may help us understand individual differences. For
example, while in the current models the models’ estimate can
be most directly related to propensity to perform the n-back
task, the models are all expandable to estimate other internal
variables such as those related to guessing behavior, vigilance,
attention span, skill to deal with distractions, learning rates, etc.
Further, models that can assign task challenges, rather than just
track them, can then also design behavioral challenges explicitly
to probe these parameters and differentiate them from each
other giving rise to the possibility to use these training programs
not only to improve cognitive performance but to continuously
estimate varied cognitive proficiency over time (Seitz, 2018).

We note that there are numerous ways to expand upon
and improve the models presented here. For example, a
consequence of limited availability of data is the degradation
in performance for high variance datasets, such as found
in Experiment 2. To improve stability, a bagging strategy
could be adopted in future work, which is an ensemble
combination of models trained on random sub-samples of an
initial training set (Breiman, 1996). Also worth noting is, in
having universal item-parameters, we assume that all participants
possess equal discrimination power, and this could be a source
of bias.
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FIGURE 14 | Samples from experiment 1. (A,D): SP438, (B,E): SP451, (C,F): SP259. (A–C): Estimated n-level trajectory using LSTM model. (D–F) Prediction vs.

observed block accuracy at each block using LSTM model.

FIGURE 15 | Samples from experiment 2. (A,C): RLB102, (B,D): RLB162. (A,B): Estimated n-level trajectory using LSTM model. (C,D) Prediction vs. observed block

accuracy at each block using LSTM model.
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6. CONCLUSION

In conclusion, our results suggest the filtering and deep-
learning approaches can serve as powerful approaches to estimate
participants’ underlying skills when performing cognitive tasks.
However, future work will be required to test the extent to which
challenges put forth by these models provide for better learning
on the trained task as compared to standard adaptive approaches,
and further transfer to untrained tasks, which is the target
of most cognitive training tools. It is difficult to predict what
changes a proliferation of data will bring, but these techniques
are worth exploring for larger data-streams. We note that there
is no universally superior ML algorithm and future research
will be required detail the properties of models beyond those
presented here.
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