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 Abstract:    
 
Objective: To transfer to the clinic for humans the technology and theory for high-resolution 
EEG analysis that have been developed in the laboratory with animals.  
 
Methods: EEGs were recorded at high spatial resolution from a 1x1 cm 8x8 electrode array on 
the right inferior temporal gyrus of a patient undergoing preoperative monitoring for epilepsy 
surgery. Cosines were fitted to EEG segments to measure frequency and phase and compute 
location, size, latency, phase velocity, duration, and recurrence rate of radially symmetric spatial 
patterns called phase cones. The Hilbert transform was also used to get high temporal resolution.  
 
Results: In the awake state the power spectral density (PSD) showed power-law decrease in log 
power with log frequency at 1/fα, α ~2, but with peaks in the standard empirical ranges. The 
phase in beta and gamma ranges had spatial gradients in conic form. Resetting of these stable 
spatial patterns of phase cones was spatially coincident at intermittent discontinuities (“phase 
slip”) recurring at theta rates. Cones had half power diameters from 2 to 50+ mm; their durations 
had power-law distributions with values ranging from 6 to 300+ ms depending on length of the 
analysis window. In slow wave sleep PSD decreased at 1/fα, α ~3,with loss of beta-gamma 
spectral peaks and diminished or absent oscillations and spatiotemporal phase structure. 
 
Conclusions: Spatiotemporal structures in awake human and rabbit EEG showed striking 
similarities. The only clear differences were ascribable to differing scales of measurement. These 
fine spatiotemporal structures of EEG were diminished or lost in slow wave sleep.  
 
Significance: The fine structure indicates that neocortical stability is sustained at self-organized 
criticality; that synaptic input in the awake state drives neocortex away from criticality causing 
beta-gamma oscillations in re-stabilizing “neural avalanches”; and that diminished input in slow 
wave sleep allows return toward criticality but with some added risk of instability and seizure.   
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1. Introduction  
 
Synchrony among large populations of neurons is widely inferred to be essential for cognitive 
behavior [e.g., Friston, 2000; Breakspear and Friston, 2001; Engel, Fries and Singer, 2001; 
Tsuda, 2001; Grinvald et al., 2003; Stam et al., 2003; Bressler and Kelso, 2001; Chapman, 
Bourke and Wright, 2002; von Stein, Chiang and König, 2000]. Phase is often used to estimate 
the degree of synchrony [Bressler, Coppola and Nakamura, 1993; Singer and Gray, 1995; 
Tallon-Baudry et al., 1998; Rodriguez et al., 1999; Varela et al., 2001; van Putten, 2003; Palva, 
Palva and Kaila, 2005], so that phase is important in studies of the neural basis for cognition. 
There are two methods in common use to measure phase [Le Van Quyen et al., 2001; Quiroga et 
al., 2002; Bruns, 2004; Freeman, 2004b]. First is the Fourier transform, a linear operator that is 
used to measure phase in a time window that is long enough to include at least one cycle of the 
frequency at which the phase is defined. Then phase serves to measure time lags among two or 
more signals oscillating at the same frequency in that window. Second is the Hilbert transform, 
also a linear operator that gives a complex function, the analytic signal, which can be 
decomposed into the ‘instantaneous’ analytic amplitude and analytic phase at each digitizing 
step. Calculation of the difference in analytic phase between each pair of successive digitizing 
steps approximates the rate of change in phase. When divided by the digitizing step the phase 
difference gives the ‘instantaneous’ frequency in radians/s, which for aperiodic “chaotic” EEG 
signals varies continuously. The analytic phase differences from multiple EEGs can be used to 
locate frames in which the rate of phase change approaches a constant value, meaning that the 
change in frequency is small enough to define and measure the simultaneous phase differences 
among multiple traces at a mean frequency. Two or more peaks in PSD at such frequencies are 
often seen each with its overlapping phase cone [Barrie and Freeman, 2000]. The stabilization of 
multiple frequencies at low rates of change and the recurrence of frames at alpha and theta 
frequencies might explain some observations of cross-frequency synchrony reported by von 
Stein, Chiang and König [2000] and Palva, Palva and Kaila [2005]. The larger and longer-lasting 
frames are stationary epochs with stable spatial patterns of phase and amplitude that resemble 
frames in a cinema. These frames are prime targets for measurements of phase [Freeman, 2004b] 
and amplitude [Tallon-Baudry et al., 1998; Rodriguez et al., 1999; Varela et al., 2001] of beta 
and gamma oscillations in relation to cognitive behavior [Freeman, 2005c, 2006].  
 
Prior studies of the analytic phase in humans [Freeman, Burke and Holmes, 2003] and animals 
[Freeman and Rogers, 2002, 2003; Freeman, 2004b] have revealed two types of structure: one in 
the time domain, the other in the spatial domain. First, in the time domain the analytic phase 
shows episodic discontinuities (hereafter called “phase slip” [Pikovsky, Rosenblum and Kurths, 
2001]) that characteristically result from application of the Hilbert transform to aperiodic signals. 
Phase slip appears as jumps forward or backward in the phase of a signal from an otherwise 
progressive increase in analytic phase by small steps. When the jumps occur nearly 
simultaneously in multiple channels of EEG over broad areas, they are called “coordinated 
analytic phase differences” (CAPD). They serve to bracket the frames having steady rates of 
increase in phase (nearly constant frequency). Second, in the spatial domain a set of 64 phase 
values from an 8x8 microgrid form a phase surface at each digitizing step that can often be fitted 
with a right cone that gives lower residuals than either a plane or a bivariate Gaussian function. 
This structure is referred to as a ‘phase cone’. When a phase cone persists over 10 or more 
digitizing steps (50+ ms at 5 ms steps, the criterion used in the present study), it defines a frame 
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that is bracketed by phase slips signifying the beginning and end of the frame by cortical phase 
transitions [Freeman and Kozma, 2002; Kozma et al., 2005]. Within the frame the frequency 
varies a few % from the mean frequency, so that the temporal power spectral density (PSDT) of 
the frame gives a peak at that frequency.  
 
While noise is the most common cause of phase slip [Freeman, 2005b], the near-synchronous 
CAPD also contribute but are not noise. They are often prelude to emergence by phase 
transitions of amplitude modulation (AM patterns) that relate to behavior. Such changes in state 
imply that cortex is unstable in the sense of jumping between states, yet conditionally stable in 
the sense that states in sequences are controlled and orderly. The present study was limited by 
the location of the microgrid far from any primary sensory area in a subject unable to function at 
a high cognitive level, so study of AM patterns in relation to CS was not possible, However, the 
opportunity arose to observe EEGs in slow wave sleep (SWS; REM sleep could not be 
identified), as well as in relation to the onsets of simple and complex partial seizures [Freeman et 
al., 2005], which had not been undertaken in the animal studies, and which gave results that 
addressed the nature of cortical conditional stability. The aim of the present report is to present 
these findings in a preliminary database of EEG from an intracranial microgrid implanted in a 
human and compare it with rabbit data reported in this journal [Freeman, 2004a,b, 2005a]. 
Evaluation is undertaken of the extent to which observed differences with the subjects at rest 
[Freeman, 2005b] resulted from the scales of measurement at the different digitizing rates (5 ms 
vs. 2 ms) and interelectrode distances (1.25 mm vs. 0.79 mm). The power-law distributions of 
the durations and diameters of the phase patterns suggested fractal properties by which the mean 
values and variances might depend on the scales of measurement [Mandelbrot, 1983; King, 
1991; Pereda et al., 1998].  
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2. Methods 
 

2.1. Experimental subject and EEG recording  
The subject was a 34-year-old woman with a history of medically refractory complex partial 
seizures. As part of her pre-operative evaluation for surgical therapy, intracranial, subdural strip 
electrodes were placed through temporal burr holes over both lateral and basal-temporal regions. 
She underwent continuous EEG-video monitoring for eight days to record seizures. At the time 
of placement of the clinical electrodes, the attending neurosurgeon (GAW) placed a high-density 
electrode microgrid through the right temporal burr hole onto the surface of the right inferior 
temporal gyrus. The length of monitoring time was dictated solely by clinical considerations; the 
microgrid was removed at the same time as the clinical electrodes. The subject underwent the 
procedure with no complications. The data were collected in the EEG and Clinical 
Neurophysiology laboratory of Harborview Hospital, University of Washington, Seattle, and sent 
by ftp without identifying personal information to the University of California at Berkeley for 
analysis. The data collection and management were governed by protocols approved by 
Institutional Review Boards in both institutions. Prior to the operation the patient gave informed 
consent for placement of the clinical electrodes and the microgrid.  
 
The data set used for the present review consisted of approximately 2 minutes of recording with 
the subject awake and at rest (Fig. A1 in Appendix) at least 2 hours prior to seizure onsets, in the 
2 minutes prior to onsets, and an additional 2 minutes with the subject in SWS, verified by 
inspection of the video and the EEG from the surgical montage.  The microgrid was an 8x8 array 
of 0.5 mm stainless steel wires spaced 1.25 mm apart (aperture 10x10 mm). Prior derivation of 
the spatial power spectral density (PSDX) of the human subdural EEG [Freeman et al, 2000] 
demonstrated that 1.25 mm spacing was optimal for recording spatial textures of the EEG, while 
the overall size of the grid was small enough to fit onto a single gyrus. The EEG was amplified 
with a Nicolet BMSI 5000 system having a fixed gain of 1628 and analog filters set at 0.5 Hz 
high pass and 120 Hz low pass. The ADC gave 12 bits with the least significant bit of 0.9 
microvolts and maximal range of ±2,048*0.9 microvolts. DC offsets of the RC amplifier outputs 
were removed off-line by subtracting the channel means of every entire recording block. The 
reference and ground placements for all 64 electrodes were respectively the Cz and Pz scalp 
locations (midline frontal and parietal sites in the standard 10-20 clinical system [Barlow, 
1993]). The Nicolet system digitized data at 420 Hz and down-sampled to 200 Hz. Off-line low 
pass filtering at or below 55 Hz was performed to minimize 60 Hz.  
 
2.2. Preprocessing EEG and calculating analytic phase and frequency by the Hilbert method  
The analytic phase was measured with the Hilbert transform and with the Fourier transform with 
respect to the phase of the average value (HT) or average waveform (FFT) over the 64 
waveforms in the same frame. These linear methods have been shown to give the same results 
given the same filter settings [Le Van Quyen et al., 2001; Quiroga et al., 2002; Bruns, 2004; 
Freeman, 2004b], and they were both required to analyze the data, because each method had a 
limit on its range of application. On the one hand the Hilbert transform served to track phase 
differences in multichannel EEG signals only within the duration between break points (Fig. 1, 
C) of the arctangent function and therefore maximally within the wavelength of one cycle of the 
peak frequency. However, the phase values differed among the 64 EEGs, so that the times at 
which the break points occurred varied across the array [Fig. 2 in Freeman Burke and Holmes, 
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2003; Freeman, 2004b]. An obvious circumstance of spurious phase slip was seen in narrow-
band oscillation when the amplitude of the signal was almost tangent to the zero line. A small 
difference in the amplitude of a low-frequency component determined whether or not crossing 
occurred with or without passage of the vector in a polar plot across the imaginary axis. Small 
variations in the amplitude of a low-frequency component across multiple traces led to near-
random splay of the unwrapped phase values with π rad (or 2 π rad with use of the 4-quadrant 
arctangent function) being added to some signals but not others. This feature was not 
problematic with temporal phase differences (CAPD) for which the phase reference was the 
preceding value in time, but it invalidated measurements of spatial phase gradients in the 
temporal average that was implicit in phase cones, for which the phase reference was remote by 
more than one cycle of the narrow-band oscillation. While this circumstance was not common, it 
was neither rare nor predictable in multichannel EEG recording. 
 

 
Fig. 1, A. An example is shown of the cospectrum by the FFT of the cross correlation of the analytic phase 
differences in the beta range with the unfiltered EEG. B The analytic phase differences, Δpjt), are plotted from left to 
right as a function of time for all 64 channels (right abscissa) to show the dips and jumps of CAPD known as “phase 
slip” [Pikovsky, Rosenblum and Kurths, 2001] across channels (left abscissa). The 2-D set of 8 rows and 8 columns 
is displayed in 1-D to illustrate the alignment. C. The sawtooth curve of the spatial ensemble average of the analytic 
phase, Pj(t), from the atan2 function shows the “break points” where the real part was zero and the arctangent was 
undefined. The three episodes of phase slip appear more clearly in the lower left frame after unwrapping.  The 
spread of the peaks in the spatial SD at break points show that the 64 EEG signals crossed the break points at 
different times. D. The analytic phase, pj(t), was derived with the atan function. Unwrapping converted the sawtooth 
to a ramp, and the numerical approximation of the derivative by the phase differences, Δpj(t), usually held a steady 
level that corresponded to the analytic frequency, ω�(t, but with dips and jumps in the CAPD  revealing phase slip.  
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The actual limit on tracking phase differences in multiple EEGs simultaneously recorded was the 
wavelength minus the time interval between the onsets of the first and last break points on the 64 
channels at each CAPD. Unwrapped analytic phase differences suppressed the break points, so 
that their coordination as CAPD could be seen more clearly, but the addition of π or 2π radians 
at different times made it impossible to fit a conic surface to phase values from multiple EEGs 
taken across a break point. On the other hand under Fourier analysis the durations of the selected 
EEG segments had to exceed one cycle of the frequency at which the phase was to be defined, 
but the durations of the selected segments could not exceed the duration of EEG epochs having 
the stationarity given by low rates of change in phase between the CAPD. Hence, even though 
the Fourier- and Hilbert- based methods for measuring phase were mathematically equivalent 
[Bruns, 2004] for many filter settings, they were complementary in covering the full range of 
temporal resolution needed to comprehend phase structures, with the advantage going to the FFT 
for low rates of phase change and to the HT for high rates.  
 
The techniques employed within these limitations were developed in rabbit studies. The same 
techniques were used in the human studies, except that adjustments were made in filter settings 
and segment durations to adapt to the differences in digitizing rates and interelectrode distances. 
As described in previous reports [Freeman, 2004a,b] they included temporal filtering [Appendix 
1.1]; spatial filtering [Appendix 1.2]; the Hilbert transform [Appendix 1.3]; measuring frequency 
and phase with a temporal basis function, the cosine [Appendix 2.1]; measuring phase gradient 
with a spatial basis function, the cone [Appendix 2.2]; controls using surrogate data, and channel 
randomization, and shuffling [Appendix 2.3 and Methods 2.6].   
 
The Hilbert transform required data preprocessing in six steps: (i) selecting 10 s blocks by visual 
editing free of artifacts and seizures; (ii) subtracting channel means to remove channel off-sets; 
(iii) normalization of the entire selected data set to unit standard deviation; (iv) computing 
temporal power spectral density (PSDT) and spatial power spectral density (PSDX) to find 
optimal filter settings (Fig. A2 in Appendix); (v) spatial low pass filtering adapted to the spatial 
sampling of the grid with the cut-off at 0.2 c/mm (Fig. A2, B) at the concave upward inflection 
of the PSDX; and (vi) band pass temporal filtering at 12-30 Hz, 25-50 Hz or 12-55 Hz (Fig. A2, 
A) to extract the beta or low gamma range or both. The temporal PSDT was an average of the 64 
PSDT from 1000 data points (5 s) in each of the simultaneously recorded time series. The spatial 
PSDX was the average of 1000 PSDX over the 64 amplitudes at each time point. All PSD were 
plotted in log-log coordinates in order to display the full spectral range of power; conventional 
displays did not allow visualization of the 1/f power-law distributions of EEG power or the 
deviations contributed by peaks in the empirical frequency ranges: theta, alpha, beta and gamma.  
 
2.3.  Methods for identification of phase cones qualifying as stable 
The phase cone has a very simple structure of a wave front that radiates outwardly from a point, 
like a wave when a pebble falls in water, or inwardly toward the point as in implosion. The sets 
of locations with equal values of phase (isophase contours) form concentric circles around the 
point, and the phase differences at right angles to the circles give the phase gradient. The 
equations used to fit a cone in 2-D to the 8x8 phase surface at each time step have been described 
in detail [Appendix A2.2 in Freeman, 2004b, with definition of parameters and state variables in 
Table 1.1 in Freeman, 2004a]. Convergence of the equation for the cone to a solution by 
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nonlinear regression was achieved in >90-95% of time frames, as well as in many randomized 
controls [Appendix A2.3 in Freeman, 2004b], which illustrated that a phase cone could be fitted 
though with high residuals to many sets of random numbers, giving the appearance of structure 
where none might exist, especially where it was imposed by spatial filtering.   
 
In order to exclude spurious phase structures from the analysis, 5 empirical computational 
criteria [Methods 2.5, Freeman, 2004b] were applied to the 64 phase values from the Hilbert 
method, pj(t), j = 1,64: (i) the locations of successive apices could not differ by more than the 
interelectrode distance (1.25 mm), which determined the lower limit on temporal resolution of 
the array; (ii) the sign of the phase gradient of the cone, + (“implosion”) or – (“explosion”), 
could not change; (iii) the SDx of the analytic phase, AP, could not exceed 0.5 rad (Fig. 1, C); 
(iv) the SDx of the analytic phase differences at each time step could not exceed 0.1 rad (Fig. 1, 
D), equivalent to 32 Hz in the 12-30 Hz pass band; and (v) the residuals from fitting a cone to the 
phase surface could not exceed 30% [Appendix 2.2, Freeman, 2004b]. Cones that met all of 
these constraints qualified as being stable. The criteria for stability of phase cones for the phase 
values from the Fourier method differed, in that (iii) and (iv) were replaced by the requirement 
that the residuals on the preliminary step of fitting a cosine to the filtered EEG [equation (A2.1) 
in Appendix A2.1, Freeman, 2004b] not exceed 20%.  
2.6. Statistical summaries of the parameters of stable phase cones 
Statistical summaries were computed of the data of the main parameters from the spatial and 
temporal wavelengths of qualifying cones:   
          k     

Temporal wavelength, Wt = 1/k Σ 1000/(2π fj), j = 1, …, k,   (1) 
        k 
Spatial length, Wx  = 1/k Σ 1 / |γj|, mm/rad, j = 1, …, k,    (2)  

where Wt and Wx were averages across the set of k values from the measurements across the 
duration of a stable cone, γk was the average gradient, and ωk = 1/Wf was the average frequency 
in rad/s from fk/2π. The distributions of the parameters, Wt and Wx, being skewed, the log 
transform was used to give approximately normal distributions for the purpose of computing SD 
and confidence intervals. Wt and Wx were used to calculate physiological parameters of phase 
cones:  

Phase velocity, β = Wx / Wt    m/s,       (3) 
Diameter, Dx = (π/2) Wx    mm.      (4) 

The frequencies, ω�(t) and f1(t), were similarly averaged to get ωk and fk for each stable cone. 
These equations gave the parameters derived from Wx and Wt that were needed for cross-species 
comparisons and for anatomical and physiological validation of these empirical parameter ranges 
by calculation of the distances of the apices from the center of the array, the phase velocities, and 
the half-power diameters by equations (3) and (4): for each cone the location of the apex had to 
be less than one half the width of the array from its closest edge; the phase velocity had to be 
within the range of conduction velocities of cortical axons (1-10 m/s); the duration had to exceed 
2 digitizing steps; and the half-power diameter could not exceed the width of the cerebrum (20 
cm). Use of the 5 constraints gave parameter values that did not exceed these limits.  
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Results 
 
3.1. Identification and measurement of the temporal structure of the analytic phase 
The 64 EEGs in the subject awake and at rest with no deliberate stimulation had waveforms that 
were similar though not identical by visual inspection (Fig. A1 in Appendix) and by pair-wise 
cross-correlation. The aperiodic waveforms persisted indefinitely through episodes of movement 
artifact and apparent seizures without distinguishing changes in amplitude or bursts of periodic 
oscillation. This lack of apparent structure was reflected in PSDT of the EEG (Fig. A2, A in 
Appendix) and of cospectra of the cross-correlation of the EEG with CAPD (Fig. 1, A), which 
were dominated by power in the low end, and by noise in the high end and without consistent or 
reproducible peaks in the classic ranges. The middle range that included the beta and low gamma 
frequencies often conformed to the power-law relation, 1/fα, where α ~2 on average. The shared 
waveform showed local differences in amplitude across the microgrid. The differences in 
amplitude and phase among channels demonstrated that the shared waveform was intrinsic to the 
dynamics and could not be ascribed solely to activity at the reference electrode or to volume 
conduction [Freeman et al., 2003]. The deviations in analytic phase from zero from the 
individual channels in polar coordinates were functionally equivalent to the imaginary 
components in Cartesian coordinates used by Nolte et al., [2004] to identify “true” interactions.  
 
The spatial PSDX was S-shaped (Fig. A2, B in Appendix). The upper plateau reflected the 
commonality of the shared waveform; it was exaggerated by padding with zeroes prior to taking 
the FFT [Appendix 1.2, Freeman, 2004a]. The differences in amplitude produced power in the 
middle spatial frequency range of the PSDX (0.1-0.2 c/mm, Fig. A2, B), which showed nearly 
linear decrease in log power with increasing log frequency (1/fα, where α ~2 on average in the 
awake state). The flattened tail of low power at high spatial frequencies showed how small the 
contributions were from individual electrodes. Low pass spatial filtering at 0.2 c/mm (twice the 
Nyquist frequency, 0.4 c/mm) removed that power as noise. These several features showed that 
the EEG from the microgrid, despite its small size, displayed a textured field of electric potential, 
not simply volume-conducted from some remote source or contributed solely by activity at the 
referential lead.  
 
The Hilbert transform revealed otherwise inaccessible structure in the 64 EEG signals, most 
directly through differences in the unwrapped analytic phase, pj(t). Each difference, Δpj(t),  in 
radians divided by the digitizing step, Δt,  in s gave the analytic frequency, ωj(t), in rad/s, which 
on division by 2π gave Hz. The analytic phase differences, Δpj(t), displayed in a 1x64 raster plot 
(Fig. 1, B) revealed frames, in which the nearly constant phase differences corresponded to the 
peak frequency in the pass band of the filtered EEG. The jumps (up to 4-fold increase in 
instantaneous frequency) corresponded to forward motion of a point around a circle (phase lead); 
the dips (decrease in instantaneous frequency sometimes to negative values) corresponded to 
retrograde motion (phase lag). The abrupt changes in the rate of change in phase that bracketed 
the plateaus occurred not quite simultaneously on all of the channels, again showing that these 
were textured fields despite the bland appearance of the EEGs. The variation in direction and 
magnitude of the coordinated analytic phase differences (CAPD) on individual channels gave 
high values of spatial standard deviation (SDx) of Δpj(t) at the times of dips or jumps. The high 
values of SDx served as time markers to bracket the plateaus of CAPD (Fig. 1, D).  
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Records of the CAPD in eyes-open segments lasting 0.4-2.0 s showed that phase resetting related 
to that found by Makeig et al. [2002] and by Nikolaev, Gong and van Leeuwen [2005] recurred 
at rates in the theta range (3-7 Hz). Confirmation was by cross-correlating CAPD with the 
unfiltered average of the 64 EEG signals, computing the PSDT of the cross-correlation function, 
and finding a peak in the alpha or theta band of the cospectrum (Fig. 1, A). Commonly shortly 
after the onset of a plateau in human CAPD, a large increase in amplitude occurred in the plateau 
before the next jump or dip in the SDX (Fig. 2), as had been found in rabbit data [Freeman, 
2004a,c], most clearly in the beta band. This strong negative correlation between the CAPD and 
the analytic amplitude provided further evidence that CAPD were not computational artifacts. 
The temporal pass band required for use of the Hilbert transform strongly shaped the CAPD, 
which appeared at different times in signals from the beta (12-30 Hz) and gamma (25-55 Hz) 
pass bands (Fig. A3). The CAPD containing both bands (C, 12-50 Hz) gave a pattern that was 
not a sum of the patterns in the narrower frequency ranges; superposition did not hold for these 
nonlinear phenomena. Randomization of the EEG by any of three methods [Appendix 2.3 in 
Freeman, 2004b] reduced or abolished the CAPD and the correlation with fluctuations in analytic 
amplitude. These results confirmed the existence of observable nonlinear dynamic structure in 
the background EEG and the dependence of results on the choice of the temporal pass band.  

 

 
Fig. 2. Display of SDx(t) and A(t) at higher temporal resolution showed that jumps in phase slip typically bracketed 
a peak in analytic amplitude. 
 
3.2. Identification and measurement of the spatial gradients of phase with the Hilbert method 
The set of 64 phase values at each digitizing point were obtained with the 4-quadrant arctangent 
function (Fig. 1, C), which gave half as many break points in the sawtooth analytic phase as did 
the 2-quadrant function (Fig. 1, D). The 64 phase values at each digitizing step were fitted with a 
cone. Four parameters were optimized by nonlinear regression with the criterion of least squares 
residuals: the x, y location of the apex, the height or depth of the apex from the plane of fitting, 
Φo(t), and the slope of the cone, γ�(t), including its sign.  The apices of the majority of cones fell 
within the borders of the array, the minority outside. There was no evidence of geometric 
patterns of location of multiple apices, nor were there preferential distributions of apices having 
phase lead (+) vs. those having phase lag (-).  Small clumps and short strings of apices reflected 
low spatial variation in phase that accompanied the low temporal variation implying stationarity. 
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These successive apices were closer to each other than the interelectrode interval (1.25 mm), 
which determined the lower limit on spatial resolution. Intervening spatial steps taken by the 
apices in the breaks between the plateaus were often longer than the width of the array. This 
evidence supported the inference that the shift in the location of the apex was discontinuous from 
each plateau to the next one. The analytic phase differences at individual channels were fixed by 
the difference between two successive cones with widely separated apices and often with 
opposite polarity; this explained the high SDX of CAPD.  
 
3.3. Parameters of stable phase cones in the beta and gamma ranges by the Hilbert method 
The two main parameters by direct measurement were the temporal phase gradient (giving the 
analytic frequency, ωk in rad/s) and the spatial phase gradient, γk in rad/mm, averaged over the 
values from k fitted cones in each frame. Distributions were compiled for cones in 50 s of EEG 
recording giving 10,000 digitizing steps. Frequencies were converted by equation (1) to temporal 
wavelength, Wt, in ms/rad. The distributions of Wt were skewed to large numbers of short values 
(high frequencies) (Table 1). The phase gradients were converted by equation (2) to spatial 
wavelength, Wx in mm/rad. The values of Wx were strongly skewed to short wave lengths (high 
spatial frequencies). The distributions of log ωk and of log |γk| were nearly normal. The 
wavelengths of the cones gave the basis to estimate the phase velocities by equation (3) and the 
half-power diameters of phase cones by equation (4) (Table 2).  Both measures had high 
coefficients of variation, 45-75%. The estimates of phase velocity fell within the range of 
conduction velocities of cortical axons running parallel to the pial surfaces [~1-10 m/s, reviewed 
in Freeman and Barrie, 2000]. The x-y coordinates of the phase cones gave estimates of the 
distances of the apices from the center of the array. The mean distance was close to the distance 
from the center to the edge (5 mm); this value was consistent with the higher density of apices 
inside the array and the larger area but lower density of apices that could be located outside the 
array. The duration (Table 2) was estimated from the number of steps, k, across which the 
criteria were met.  
 

Table 1. Frequency, gradient, wavelengths – Hilbert method 
 
Condition N frequency, fi gradient, γk Wt  Wx   
   Hz  rad/mm ms/rad  mm/rad 
 
12-30 Hz 720 15.2±2.8 .065±.034 10.9±2.5 17.8±7.6 
no restriction 
12-30 Hz 336 15.2±2.7 .079±.036 10.8±2.2 14.1±5.0 
<30% residuals 
25-50 Hz 414 32.1±3.8 .064±.030   5.0±0.6 17.4±6.9 
no restriction 
25-50 Hz   87 31.5±3.8 .092±.030   5.1±.0.7 11.7±3.9 
<30% residuals  
 

Table 1. Representative values (mean ± SD) are listed for spatial and temporal frequencies and wavelengths. The 
differences in gradient and wavelength with and without restriction were due to inclusion of nearly flat gradients, of 
the kind that appeared when the cone was fitted to noise data, resulting in apices close to the array center, low 
gradients and large % residuals. Values were averaged 50 s of recording and analysis of data totaling 10.000 steps.  
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Table 2. Diameter, velocity, distance, duration – Hilbert method 
 
Condition rate diameter velocity distance duration 
  1/s mm  m/s  mm  ms 
 
12-30 Hz 14.4 33.7±25.0 2.06±1.62   5.4±3.1  10.7±6.1 
no restriction 
12-30 Hz 6.7 24.3±11.2 1.47±1.07   6.4±3.7  10.3±5.7 
<30% residuals  
25-50 Hz 8.3 31.8±19.9 4.09±2.60   4.6±2.2   6.6±3.9 
no restriction 
25-50 Hz 21.7 20.6±14.3 2.55±1.63    5.6±2.4   6.2±3.8 
<30% residuals 

Table 2. The differences between durations in the beta and gamma ranges were attributed to the shorter intervals 
between break points from the arctangent.  
 
3.4 Parameters of phase cones with the Fourier method  
Application of the Fourier method began not with the FFT but with fitting the 64 EEG signals in 
a stepped window with the sum of two cosines [Appendix 2.1, Freeman, 2004b] after low pass 
spatial filtering and band pass filtering in the beta or gamma range. Convergence was obtained 
routinely with residuals that ranged widely from <5% to >90% despite the coarse grain imposed 
by the 5 ms digitizing step and the brevity of the window.  An empirical threshold of 20% 
residuals was adopted for acceptance of the 8x8 matrices of phase values from the dominant 
fitted cosine; the reliability of fitting cosines in 1-D was higher than that for fitting a cone in 2-D.  
The graphic displays of phase surfaces, fitted cones and residuals closely resembled those from 
the Hilbert method. The means and SD of the frequencies, f1, phase gradients, and wavelengths 
are listed in Table 3 for the beta and gamma ranges. The distributions of frequencies were 
skewed to lower values, resembling the 1/fα form of PSDT of the same EEG data. The temporal 
wavelengths, Wt, were skewed across the range set by the temporal pass band as in the Hilbert 
method. The distributions of phase gradients were bimodal. The forms of the distributions of the 
diameters and phase velocities as well as estimates of the means did not significantly differ from 
those by the Hilbert method (Table 4 compared with Table 2), although the variances were 
smaller owing to fewer outliers. The locations of the apices and the sequences of distances 
between them were not identical but were statistically indistinguishable for the two methods 
applied to the same data.  

Table 3. Frequency, gradient, wavelengths – Fourier method 
Condition N frequency, fi gradient, γk Wt  Wx   
   Hz  rad/mm ms/rad  mm/rad 
12-30 Hz  254 14.0±2.3 .075±.036 10.9±1.5 14.5±4.6 
<30% residuals 
25-50 Hz 102 26.5±1.9 .066±.017   6.0±0.4 15.5±4.7 
<30% residuals 
12-30 Hz 174 13.8±2.0 .098±.050 11.7±1.31 11.6±5.3 
sleep <30% residuals 

Table 3. Representative values are listed from the Fourier method in the gamma and beta range to compare with the 
Hilbert results, and in the gamma range to compare waking and SWS between the 1-s plateaus shown in Fig. 2, B. 
There were no significant differences between the results from the two methods and states other than in duration.  
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Table 4. Diameter, velocity, distance, duration – Fourier method 

 
Condition rate diameter velocity distance duration 
  1/s mm  m/s  mm  ms 
 
12-30 Hz 5.1 24.1±7.7 1.45±0.56 7.9±4.2   214±25 
<30% residuals 
25-50 Hz 2.0 25.2±6.1 2.67±0.66 6.8±2.9   205±8.6 
<30% residuals 
12-30 Hz 3.5 19.3±6.6 1.22±0.49 5.4±1.9    220±24 
sleep <30% residuals 
 

Table 4. The Fourier method differed significantly from the Hilbert method only in giving much longer estimates of 
phase cone duration. The estimates varied with window length (Fig. 3).   
 
These comparisons showed that the Hilbert and Fourier methods gave essentially the same cone 
parameters except those relating to cone duration (Tables 2 and 4). The lower limit on duration 
by the Fourier method was set by the requirement that the window length include at least one 
cycle of the frequency at which the phase was defined, and an upper limit appeared to coincide 
with length of frames between CAPD. Stable phase cones occurred with least % residuals in 
these frames (Fig. A3, Appendix) but not exclusively and most often overlapping with up to 5 or 
6 persisting cones having earlier onset. A very important finding was that the estimates of the 
mean duration varied markedly with the width of the window used to measure the frequency at 
which to calculate the phase in the Fourier method. This dependence carried over to the 
extremely short durations estimated by the Hilbert method. The distributions of values were 
judged to be power-law by the following criteria: (a) maximal counts were at minimal durations, 
(b) the log counts decreased linearly with increasing log cone duration in a power-law relation 
(Fig. 3), (c) the SD tended to equal the mean, and (d) the values taken by the mean and SD 
increased with increasing window of measurement. These properties suggested that the 
underlying dynamics was fractal with self-similarity of cones over broad ranges of diameters and 
durations. The power-law scaling resembles that reported in human EEG by King [1991], 
Linkenkaer-hansen et al. [2001] and Hwa and Ferree [2002].  
 
The power-law nature of the skewed distributions raised the critical concern whether the larger 
numbers of small phase cones with high residuals formed a significant tail of the distributions or 
accumulated simply as the result of fitting the cone to noise. This was investigated by comparing 
distributions with and without the restriction that residuals of cone fitting not exceed 30%. The 
results showed that imposing the restriction decreased the numbers of qualifying cones by 50-
80%. The same forms and parameters held above the threshold for measurement determined by 
the window duration, regardless of the reduction in sample size, when the 30% criterion was 
imposed (Fig. 3). The power-law distributions suggested that many if not most of the 
overlapping cones with high % residuals formed complex structure that appeared to be ‘noise’ 
but might in fact manifest a controlled state of cortex.  
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Fig. 3. Increasing the window duration increased the mean duration of phase cones. This finding and the form of the 
histograms showed that the distributions were power-law. These would be important features of scale-free 
neurodynamics [Freeman, 2005c].  
 
Inclusion of the cones with high % residuals had no effect on mean frequency, but it increased 
mean phase gradients. The increase suggested that the cones removed were more likely to be 
relatively flat, indicating high phase velocity and large diameter by equation (4). Velocities in 
excess of 10 m/s from flat cones were thought likely to be spurious and attributed to fitting a 
cone to noise. However, some of the phase cones that were removed by this criterion might have 
represented valid physiological structure.  
 
Comparison of the present data to those previously obtained from rabbit experiments 
demonstrated no species differences in frequency, temporal wavelength or duration other than 
those relating to the temporal pass band, the window duration, and interelectrode spacing (Table 
5).  The phase gradient differed 20-60% between rabbit and human, and these differences 
persisted through estimates of the spatial wavelength, phase velocity, half-power cone diameter, 
and apical distance from the array center. The estimates of phase gradient, γk, differed by the 
ratio between 1.2 to 1.6, while the ratio of interelectrode distances was 1.6.  
 
 
 
 

Table 5. Comparison of human and rabbit 
 
A. frequency, gradient, wavelengths 
 
Subject window size N frequency gradient Wt  Wx 
  bins/ms  Hz  rad/mm ms/rad  mm/rad 
 
Rabbit   40/80  246 28.2±6.1 .126±.073 5.90±1.20   8.3±3.1 
 
Human  16/80  276 30.7±5.8 .109±.047 5.34±0.86 10.0±4.4 
 
Rabbit  64/128    99 28.7±5.5 .106±.053 5.75±1.15 10.2±4.3 
 
Human  40/200    56 26.5±1.9 .066±.017 6.04±0.40 15.5±3.5 
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B: diameter, velocity, distance, duration  
 
Subject window size rate diameter velocity distance duration 
  bins/ms #/s mm  m/s  mm  ms 
 
Rabbit   40/80 246 12.3 14.6±6.8 1.68±0.92 3.19±1.65 88.3±14.0 
 
Human  16/80 276 13.8 17.1±6.9 2.09±0.87 6.04±2.59 85.9±10.7 
 
Rabbit  64/128   99   5.0 18.0±7.4 2.15±1.09 3.85±2.49 138±17 
 
Human  40/200    56   2.8 25.2±6.1 2.67±0.66 6.84±2.93 205±8.6 
 
C. differing conditions and parameters of measurement and analysis 
 
Subject   rabbit  human grid  human scalp 
 
Sample rate:    500/s    200/s   200/s 
Sample interval:   2 ms     5 ms    5 ms 
Temporal pass band:   20-80 Hz   25-50 Hz   12-30 Hz 
Spatial low pass:  0.32 c/mm 0.2 c/mm  0.40 c/cm 
Interelectrode interval:  0.79 mm 1.25 mm  3.0 mm 
Array width:   5.6 mm 9 mm    189 mm 
 

Table 5. The differences between phase cone parameters from rabbit and human could be attributed solely to the 
differences in the window durations, interelectrode distances and digitizing rates, owing to their power-law 
distributions, which suggested that the dynamics of the cortex was chaotic with fractal dimensions [Mandelbrot, 
1983; King, 1991].  
 

3.5. Measurement of phase during slow wave sleep (SWS)  
The EEG during SWS was dominated by activity in the low theta and delta ranges. Despite this 
spectral difference from the awake state the statistical properties of spatial and temporal 
wavelengths and the derived measures of phase cones did not differ significantly from those 
found in the subject when awake (Tables 3 and 4). Gamma cones virtually disappeared, while 
beta cones persisted at lower incidence and with decreased phase velocity and diameter. The 
spatial clusters of apices by the Hilbert and Fourier methods were similar in both states for both 
sign and location. The spatial PSDX was unchanged with sleep (awake in Fig. A2, B). Significant 
differences were found between the temporal PSDT after the transition from the awake state to 
the SWS state (Fig. 4, A). The local spectral peaks almost disappeared, so that a straight line 
fitted to the PSDT gave low % residuals of 3.51±0.92%, of the total variance in SWS (A), 
compared with 5.67±1.09 on awakening when spectral peaks reappeared. The slope in SWS 
varied seemingly at random about an average of α = 3.19±0.31 compared with α = 2.39±0.27 
when the subject was awake (B). The intercept varied inversely with slope (C), 2.17±0.51 in 
sleep vs. 1.48±0.46 when awake.   
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Fig. 4, A. In slow wave sleep (SWS) the peaks in the PSDT disappeared, as manifested by the minimal % residuals. 
(B) The slope fluctuated randomly about –3, and (C) the intercept varied in proportion inversely about a maximal 
value of 2. These properties showed that the delta activity characteristic of SWS had a simple, stable, underlying 
structure seen only in log-log PSDT.   
 
Strikingly, the temporal behavior of the CAPD disclosed long-duration (about a second) plateaus 
of phase stabilization during SWS (Fig. 5, A, gray curve).  

 
 
Figure 5. A. The analytic amplitude, A(t), increased during epochs in which the spatial standard deviation of the 
CAPD, SDx(t), fell to low values. B. The SDx of the analytic amplitude in SWS remained low despite the increase in 
the mean. C. The SDx in the waking state increased with each peak in analytic amplitude, reflecting the existence of 
spatial structure in AM patterns. These two features showed that the long-lasting plateaus in SWS were devoid of 
structure in the beta-gamma ranges.  
 
These plateaus had no qualifying phase cones; the few cones that did appear were excluded by 
the criteria that their phase velocities exceeded the physiological range and their % residuals 
were too high, even though the variance was low. Examples of CAPD in 10 s segments from 
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awake and sleep states are compared in Fig. A4 (Appendix). Whereas during most records in 
SWS the analytic amplitude had low values, during the 1-s plateaus the analytic amplitude rose 
slowly to moderate values and fell as the plateaus ended (Fig. 5, A and B, black curves). 
Contrastingly in the waking state the analytic amplitude rose rapidly to high values during brief 
plateaus following onsets of low SDX and fell rapidly just before spikes in SDX (Fig. 5, C, gray 
curves; see Fig. 2 for higher temporal resolution). The spatial variance of amplitude remained 
low during the 1-s plateaus (Fig. 5, B, gray curve), whereas the variance fluctuated in correlation 
with the mean during the brief plateaus of phase stability in the awake state (Fig. 5, D, gray vs. 
black curves). These findings implied that the EEG was virtually devoid of spatiotemporal 
structure during the 1-s plateaus, even though the analytic amplitude rose for exceptionally long 
durations. In summary, during sleep the structure of phase persisted virtually unchanged, except 
during the deepest NREM sleep when the PSDT approached a strict power-law form with an 
exponent near –3. Then flat phase epochs appeared that lasted up to a second and at intervals of 
varying by 4-10+ seconds. These epochs appeared to be devoid of spatial and temporal structure 
in the beta and gamma ranges. 
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4. Discussion  
 
The most important finding in this study is the way in which high spatial and temporal resolution 
opens a new domain of fine structure to exploration of the background EEG. This pervasive and 
robust electrical activity has for several decades been regarded as noise [Freeman, 1975/2004] 
that is to be removed by event-related time averaging so as to establish flat pre-event baselines. 
The Hilbert transform serves to decompose multichannel EEGs from a high-density array into 
independent time series of amplitude and phase, which together give a view of the background as 
a dynamically ordered state that combines stability with the capacity for rapid adaptation in any 
direction that unpredicted changes in the environment may require. An outstanding characteristic 
of the power spectra and the measures of phase is their skewed distributions of power in both 
temporal and spatial dimensions, which indicate self-similarity across broad scales of 
measurement and the nonexistence of normative mean and minimal values. The search for lower 
bounds on the durations of phase cones was pursued to the lower limit of the duration of the 
digitizing step; the search for minimum diameters was limited by the point spread functions of 
the local fields of potential of cortical dendrites that precluded finding diameters less than 2 mm. 
What these findings indicate is that neocortex continually generates local patterns by phase 
transitions and just as rapidly quenches them. The phase patterns are conic, owing to the finite 
velocity of axons that carry the pulses required to communicate the phase transitions by which 
AM patterns form; communication is not instantaneous and truly ‘zero lag’.  
 
These phase cones suggest that the conditional stability of neocortex is analogous to that of a 
sand pile with continuous input at its apex that maintains a critical angle of repose by repeated 
avalanches [Freeman, 2004b] having power-law distributions of size, duration, and recurrence 
rates. This phenomenon was described as “self-organized criticality” by Bak, 1996] and Jensen 
[1998] and has been proposed for neocortex by Linkenkaer-Hansen et al. [2001] and Beggs and 
Plenz [2004]. A comparable analogy is a heated pan of boiling water in which the bubbles keep 
water at its boiling point by releasing heat in steam. Yet another is fog, in which water molecules 
continually condense into droplets that evaporate and are replaced, with occasional formation of 
large droplets that fall as rain. The critical parameter in cortex that is analogous to an angle of 
repose or a critical temperature has been proposed [Freeman, 2004a; 2005b,c] to be the firing 
rates of individual neurons that are everywhere homeostatically limited by refractory periods (see 
also Cirelli et al. [2005] on homeostatic control of slow waves in sleep). The background activity 
of cortex is conceived to manifest the approach by the neocortex to its critical state on 
displacement by constant bombardment from cortical input, because it disappears on 
deafferentation.  
 
Prigogine [1980] studied the stability of these kinds of system in terms of local fluctuations, most 
of which are quenched, but a selected few of which carry a complex system from one state to 
another in bifurcations or phase transitions. Ricciardi and Umezawa [1967] proposed that 
neocortex maintains a metastable state in which such transitions occur by spontaneous breaking 
of symmetry among an indefinitely large collection of ground states [Vitiello, 2001; Freeman 
and Vitiello, 2005]. Kelso [1995], Bressler and Kelso [2001] and Fingelkurts and Fingelkurts 
[2004] conceive metastability as a fluid condition of brain dynamics without convergence to 
attractors in which the parts retain autonomy yet coordinate with each other in respect to 
behavior. Tsuda [2001] and his colleagues view metastability in terms of a sequence of 
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transitions among ordered states that is mapped by a trajectory in state space in a dynamic they 
call “chaotic itinerancy’. In this report conditional stability is described in terms of rapidly 
adapting attractor landscapes with selection by input of one attractor at each phase transition that 
resolves an uncertainty posed by the a priori availability of multiple basins of attraction. The 
similarity of rabbit and human neocortex to each other gives reason to suppose that these general 
principles of self-organization and conditional stability are fundamental properties of cortical 
dynamics that are manifested in the fine phase structure of the EEG. The only species differences 
found at the level of fine structure were commensurate with the tools needed to measure 
parameters having power-law distributions with the largest number of events having the smallest 
dimensions. The tools included the limiting digitizing step and interelectrode interval, which had 
been designed in respect to brain size, and which, it appears, helped shape the observed values.  
 
An unexpected observation in this study was the phase pattern in SWS that exhibited plateaus 
lasting about 1 s that had no qualifying phase cones, yet sustained unpatterned beta-gamma 
activity as measured by analytic amplitude and its SD. This state suggests three hypotheses, one 
of which is in the context of studies demonstrating that cortical excitability is significantly 
modulated by large-scale activity at slowest frequencies [Amzica and Steriade, 2000; Amzica, 
2002; Massimini et al., 2003; Vanhatalo et al., 2004]. It appears that human neocortex maintains 
a robust state of self-organized criticality in all stages of waking and at least more superficial 
sleeping (non-SWS), as manifested in the structure of the spatial patterns of phase. This state is 
maintained under the impact of input from all sources to the neocortex by repeated small and 
large phase transitions to bursts of oscillation resembling avalanches [Tsuda, 2001; Beggs and 
Plenz, 2004; Freeman, 2004b] that give structure to the EEG in the form of spectral peaks, phase 
cones, and spatial patterns of amplitude modulation.  
 
When input is blocked by surgical intervention, structure disappears with emergence of a state of 
maximal symmetry in the form of a flat EEG [Burns, 1958; Becker and Freeman, 1968; Gray and 
Skinner, 1988].  The persistence of phase structure during non-SWS is consistent with the 
numerous observations that brains are cognitively active during sleep [e.g., Steriade, 1997; 
Cirelli et al., 2003; Massimini, Rosoanova and Mariotti, 2003; Massimini et al., 2004]. During 
deep SWS the input to neocortex may be transiently in abeyance, which allows neocortex to 
settle into its basal ground state of unstructured rest that is accompanied by the classic 
appearance of delta waves and, in the extreme, to epochs of substantial loss of phase and 
amplitude microstructure. Tononi’s group showed that the extent of spread of cortical responses 
to transcranial magnetic stimulation was significantly reduced during SWS and more so during 
REM sleep [Massimini et al., 2005]. That is consistent with the idea that the intensity of mutual 
excitation among pyramidal cells and thereby the distance of long-range cortico-cortical 
transmission, both pre-requisite for generation of phase structures, may be reduced in sleep (and 
prior to seizure [Freeman et al, 2005]; see also Van Quyen et al., [2005]). Their concept of 
“synaptic down-scaling” is compatible with a widespread decrease in excitation relative to 
inhibition; a broad distribution of delta activity at high amplitude in scalp EEG is compatible 
with a decrease in correlation distance and an enhancement by competitive inhibition of fine-
structure activity at beta-gamma frequencies. They also showed that slow oscillations in SWS 
appeared as waves travelling 0.1-7 m/s, corresponding to the range of velocities of axons running 
parallel to the pia [Freeman and Barrie, 2000]. These waves were not shown to be radially 
symmetric nor to have apices of phase distributions that alternated in polarity, so they were not 
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likely to manifest large phase cones. However, evidence for cones at delta frequencies was not 
sought with the 1 cm2 microgrid on the premise that the spatial wavelengths would be too long 
for detection by the array, so uncertainty remains.  
 
Alternatively these epochs of unpatterned activity might be manifestations of simple partial 
seizures that were facilitated during sleep and not in the awake state. In these recordings from the 
microgrid the slow wave activity in the delta range was prominent even when the subject was 
engaged in a simple memory task. This was in contrast to the more highly structured EEG 
activity seen in scalp EEG of normal humans and in intracranial EEG from primary sensory and 
limbic areas in animals. The poverty of structure in the area of the microgrid might be ascribed to 
its location in a brain area remote from those engaged in normal behavior, and also to its location 
in a region of the brain known to be diseased, which was, after all, the reason for the opportunity 
for recording with an intracranial microgrid. Presumably the parameters derived in this study 
were influenced in unknown ways by the subject’s brain disorder that may have included 
significant reduction in REM sleep.    
 
Nevertheless the database gave useful clues not otherwise available for developing the EEG as a 
tool to explore the mesoscopic dynamics of human brain, particularly the long-range correlations 
that depend critically on mutual excitation among pyramidal cells forming nearest-neighbor, 
small-world [Watts and Strogatz, 1998] and scale-free [Wang and Chen, 2003] networks, and the 
diminution in correlation range that appears to accompany SWS and precede onset of complex 
partial seizure [Freeman, et al., 2005]. Among questions to be answered in the future are what 
the maximal size of phase cones might be, how their diameters relate to stability, how the square 
of analytic amplitude (power) might be related to metabolic demand through hemodynamic 
imaging, and whether the analytic phase might be used to locate hemisphere-wide AM patterns 
in scalp EEG. Answers may best come from simultaneous records of scalp and microgrid EEGs.  
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Appendix. Time series, power spectral densities and CAPD of intracranial human EEG 
 
The 64 raw EEGs had correlated waveforms (Fig. A1) that differed in amplitudes and time lags 
but otherwise had no discernible structure. The temporal PSDT (Fig. A2, A) displayed a range 
with nearly linear decrease in log power with increasing log frequency (1/fα, where α ~2 on 
average). The band pass temporal filter required for the Hilbert transform was placed in the beta-
gamma range (12-55 Hz) between alpha and 60 Hz. The spatial PSDX (Fig. A2, B) also had a 
middle range with nearly linear fall-off of log power with log frequency at a slope of –2, which 
had first been described by recording intracranial human EEG from the pial surface with a 1-D 
electrode array in a line at 0.5 mm spacing [Freeman et al., 2000]. The flattened tail of the PSDX 
at high spatial frequencies displayed the low power from contributions localized to each 
electrode, which from the standpoint of mesoscopic interactions was to be treated as noise and 
removed by low pass spatial filtering. The analytic phase, pj(t), was unwrapped to show the 
coordinated analytic phase differences, CAPD, Δpj(t), in a 1x64 raster plot (Fig. A3). The mean 
instantaneous frequency, ωj(t) = Δpj(t)/Δt, in the frames between spikes and dips corresponded to 
the peak frequency in the pass band of the filtered EEG. The dips and spikes in the phase 
differences that bracketed the frames occurred not quite simultaneously on all of the channels. 
The directions and magnitudes varied, giving high spatial standard deviations (SDx) of Δpj(t) at 
the times of dips or jumps. Peaks of SDx appeared at different times after filtering in the beta (A, 
12-30 Hz) and gamma (B, 25-55Hz) pass bands. The CAPD containing both bands (C, 12-50 Hz) 
showed expectedly [Freeman, Burke and Holmes, 2003] a pattern that was not a sum of the 
patterns in the narrower frequency ranges. Shuffling of the EEG signals on each channel 
[Appendix 2.3 in Freeman, 2004b] abolished the CAPD (Fig. A3, D).  

 

 
Fig. A1. A typical recording is shown of 1 s from the 8x8 array implanted on the pial surface with spacing of 1.25 

mm between electrodes.  
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Fig. A2. The basis for spatial and temporal filtering is demonstrated. A. The temporal power spectral density (PSDT) 

was calculated over an epoch of 1000 digitizing steps (5 s) for each of the 64 channels and averaged across 
channels, N = 64.  B. The spatial PSDX was calculated over the 8x8 2-D array for each of the 1000 time steps 
and then averaged over time, N = 1000.  Electrode spacing of 1.25 mm (.8 c/mm) giving a spatial Nyquist 
frequency of .4 c/mm was designed from oversampling by a linear epipial array [Freeman et al., 2000]. 

 

 
 
Fig. A3, A. An example is shown of a raster display of CAPD from a 4 s epoch. This display aligned the 8 columns 

of 8 rows along 1-D in order to demonstrate the near simultaneity of the jumps and dips that bracketed the 
epochs of low variation in phase. The temporal pass band was set at 12-30 Hz to cover the beta range. B. 25-50 
Hz covered the lower gamma range. The stripes in displays of CAPD appeared in both bands, but the timing 
differed in each pass band. C. A broad band that included both beta and gamma ranges gave its own pattern 
structure, not linear superposition of the two patterns in the narrower ranges. D. The spatiotemporal structure 
was abolished when the EEG signal on every channel was shuffled [see Appendix 2.3 in Freeman, 2004a.]  
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Fig. A4. Examples are shown of CAPD in 10 s segments. A. SWS. B. Awake, eyes open.  




