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Aerospace vehicle design is a complex process involving multiple engineering disciplines

such as aerodynamics, structures, propulsion, and controls. This complexity led to the emergence

of multidisciplinary design optimization (MDO), a field that employs numerical optimization

methods to improve the designs of engineering systems while simultaneously considering

multiple disciplines. Integrating all disciplines significantly increases the problem’s complexity,

which motivates the use of gradient-based optimization methods with analytical computation

of the derivatives. This approach has demonstrated considerable success in tackling practical

large-scale MDO problems with hundreds of design variables. Recent applications can be found
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in the conceptual design of electrified aircraft, unmanned aerial vehicles, and launch vehicles.

Presently, most MDO applications formulate and solve deterministic optimization prob-

lems in which the objective and constraint functions do not consider randomness. However,

real-world scenarios introduce uncertainties arising from factors like variations in operating

conditions, parameter fluctuations, and manufacturing discrepancies. Incorporating these uncer-

tainties into MDO problems transforms them into MDO under uncertainty (MDOUU) problems.

Addressing well-defined MDOUU problems can enhance the robustness and reliability of MDO-

optimized designs in real-world scenarios.

This dissertation presents a suite of graph-accelerated uncertainty propagation methods,

designed to tackle various forward uncertainty quantification (UQ) and MDOUU problems.

At the core of these methods lies a new computational graph transformation method called

Accelerated Model Evaluations on Tensor Grids using Computational Graph Transformations

(AMTC). AMTC leverages the sparsity in the computational graphs of multidisciplinary systems

to accelerate tensor-grid evaluations. This approach has been effectively combined with the

non-intrusive polynomial chaos method to tackle UQ and MDOUU problems, with several

extensions devised to address higher-dimensional problems within this framework. Towards the

end, this dissertation also includes a case study on a laser-beam-powered aircraft design problem.

This study offers a comparative analysis between the results of MDO and MDOUU, while also

demonstrating the efficacy of graph-accelerated uncertainty propagation methods in addressing

large-scale MDOUU problems.
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Chapter 1

Introduction

The primary goal of this thesis is to devise efficient uncertainty propagation methods

that seamlessly integrate into the state-of-the-art multidisciplinary design optimization (MDO)

framework, thereby enhancing the practicality of MDO-optimized designs. Multidisciplinary

design optimization (MDO) has gained popularity in both industry and academia for its success

in finding improved designs in practical engineering problems by using numerical optimization

techniques. However, a significant challenge lies in the absence of computationally efficient

uncertainty-based methods that can be seamlessly integrated into the existing gradient-based

MDO framework. This thesis tackles this challenge by proposing a suite of graph-accelerated

uncertainty propagation methods. These methods capitalize on the sparsity inherent in the

computational graphs of multidisciplinary systems and are designed for seamless integration into

the gradient-based MDO frameworks.

1.1 Multidisciplinary design analysis and optimization

The origin of multidisciplinary design Optimization (MDO), also known as multidisci-

plinary design analysis and optimization (MDAO), can be traced back to the 1960s. In 1960,

Schmit coupled numerical optimization methods with structural computational models to opti-

mize structural designs [86], which led to the emergence of the structural optimization field. In

1965, Schmit and Thornton demonstrated the first MDO application in which they optimized the
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airfoil design considering both structural and aerodynamic models [87].

Since then, structural optimization gradually expanded to include shape optimization

of 3-dimensional structures [34], and topology optimization of material layout [21]. Concur-

rently, aerodynamic shape optimization emerged from Pironneau’s utilization of optimal control

techniques for optimizing airfoil shapes [77]. Jameson further extended this framework by

integrating the adjoint method with computational fluid dynamics (CFD) models to optimize

aircraft wings [43].

Initially, MDO applications were focused on coupling aerodynamics and structures in

wing design. However, this has evolved to encompass other disciplines like propulsion and

controls, leading to the use of MDO in aircraft configuration designs. The development of

MDO methodology has seen efforts towards distributed MDO architectures [65, 48], analytical

derivative computations [63, 66, 41, 92], and optimization algorithms [36, 96, 47]. These

advancements have facilitated the solution of large-scale MDO problems and the development of

MDO software tools like OpenMDAO [32], SU2 [20], and CSDL [26].

With the continuous development and implementation of MDO methods in software, the

impact of MDO has expanded significantly across various applications. This includes improving

the design of electrified aircraft [4, 13, 84, 80], supersonic aircraft [64, 88], unmanned aerial

vehicles [51, 72], launch vehicles [6, 14], wind turbines [53, 69], satellites [45, 40], and many

other engineering systems. A comprehensive MDO textbook by Martins and Ning can be found

in [65].

1.2 Motivation for MDO under uncertainty (MDOUU)

In a realistic world, aerospace vehicle systems are inherently subject to various uncer-

tainties arising from both the system itself and the environmental and operational conditions it

encounters. For example, in aircraft design, uncertainties include fluctuations in operating condi-

tions, prediction errors due to design model assumptions and simplifications, and discrepancies
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associated with manufacturing tolerances. These uncertainties can cause system performance to

change or fluctuate, potentially leading to severe deviations, unanticipated functional faults, and

even mission failures. Therefore, it is crucial to account for uncertainties from the beginning

of the aerospace vehicle system design process. When we incorporate uncertainties into the

MDO problems, it transforms the MDO problems into the MDO under uncertainty (MDOUU)

problems.

Computational methods that incorporate uncertainties are typically described as non-

deterministic approaches. These approaches aim to address two main issues: (1) improving the

robustness of aerospace vehicles to decrease their sensitivity to variations and (2) enhancing the

reliability of aerospace vehicles to decrease the likelihood of functional failure under potential

critical conditions. Corresponding to these two design aims, MDOUU problems can be classified

into two primary categories: robust design optimization (RDO) and reliability-based design

optimization (RBDO). Robust design optimization seeks the optimal design that is less sensitive

to variations in uncertain inputs, thereby achieving stable performance. In contrast, reliability-

based design optimization seeks the optimal design with guarantees of reliability, ensuring the

system performs correctly under specified critical conditions.

Optimization under uncertainty has its origins in the 1950s [19, 25] and has since ex-

perienced significant growth. A substantial body of research has been devoted to developing

optimization algorithms that account for uncertainty, leading to successful applications in various

fields. This is particularly evident in aerospace engineering, which has strict requirements for

system reliability and robustness. In aerospace engineering, research on design optimization

under uncertainty has primarily focused on single disciplines such as structures [59, 11] and

aerodynamics [85, 33]. MDOUU gained popularity in the 2000s [73, 3]. By systematically

considering uncertainties in the multidisciplinary system, MDOUU can result in optimal designs

that are more robust and reliable to operate in real-world scenarios. In 2002, NASA published a

white paper [110], which addresses the needs and opportunities for uncertainty-based multidisci-

plinary design for aerospace vehicles. This white paper also highlights that the lack of efficient
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computational methods is one of the main obstacles to applying uncertainty-based methods to

practical aerospace vehicle design problems.

The development of MDOUU methodology has seen significant efforts towards uncer-

tainty propagation methods [28, 75], surrogate and approximation methods [8], and optimization

under uncertainty algorithms [83, 82]. Recent applications of MDOUU in aerospace engineering

can be found in [68, 42]. A recent review paper on uncertainty-based MDO is available in [109].

Additionally, a comprehensive textbook on aerospace systems analysis and optimization under

uncertainty by Brevault et al. can be found in [15].

1.3 Thesis roadmap

This dissertation is organized as follows:

• Chapter 2 presents related background information for this thesis.

• Chapter 3 presents a computational graph transformation method called Accelerated

Model Evaluations on Tensor Grids using Computational Graph Transformation (AMTC).

This method reduces tensor-grid evaluations by leveraging the sparsity within the model’s

computational graph. When combined with the integration-based non-intrusive polynomial

chaos (NIPC) method, AMTC efficiently addresses many low-dimensional (fewer than

four dimensions) uncertainty quantification (UQ) problems in multidisciplinary systems.

This integrated framework is referred to as the graph-accelerated NIPC method.

• Chapter 4 introduces a framework for generating a partially tensor-structured quadrature

rule tailored for use with AMTC. This framework generates the quadrature rule using

the designed method and identifies a desired tensor structure by analyzing the model’s

computational graph. By doing so, it broadens the scope of the graph-accelerated NIPC

methods, making them applicable to a wider range of multidisciplinary UQ problems with

higher dimensions (up to 10 dimensions).
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• Chapter 5 presents two methods, AS-NIPC and AS-AMTC. AS-NIPC combines the

integration-based NIPC with the AS method for solving high-dimensional UQ problems.

AS-NIPC incorporates rigorous approaches to generate orthogonal polynomial basis

functions for lower-dimensional active variables and efficient quadrature rules to estimate

their coefficients. Building upon AS-NIPC, the AS-AMTC method extends the integration

of the active subspace method with graph-accelerated NIPC methods. This extension

enhances the applicability of graph-accelerated NIPC methods to even higher dimensions,

exceeding 10 dimensions, thus broadening their utility in addressing high-dimensional

multidisciplinary UQ problems.

• Chapter 6 presents a UQ method, gradient-enhanced univariate dimension reduction

(GUDR). This method enhances on the univariate dimension reduction (UDR) method by

incorporating univariate gradient terms. The GUDR method relies on the AMTC method to

achieve efficient tensor-grid evaluations and the acceleration of AMTC does not rely on the

computational graph sparsity of the original computational model. Notably, with the use of

an efficient automatic differentiation method, GUDR preserves the linear scalability of the

UDR method while achieving significantly higher accuracy in estimating the higher-order

statistical moments.

• Chapter 7 presents a case study on a laser-beam-powered aircraft design problem. This

study offers a comparative analysis between the results of MDO and MDOUU, while

also demonstrating the efficacy of graph-accelerated uncertainty propagation methods in

addressing large-scale MDOUU problems.

• Chapter 8 offers the summary of contributions and recommendations for future work.
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Chapter 2

Background

2.1 MDO formulation and framework

The mathematical problem of a deterministic optimization problem can be expressed as

follows:
min

x
F (x)

subject to C (x)≤ 0

xL ≥ x ≤ xU ,

(2.1)

where x is the vector of design variables; xL and xU are the lower and upper bounds of the design

variables, respectively; F denotes the objective function; and C corresponds to the vector-

valued constraint function. In MDO, optimization problems often feature nonlinear functions,

high-dimensional design spaces, and expensive model evaluations due to the involvement of

multiple disciplines. Consequently, iterative gradient-based optimization methods, such as the

quasi-Newton method, are commonly employed for their ability to efficiently find local minima

with excellent scalability in high-dimensional design spaces. The commonly used optimizers

include SNOPT [29] and SciPy’s SLSQP, which use sequential quadratic programming (SQP)

methods to tackle high-dimensional constrained optimization problems with smooth nonlinear

functions. In this framework, the optimizer updates the design variables, x in each optimization

iteration using the function and gradient evaluations of the objective and constraint functions

until the optimizer converges. The computational framework for gradient-based MDO is shown
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Figure 2.1. Computational framework for gradient-based MDO

in Fig. 2.1.

2.2 MDOUU formulation and framework

In this thesis, we consider the MDOUU problems within a probabilistic framework, in

which uncertain inputs are defined as random variables with continuous probability density

distributions. Additionally, we assume the uncertain inputs are independent of the design

variables. In this context, when uncertain inputs are introduced into this optimization framework,

the outputs of the objective and constraint functions become random variables, rendering the

optimization formulation in (2.1) invalid. In MDOUU, there are two common ways to formulate

the optimization problems: robust design optimization (RDO) and reliability-based design

optimization (RBDO). In RDO, the optimization problem can be formulated as:

min
x

M (x) := E[ f (x,U)]+α1S[ f (x,U)]

subject to N (x) := E[c(x,U)]+α2S[c(x,U)]≤ 0

xL ≤ x ≤ xU .

(2.2)

Here, U denotes the vector of uncertain inputs; f (x,U) and c(x,U) denote the stochastic outputs

associated with the MDO objective and constraint functions, respectively; E[·] and S[·] denote

the expectation and standard deviation of a random variable, respectively; M and N represent
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the new MDOUU objective and constraint functions, respectively. These new objective and

constraint functions incorporate the statistical moments of the original functions, and α1 and α2

are tunable parameters associated with the penalization of standard deviations, respectively. This

formulation is often easy to implement and has proven to efficiently improve the robustness of

designs under input variations.

In RBDO, the optimization problem can be formulated as:

min
x

M (x) := E[F (x,U)]

subject to N (x) := P[C (x,U)≤ 0]≤ p

xL ≥ x ≤ xU

(2.3)

where P is the probability function and p is the required probability of failure. In RBDO, the

primary objective is to find the optimal design that satisfies the probability of failure constraints,

thereby achieving optimal performance with reliability guarantees. A demonstration of RDO

and RBDO results is shown in Fig. 2.2 . The figure includes a comparison between the objective

random outputs of RDO and deterministic optimization results, as well as a comparison between

the constraint random outputs of RBDO and deterministic optimization results.

Solving the MDOUU problems typically requires a double-loop framework with opti-

mization in the outer loop and uncertainty quantification (UQ) in the inner loop. When using a

gradient-based optimizer, at each optimization iteration, we use a UQ solver to solve M and

N and their gradients with respect to the design variables, dM
dx and dN

dx . These information

is passed into the optimizer to update the design variables. The computational framework for

gradient-based MDOUU is shown in Fig. 2.3.

2.3 Uncertainty propagation methods

Due to the double-loop structure of the computational framework for MDOUU, solving

MDOUU is often significantly more expensive than solving the corresponding MDO problem.
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(a) RDO result vs deterministic optimization
result

(b) RBDO result vs deterministic
optimization result

Figure 2.2. Comparison of RDO, RBDO, and deterministic optimization results

Figure 2.3. Computational framework for gradient-based MDOUU
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One of the key research directions to solve large-scale MDOUU problems is to devise efficient UQ

methods to minimize the UQ cost in each optimization iteration. In MDOUU, the UQ problem

is a forward problem which is also known as uncertainty propagation. In practical scenarios,

numerical models inherently fall short of achieving perfect fidelity with reality and consistently

contend with inherent uncertainties. To address this challenge, uncertainty propagation aims

to rigorously examine and analyze how a system’s output is influenced by the uncertainties

inherent in its inputs. The resultant assessments of uncertainty serve as a valuable foundation

for informed decision-making and thorough risk assessment. Applications of UQ can be found

in many scientific and engineering domains, such as weather forecasting [49, 74], structural

analysis [95, 39], and aircraft design [68, 100, 58].

Uncertainties within the inputs can stem from diverse origins and are typically classified

into two categories: aleatoric and epistemic. Aleatoric uncertainties, recognized as irreducible

uncertainties, are intrinsic to the system and encompass factors such as fluctuations in operational

conditions, mission prerequisites, and model parameters. These uncertainties can often be

described within a probabilistic framework. In contrast, epistemic uncertainties constitute

reducible uncertainties arising from knowledge gaps. These uncertainties may be induced by

approximations utilized in computational models or numerical solution methods, and are often

difficult to be described within a probabilistic framework. This thesis focuses on UQ problems

within a probabilistic formalism where uncertain inputs are continuous random variables with

known probability density distributions. The goal is to estimate statistical moments such as the

mean and variance of the Quantity of Interest (QoI), or more complex risk measures such as the

probability of failure or the conditional value at risk.

For this type of UQ problem, the most common non-intrusive methods include the method

of moments, polynomial chaos, kriging, and Monte Carlo. The method of moments analytically

computes the statistical moments of the QoI, using the Taylor series approximation. It often

only uses function evaluations and derivative information at one or a small number of input

points [106]. The most commonly employed variants of this method utilize derivatives up to

10



either first [24] or second order [60, 61] to ensure cost-effectiveness. While adept at efficiently

estimating statistical moments, this approach grapples with challenges in estimating other kinds

of risk measures. Moreover, it may lack accuracy when input variance is significant. In contrast,

the Monte Carlo approach employs random sampling of uncertain inputs to compute the risk

measures. Based on the law of large numbers, Monte Carlo’s convergence rate is independent of

the number of uncertain inputs, making it particularly attractive for solving high-dimensional

problems. Recent strides in enhancing its efficiency encompass multi-fidelity [75, 76] and

importance sampling [93] techniques. However, in the context of low-dimensional problems,

the Monte Carlo method might demand substantially more model evaluations to achieve the

same level of accuracy as the alternative UQ methodologies. Kriging, also known as Gaussian

process regression, is a common statistical technique employed in various fields. In UQ, kriging

constructs a surrogate response surface by leveraging input-output data pairs. The surrogate

model replaces the original expensive function to allow a large number of model evaluations

in order to perform reliability analysis [52, 38] or optimization under uncertainty [82]. For

low-dimensional UQ problems, if the objective function is assumed to be smooth, the polyno-

mial chaos-based techniques often stand out as the most efficacious option. The generalized

polynomial chaos theory represents the QoI as orthogonal polynomials that are derived from

the distributions of the uncertain inputs. Benefiting from the inherent smoothness of the random

space, polynomial chaos-based methods exhibit rapid convergence rates facilitated by sampling

or integration techniques. Common polynomial chaos-based methods include non-intrusive

polynomial chaos (NIPC) [37, 46, 54] and stochastic collocation (SC) [107, 5].

2.3.1 Polynomial chaos expansion

Wiener initially introduced the concept of polynomial chaos expansion (PCE), utilizing

Hermite polynomials to model the response of a system affected by Gaussian uncertain inputs

[105]. This foundational concept was later advanced into the generalized polynomial chaos

(gPC) method by Xiu and Karniadakis [108]. Within the framework of gPC, model responses are
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represented through polynomial series of uncertain inputs. These polynomials are meticulously

chosen to exhibit orthogonality with respect to the probability distribution of the uncertain inputs,

thereby ensuring exponential convergence.

We address a general problem in uncertainty quantification (UQ) involving a function

defined as follows:

f = F (u), (2.4)

where F : Rd → R represents the model evaluation function, u ∈ Rd denotes the input vector, and

f ∈ R represents a scalar output. The uncertainties associated with the inputs are expressed as a

stochastic vector denoted by U := [U1, . . . ,Ud], under the assumption that these random variables

are mutually independent. The stochastic input vector adheres to the probability distribution

ρ(u) with its support defined by Γ. Our focus centers on the evaluation of risk measures of the

output random variable, f (U).

In gPC, the stochastic output, f (U), is defined as an infinite series of orthogonal polyno-

mials with respect to the uncertain input variables:

f (U) =
∞

∑
i=0

αiΦi(U), (2.5)

where Φi(U) are the PCE basis functions that are generated based on ρ(U), and αi are the

corresponding weights that need to be determined.

Choosing the PCE basis functions is important to ensure the rapid convergence of PCE-

based methods. These PCE basis functions have to satisfy the orthogonality property,

〈
Φi(U),Φ j(U)

〉
= δi j, (2.6)

where δi j is Kronecker delta and the inner product is defined as

〈
Φi(U),Φ j(U)

〉
=
∫

Γ

Φi(u)Φ j(u)ρ(u)du. (2.7)
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In one-dimensional problems, we can directly use the univariate orthogonal polynomials

as PCE basis functions. In Table 2.1, we show the univariate orthogonal polynomials for common

types of continuous random variables. In multi-dimensional problems, if the input variables

are mutually independent, the PCE basis functions can be formed as a tensor-product of the

univariate orthogonal polynomials corresponding to each uncertain input. To elucidate this, we

introduce the concept of multi-index notation and define a p-tuple as

i′ = (i1, . . . , ip) ∈ N p
0 , (2.8)

with its magnitude determined as

|i′|= i1 + . . .+ ip. (2.9)

Employing this notation, we denote the collection of univariate PCE basis functions for variable

uk as {φi(uk)}p
i=0. Then, the multivariate PCE basis with an upper limit on the total degree of p

can be expressed as

Φi′(u) = φi1(u1) . . .φid(ud), |i′| ≤ p. (2.10)

In practice, one may use the PCE basis functions in (2.10) to truncate the infinite series in (2.5),

resulting in:

f (U)≈
q

∑
i=0

αiΦi(U). (2.11)

The resultant number of PCE basis functions, q+1, satisfies:

q+1 =
(d + p)!

d!p!
. (2.12)

Once the PCE coefficients are estimated, it becomes straightforward to compute statistical

moments such as the mean and standard deviation of the model output. These calculations can

be expressed as follows:

µ f = α0, (2.13)
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Table 2.1. Orthogonal polynomials for common types of continuous random variables

Distribution Orthogonal polynomials Support range
Normal Hermite (−∞,∞)
Uniform Legendre [−1,1]

Exponential Laguerre [0,∞)
Beta Jacobi (−1,1)

Gamma Generalized Laguerre [0,∞)

σ f =
d

∑
i=1

α
2
i . (2.14)

For risk measures like the probability of failure, the truncated PCE model can be treated as

a surrogate model, and methods like Monte Carlo can be applied on the surrogate model to

compute the desired risk measure.

2.3.2 Non-intrusive polynomial chaos method

The non-intrusive polynomial chaos (NIPC) method solves the PCE coefficients αi in

(2.11) by either integration or regression. The integration approach uses the orthogonal property

in (2.6) and projects the model output onto each basis function:

αi =
⟨ f (U),Φi⟩〈

Φ2
i
〉 =

1〈
Φ2

i
〉 ∫

u
f (u)Φi(u)ρ(u)du. (2.15)

This requires solving a multi-dimensional integration problem, which is often estimated by using

the Gauss quadrature approach:

αi =
1〈

Φ2
i
〉 ∫

u1

. . .
∫

ud

f (u1, . . . ,ud)Φk(u1, . . . ,ud)ρ(u1, . . . ,ud)du1 . . .dud

≈ 1〈
Φ2

i
〉 k

∑
i1=0

. . .
k

∑
id=0

w(i1)
1 . . .w(id)

d f (u(i1)1 , . . . ,u(id)d )Φi(u
(i1)
1 , . . . ,u(id)d ),

(2.16)

where (u(1)i , . . . ,u(k)i ) and (w(1)
i , . . . ,w(k)

i ) are the nodes and weights for the 1D Gauss quadrature

rule in the ui dimension, k is the number of quadrature points used in each dimension. The 1D
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quadrature rule with k nodes is chosen such that the quadrature rule can exactly integrate 1D

polynomials up to (2k−1)th order. In the multi-dimensional case, the Gauss quadrature rule

forms a tensor product of the 1D quadrature rule, which requires us to evaluate the model output

at the tensor-product quadrature points, defined as

u = uk
1 ×·· ·×uk

d, (2.17)

where

uk
i := {u( j)

i }k
j=1. (2.18)

The total number of quadrature points is thus kd , and this number increases exponentially with

respect to the number of uncertain input variables. For high-dimensional problems, one way to

mitigate the exponential growth of quadrature points is to use the Smolyak sparse grid approach

[70], which drops the higher-order cross terms in the quadrature points with minimal loss of

accuracy. The sparse grid quadrature points can be expressed as:

u =
⋃

ℓ−d+1≤|i|≤ℓ

(
ui1

1 ×·· ·×uid
d

)
, (2.19)

where ℓ is the level of construction. The existing variations of sparse-grid methods can be

found in [27]. Another way to reduce the total number of quadrature points is to use a designed

quadrature approach. In [55], Keshavarzzadeh et al. formulate an optimization problem to

optimize for the designed quadrature points and the corresponding weights that ensure the

exact integration on a polynomial subspace. The number of designed quadrature points can

be significantly smaller than the full-grid quadrature points for solving the high-dimensional

integration problems for the same level of accuracy.

The regression approach first generates n sample points for U and evaluates the model
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for each sample point. The coefficients are determined by solving a linear least-squares problem:


Φ1(u(1)) . . . Φq(u(1))

...
...

Φ1(u(n)) . . . Φq(u(n))




α1

...

αq

=


f (u(1))

...

f (u(n))

 . (2.20)

The rule of thumb is that the number of samples n needs to be 2-3 times the number of coefficients

q. This means the cost of the regression-based NIPC method can be reduced by using the sparse

PCE basis, resulting in fewer coefficients to be estimated. Recent advances focus on adaptive

basis selection and adaptive sampling[10, 94, 62].
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Chapter 3

Computational graph transformations
to accelerate tensor-grid evaluations in
uncertainty quantification (UQ)

For low-dimensional uncertainty quantification (UQ) problems, polynomial chaos-based

methods are often the most effective. When using non-intrusive polynomial chaos (NIPC) and

stochastic collocation (SC) methods, a tensor-product grid can be used to sample the input space.

However, this approach is typically reserved for very low-dimensional UQ problems due to

the exponential increase in input points with the number of uncertain inputs. More commonly,

methods employ sparse grids or randomly generated sample points to reduce the number of input

points while minimizing the loss of accuracy. Our findings, however, show that maintaining a

tensor structure for the input points offers unique advantages. For certain problems, the total

model evaluation cost can be reduced through a different approach without altering the tensor

structure of the input points.

When evaluating a computational model on full-grid input points, if we view the compu-

tational model as a computational graph with only elementary operations, the current framework

evaluates each operation the same number of times at the tensor-product input points of all the

uncertain inputs. However, for each operation, the output data only has distinct values at the

distinct input points in their dependent input space, and a large portion of the operations may not

be dependent on all of the uncertain inputs. This means the current framework of NIPC and SC
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could create many wasteful evaluations on a large portion of the operations.

This chapter presents a computational graph transformation method called Accelerated

Model evaluations on Tensor grids using Computational graph transformations (AMTC) that

algorithmically modifies the computational graph to eliminate the unnecessary evaluations

incurred by the current framework of integration-based NIPC and SC. AMTC reduces the model

evaluation cost on full-grid quadrature points by partitioning the computational graph into sub-

graphs using the operations’ dependency information and evaluating each sub-graph on the

distinct quadrature points. The proposed method is implemented in conjunction with a new

algebraic modeling language, the Computational System Design Language (CSDL). We achieve

cost reductions on UQ problems in a general and automatic way by analyzing and manipulating

the computational graph that CSDL makes available.

This method has been applied to four different UQ problems with different computational

graph structures. For three of the problems, we observed a significant acceleration in model eval-

uation time when solving the UQ problems using the full-grid NIPC method, which makes this

UQ method the most efficient method among the implemented UQ methods for these problems.

Generally, for a wide range of UQ problems that involve multi-point, multi-disciplinary, or other

models that possess a sparse graph structure, we expect this method to significantly reduce the

model evaluation time on tensor-grid input points, which can improve the time scaling for, but

not limited to NIPC and SC methods.

3.1 Model evaluation cost for current non-intrusive UQ
methods

If we consider only the non-adaptive approaches, the current framework for non-intrusive

UQ methods includes three steps:

1. Generate sample/quadrature points based on the distribution of uncertain inputs.

2. Evaluate the target model for each of the sample points.
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3. Post-process the output points to compute the desired quantities of the output.

Step one generates the input points based on the distribution of uncertain inputs. For methods

like regression-based NIPC, Monte Carlo and kriging, the input points are often generated

randomly (e.g. random sampling, Latin hypercube sampling). For integration-based NIPC

and SC methods, they can be generated using the full/sparse-grid strategy. In step two, the

target model is repeatedly evaluated at each of the input points. For some models that support

vectorized input, the input points can be vectorized and evaluated at the same time. However,

most of the time, the target model needs to be run in a for-loop by evaluating one input point at a

time. In step three, the model output points are used to estimate the PCE coefficients for NIPC,

form Lagrange interpolation functions for SC, or construct Gaussian process model for kriging,

before computing the desired quantity for the output.

Under this framework, the model evaluation cost for any UQ method can be approximated

as:

cost ≈ nO(F (u)), (3.1)

where n is the number of sample points and O(F (u)) is the model evaluation cost for one sample

point. When we use the full-grid approach for integration-based NIPC or SC to generate the input

points, the number of input points increases exponentially with the dimension of uncertainty

inputs as n = kd . Under the current framework to evaluate the model, the evaluation cost follows

Eq. 3.1 and thus increases exponentially as the number of uncertain inputs, thus suffers the curse

of dimensionality.

The current methods (e.g. sparse-grid and designed quadrature) to overcome the curse of

dimensionality all focus on reducing the number of input points, n, by breaking the full-tensor

structure of the input points, so that the input points do not increase exponentially as the number

of the uncertain inputs, but none tries to break the linear relationship in Eq. 3.1 to reduce

the evaluation cost on tensor-grid input points by using a computational graph transformation

approach.
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3.2 Viewing tensor-grid evaluations via computational
graph

Any computer program that describes a computational model is a computational process

that executes a sequence of elementary functions and operations. A computational process

can be described by a computational graph. A computational graph is a directed acyclic graph

in which the nodes represent the operations and variables, and the directed edges represent

how operations and variables are connected to each other. Such a graph is also bipartite

because each operation is connected to an output variable, and likewise, variables are connected

to operations (as arguments). For example, the computer program that evaluates a function

f = cos(u1)+ exp(−u2) can be decomposed into the following set of fundamental operations:

ξ1 = ϕ1(u1) = cos(u1);

ξ2 = ϕ2(u2) =−u2;

ξ3 = ϕ3(ξ2) = exp(ξ2);

f = ϕ4(ξ1,ξ3) = ξ1 +ξ3,

(3.2)

The computational graph for this model is shown in Fig. 3.1 with the blue nodes representing the

variables and the orange nodes representing the operations. A common use of computational

graphs is in automatic differentiation (AD) [7, 92] to automatically compute the total derivatives.

AD views the computer program as a sequence of operations and functions and repeatedly applies

the chain rule to compute the total derivative. Another use of the computational graph is to modify

the computational graph to reduce the time of memory cost of the model. In Tensorflow [1], a

graph optimization method is implemented to reduce memory usage and evaluation costs for

neural network models. It modifies the computational graph through constant folding, arithmetic

simplification, and optimization.

If we view the model as a computational graph, in the current UQ framework, each
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Figure 3.1. Computational graph of function f = cos(u1)+ exp(−u2)

operation and function is evaluated the same number of times as the number of input points.

However, this could create many unnecessary evaluations when we evaluate the model on tensor-

grid input points. For example, consider a UQ problem involving the simple function we showed

before, given by

f = cos(u1)+ exp(−u2). (3.3)

In this problem, U1 and U2 are independent uncertain inputs, and we aim to compute the random

variable f (U1,U2). The computational process that describes this function is in (4.25). If we

choose the full-grid quadrature points with k quadrature points in each dimension, we need to

evaluate this function at a total of k2 quadrature points which are

u =


(u(1)1 ,u(1)2 ) . . . (u(k)1 ,u(1)2 )

... . . . ...

(u(1)1 ,u(k)2 ) . . . (u(k)1 ,u(k)2 )

 . (3.4)

For both inputs u1 and u2, if we view their input points as vectors, they are in a tensor-product
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form between the quadrature points in its dimension and a vector of ones:

u1 = vec




u(1)1 . . . u(k)1
... . . . ...

u(1)1 . . . u(k)1


= vec

(
[u(1)1 , . . .u(k)1 ]⊗ [1, . . . ,1]

)
,

u2 = vec




u(1)2 . . . u(1)2
... . . . ...

u(k)2 . . . u(k)2


= vec

(
[1, . . . ,1]⊗ [u(1)2 , . . .u(k)2 ]

)
.

(3.5)

Even though both vectors have a size of k2, there are only k distinct values, which are the values

of the k quadrature points in its dimension. In the current framework, we can view the model

evaluation step as propagating the input vectors in (3.5) through the model’s computational graph,

which is shown in Fig. 3.1. When we view the propagation of input vectors from an operational

level, the current framework creates many repeated evaluations. For example, when we evaluate

the first operation node in the computational graph, ξ1 = cos(u1), we will evaluate this operation

for k2 points, since there are k2 input points for u1. However, out of the k2 evaluations, there are

at most k distinct evaluations and thus the current framework creates k2 − k wasteful repeated

evaluations in this case. Similarly, for ξ2 = −1∗u2 and ξ3 = exp(ξ2), both of the operations’

outputs are only dependent on u2, and they will also have at most k distinct values to be evaluated

for. The current framework also creates k2 − k repeated evaluations for these operations. In

contrast, for the last operation node, f = ξ1 +ξ3, there are k2 distinct values to be evaluated as f

is dependent on both u1 and u2.

In practical UQ problems, we could have a large computational graph with a number of

uncertain inputs, but some of the inputs may only affect a small part of the computational graph.

For example, for a multidisciplinary model, we may have uncertain inputs coming from different

disciplines. When we view the computational graph for the whole model, there may be a small

portion of operations that are dependent on some uncertain inputs. In this case, we could reduce
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the total computational cost on the tensor-grid inputs by eliminating the repeated evaluation cost

for each operation node but the output data still carry the necessary results to compute the results

of the QoI.

The logic here is simple and straightforward. One can manually modify the size of the

input and state variables in the model to achieve this reduction if the model has a simple graph

structure. However, for a complicated model with a large number of uncertainties, it becomes

impractical to manually change the code to perform only necessary evaluations and match the

shape of input for each node in the computational process.

3.3 Methodology

3.3.1 A computational graph transformation method to accelerate
tensor-grid evaluations

Here, we present the Accelerated Model evaluations on Tensor grids using Computational

graph transformations (AMTC) method. The goal of our method is to enable automatic genera-

tion of a modified computational graph, given a computer program, that eliminates all wasteful

evaluations due to tensor-product sampling within a NIPC or SC algorithm. The modified

computational graph leverages the graph structure of the target model and enables performing

the minimal number of evaluations for each operation. To achieve this, we modify the size of

input data that are passed into the operations.

In the UQ context, when we evaluate the computational model on full-grid quadrature

points, we are forming a tensor product grid from the quadrature points in each uncertain input

dimension. If we use k quadrature points in each dimension, we end up having kd number of

input points for d uncertain inputs. For each dimension, these k quadrature points are determined

based on the probability distribution of that uncertain input. When we view the target model

monolithically, the output is dependent on all of the d uncertain inputs. In the d-dimensional

uncertain input space, we have a total of kd quadrature points, and it is required for us to evaluate
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Table 3.1. Operations dependency information for function f = cos(u1)+ exp(−u2)

D(ϕi,u j) u1 u2
ϕ1 1 0
ϕ2 0 1
ϕ3 0 1
ϕ4 1 1

the model output on all kd input points to gather all of the necessary information to determine

the effect of the uncertain inputs on the model output for UQ purpose. However, when we

view it as a computational graph and consider the output of each operation in the graph, not

all of the operations’ outputs are dependent on d uncertain inputs. For an output dependent

on d′ uncertain inputs with d′ < d, in its uncertain input space, there are only kd′
number of

quadrature points, and accordingly this output only needs to be computed kd′
times to compute

the necessary information for UQ purpose. Drawing from this rationale, we want to partition the

model’s computational graph into discrete sub-graphs. These sub-graphs are chosen such that the

operations within each are dependent on the same uncertain inputs and thus need to be evaluated

on the same quadrature points. We achieve this by generating the dependency information for

each operation, which shows whether the operation is dependent on an uncertain input. The

dependency information is stored as an influence matrix, written as D(ϕi,u j), whose (i, j)th

entry is 1 if the ith operation depends on the jth uncertain input and 0 otherwise. For example,

the dependency information for the simple function in (4.10) is shown in Tab.4.1.

From the dependency information, the operations that have the same dependency in-

formation on all of the uncertain inputs can be grouped together to form a sub-computational

graph to be evaluated on the same quadrature points. Each sub-computational graph should be

evaluated the same number of times as the number of quadrature points in its uncertain input

space. However, the output of one sub-graph may be the input of another sub-graph, since they

have different uncertain input spaces, it is required to extend the uncertain input space of that

output to match the uncertain input space of the second sub-graph’s output. This requires us to

perform a deliberate tensor-algebra operation. Fortunately, we can use the Einstein summation
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(Einsum) operation to achieve that. The Einsum operation can be used for compactly performing

summations involving indices that appear in multiple tensors/matrices. In this case, we can treat

the output of the sub-graph as a tensor and use the Einsum operation to perform a summation on

specific indices between the output tensor and a tensor of ones, in order to extend its uncertain

input space to a desired higher-order input space. For example, consider an addition operation in

the computational graph

f = ξ1 +ξ2

with ξ1(u1) ∈ Rku1 and ξ2(u2) ∈ Rku2 . In this case, ξ1 is only dependent on u1 with a size of ku1 ,

while ξ2 is only dependent on u2 with a size of ku2 . The values in ξ1 and ξ2 correspond to their

evaluations on the quadrature points in u1 and u2 dimensions, respectively. The output of this

operation, f is dependent on both u1 and u2 and its vector should have a size of Rku1ku2 . What

we need to do here is to insert operations to modify the sizes of the inputs so that they have the

same size as the output f is supposed to be. Thus we evaluate the addition operation, it results in

the correct vector for it. We show a demonstration of how to extend the input size in a Python

implementation using NumPy’s Einstein summation function followed by a reshape operation.

The specific code in Python would be

import numpy as np

original_shape_xi_1 = (k_u1 ,1) #Original size for xi_1

original_shape_xi_2 = (k_u2 ,1) #Original size for xi_2

modified_shape = (k_u1*k_u2 , 1) #Target size for xi_1 and xi_2

xi_1 = np.einsum(’i...,p...->pi...’, xi_1 , np.ones((k_u2 , 1)) #(k_u1 ,1)

-> (k_u1 ,k_u2 ,1)

xi_2 = np.einsum(’i...,p...->ip...’, xi_2 , np.ones((k_u1 , 1)) #(k_u2 ,1)

-> (k_u1 ,k_u2 ,1)

xi_1 = np.reshape(xi_1 , modified_shape) #(k_u1 ,k_u2 ,1) ->(k_u1*k_u2 , 1)

xi_2 = np.reshape(xi_2 , modified_shape) #(k_u1 ,k_u2 ,1) ->(k_u1*k_u2 , 1).

The code above transforms both inputs into the same size of the output with the correct order
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of values in the vectors. In fact, for any dimension and size of the input, we can always use the

Einstein summation functions followed by reshape functions to transform the input data to the

correct size we need. In our method, we insert the einsum operation nodes for any connections

between the sub-graphs we partitioned. Each einsum operation node has an Einstein summation

function followed by a reshape function with the right arguments to ensure the correct data flow

between the sub-graphs. The outline for the AMTC method is shown in Alg.1.

Algorithm 1. Accelerated Model evaluations on Tensor grids using Computational graph
transformations (AMTC) algorithm

1: Specify a computational graph for a computational model
2: Run Kahn’s algorithm [50] to determine the correct order for the operations to be evaluated
3: Generate the operations’ dependency information and store it as an influence matrix
4: Group the operations that share the same dependency information and form the sub-graphs
5: Insert the einsum operation nodes with the right argument between the sub-graphs
6: Evaluate the modified computational graph with the correct input points

To demonstrate how our algorithm modifies the computational graph and reduces the

evaluation costs, we show a comparison of computational graphs with and without using AMTC

in Fig. 3.2. Assuming we evaluate the function in (3.3) at full-grid quadrature points of the

uncertain inputs, this figure shows the computational graphs with and without using the AMTC

method. The size of the data flow is also labeled in the graphs and the partitioned sub-graphs are

indicated on the modified computational graph. In this case, without using the AMTC method,

both inputs u1 and u2 have the size of k2 × 1, and thus each operation in the computational

graph is evaluated for k2 number of times. However, with the AMTC method, the computational

graph is partitioned into three sub-graphs. The operations in sub-graph 1 are evaluated on the

k quadrature points in u1 dimension while operations in sub-graph 2 are evaluated on the k

quadrature points in u2 dimension. Two einsum operations are inserted connecting sub-graph 1

and sub-graph 2 to sub-graph 3, so that the outputs of the first two sub-graphs are modified into

the correct size and sub-graph 3 can be evaluated k2 times to gather the same output values as

the current method.
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(a) Computational graph without
using AMTC

(b) Computational graph using
AMTC

Figure 3.2. Computational graphs with data size for full-grid quadrature points evaluation on
f = cos(u1)+ exp(−u2)
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3.3.2 Software implementation

The AMTC method can only be implemented from the data access layer of a software

package where we have access to the computational graph and data structure of a computer

program. This is possible thanks to the Computational System Design Language (CSDL)

package1 [26]. CSDL is an embedded domain-specific language targeting large-scale multidisci-

plinary design analysis and optimization problems. With CSDL, the user defines the model as a

sequence of operations by using a software interface that is highly expressive and natural (CSDL

code resembles regular Python).

We show a demonstration graph for the implementation of AMTC on CSDL in Fig. 3.3.

The CSDL package has a unique three-stage compiler, which includes front-end, middle-end,

and back-end. Using the front-end, the user defines the model and specifies the problem that

needs to be solved. Next, the middle-end constructs a computational graph for that model, and

the AMTC acts as a graph transformation method to generate the modified computational graph

that is more efficient to evaluate. Finally, at the back-end, it creates an executable script based on

the modified computational graph using an automatic code generation approach.

Below is a coarse outline of how CSDL and our proposed method interact:

1. User defines the model and identifies the uncertain inputs.

2. Generate the quadrature points according to the distributions of the input variables.

3. Generate the computational graph from the numerical model the user defines.

4. Modify the computational graph as in Alg. 1.

5. Generate an executable back-end.

6. Post-process the output data to calculate the desired quantities of the output.

1CSDL software repository: https://lsdolab.github.io/csdl/
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Figure 3.3. Demonstration for the implementation of AMTC on CSDL

3.4 Numerical Results

We investigate the performance of AMTC by using it with the full-grid NIPC method

on three low-dimensional UQ problems involving different computational models. The AMTC

method has been implemented in the middle-end of CSDL compiler as a graph transformation

method, and all of the computational models involved in the test problems are built in CSDL in

order to use AMTC to accelerate its tensor-grid evaluations.

3.4.1 3-dimensional UQ problem with an analytical piston simulation
model

We first consider a UQ problem involving an analytical non-linear model of the cycle

time of a piston. This problem is adapted from [9]. The piston cycle time C in seconds is

expressed as

C = 2π

√
M

k+S2 P0V0Ta
T0V 2

, (3.6)

with

V =
S
2k

(√
A2 +4k

P0V0

T0
Ta −A

)
and A = P0S+19.62M− kV0

S
. (3.7)
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In this problem, three of the input parameters are normal random variables, and the rest of them

are deterministic variables. The values and descriptions for all of the variables are shown in

Table 3.2. The objective of this problem is to compute the expectation value of the piston cycle

time, namely, E[C].

Table 3.2. Input parameters and ranges for the piston problem

Input parameters Range Description
M N(50,10) Piston weight (kg)
S N(0.01,0.002) Piston surface area (m2)

V0 N(0.005,0.001) Initial gas volume (m3)
k 3000 Spring coefficient (N/m)
P0 100000 Atmospheric pressure (N/m2)
Ta 293 Ambient temperature (K)
T0 350 Filling gas temperature (K)

This UQ problem and those that follow are all solved using five methods: integration-

based NIPC method using the full-grid quadrature points (full-grid NIPC), full-grid NIPC with

the AMTC method (full-grid NIPC with AMTC); integration-based NIPC method using the

designed quadrature method (designed quadrature NIPC); kriging and the Monte Carlo method.

The kriging method is implemented in its basic form without using adaptive sampling and

hyperparameter tuning. The sample points are generated by random sampling, and the kriging

surrogate model is trained using the surrogate modelling toolbox in [12].

In our numerical experiments, the full-grid NIPC and the full-grid NIPC with AMTC

methods always generate the same results. Fig. 3.4a shows the model evaluation time in terms

of the number of equivalent model evaluations for the full-grid NIPC method with and without

AMTC. The results show that the AMTC method brought a consistent 50%-60% reduction in

evaluation time. In Fig. 3.4b, the convergence plots of these five methods are compared for the

UQ result. The percentage errors are calculated with respect to the results of the full-grid NIPC

using 400 quadrature points. For this UQ problem, the NIPC methods completely outperform the

Monte Carlo and kriging methods. This is because this UQ problem is fairly low-dimensional

(only three uncertain inputs), and the function is generally smooth. In this kind of UQ problem,
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PCE-related methods are often the most efficient choices. Among the NIPC methods, the

designed quadrature NIPC performs better than the full-grid NIPC, as the designed quadrature

NIPC requires a smaller number of quadrature points to achieve the same level of accuracy

on integration. However, we see a dramatic speed-up after applying the AMTC method to the

full-grid NIPC; the total model evaluation time is reduced by almost an order of magnitude,

making the full-grid NIPC with AMTC the most efficient method among other methods.

The major speed-up that AMTC brought for full-grid NIPC can be explained by the

sparsity of the influence matrix that describes the dependency information of the computational

model in this UQ problem. We show the number of dependent operations for each uncertain

input in this computational model in Tab. 3.3. From this table, we observe that out of the 65

operations in the computational graph, 50% of the operations depend on the uncertain input M

and 60% of the operations depend on uncertain inputs S and V0. This means, a large portion

of the operations are not dependent on all of the uncertain inputs and a significant number of

repeated evaluations are eliminated from the operational level with the AMTC method. As

this computational model only comprises basic arithmetic operations, the repeated evaluations

AMTC eliminated significantly reduces the overall model evaluation time, making the full-grid

NIPC the most efficient UQ method.

Table 3.3. Number of dependent operations for each uncertain input in the piston model

Uncertain input No. of dependent operations Total operations
M 31 65
S 43 65

V0 45 65

3.4.2 3-dimensional UQ problem with a UAV design multidisciplinary
model

The second UQ problem we consider involves a low-fidelity multidisciplinary model

that computes the total energy stored for a laser-beam-powered unmanned aerial vehicle (UAV)

cruising around a ground station for one cycle while being charged by the laser beam. The UQ
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Figure 3.4. UQ results on the 3D piston problem
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problem aims to compute the expectation of the total energy stored under three uncertain inputs.

We show the mission plot in Fig. 3.5 and the input parameters in Tab. 3.4. The computational

model involves five disciplines, comprising beam propagation, weights, aerodynamics, and

performance models. Further details can be found in [97].

The performance comparison of the full-grid NIPC method with and without AMTC

is shown in Fig. 3.6a, and the convergence results for all of the UQ methods are shown in

Fig. 3.6b. We observe that the AMTC method provided approximately a 90% speed-up in the

model evaluation time for the full-grid NIPC method. As a result, full-grid NIPC with AMTC is

more efficient to use than all of the other UQ methods we implemented. This is not surprising to

see, as in the multidisciplinary model, the parameter uncertainties typically come from different

disciplines and there may exist some uncertain inputs that only affect a small portion of the

operations. In this scenario, the acceleration provided by the AMTC method can be extremely

significant when evaluating on the full-grid quadrature points. From the dependency information

shown in Tab.3.5, the uncertain input η affects only less than 10% of the operations in the

computational model, while the other two operations affect roughly 50% of the operations.

Figure 3.5. A circular cruise mission around a ground station
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Table 3.4. Input parameters and ranges for the multidisciplinary model

Input parameters Range Description
V N(100,20) Velocity (m/s)
h N(10,000,2,000) Altitude(m)
η N(0.2,0.03) Atmospheric extinction

Table 3.5. Number of dependent operations for each uncertain input in the multidisciplinary
model

Uncertain input No. of dependent operations Total operations
V 162 285
h 141 285
η 21 285

3.4.3 2-dimensional UQ problem with a eVTOL design multi-point
model

The third UQ problem we consider is a multi-point mission analysis problem involving

an electric vertical takeoff and landing (eVTOL) aircraft. The problem is adapted from [89]. The

UQ problem aims to compute the expectation of the total energy consumption of a lift-plus-cruise

eVTOL aircraft concept (Fig.3.7) in a two-segment mission including climb and cruise. Two

uncertain inputs are considered in this problem, which are the flight speeds at two mission

segments. The details of the properties for the climb and cruise segment are presented in Table

3.6. For each flight segment, we perform a single-point analysis halfway through the stage

and use the vortex-lattice method (VLM), an incompressible and inviscid aerodynamic analysis

method to compute the lift and drag forces. The details of the computational model can be found

in [103].

Table 3.6. Properties for climb and cruise segments of the flight mission

Climb segment Cruise segment
Initial altitude (ft) 6,000 10,000
Final altitude (ft) 10,000 10,000

Flight path angle γ (deg) 20 0
Range R (nmi) Rclimb 37.5−Rclimb

Speed V (Mach) N(0.3,0.03) N(0.5,0.05)
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Figure 3.7. Representation of the eVTOL aircraft [89], credit to NASA

We show the performance comparison of the full-grid NIPC method with and without

AMTC in Fig. 3.8a and the UQ convergence plot comparing the five UQ methods in Fig. 3.8b.

For this problem, the AMTC provided a 70-90% percent reduction in evaluation time and the

reduction got more significant as we increase the number of quadrature points. As a result, the

full-grid NIPC with AMTC method is significantly more efficient to use than the other UQ

methods. The dependency information in Tab. 3.7 shows roughly 40% of the operations depend

on each uncertain input. The sparsity of the influence matrix is present because, for this multi-

point problem, we have two uncertain inputs each only affecting the aerodynamic analysis at one

point. Although the output of the model is based on the results from both aerodynamic analyses,

each aerodynamic analysis is only evaluated on the quadrature points in one-dimensional input

space by using the AMTC method. This dramatically accelerated its model evaluation time on

full-grid quadrature points. In fact, the performance of AMTC can be more significant for many

multi-point problems involving multi-point analyses and multiple uncertain inputs.

We recognize that on this test problem, given the straightforward computational graph

structure, our method’s performance could be replicated by manually conducting two distinct

sets of evaluations with the VLM solver and subsequently integrating these evaluations using

tensor operations. However, in a practical design workflow, where UQ problems might undergo

frequent reformulations, our method can automatically achieve this reduction in computational

cost, sparing users the effort of manual implementation.
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Figure 3.8. UQ results on the 2D multi-point problem
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Table 3.7. Number of dependent operations for each uncertain input in the multi-point model

Uncertain input No. of dependent operations Total operations
Vclimb 605 1505
Vcruise 604 1505

3.4.4 2-dimensional UQ problem with a rotor aerodynamic analysis
model

The fourth UQ problem we consider is a rotor aerodynamic analysis involving a blade

element momentum model. The description of the model can be found in [81]. In this UQ

problem, we aim to compute the expectation of the total torque generated by the rotor, given two

uncertain inputs, rotational rotor speed, and axial free-stream velocity. The description of the

uncertain inputs is shown in Tab. 3.8.

The performance comparison of the full-grid NIPC method with and without AMTC is

shown in Fig. 3.9a. The convergence results for all of the UQ methods are shown in Fig. 3.9b,

and the dependency information is shown in Tab. 3.9. In Tab. 3.9, we observe that the influence

matrix here is also sparse, as roughly 55% of the operations in the computational model are

dependent on each of the uncertain inputs. However, we observe little acceleration for the

full-grid NIPC using AMTC in Fig. 3.9a. As a result, the full-grid NIPC is outperformed by the

designed quadrature method for the UQ results in Fig. 3.9b. This is because the dependency

information is not the only factor that affects the AMTC method’s performance. The other factor

is each operation’s evaluation time. In this model, there exists an implicit operation which also

counts as one operation node but its evaluation time takes more than 95% of the model evaluation

time. Since the AMTC method does not reduce the number of model evaluations on this implicit

operation, the reduction in model evaluation time by AMTC becomes insignificant.

Table 3.8. Input parameters and ranges for the rotor model

Input parameters Range Description
Ω N(100,10) Rotational rotor speed (rad/s)
Vx N(50,5) Axial free-stream velocity(m/s)
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Table 3.9. Number of dependent operations for each uncertain input in the rotor model

Uncertain input No. of dependent operations Total operations
Ω 398 708
Vx 423 708
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Chapter 4

Graph-accelerated non-intrusive polyno-
mial chaos (NIPC) using partially tensor-
structured quadrature rules

Chapter 3 introduces a new method called Accelerated Model evaluations on Tensor

grids using Computational graph transformations (AMTC) [104]. This method reduces the

computational cost of model evaluations on tensor-grid inputs by modifying the computational

graph of the model within the middle end of a modeling language’s three-stage compiler. This

modification eliminates redundant evaluations at the operation level caused by the tensor structure

of the inputs. The AMTC method has been applied with integration-based NIPC to solve UQ

problems, under the assumption of a specific type of sparsity within the computational graphs of

the computational models. This integration, termed the graph-accelerated NIPC method, has

demonstrated superior efficiency in various UQ problems involving multidisciplinary systems.

However, the graph-accelerated NIPC method has so far only been implemented with a full-grid

Gauss quadrature rule, targeting low-dimensional UQ problems.

This chapter introduces a novel framework aimed at producing a quadrature rule pos-

sessing a specified tensor structure, tailored for use with the graph-accelerated NIPC method in

addressing the UQ problem. Within this framework, we first identify a suitable tensor structure

option for the quadrature rule through an analysis of the computational model. Subsequently,

we employ the designed quadrature method to construct the quadrature rule that adheres to this
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tensor structure. The resulting quadrature rule is strategically designed to leverage the sparsity

inherent in the computational graph of the model, thus maximizing efficiency when employing

the AMTC method for accelerating tensor-grid evaluations.

This method has been applied to two UQ problems, one with four uncertain inputs and

one with six uncertain inputs, both derived from practical aircraft design problems involving

multidisciplinary systems. The proposed method produces new partially tensor-structured

quadrature rules distinct from existing ones for both test problems. These partially structured

quadrature rules also outperform existing methods when employed with the graph-accelerated

NIPC method for solving UQ problems.

4.1 Numerical quadrature rules

This chapter focuses on employing the integration-based NIPC method for solving multi-

dimensional UQ problems. In this context, the integration-based NIPC method is essentially

solving the integration problem as in (2.15). We denote the integration problem as

I( f ) =
∫

Γ

f (u)ρ(u)du,

where u = (u1, . . . ,ud) ∈ Rd . Solving this integration problem often involves utilizing the

numerical quadrature approach, which approximates the integral as a weighted sum of function

evaluations at specific quadrature points:

I( f )≈
n

∑
i=1

w(i) f (u(i)), (4.1)

where u(i) ∈ Γ and w(i) > 0 represent the nodes and weights, respectively, to be determined by

the quadrature rule.

The objective of the quadrature rule is to effectively approximate a large set of functions

with a minimal number of function evaluations. This is typically achieved by ensuring equality
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conditions hold for all functions f within a polynomial subspace Π, as expressed by:

∫
Γ

f (u)ρ(u)du =
n

∑
i=1

w(i) f (u(i)) for all f ∈ Πr. (4.2)

Here, we consider the cross-polynomial subspace with a total polynomial order of r, defined as:

Πr = span{uα | α ∈ Λr}, (4.3)

where

α = (α1, . . . ,αd), uα =
d

∏
j=1

(u j)
α j (4.4)

and

Λr =

{
α |

d

∑
i=1

αi ≤ r

}
. (4.5)

In many numerous integration problems, the evaluation functions exhibit smooth behavior and

can be accurately approximated by the polynomials within the cross-polynomial subspace. In

such instances, the quadrature rule enforcing Equation (4.2) can prove to be highly effective.

Gauss quadrature rule

One approach to generating the quadrature points is through the use of the Gauss quadra-

ture rule [31]. In the one-dimensional case, the quadrature points u(1), . . . ,u(k) are the roots of

the orthogonal polynomial pk(u) with degree k. The polynomials here are defined in the same

way as the PCE basis functions, and they also satisfy orthogonality:

〈
pi, p j

〉
=
∫

Γ

pi(u)p j(u)ρ(u)du = δi j. (4.6)
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The weights of the Gauss quadrature rule, w(1), . . . ,w(k) can be computed by solving the moment-

matching equations:

k

∑
i=1

p j

(
u(i)
)

w(i) =

 1 if j = 0

0 for j = 1, . . . ,k−1.
(4.7)

In this approach, the univariate Gauss quadrature rule with k nodes and weights can exactly

integrate the univariate polynomials up to degree 2k−1.

For multi-dimensional integrations, the Gauss quadrature rule extends the univariate

rule to form a tensor structure, Assuming k quadrature points in each dimension, the integral is

approximated as

I ≈
k

∑
i1=0

. . .
k

∑
id=0

w(i1)
1 . . .w(id)

d f (u(i1)1 , . . . ,u(id)d )ρ(u(i1)1 , . . . ,u(id)n ), (4.8)

where (u(1)i , . . . ,u(k)i ) and (w(1)
i , . . . ,w(k)

i ) are the nodes and weights for the 1D Gauss quadrature

rule in the ui dimension, respectively. We represent the full-grid quadrature points as

u = uk
1 ×·· ·×uk

d, (4.9)

where uk
i := {u( j)

i }k
j=1. Indeed, while this method allows exact integration of cross-polynomials

up to a total order of 2k−1, it suffers from the curse of dimensionality. This is because the total

number of quadrature points increases exponentially with the number of dimensions, as n = kd .

To mitigate the curse of dimensionality the Gauss quadrature rule suffers from, the

Smolyak sparse grid method [90] offers a solution. This method strategically drops higher-order

cross terms in the full-grid Gauss quadrature points, reducing the number of required quadrature

points while preserving the accuracy of the quadrature rule to a significant extent. The sparse
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grid quadrature points can be expressed as:

u =
⋃

ℓ−d+1≤|i|≤ℓ

(
ui1

1 ×·· ·×uin
d

)
, (4.10)

where ℓ is the level of construction.

Designed quadrature method

For high-dimensional integration problems, a more effective quadrature rule is offered

by the designed quadrature method proposed by Keshavarzzadeh et al. [55]. The core idea of

the designed quadrature method is to numerically generate a quadrature rule that satisfies the

multi-variate moment-matching equations:

n

∑
i=1

Φi′
(

u(i)
)

w(i) =

 1 if |i′|= 0

0 for α ∈ 0 < |i′|< k,
(4.11)

where

πα =
d

∏
i=1

p(i)αi (ui) (4.12)

and p(i)j is the j-th orthogonal polynomial in the ui dimension. If the nodes and weights of the

quadrature rule satisfy the equations in (5.24), then the quadrature rules can exactly integrate

cross-term polynomials up to (2k−1)th order. We denote the quadrature points and the weights

as u := (u(1), . . . ,u(n)) and the weights w := (w(1), . . . ,w(n)) respectively. Then, the moment-

matching equations in (5.24) can be written as residual equations:

R(u,w) = 0, (4.13)

where R : Rd×n ×Rn → Rn.

The designed quadrature method approximates the solution of the moment-matching
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equations by solving an optimization problem formulated as

min
u,w

∥R(u,w)∥2

subject to u( j) ∈ Γ, j = 1, . . . ,n,

w( j) > 0, j = 1, . . . ,n.

(4.14)

The objective of this optimization, as shown in Equation (4.14), is to minimize the L2 norm of

the residual equations while constraining the nodes to lie within the support range and ensuring

that the weights are positive. This method has demonstrated superior effectiveness compared

to the sparse-grid Gauss quadrature rule for many high-dimensional integration problems. The

number of quadrature points required is typically chosen as n = η
(2d)k−1

(k−1)! , where η ∈ [0.5,0.9]

serves as a tuning parameter.

4.2 Methodology

This chapter proposes a new framework that generates a tensor-structured quadrature rule

that is specifically tailored for a given computational model. This quadrature rule is intended to

be used with the graph-accelerated NIPC method to efficiently solve the UQ problem.

4.2.1 Generation of tensor-structured quadrature rules

We use the degree of polynomials that a quadrature rule can exactly integrate as the

measure of its accuracy. Under this criterion, if we maintain a non-tensorial structure for the

quadrature rule, the most effective strategy is to utilize the designed quadrature method. In this

scenario, the quadrature points can be expressed as:

u = un
{1,...,d}. (4.15)
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The nodes and weights in the quadrature rule are determined by solving the optimization problem

outlined in (4.14), and the number of quadrature points is chosen as

n = η
(2d)k−1

(k−1)!
, η ∈ [0.5,0.9]. (4.16)

Adopting this method ensures that the resulting quadrature rule can effectively integrate polyno-

mials up to (2k−1)th order. If a fully tensorial structure for the quadrature points is necessary,

the optimal method to employ is the full-grid Gauss quadrature method. In this approach, the

quadrature points are expressed as:

u = uk
{1}×·· ·×uk

{d}, (4.17)

where uk
{i} represents the 1D Gauss quadrature points in ui dimension. The sets of 1D Gauss

quadrature points in each dimension are determined separately to ensure the nodes and weights

can exactly integrate the univariate polynomials up to (2k− 1)th order. Maintaining a fully

tensorial structure of the 1D Gauss quadrature points and weights ensures that the full-grid

quadrature rule can exactly integrate cross-polynomials up to the (2k−1)th order, albeit while

requiring n = kd quadrature points. In fact, in each dimension, the 1D Gauss quadrature points

and weights correspond to the global minimum of the optimization problem outlined in (4.14).

Assuming that the optimization problem in (4.14) always finds the global minimum, employing

the full-grid Gauss quadrature rule is equivalent to applying the designed quadrature method in

each dimension and subsequently forming a fully tensorial structure between the 1D solutions.

In addition to the fully tensorial and non-tensorial structure options, we can also preserve

a partially tensorial structure for the quadrature points while ensuring accurate integration of

all polynomials up to a specified order. For instance, in a 4D integration problem, we could
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maintain a partially tensorial structure as:

u = un1
{1,2}×un2

{3,4}, (4.18)

where a tensorial structure is retained between the quadrature points in the space of u1,u2 and

the quadrature points in the space of u3,u4. If the quadrature rules in each space are selected

such that the quadrature points can precisely integrate polynomials up to the same order, then

this partially tensorial quadrature rule can also precisely integrate the polynomials to the same

order in the space of u. The total number of tensorial structure options for the quadrature rule

can be represented by the Bell number from combinatorial mathematics, which is given by:

Bd =
d

∑
i=0

 i

d

 . (4.19)

For example, for d = 3, B3 = 5, the five options of the tensorial structure are:

u = un
{1,2,3},

u = un1
{1,2}×un2

{3},

u = un1
{1,3}×un2

{2},

u = un1
{2,3}×un2

{1},

u = un1
{1}×un2

{2}×un3
{3}.

(4.20)

Visualizations of quadrature points with different tensorial structures can be found in Fig. 4.1.

Given a specific tensorial structure option for the quadrature rule, we need to decide on

the method for generating the quadrature points within each space and determine the requisite

number of quadrature points to attain the desired level of accuracy. In our method, for a particular

tensorial structure of the quadrature rule, we employ the designed quadrature method in each

space. This method determines the nodes and weights to accurately integrate polynomials in
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(a) u = un
{1}×un

{2}×un
{3} (b) u = un1

{1,2}×un2
{3} (c) u = un

{1,2,3}

Figure 4.1. Visualizations of quadrature points with different tensorial structure options

that space up to a specified order. Adapted from the Gauss quadrature rule, we use the level of

accuracy k for a quadrature rule to indicate its capability of precisely integrating polynomials

up to the (2k−1)th order in the integration space. The number of quadrature points utilized in

the designed quadrature method is given by (4.16), tailored for high-dimensional integration

problems. In our setting, we also utilize the designed quadrature method for relatively low-

dimensional spaces. Therefore, we choose the required number of quadrature points using:

n =


kd

d for d ≤ 2

0.9 (2d)k−1

(k−1)! for d > 2.
(4.21)

When the number of dimensions is greater than two, we follow the designed quadrature rule in

(4.16) with η = 0.9. However, for 1D and 2D cases, we choose n = kd

d . In this way, in the 1D

space, it chooses k quadrature points to achieve k level of accuracy, which matches the Gauss

quadrature rule. Consequently, for the 1D space, we can avoid solving the optimization problem

in the designed quadrature method and directly use the 1D Gauss quadrature rule, as it represents

the exact solution of the designed quadrature method. This approach results in generating the

full-grid Gauss quadrature rule if a fully tensorial structure option is chosen, and generating the

designed quadrature rule if a non-tensorial structure option is chosen.
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4.2.2 Graph-accelerated tensor-grid evaluations

When not using the AMTC method for model evaluations, tensor-structured quadrature

rules often underperform compared to non-tensorial quadrature rules. This is because tensor-

structured quadrature rules always require evaluations of the model at more input points than

non-tensorial quadrature rules to achieve the same level of accuracy. However, when utilizing

the computational graph transformation method, AMTC, redundant operations incurred by the

tensorial structure of the input points are eliminated at the operation level. Consequently, the

overall cost of evaluating the model is no longer directly tied to the number of quadrature points

utilized. This gives us the reason for devising a custom tensor-structured quadrature rule tailored

for a given computational model.

For instance, consider a 3D UQ problem involving two computationally expensive solvers.

The computational model can be written as

f1 = F1(u1,u2),

f2 = F2( f1,u3),

(4.22)

where F1 and F2 represent the first and second solver, respectively, and the UQ problem aims

to compute the risk measures of f2 under the effect of the three uncertain inputs. In this case, we

have two uncertain inputs associated with solver 1, and one uncertain input associated with solver

2. Consequently, the operations in solver 1 are dependent on u1 and u2 while the operations in

solver 2 are dependent on u1, u2, and u3. In such scenario, an optimal quadrature rule can be

easily formulated following a partially tensorial structure:

u = uk1
{1,2}×uk2

{3}. (4.23)

The corresponding model evaluations can be significantly accelerated using the AMTC method.

To demonstrate, we show the computational graphs when performing model evaluations on
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(a) u = uk
{1}×uk

{2}×uk
{3} (b) u = uk1

{1,2}×uk2
{3}

Figure 4.2. Computational graphs after AMTC on fully and partially tensor structured input
points

fully tensorial quadrature points uk
{1}× uk

{2}× uk
{3} and partially tensorial quadrature points

uk1
{1,2}×uk2

{3} after applying AMTC in Fig. 4.2. We observe that, in both cases, AMTC generates

modified computational graphs that reduce the number of evaluations on solver 1. In comparison,

the partially tensor-structured quadrature rule is more favorable than the fully tensor-structured

quadrature rule, as both the u1 and u2 affect the same operations on the computational graph, so

there is no need to maintain a tensor structure between u1 and u2 like in the fully tensor-structured

quadrature rule. For the partially tensor-structured quadrature rule, by grouping the space of

u1 and u2, the total number of quadrature points in this space, k1, is smaller than the full-grid

quadrature rule which has k2 quadrature points in this space. Consequently, utilizing the partially

tensor-structured quadrature rule results in fewer evaluations for both solver 1 and solver 2.

4.2.3 Finding a desirable tensor structure option

For specific UQ problems, particularly those involving multidisciplinary systems, certain

partially tensor-structured quadrature rules demonstrate superior performance compared to
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Table 4.1. Operations dependency information for function f = cos(u1)+ exp(−u2)

D(ϕi,u j) u1 u2
ϕ1 1 0
ϕ2 0 1
ϕ3 0 1
ϕ4 1 1

existing ones when utilized with the graph-accelerated NIPC method. However, identifying an

optimal tensor-structure option may be challenging.

Theoretically, we can estimate the model evaluation costs after applying AMTC for each

tensor-structured rule. To do that, for a computational model f = F (u), we denote the data and

operations nodes as ξi and ϕ j, respectively. Here l represents the number of operations in the

computational graph. For example, consider the function

f = cos(u1)+ exp(−u2), (4.24)

with its corresponding computational graph described as

ξ1 = ϕ1(u1) = cos(u1);

ξ2 = ϕ2(u2) =−u2;

ξ3 = ϕ3(ξ1) = exp(ξ2);

f = ϕ4(ξ2,ξ3) = ξ2 +ξ3.

(4.25)

From the computational graph, we can generate the dependency information which stores whether

the output of one operation is dependent on one input as a binary number, written as D(ϕi,u j).

The dependency information can be viewed in a matrix. The dependency matrix for the function

(4.24) is presented in Tab. 4.1, which indicates the dependencies between operations and input

variables. To estimate the evaluation cost of each tensorial structure for the quadrature rule to

achieve the k-level of accuracy, we also need to store the information regarding the evaluation
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cost of each operation on one quadrature point. This information can be represented either by the

total number of floating-point operations (FLOPs) or the evaluation time. For the non-tensorial

structure, if we assume all operations are dependent on at least one input, no repeated evaluations

can be reduced by the AMTC method. Assume that the operations’ cost on all of the quadrature

points is roughly the same, the total model evaluation cost can be approximated as:

Cost ≈ nO( f (u))≈ n
l

∑
i=1

O(ϕi), (4.26)

where O(·) represents the evaluation cost of the function/operation and the number of quadrature

points n is chosen as in (5.28). If we maintain a full-grid structure with k quadrature points in

each dimension, the evaluation cost without the AMTC method is

Cost ≈ kdO
(
F (u(1))

)
≈ kd

l

∑
i=1

O(ϕi). (4.27)

However, with the AMTC method, each operation in the graph is evaluated only for distinct

values. In the full-grid case, if the output of an operation is dependent on d̃ number of uncertain

inputs, there are only kd̃ quadrature points in its dependent inputs space, and that operation will

be evaluated for kd̃ number of times using the AMTC method. In this case, we omit the cost

of the Einstein summation nodes added to the computational graph by the AMTC method, the

evaluation cost can be estimated as

Cost ≈
l

∑
i=1

k∑
d
j=1 D(ϕi,u j)O(ϕi). (4.28)

Using the same idea, we can also estimate the model evaluations cost for any tensorial structure

option of the quadrature points. For example, consider the setting where we have a partially

tensorial structure for the quadrature points, such as

u = uk1
{1,2}×uk2

{3}. (4.29)
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In our method, k1 and k2 are chosen from (5.28) using d = 1 and d = 2 respectively. In this case,

there are k1 quadrature points in the space of u1 and u2, and the k2 quadrature points in the space

of u3. With the AMTC method, for the operations that are dependent on only u1, only u2 or only

u1 and u2, they will be evaluated n1 times. Operations dependent on only u3, will be evaluated

n2 times. Operations not dependent on any input are evaluated once. The rest of the operations

are evaluated n1n2 times. The model evaluations cost for this tensor-structured quadrature rule

can be estimated as

Cost ≈
l

∑
i=1

kD(ϕi,u1)D(ϕi,u2)
1 kD(ϕi,u3)

2 O(ϕi). (4.30)

Estimating the total model evaluation cost for all tensor structure options enables us to

choose the optimal one with the lowest estimated cost. However, the challenge lies in the fact

that the total number of tensor structure options follows the Bell number as shown in (4.19),

which scales significantly with the problem dimensions. To avoid this significant overhead

cost associated with numerically finding the optimal tensor structure option, we propose an

alternative approach. This approach involves selecting a desirable tensor structure option based

on our understanding of the computational model and an analysis of the computational graph. By

leveraging information from the computational graph and characteristics of the computational

model, we can make informed decisions to choose a tensor structure that is likely to lead to

efficient model evaluations. This approach balances computational efficiency with accuracy,

making it a practical solution for many UQ problems with complicated computational models.

When dealing with computational models involving multiple disciplines or solvers,

identifying a desirable tensor-structure option can sometimes be achieved by examining the

computational graph at the solver level. For instance, in the example provided in (4.22), we can

easily deduce the optimal tensor structure based on insights gained from the computational graph.

In other cases, we can perform some analysis on the computational graph to help us decide on

the desired tensor-structure option. Our rationale here is based on the observation that complex

computational models typically contain one or two computationally expensive operations, such

54



as linear or non-linear solvers, which significantly contribute to the overall computational cost.

We aim to identify uncertain inputs that these expensive operations do not depend on and then

establish a tensor structure to minimize the number of evaluations required for these operations,

with the utilization of AMTC. To do that, we define the sparsity ratio (SR) of an uncertain input

as the ratio of its dependent operations’ cost over the total model evaluation cost which can be

approximated as

SR(ui)≈
∑

l
i=1 O(ϕi)D(ϕi,u j)

O( f (u))
, (4.31)

where SR(ui) represents the sparsity ratio of ui and it measures the percentage of the model

evaluation cost that is dependent on ui. We identify the sparse uncertain inputs based on the

condition that their sparsity ratio is < 5%. We then partition the uncertain inputs as

u = (us,uns), (4.32)

where us = (us1 , . . . ,usd1
) ∈ Rd1 is the set of sparse uncertain inputs and uns = (uns1 , . . . ,unsd2

) ∈

Rd2 is the set of non-sparse uncertain inputs with d = d1 +d2.

In this case, if all of the uncertain inputs are sparse uncertain inputs, we may want to

form a full-grid quadrature rule following the Gauss quadrature method, such that the quadrature

points can be written as

u = uk
{1}× . . .×uk

{d}, (4.33)

where uk
{i} represents the k quadrature points in ui space. In this way, even though the num-

ber of quadrature points increases exponentially as n = kd , the model evaluation cost can be

significantly accelerated using the AMTC method which only evaluates each operation on the

distinct quadrature points in the space of the uncertain inputs on which it depends. However,

in most cases, for most UQ problems, there often only exist a few sparse uncertain inputs. In

this case, we suggest choosing the quadrature rule that maintains a tensor structure between

the quadrature points in the sparse uncertain input space and quadrature points in the space of
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non-sparse uncertain inputs, such that the quadrature points can be written as

u = uk1
{ns}×uk2

{s}, (4.34)

where uk1
{ns} represents quadrature points in uns space with k1 points and uk2

{s} represent the

quadrature points in us space with k2 points. This results in a total of k1k2 quadrature points in

the quadrature rule. However, when using the AMTC method to modify the computational graph,

the computational cost on the modified computational graph would scale roughly linearly with

k1 as most of the expensive operations in the computational graph would only depend on uns and

would only be evaluated n1 times. An alternative option is to formulate the quadrature rule as

u = uk1
{ns}×uk

{s1}× . . . ,uk
{sd1}

, (4.35)

which forms a tensor structure between the space of each sparse uncertain input. This option

results in more quadrature points but it is easier to generate the quadrature rule and can be more

effective to use if we know the sparse uncertain inputs are associated with different solvers.

We show the specific steps of using this method with graph-accelerated NIPC in Alg. 2.

Algorithm 2. Partially tensor-structured quadrature rule for graph-accelerated NIPC
1: Specify a computational graph for a numerical model and the uncertain inputs, U
2: Specify the level of accuracy of the quadrature rule, k
3: Choosing a desired tensor structure option based on the analysis of the computational graph
4: Compute the required number of quadrature points in each space following (4.16)
5: Compute the quadrature points and weights in each space by solving (4.14)
6: Formulate the quadrature rule using the chosen tensorial structure
7: Perform the model evaluations on the tensor-structured quadrature rule using AMTC
8: Post-process the evaluations using NIPC to solve the UQ problem
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Table 4.2. Input parameters and ranges for the UAV problem

Uncertain inputs Distributions
Payload weight Wp (kg) N (90,10)

Atmospheric extinction coefficient σ N (0.2,0.02)
Flight altitude h (m) N (10,000,1000)

Flight velocity v (m/s) N (100,10)

Figure 4.3. Multidisciplinary structure of the UAV model

4.3 Numerical Results

The first test problem is a 4D UQ problem adapted from a UAV design scenario [72].

This computational model assesses the total energy stored during a cruise mission undertaken

by a laser-beam-powered UAV as it orbits a ground station for one complete cycle while being

recharged by the laser beam emitted from the ground station. The mission is demonstrated in

Fig. 3.6. We consider four uncertain inputs associated with the operating conditions, which

are flight velocity, flight altitude, payload weight, and atmospheric extinction coefficient. Their

distributions are shown in Tab. 6.1. The objective of this UQ problem is to compute the

expectation of the stored energy considering the influence of these uncertain inputs.
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The computational model used in this problem involves four disciplines: aerodynamics,

laser beams, weights, and performance. The multidisciplinary structure of the computational

model is shown in Fig. 4.3. For the laser-beam model, we apply the Beers–Lambert law for

optical power transfer [56] to compute the power received by the aircraft as

Prec = ηPtra, η = e−σR, (4.36)

where Prec and Ptra denote the power received and transmitted, respectively; σ is the atmospheric

extinction coefficient which differs across weather conditions; and R is the distance between the

aircraft and the power source. In the aerodynamic model, inputs such as flight velocity, flight

altitude, and the total aircraft weight are considered. This model is responsible for computing

the total drag force exerted on the wing to sustain steady-state flight. Additionally, it determines

the lift coefficient and drag coefficient by employing a linear model and a quadratic polar model,

respectively, derived from airfoil data. The weights model estimates the weight of each aircraft

component using the statistical equations from [79] and outputs the total aircraft weight. The

performance model takes inputs such as flight velocity and total drag force to compute the total

energy stored during the mission. This computation is based on the following equations:

n =

√(
v
rg

)2

+1,

Preq =
D
n
,

E = (Prec −Preq)t,

(4.37)

where n represents the turn load, r is the radius of the mission, g is the gravitational acceleration,

D denotes the total drag force, Preq is the required power to maintain steady flight, and t represents

the mission time.

On this test problem, following our proposed method, sparsity ratios of the uncertain

inputs are measured, which are shown in Tab. 4.3. Using the sparsity ratios, two sparse uncertain
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Table 4.3. Sparsity ratio of the uncertain inputs in the UAV model

Uncertain inputs Sparsity ratio
v 92%
h 96%

Wp 4%
σ 2%

inputs are identified: Wp and σ , as both of them have a sparsity ratio less than 5%. Combining

this information with our understanding of the computational model, we constructed the partially

tensor-structured quadrature rule as:

u = un1
{h,v}×un2

{Wp}×un3
{σ}. (4.38)

Our proposed method is compared with the designed quadrature method and the full-grid

Gauss quadrature method, all of which are used with the NIPC method to solve the UQ prob-

lem. The UQ convergence plots, with and without using AMTC, are shown in Fig. 4.4. From

the results, we observe that the partially tensor-structured quadrature rule is outperformed by

the designed quadrature method when AMTC is not used to accelerate the model evaluations.

This finding aligns with our theoretical analysis, as the non-tensorial quadrature rule requires

fewer quadrature points than the tensor-structured quadrature rules to achieve the same level of

accuracy. However, when we utilize AMTC to accelerate the model evaluations, the advantages

of the structured quadrature rules become evident. Both the model evaluations associated with

the full-grid quadrature rule and the partially tensor-structured quadrature rule are significantly

accelerated by using the AMTC method. In this scenario, the partially tensor-structured quadra-

ture rule achieves the best performance, with more than 50% reduction in evaluation costs than

the other two methods. This is because, our method constructed a tailored tensorial structure

that makes the most effective use of the inherent sparsity within the computational graph of this

multidisciplinary system, resulting in the lowest model evaluation costs under the same level of

accuracy.
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Figure 4.4. Convergence plots with and without AMTC for the UAV problem

4.3.1 6-dimensional UQ problem with an air-taxi trajectory design
multidisciplinary model

The second test problem is a 6D UQ problem adapted from an air-taxi trajectory opti-

mization scenario. This computational model calculates the average ground-level sound pressure

level during the aircraft’s flight along a specific trajectory. The UQ problem aims to determine

the expected output under uncertainties in the control inputs and parameters of the acoustic

model. Three uncertain inputs are associated with the initial conditions of the trajectory, and

the other three uncertain inputs are associated with the parameters in the acoustic model. The

distributions of the uncertain inputs can be found in Tab. 4.4. Notably, the control inputs used

in this problem are generated from solving a deterministic trajectory optimization problem,

which aims to minimize the total energy expended throughout the trajectory. Details of the

computational model along with the trajectory optimization formulation can be found in [71].

Table 4.4. Input parameters and ranges for the air-taxi problem

Uncertain inputs Distributions
Initial velocity v0 (m/s) U (30,35)

Initial flight path angel γ0 (deg) U (0,2)
Initial altitude h0 (m) U (0,20)

β1 N (0.0209,0.001)
β2 N (18.2429,0.5)
β3 N (6.729,0.2)
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Table 4.5. Sparsity ratio of the uncertain inputs in the air-taxi model

Uncertain inputs Sparsity ratio
v0 99%
h0 99%
γ0 99%
β1 2%
β2 2%
β3 2%

In this problem, the measured sparsity ratios are shown in Tab. 4.5. Based on this

information, three uncertain inputs are identified as sparse uncertain inputs which are the three

uncertain inputs associated with the acoustic model. This finding aligns with the multidisciplinary

structure of the computational model, depicted in Fig. 5.4. From this figure, we observe that the

computational model comprises four disciplines: flight dynamics, aerodynamics, propulsion,

and acoustics, with two-way coupling among the first three disciplines. In this case, the coupled

disciplines functions as a nonlinear operation and is solved iteratively. Due to its dominant role in

computational costs, the three uncertain inputs associated with the nonlinear solver are the dense

uncertain inputs in this computational model. Conversely, the parameter uncertain inputs are the

sparse uncertain inputs as they do not affect the upstream nonlinear solver in this computational

model. Based on this reasoning, we choose the partially tensor-structured option as

u = un1
{v0,h0,γ0}×un2

{β1,β2,β3}, (4.39)

in which we form a tensor structure between the space of dense uncertain inputs and the space of

sparse uncertain inputs.

The UQ convergence plots with and without using AMTC are shown in Fig. 4.6. Similar

to the first test problem, the partially tensor-structured quadrature rule is outperformed by the

designed quadrature method when AMTC is not used. However, it becomes the most efficient

method when using AMTC to accelerate the model evaluations. The reduction in computational

costs is more than 40% in most cases. This can be explained by the fact that the tailored tensorial
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Figure 4.5. Multidisciplinary structure of the air-taxi model

structure option takes full advantage of the inherent sparsity of the computational graph, resulting

in the most efficient performance with the AMTC method. However, we also observe that when

the desired relative error is exceptionally low (1e-6 and lower), the performance of the partially

tensor-grid quadrature rule deteriorates on this test problem. This phenomenon can be attributed

to the fact that the designed quadrature rule method can achieve similar performance to the Gauss

quadrature rule while requiring a significantly smaller number of model evaluations. However,

as the dimension of the optimization problem increases (as we have more optimization variables

and more constraints), it becomes more challenging to solve the optimization problem to a tight

tolerance using this method. Consequently, the designed quadrature method may struggle to

achieve the same level of accuracy as the Gauss quadrature rule when an extremely high level of

accuracy is required.
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Figure 4.6. Convergence plots with and without AMTC for the 6D air-taxi problem

Acknowledgments

The material presented in this chapter is, in part, based upon work supported by DARPA

under grant No. D23AP00028-00.

Chapter 4, in part, has been submitted for publication of the material [98] as it may appear

in Wang, B., Orndorff, N. C., Sperry, M., and Hwang, J. T., “Graph-accelerated non-intrusive

polynomial chaos expansion using partially tensor-structured quadrature rules,” Aerospace

Science and Technology. The dissertation author was the primary investigator and author of this

paper.

63



Chapter 5

Extension of graph-accelerated NIPC to
high-dimensional UQ through the active
subspace method

The graph-accelerated NIPC methods introduced in Chapter 3 and Chapter 4 combine

a novel computational graph transformation method, AMTC, with the integration-based NIPC

method to tackle UQ problems with multidisciplinary systems. The AMTC method accelerates

tensor-grid evaluations by modifying the computational graph of the model, thereby eliminating

redundant evaluations at the operation level caused by the tensor structure of the inputs. By

connecting it to the integration-based NIPC and generating the tensor-structured quadrature rules,

we can exploit sparsities in the computational models. While this approach has demonstrated

superiority over existing UQ methods for specific low-dimensional UQ problems involving

multidisciplinary systems, it suffers from the curse of dimensionality in many high-dimensional

(ten or more dimensions) UQ problems.

When addressing high-dimensional UQ problems, employing dimension-reduction tech-

niques can sometimes significantly reduce computational costs. Notable methods include sensi-

tivity analysis [67], principal component analysis (PCA) [2], partial least squares (PLS) [17],

and active subspace (AS) [18]. Sensitivity analysis is a commonly used method that determines

the impact of input parameters on output uncertainty. Local sensitivity analysis measures the

perturbation of each input at a nominal value and its effect on output, making it inexpensive
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to implement. However, this method may lack accuracy in many cases. In contrast, global

sensitivity analysis [91] computes Sobol indices, which measure output variations over the

full range of inputs, providing more accurate results but at a higher computational cost. The

inputs corresponding to the highest sensitivities are then selected to reduce the dimension of

the problems. PCA conducts eigenvalue decomposition on the covariance matrix of uncertain

inputs, revealing the highest-variance directions in the input space. Yet, PCE is not well-suited

for independent uncertain inputs. PLS utilizes regression to identify covariant directions between

inputs and outputs. However, it can suffer from overfitting and does not leverage gradient

information. On the other hand, AS uses gradient information to identify an active subspace

where most of the first-order changes in the output exist. AS strikes a balance between accuracy

and computational cost, making it a powerful tool for high-dimensional UQ problems, while

also providing an intuitive way to visualize and interpret the results.

In this chapter, we aim to extend the capabilities of the graph-accelerated NIPC methods

to solve high-dimensional UQ problems by leveraging the active subspace method. While the

graph-accelerated NIPC method has proven effective in solving low-dimensional UQ problems

with sparsity in computational graphs, there is currently no existing framework that can directly

connect this method to the AS method for solving high-dimensional UQ problems. In previous

works, Glaws and Constantines connected the AS method to the Gaussian quadrature rules to

solve integration problems [30], but this method is limited to one-dimensional active subspace.

Additionally, in [35], He et al., linked the AS method to regression-based NIPC methods, but this

approach cannot be used to connect the active subspace method to the graph-accelerated NIPC

method, which relies on an integration-based approach to solve the polynomial chaos expansion

(PCE) coefficients. To address this gap, this paper first proposes a general framework called

AS-NIPC, which generates PCE basis functions for the active subspace’s uncertain inputs and

an efficient quadrature rule in the original uncertain input space to connect the active subspace

method to the integration-based NIPC method. This framework can be applied to any high-

dimensional UQ problem without using the AMTC method. Furthermore, an extension of this
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framework, AS-AMTC, is presented to use with the AMTC method. This extension involves

identifying the sparse uncertain inputs (uncertain inputs that only affect a small amount of the

computational cost), applying the AS method to non-sparse uncertain inputs, and generating a

desired tensor-structured quadrature rule to take advantage of the computational graph sparsity

when the AMTC method is applicable.

The proposed methods have been tested on two UQ problems which include a 7-

dimensional analytical piston model and an 81-dimensional air-taxi trajectory simulation model.

The results show that the proposed AS-NIPC is more effective than the existing methods for

both of the problems while AS-AMTC can further improve its efficiency on the second problem

which involves a multidisciplinary system.

5.1 Active subspace

The active subspace (AS) method, proposed by Constantine et. al. in [18], is a dimension

reduction method that has recently gained a lot of popularity. The basic idea behind AS is

to exploit the fact that some directions in the input parameter space have a greater impact on

the output uncertainty than others. By identifying these important directions, we can project

the high-dimensional input space onto a lower-dimensional subspace that captures the most

important first-order input-output relationships. To achieve that, the AS method computes the

mean squared gradients of the objective function with respect to the uncertain inputs as

C = E[(∇u f )(∇u f )T ] =
∫

Γ

(∇u f )(∇u f )T
ρ(u)du, (5.1)

where ∇u f = [ ∂ f
∂u1

, . . . , ∂ f
∂ud

]T . The C matrix is symmetric and positive semi-definite and thus has

non-negative eigenvalues and orthogonal eigenvectors. Following an eigenvalue decomposition,

the C matrix can be expressed as

C =WΛW T , Λ = diag(λ1, . . . ,λd). (5.2)
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The eigenvectors W define a rotation of the original uncertain input space and are sorted by

the magnitude of their corresponding eigenvalues in decreasing order, while the magnitude of

the eigenvalues represents the function’s average variation in each direction. The AS method

identifies the active subspace ũ by partitioning the eigenvalues and eigenvectors as

Λ =

Λ1

Λ2

 , W =

[
W1 W2

]
, (5.3)

where Λ1 = diag(λ1, . . . ,λm) and W1 ∈ Rm×d with m < d. This results in two sets of rotated

coordinates defined as

ũ =W T
1 u, ū =W T

2 u, (5.4)

such that the function is significantly more variant in the space of ũ than ū. Once the active

subspace is identified, the UQ problem can be solved in this lower-dimensional space, which

greatly reduces the computational cost of the analysis.

5.2 Methodology

In this paper, we first propose a novel framework to connect the integration-based NIPC

method to the active subspace approach to solve high-dimensional UQ problems. This involves

generating orthogonal PCE basis functions of the active subspace variables using the whitening

matrix and generating an efficient quadrature rule in the original input space using the designed

quadrature method to estimate the PCE coefficients. We then propose an extension of this

framework to combine it with the AMTC method to generate the quadrature rule that has a

desired tensor structure to take advantage of the sparsity of the computational graph.
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5.2.1 AS-based NIPC

Consider a high-dimensional UQ problem involving a function,

f = F (u) u ∈ Rd, (5.5)

with the independent uncertain inputs U = (U1, . . . ,Ud) ∈ Rd . We first apply the active subspace

(AS) method to find a desired rotation of the input coordinate such that the function is only

significantly variant with respect to a small number of inputs. This involves first computing the

mean squared gradients of the objective function with respect to the uncertain inputs as

C = E[(∇u f )(∇u f )T ], (5.6)

followed by an eigenvalue decomposition as

C =WΛW T , Λ = diag(λ1, . . . ,λd). (5.7)

The eigenvalues and eigenvectors are then partitioned as

Λ =

Λ1

Λ2

 , W =

[
W1 W2

]
(5.8)

with Λ1 = diag(λ1, . . . ,λm). This separates the rotated coordinates into two sets as

ũ =W T
1 u, ū =W T

2 u, (5.9)
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and the function varies significantly more with respect to ũ than ū. We call ũ the active variables

and ū the inactive variables. Now the function can be written as

f (ũ, ū) = F (W1u+W2u). (5.10)

By using the gPC theory and truncating all of the terms of ū, we approximate the model output as

f (Ũ)≈
q

∑
i=0

αiΦi(Ũ). (5.11)

Since ũ can be significantly lower dimensional than the original uncertain input space, u, solving

the PCE coefficients in equation (5.11) can be significantly less expensive than directly applying

NIPC. However, applying the integration-based NIPC method here poses two main challenges:

1. The probability density of the distribution of the uncertain inputs in the active space is

unknown which makes it difficult to generate the PCE terms in the active subspace.

2. An efficient quadrature rule in the original input space needs to be derived to compute the

PCE coefficients that correspond to the PCE terms of the active subspace uncertain inputs.

Generating PCE basis functions

We solve the first challenge by computing the whitening matrices that represent the

coefficients of the PCE basis functions. We follow the method in [57] and first represent the PCE

basis functions of ũ as

Φ(ũ) =
[

Φ0(ũ), . . . ,Φq(ũ)

]T

= MPk(ũ), (5.12)

where Pk(ũ) is the monomial basis vector in ũ up to degree k, and M ∈ R(k+1)×(k+1) is a lower

triangular matrix storing the coefficients for the monomial basis polynomials in the univariate

PCE basis functions. For demonstration, in a two-dimensional case, the first six Legendre
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polynomials (PCE basis functions for uniform uncertain inputs) are

Φ0(u) = 1;

Φ1(u) = u1;

Φ2(u) = u2;

Φ3(u) = u1u2;

Φ4(u) =
1
2
(3u2

1 −1);

Φ5(u) =
1
2
(3u2

2 −1).

(5.13)

The PCE basis functions in (5.13) can be represented in the form of the monomial basis vector as



Φ0(u)

Φ1(u)

Φ2(u)

Φ3(u)

Φ4(u)

Φ5(u)


︸ ︷︷ ︸

Φ(u)

=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

−1
2 0 0 0 3

2 0

−1
2 0 0 0 0 3

2


︸ ︷︷ ︸

M



1

u1

u2

u1u2

u2
1

u2
2


︸ ︷︷ ︸

P2(u)

(5.14)

We want to solve for the M matrix so that the orthogonality property in (2.6) is satisfied in terms

of ũ as ∫
Γũ

Φ(ũ)Φ(ũ)T
ρ(ũ)dũ = I, (5.15)

which can be written as ∫
Γũ

Pk(ũ)Pk(ũ)T
ρ(ũ)dũ = M−1M−T . (5.16)

We define the monomial matrix as

G :=
∫

Γũ

Pk(ũ)Pk(ũ)T
ρ(ũ)dũ, (5.17)
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then the M matrix satisfies

M−1M−T = G, (5.18)

and can be solved through Cholesky factorization of G as

M = Q−1, G = QQT . (5.19)

However, solving G in (5.17) would require us to know the probability distribution of the active

variables, ρ(ũ). To avoid solving ρ(ũ), we utilize the linear relationship, ũ =W T
1 u and apply the

change of variables to rewrite (5.17) as

G =
∫

Γũ

Pk(ũ)Pk(ũ)T
ρ(ũ)dũ

= E[Pk(ũ)Pk(ũ)T ]

= E[Pk(W T
1 u)Pk(W T

1 u)T ]

=
∫

Γu

Pk(W T
1 u)Pk(W T

1 u)T
ρ(u)du.

(5.20)

The integral in (5.20) does not require any model evaluation and can then be easily computed by

using a Monte Carlo or numerical quadrature approach.

Generating an efficient quadrature rule

Using the integration-based NIPC approach, we approximate the PCE coefficients in

(5.11) by solving an integration problem as

αi =

〈
f (Ũ),Φi(ũ)

〉
⟨Φi(ũ)2⟩

=
∫

Γũ

f (ũ)Φi(ũ)ρ(ũ)dũ.
(5.21)

This results in an integration problem in ũ space, which is much lower dimensional than the

original uncertain input space. However, evaluating this integral is challenging in two parts.
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Firstly, evaluating f (ũ) directly is not possible as the computational model only accepts inputs

in terms of u. Moreover, for a given point in the ũ space, there may exist an infinite number

of points in u that satisfy ũ =W T
1 u. Secondly, the probability density distribution of the active

variables, denoted as ρ(ũ), is unknown. Consequently, direct generation of quadrature points is

not feasible. The objective here is to generate an efficient quadrature rule with the nodes in the

original input space. We denote the quadrature points and the weights as u := (u(1), . . . ,u(n)) and

w := (w(1), . . . ,w(n)) respectively, and the quadrature rule approximates the integral in (5.21) as

∫
Γũ

f (ũ)Φi(ũ)ρ(ũ)dũ ≈
d

∑
i=1

w(i) f (u(i))Φi

(
W T

1 (u(i))
)
. (5.22)

We solve the quadrature rule following the designed quadrature method in [54]. The designed

quadrature method generates the quadrature rule by solving an optimization problem to ensure

they can exactly integrate polynomial functions up to a specific order. The core idea here is that

for an integration problem

I( f ) =
∫

Γ

f (u)ρ(u)du, (5.23)

if the nodes and weights of the quadrature rule satisfy the multi-variate moment matching

equations as

n

∑
i=1

Φi′
(

u(i)
)

w(i) =

 1 if |i′|= 0

0 for α ∈ 0 < |i′|< k,
(5.24)

where Φi′ are the PCE basis functions of u, then the quadrature rule can exactly integrate any

polynomials of u up to (2k− 1)th order. In our case, we want to design the quadrature rule

with u and w such that after the linear transformation, ũ =W T
1 u, the quadrature rule can exactly

integrate polynomials of ũ to a specific order. Thus we write the moment-matching equation

here as
n

∑
i=1

Φi′
(

W T
1 u(i)

)
w(i) =

 1 if |i′|= 0

0 for 0 < |i′|< k,
(5.25)
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where Φi′ are the PCE basis functions of ũ that we generated in the previous step. We represent

the moment matching equations in (5.25) as residual equations:

R(u,w) = 0, (5.26)

where R : Rd×n×Rn → Rn. The quadrature rule is generated by solving an optimization problem

formulated as
min
u,w

∥r(u,w)∥2

subject to u( j) ∈ Γ, j = 1, . . . ,n,

w( j) > 0, j = 1, . . . ,n,

(5.27)

which minimizes the norm of the residual equations and constrains the nodes to be within

the support range and weights to be positive. The number of nodes to use, n, depends on

the dimension of the active subspace, m, and the highest degree of polynomials of PCE basis

functions, k, and can be chosen following [99], as

n =


km

m for m ≤ 2

0.9 (2m)k−1

(k−1)! for m > 2.
(5.28)

The optimization problem in (5.27) can be solved using any common nonlinear optimizer.

Special case: Gaussian uncertain inputs

One special case in which we can easily generate the PCE basis functions is when all of

the uncertain inputs are Gaussian random variables. The rotated coordinates ũ satisfy a linear

relationship with the original coordinates u as ũ =W T
1 u. When the uncertain inputs are mutually

independent Gaussian random inputs, since the eigenvectors in W1 are orthogonal, the random

variables associated with the active variables are also mutually independent random variables
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and their distributions can be represented as

Ũ ∼ N (W T
1 µ,W T

1 ΣW1), (5.29)

where µ and Σ are the mean vector and covariance matrix associated with the original uncertain

inputs U , respectively. This means that the PCE basis functions of ũ are simply the multivariate

Hermite polynomials that can be easily generated. For the quadrature rule, we still recommend

using the same designed quadrature approach, as this approach results generally require the

fewest quadrature points to achieve the same level of accuracy. Alternatively, if the dimension of

the uncertain inputs is small enough (m ≤ 3), one may choose to use the full-grid quadrature rule

in ũ and solve the quadrature points in the original input space such that W T
1 u = ũ.

AS-NIPC algorithm

We refer to this AS-based NIPC method as the AS-NIPC method and present a detailed

step-by-step algorithm:

1. Discover the active subspace: Apply the AS method to discover the active variables ũ,

following (5.6)(5.7)(5.8)(5.9).

2. Generate the PCE basis functions: Solve the whitening matrix, M, following (5.20)

(5.19) (5.12) for a specified polynomial order k.

3. Generate the quadrature rule: Compute the nodes u and weights w in the quadrature rule

by solving the optimization problem in (5.27), choose the number of quadrature points, n,

using (5.28).

4. Compute the PCE coefficients: Evaluating the model/function on the quadrature points

and computing each PCE coefficient following (5.21)(5.22).

5. Compute the QoIs: Computing the desired quantity of interests of the model output

following the NIPC method.
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5.2.2 AS based NIPC with AMTC

The AS-NIPC method we presented in the previous section provides a framework to

combine the integration-based NIPC method with the active subspace method to solve high-

dimensional UQ problems. However, this method cannot be accelerated by the AMTC method

as the quadrature points do not possess a tensor structure. The objective here is to propose

an extension of the AS-NIPC method to generate the quadrature points that possess a desired

tensor structure such that the model evaluations can be significantly accelerated using the AMTC

method. We follow the partially tensor-structured quadrature rule in [99] to generate a desired

tensor-structured quadrature rule to use in the graph-accelerated NIPC method.

For high-dimensional UQ problems, there often exist some uncertain input operations

that affect a small number of operations in the computational graph. In this case, the evaluation

cost of the operations that are dependent on these inputs may only take a small percentage of the

total model evaluation cost. We refer to these uncertain inputs as sparse uncertain inputs and

the other uncertain inputs as non-sparse uncertain inputs. The sparse uncertain inputs can be

identified by computing the sparsity ratio (SR) of each uncertain input. SR(ui) is defined as the

ratio of the evaluation cost of the entire model to that of only the operations that are influenced

by random input ui and can be estimated based on the computational graph analysis detailed

in [99]. We choose the sparse uncertain inputs as its sparsity ratio is < 5%, and we partition the

uncertain inputs as

u = (us,uns), (5.30)

where us = (us1, . . . ,usd1
) ∈ Rd1 is the set of sparse uncertain inputs, and uns ∈ Rd2 is the set of

non-sparse uncertain inputs with d = d1 + d2. Since the sparse uncertain inputs only affect a

small amount of model evaluation cost, we want to choose the quadrature rule that maintains

a tensor structure between the quadrature points in the non-sparse uncertain input space and

quadrature points in the space of each sparse uncertain input, such that the quadrature points can
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be written as

u = un1
{ns}×un2

{s1}× . . . ,un2
{sd1}

, (5.31)

where un1
{ns} represents quadrature points in uns space with n1 points and un2

{sd1}
represent the

quadrature points in usi space with n2 points. This results in a total of n1nd2
2 quadrature points

in the quadrature rule. However, employing the AMTC method to transform the computational

graph leads to a computational cost on the modified graph that scales roughly linearly with

n1. This is because most operations in the computational graph depend solely on uns and are

evaluated only n1 times. However, for high-dimensional UQ problems, the dimensions for the

non-sparse uncertain inputs can still be large enough such that the required model evaluation

cost is still unaffordable even with the AMTC method. We address this problem by applying the

AS-NIPC method within the space of uns to generate an efficient quadrature rule with respect

to the active variables in the space non-sparse uncertain inputs. This involves computing the C

matrix as

C = E[(∇uns f )(∇uns f )T ] =
∫

Γ

(∇uns f )(∇uns f )T
ρ(u)du, (5.32)

then the AS method can be used to find the active variables that satisfy

ũns =W T
1 uns, (5.33)

such that ũns ∈ Rm with m ≤ d1. Following the AS-NIPC method, we can generate the PCE basis

functions of the active variables, written as Φ(Ũ{ns}) as well as the quadrature rule with the nodes

in Uns space, we denote the nodes as uñ
ns. Using the NIPC approach, we can approximate the

stochastic output as the PCE basis functions of the active variables and the non-sparse uncertain

inputs, as

f (Ũns,Us)≈
q

∑
i=0

αiΦi(Ũns,Us), (5.34)
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where the PCE basis functions can be constructed as

Φ(Ũns,Us) = Φ(Ũns)×φ(us1)× . . .×φ(usd2
), (5.35)

where φ(usi) represent the univariate orthogonal polynomials of usi . The quadrature rule follows

the same tensor structure and the quadrature points can be written as

u = uñ
{ns}×uk

{s1}× . . . ,uk
{sd1}

, (5.36)

where the uk
{si} is chosen as the k Gauss quadrature points in usi dimension. This results in an

efficient quadrature rule with a desired tensor structure to use with the AMTC method when it

comes to model evaluations.

AS-AMTC algorithm

We refer to this AS-based NIPC method as the AS-NIPC method and present a detailed

step-by-step algorithm:

1. Identify the sparse uncertain inputs: Identify the sparse uncertain inputs that only affect

a small amount of the computational cost.

2. Apply AS-NIPC: Apply AS-NIPC in the non-sparse uncertain inputs space. Generate the

PCE basis functions of the active variables as well as the quadrature rule in the non-sparse

uncertain inputs space.

3. Form the tensor-structured quadrature rule: Form the PCE basis functions and the

quadrature rule in a tensor structured following (5.35) and (5.36), respectively.

4. Model evaluations with AMTC: Perform the model evaluations on the tensor-structured

inputs using AMTC.
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Table 5.1. Uncertain inputs and distributions for the piston problem

Uncertain input Distribution Description
M N(45,3) Piston weight (kg)
S N(0.01,0.001) Piston surface area (m2)

V0 N(0.010,0.001) Initial gas volume (m3)
k N(3000,200) Spring coefficient (N/m)
P0 N(90000,5000) Atmospheric pressure (N/m2)
Ta N(290,20) Ambient temperature (K)
T0 N(340,20) Filling gas temperature (K)

5. Compute the QoIs: Compute the PCE coefficients and the desired quantity of interests of

the model output.

5.3 Numerical Results

5.3.1 7-dimensional UQ problem with an analytical piston simulation
model

The first test problem involves an analytical, nonlinear model that calculates the cycle

time of a piston within a cylinder, adapted from [9]. The cycle time C of the piston, measured in

seconds, is defined as:

C = 2π

√
M

k+S2 P0V0Ta
T0V 2

, (5.37)

where V is given by:

V =
S
2k

(√
A2 +4k

P0V0

T0
Ta −A

)
(5.38)

and A is calculated as

A = P0S+19.62M− kV0

S
. (5.39)

The UQ problem aims to determine the expected value of the piston cycle time considering seven

uncertain inputs, detailed in Table 5.1.

This problem is solved using three UQ methods: Monte Carlo, Active-Subspace-based

kriging (AS-kriging), and AS-NIPC. The UQ result using Monte Carlo with 100,000 sample

points is regarded as the ground truth result. AS-kriging is implemented by randomly sampling
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Table 5.2. Normalized eigenvalues of the C matrix in the piston problem

AS-kriging & AS-NIPC
1.00

3.82e-16
1.53e-21
1.13e-25
1.68e-25
9.71e-27
2.17e-30

the active variables according to their distributions and constructing the corresponding response

surface function. To assess their performance, the relative errors of AS-kriging and Monte Carlo

methods are averaged over 20 runs. For AS-NIPC and AS-kriging, the approximation of the

C matrix is computed using 100 sample points, and the resulting eigenvalues are presented in

Table 5.2. In this problem, we notice a rapid decline in eigenvalues after the first one, leading us

to select a one-dimensional active subspace (m = 1). The convergence plots for the three UQ

methods are depicted in Figure 5.1. It is evident from these plots that both AS-based approaches

outperform the Monte Carlo method significantly when constrained to 10s or fewer model

evaluations. This improvement is attributed to the discovery of a 1D active subspace, effectively

reducing the UQ problem’s dimension from 7 to 1. When comparing AS-kriging and AS-NIPC

methods, both tend to reach a relative error limit around 5e−3. However, AS-NIPC achieves

this level of accuracy with considerably fewer evaluations, owing to NIPC’s effectiveness in

handling low-dimensional UQ problems. Specifically, in this problem, AS-NIPC with only 5

model evaluations results in a lower error than AS-kriging with 20 model evaluations.

5.3.2 81-dimensional UQ problem with an air-taxi trajectory simulation
model

The second test problem is an 81-dimensional UQ problem involving a lift-plus-cruise

electric air taxi trajectory simulation model. The representation of the aircraft is shown in

Fig. 5.2. This computational model calculates the average ground-level sound pressure level
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Figure 5.1. UQ results on the 7D piston problem

during the aircraft’s flight along a specific trajectory [71]. The UQ problem aims to determine the

expected output under uncertainties in the control inputs and acoustic parameters. The model is

composed of two sub-models: the trajectory model and the acoustic model. The trajectory model

integrates three disciplines—flight dynamics, aerodynamics, and propulsion—with two-way

coupling among them. It computes the aircraft’s flight path based on the control inputs history,

including the histories of lift and cruise rotor thrust (xl , xc). On the other hand, the acoustics

model computes the ground-level sound pressure level (SPL) based on the flight trajectory, using

a correlation equation with three parameters: (β1,β2,β3). Further details about these models can

be found in [71]. The multidisciplinary structure of the model is shown in 5.4.

In this UQ problem, we have control inputs with 40 time steps, denoted as xl =

[xl0 , . . . ,xl39] and xc = [xc0 , . . . ,xc39 ]. These inputs’ average history is denoted as x̄l = [x̄l0 , . . . , x̄l39]

and x̄c = [x̄c0, . . . , x̄c39]. We assume a linear relationship between consecutive steps of control

inputs, with white noise added at each step, following:

Xli+1 = cXli +Nli+1, Nli+1 ∼ N (0,0.003x̄li);

Xci+1 = cXci +Nci+1, Nci+1 ∼ N (0,0.003x̄ci).

(5.40)
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Figure 5.2. Representation of the lift-plus-cruise electric air taxi [71]
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(a) Cruise rotor thrust
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Figure 5.3. Control inputs with confidence intervals

This formulation is commonly used to represent control input uncertainties in motion planning

under uncertainty problems [44]. Fig. 5.3 illustrates the control inputs’ histories alongside

their averages and 95% confidence intervals. Additionally, we have Gaussian uncertain inputs

associated with the three parameters in the acoustic model, (β1,β2,β3). The complete set of 81

uncertain inputs and their distributions are detailed in Tab. 6.2.

Table 5.3. Uncertain inputs in the UQ problem

Uncertain input Distribution
Nl ∈ R39 N (0,0.003x̄l)
Nc ∈ R39 N (0,0.003x̄c)
β1 ∈ R N (0.0209,0.002)
β2 ∈ R N (18.2429,2)
β3 ∈ R N (6.729,0.7)
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Figure 5.4. Multidisciplinary structure of the air-taxi model

This problem is solved by four UQ methods: Monte Carlo, AS-kriging, AS-NIPC, and

AS-AMTC. Both the AS-kriging and AS-NIPC methods involve applying the AS method in the

original uncertain input space. For these two methods, the C matrix in (5.6) is approximated

using the Monte Carlo method with the same 100 sample points. We present the first seven

eigenvalues of the C matrix in Tab. 5.4 and choose m = 6 as the dimension of the active subspace

as we observe a rapid decay after the sixth eigenvalue. For the AS-AMTC method, we first

compute the sparsity ratio of each uncertain input and the results are shown in Tab. 7.3. The

results indicate that the parameter uncertain inputs, (β1,β2, β3) are the sparse uncertain inputs in

this computational model with the sparsity ratio of 2%. This observation can be attributed to the

fact that these parameter uncertainties only affect the operations within the acoustic sub-model,

which constitutes a very small portion of the overall computational cost. In AS-NIPC, the AS

method is specifically employed within the non-sparse uncertain input space, which comprises

only Nl and Nc. In Tab. 5.4, we present the first seven eigenvalues alongside those corresponding

to the other two AS methods. Analyzing Tab. 5.4, we notice that the eigenvalues in the AS-

AMTC method decay more rapidly compared to the other case, leading us to select an active
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Table 5.4. Normalized eigenvalues (first seven) of the C matrix

AS-kriging & AS-NIPC AS-AMTC
1.0000 1.0000
0.0661 0.0592
0.0649 0.0381
0.0459 0.0080
0.0346 0.0032
0.0194 0.0004
0.0032 0.0002

Table 5.5. Sparsity ratio of the uncertain inputs

Uncertain inputs Sparsity ratio
Nl 99%
Nc 99%
β1 2%
β2 2%
β3 2%

subspace dimension of m = 5.

The convergence plots of the four UQ methods are shown in Fig. 5.5. Notably, the Monte

Carlo method exhibits superior performance when conducting 3000 or more model evaluations.

This superiority stems from the inherent trade-off in dimension reduction methods, where

reducing problem dimensions results in information loss about the inputs, limiting the dimension

reduction-based UQ methods’ ability to achieve extremely high accuracy. When compared to

the AS-kriging method, both of our proposed methods demonstrate superior performance. For

instance, with 100 function evaluations, AS-NIPC achieves a relative error at least 30% lower

than AS-kriging, while AS-AMTC achieves a relative error at least 80% lower than AS-kriging.

The exceptional performance of AS-AMTC can be attributed to the presence of three sparse

uncertain inputs in the computational graph of the model. These inputs only affect about 2%

of the model evaluation cost. In this case, maintaining a tensor structure of the quadrature

rule with each of the sparse uncertain inputs is very effective to use with the AMTC method.

Additionally, by applying the AS method exclusively to the uncertain input space excluding the

sparse uncertain inputs, we observe a more rapid decay rate of the eigenvalues for the C matrix,
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Figure 5.5. UQ results on the 81D air-taxi problem

as detailed in Tab. 5.4. This enables us to choose a smaller dimension for the active subspace

while achieving a more accurate reduced-order model.
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Chapter 6

A gradient-enhanced univariate dimension
reduction method for UQ

In the previous chapters, the graph-accelerated NIPC method has been introduced and

has been applied to a broad range of UQ problems assuming the a certain type of sparsity is

present in the computational graph of the original computational model. In some problems with

multidisciplinary systems, the computational graph transformation method, AMTC, by taking

advantage of the computational graph sparsity, enables a significant speed-up on tensor-grid

evaluations. However, if the computational graph does not possess this type of sparsity, the

graph-accelerated NIPC methods may be outperformed by other UQ methods.

This paper proposes a new UQ method, gradient-enhanced univariate dimension reduction

(GUDR), which uses the AMTC method in a way that does not rely on the inherent sparsity

within the computational graph. This method is based on a popular dimension reduction method,

unvariate dimension reduction (UDR), and intends to enhance its accuracy in estimating second

and higher-order statistical moments by incorporating univariate gradient terms into the UDR

approximations.

This method has been applied to four UQ problems: one 2D and one 3D mathematical

function, one 4D rotor aerodynamic analysis problem, and one 7D problem derived from a

practical aircraft design scenario. The results indicate that on the mathematical functions, when

estimating the standard deviation of the output, GUDR is more accurate than UDR and has
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comparable performance as the method of moments method using third-order Taylor expansion.

On the 4D rotor analysis and 7D aircraft design problems, GUDR enhances the accuracy of

UDR by an order of magnitude in estimating the standard deviation and becomes the most

cost-effective method to use among the UQ methods implemented.

6.1 Univariate dimension reduction

We consider an uncertainty quantification (UQ) problem involving a function f (u), where

u ∈ Rd denotes the input vector, and f ∈ R represents a scalar output. The uncertain inputs are

expressed as a stochastic vector denoted by U := [U1, . . . ,Ud]
T , with the assumption that these

random variables are mutually independent. The stochastic input vector has probability density

distribution ρ(u) with support Γ. The UQ problem aims to compute the statistical moments

of the output random variable, f (U). Given that the mean of the uncertain inputs vector is

µ := [µ1, . . . ,µd]
T , the univariate dimension reduction (UDR) [78] method approximates the

original function f (u) using a sum of univariate functions:

f̂ (u) =
d

∑
i=1

fi(ui)− (d −1) f (µ), (6.1)

where each univariate function term is defined as fi(ui) := f (µ1, . . . ,µi−1,ui,µi+1, . . . ,µd). Ex-

panding f (u) in a Taylor series at u = µ yields

f (u) = f (µ)+
∞

∑
j=1

d

∑
i=1

1
j!

∂ j f

∂u j
i

(µ)(ui −µi)
j

+
∞

∑
j2=1

∞

∑
j1=1

1
j1! j2!

d−1

∑
i1=1

d

∑
i2>i1

∂ j1+ j2 f

∂u j1
i1 ∂u j2

i2

(µ)(ui1 −µi1)
j1(ui2 −µi2)

j2

+
∞

∑
j3=1

∞

∑
j2=1

∞

∑
j1=1

1
j1! j2! j3!

d−2

∑
i1=1

d−1

∑
i2>i1

d

∑
i3>i2

∂ j1+ j2+ j3 f

∂u j1
i1 ∂u j2

i2 ∂u j3
i3

(µ)

(ui1 −µi1)
j1(ui2 −µi2)

j2(ui3 −µi3)
j3 + . . .

(6.2)
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The Taylor series expansion of the UDR approximation function, f̂ (u), at u = µ can be expressed

as

f̂ (u) = f (µ)+
∞

∑
j=1

d

∑
i=1

1
j!

∂ j f

∂u j
i

(µ)(ui −µi)
j. (6.3)

If we compare the Taylor series of the original function with the UDR approximation function,

all of the Taylor series terms in (6.3) are contained in (6.2), and the residual errors are

f (u)− f̂ (u) =
∞

∑
j2=1

∞

∑
j1=1

1
j1! j2!

d−1

∑
i1=1

d

∑
i2>i1

∂ j1+ j2 f

∂u j1
i1 ∂u j2

i2

(µ)(ui1 −µi1)
j1(ui2 −µi2)

j2

+
∞

∑
j3=1

∞

∑
j2=1

∞

∑
j1=1

1
j1! j2! j3!

d−2

∑
i1=1

d−1

∑
i2>i1

d

∑
i3>i2

∂ j1+ j2+ j3 f

∂u j1
i1 ∂u j2

i2 ∂u j3
i3

(µ)

(ui1 −µi1)
j1(ui2 −µi2)

j2(ui3 −µi3)
j3 + . . .

(6.4)

This shows that the UDR approximation is only second-order accurate in approximating the

original function [78]. However, when it comes to estimating the mean of the output, the residual

errors become

E[ f (U)]−E[ f̂ (U)] =
∫

Γ1

. . .
∫

Γd

(
f (u)− f̂ (u)

)
ρ(u)du1 . . .dud

=
1

2!2!

d−1

∑
i1=1

d

∑
i2>i1

∂ 4 f
∂u2

i1∂u2
i2

(µ)E[(ui1 −µi1)
2(ui2 −µi2)

2]+ . . . ,

(6.5)

which involves only fourth and higher-order integration terms. In contrast, the 3rd-order Taylor

series method approximates the function as

f̃ (u) = f (µ)+
3

∑
j=1

d

∑
i=1

1
j!

∂ j f

∂u j
i

(µ)(ui −µi)
j

+
2

∑
j1=1

j1+ j2≤3

∑
j2=1

1
j1! j2!

d−1

∑
i1=1

d

∑
i2>i1

∂ j1+ j2 f

∂u j1
i1 ∂u j2

i2

(µ)(ui1 −µi1)
j1(ui2 −µi2)

j2

+
d−2

∑
i1=1

d−1

∑
i2>i1

d

∑
i3>i2

∂ 3 f
∂ui1∂ui2∂ui3

(µ)(ui1 −µ1)(ui2 −µ2)(ui3 −µ3).

(6.6)
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When estimating the mean of the output with this method, the residual errors are

E[ f (U)]−E[ f̃ (U)] =
1

2!2!

d−1

∑
i1=1

d

∑
i2>i1

∂ 4 f
∂u2

i1∂u2
i2

(µ)E[(ui1 −µi1)
2(ui2 −µi2)

2]

+
d

∑
i=1

1
4!

∂ 4 f
∂u4

i
(µ)E[(ui −µi)

4]+ . . .

(6.7)

Upon comparing the UDR’s residual errors in (6.5) with those of the 3rd-order Taylor series

in (6.7), we observe that both methods are fourth-order accurate in estimating the mean of the

output. However, the UDR comprises fewer fourth-order integration terms. If we assume the

constants on the fourth-order terms are similar, it suggests that UDR generally yields a more

accurate result than the 3rd-order Taylor expansion when estimating the mean of the output.

Nevertheless, for higher-order statistical moments, the UDR approximation may not

perform as well as the 3rd-order Taylor expansion. For instance, when estimating the second-

order statistical moments, the UDR’s relative errors are:

E[ f (U)2]−E[ f̂ (U)2] =
d−1

∑
i1=1

d

∑
i2>i1

(
∂ 2 f

∂ui1∂ui2
(µ)

)2

E[(ui1 −µi1)
2(ui2 −µi2)

2]

+
d−1

∑
i1=1

d

∑
i2>i1

(
∂ f

∂ui1
(µ)

∂ 3 f
∂ui1∂u2

i2

(µ)+
∂ f

∂ui2
(µ)

∂ 3 f
∂u2

i1∂ui2
(µ)

)

E[(ui1 −µi1)
2(ui2 −µi2)

2]

+
1
2!

f (µ)
d−1

∑
i1=1

d

∑
i2>i1

∂ 4 f
∂u2

i1∂u2
i2

(µ)E[(ui1 −µi1)
2(ui2 −µi2)

2]+ . . .

(6.8)

In comparison, the residual errors for the 3rd order Taylor series method are

E[ f (U)2]−E[ f̃ (U)2] =
1
2!

f (µ)
d−1

∑
i1=1

d

∑
i2>i1

∂ 4 f
∂u2

i1∂u2
i2

(µ)E[(ui1 −µi1)
2(ui2 −µi2)

2]+ . . . (6.9)

Comparing the residual errors of the 3rd-order Taylor series method in (6.9) with the residual

errors of the UDR in (6.8), both of the methods are also fourth-order accurate in estimating the
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second-order moment of the output, but the relative errors of the UDR comprise significantly

more fourth-order integration terms compared with the 3rd-order Taylor series expansion. Thus

it is expected that the UDR is not as accurate as the 3rd Taylor series expansion method when

used to estimate the second order moment of the output.

The detailed derivation of the residual errors for the UDR approximation in estimating

the first and second-order statistical moments for a 2D problem can be found in Appendix 6.4.1.

Computational cost

The major advantage of the UDR approximation is that when estimating the statistical

moments of the output, the corresponding multidimensional integration problem can be de-

composed into multiple one-dimensional integration problems, which significantly reduces the

required computational cost. For example, when computing the mean of the output, the UDR

yields

E[ f̂ (U)] =
d

∑
i=1

∫
Γi

fi(ui)ρ(ui)dui − (d −1) f (µ). (6.10)

This only requires performing d one-dimensional integrations instead of performing a d-

dimensional integration. If we use the quadrature rule to approximate each integral with k

quadrature points, the total number of model evaluations required is kd +1, which scales only

linearly with the dimension of the UQ problem. For higher-order statistical moments of the

output, UDR can compute it following a recurring formula in [78] without requiring extra model

evaluations.

With an efficient automatic differentiation method to compute the gradients, our method

preserves UDR’s linear scaling of computation time with problem dimension.
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6.2 Methodology

6.2.1 Gradient-enhanced univariate dimension reduction

We now describe the new methodology that forms the primary contribution of this chapter.

The key idea here is to postulate a new approximation expression that enhances the accuracy of

the univariate dimension reduction (UDR) approximation expression by adding the univariate

gradient terms. With the addition of these gradient terms, the new approximation expression

can be more accurate in estimating the second and higher-order statistical moments while the

required computational cost still scales linearly with the problem dimension. We coin the new

method as the gradient-enhanced univariate dimension reduction (GUDR) method. GUDR

approximates the original function, f , as

f̄ (u) =
d

∑
i=1

fi(ui)− (d −1) f (µ)+
d

∑
i=1

(ui −µi)
d

∑
j ̸=i

∂ f j

∂ui
(u j)

− (d −1)
d

∑
i
(ui −µi)

∂ f
∂ui

(µ)−
d

∑
i=1

d

∑
j>i

∂ 2 f
∂ui∂u j

(µ)(ui −µi)(u j −µ j),

(6.11)

where ∂ f j
∂ui

(u j) := ∂ f
∂ui

(µ1, . . . ,µ j−1,u j,µ j+1, . . . ,µd) represents a univariate gradient term. This

form includes all of the terms in the UDR approximation function in (6.1), with additional terms

including the univariate first-order gradient terms and the second-order derivatives evaluated at

µ . The GUDR approximation can also be written in matrix form as
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f̄ (x) =
d

∑
i=1

fi(ui)− (d −1) f (µ)+
d

∑
i=1



u1 −µ1

...

ui−1 −µi−1

0

ui+1 −µi+1

...

ud −µd


︸ ︷︷ ︸
(u−µ)⊙(1−ei)

T


∂ fi
∂u1

(ui)

...

∂ fi
∂ud

(ui)


︸ ︷︷ ︸

∂ fi
∂u (ui)

− (d −1)


u1 −µ1

...

ud −µd


︸ ︷︷ ︸

u−µ

T 
∂ f
∂u1

(µ)

...

∂ f
∂ud

(µ)


︸ ︷︷ ︸

∂ f
∂u (µ)

−


u1 −µ1

...

ud −µd


T



0 ∂ 2 f
∂u1∂u2

(µ) . . . ∂ 2 f
∂u1∂ud

(µ)

... . . . . . . ...

0 . . . 0 ∂ 2 f
∂ud−1∂ud

(µ)

0 . . . . . . 0




u1 −µ1

...

ud −µd


︸ ︷︷ ︸

1
2 (u−µ)T

(
∂2 f
∂u2 (µ)−diag

(
diag

(
∂2 f
∂u2 (µ)

)))
(u−µ)

=
d

∑
i=1

fi(ui)+
d

∑
i=1

((u−µ)⊙ (1− ei))
T ∂ fi

∂u
(ui)− (d −1)

(
f (µ)− (u−µ)T ∂ f

∂u
(µ)

)
− 1

2
(u−µ)T

(
∂ 2 f
∂u2 (µ)−diag

(
diag

(
∂ 2 f
∂u2 (µ)

)))
(u−µ),

(6.12)

where ∂ f
∂u (µ) and ∂ 2 f

∂u2 (µ) represent the gradient vector and Hessian matrix evaluated at u = µ ,

respectively. If we compare the Taylor series expansions at u = µ of the GUDR approximation

function and the original function, just as with the UDR approximation, all of the Taylor series

terms of the GUDR approximation function are included in the original function, and the residual
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errors can be expressed as

f (u)− f̄ (u) =
d

∑
i=1

d

∑
j>i

d

∑
k> j

∂ 3 f
∂ui∂u j∂uk

(µ)(ui −µi)(u j −µ j)(uk −µk)+ . . . . (6.13)

This shows the GUDR approximation is third-order accurate when used to approximate the

original function. In comparison with the residual errors of the UDR approximation in (6.3), the

GUDR approximation is a more accurate approximation of the original function as the UDR

approximation is only second-order accurate.

When it comes to estimating the mean of the output, the GUDR approximation generates

the same results as the UDR approximation with the residual errors expressed as

E[ f (U)]−E[ f̄ (U)] =
1

2!2!

d−1

∑
i1=1

d

∑
i2>i1

∂ 4 f
∂u2

i1∂u2
i2

(µ)E[(ui1 −µi1)
2(ui2 −µi2)

2]+ . . . . (6.14)

This means that the UDR and GUDR approximations are expected to provide the same results in

estimating the mean of the output, and both are expected to be more accurate than the 3rd-order

Taylor series expansion. However, when it comes to estimating the higher-order statistical

moments, the GUDR can provide more accurate results than UDR as the GUDR approximation

is more accurate than the UDR approximation in estimating the original function. For example,

when estimating the second-order statistical moment of the output, the residual errors of the

GUDR approximation can be expressed as

E[ f (U)2]−E[ f̄ (U)2] =
1
2!

f (µ)
d−1

∑
i1=1

d

∑
i2>i1

∂ 4 f
∂u2

i1∂u2
i2

(µ)E[(ui1 −µi1)
2(ui2 −µi2)

2]+ . . . (6.15)

When compared with the residual errors from the 3rd-order Taylor series expansion method,

as detailed in (6.9), and those from the UDR method, seen in (6.8), all three methods exhibit

residual errors that include only terms of the fourth order and higher. However, the residual errors

of the GUDR and 3rd Taylor series expansion approximations contain the same fourth-order
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integration terms, while the UDR contains significantly more fourth-order integration terms. This

means that, when estimating the second-order statistical moments, the GUDR approximation is

expected to have a comparable level of accuracy with the 3rd-order Taylor series expansion, and

its result can be significantly more accurate than the UDR approximation.

The detailed derivation of the residual errors for the GUDR approximation in estimating

the first and second-order statistical moments for a 2D problem can be found in Appendix 6.4.2.

6.2.2 Tensor-grid evaluations to estimate statistical moments

For a d-dimensional UQ problem, the GUDR approximation in (6.12) involves multiple

univariate function terms and univariate gradient terms. When it comes to estimating the mean of

the output, all of the gradient terms become zero, and the GUDR yields the same result as UDR,

E[ f̄ (U)] =
d

∑
i=1

∫
Γi

fi(ui)ρ(ui)dui − (d −1) f (µ), (6.16)

which can be evaluated following the UDR method. However, when it comes to estimating higher-

order statistical moments of the output, there is no easy way to decompose the multidimensional

integrals involved. One may want to derive the recursive formula for GUDR following the

UDR method. However, the recursive formula will be significantly more complicated and is

unpractical to implement in real problems.

In this paper, we propose a new approach to decompose the GUDR approximation

function from the computational-graph-transformation perspective, so that we efficiently generate

the model evaluations on full-grid quadrature points. This approach is inspired by the recently

developed computational graph transformation method, Accelerated Model evaluations on

Tensor-grid using Computational graph transformation (AMTC).

If we treat each univariate function and gradient term in the GUDR approximation as

individual operations, the computational graph of the GUDR approximation function is shown in

Fig. 6.1. Despite the complicated form of the GUDR approximation, the main computational
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cost only comes from evaluating the univariate function and gradient terms. When applying the

GUDR approximation function to tensor-grid inputs, which are described as

u = uk
1 × . . .×uk

d, (6.17)

where uk
i denotes the set of k quadrature points within the ui dimension, we note that despite the

presence of kd input points, only k distinct points exist within each input dimension. Drawing

on AMTC’s foundational concept, since every univariate function and gradient computation

operation in the GUDR’s computational graph is dependent on just one uncertain input, it is only

necessary to evaluate these operations at the distinct quadrature points within their input space.

Consequently, by integrating the AMTC strategy, the modified computational graph for

the GUDR approximation function’s tensor-grid evaluations is shown in Fig. 6.2. In this way,

we can generate the model evaluations of GUDR approximation function on tensor-grid inputs,

f̄ (u) ∈ Rkd
, with only k evaluations on each univariate function and gradient evaluation term.

We note that the AMTC method has only been implemented in the CSDL compiler and

can only be applied to computational models that are built in the CSDL language. Fortunately, in

this specific scenario, we can achieve the minimum number of evaluations in univariate function

and gradient evaluation terms by manually adding the Einsum1 operations. First, we evaluate the

univariate model function and gradient function on the corresponding quadrature points in its

input space. Then we manually add Einsum operations in the code to transform these quadrature

points evaluations to the correct size with the correct order of the data. Lastly, this data is passed

to the GUDR approximation function to generate the full-grid evaluations of the output. We

show example codes to achieve this in the Appendix 6.4.3.

The tensor-grid input-output data can be easily used with the quadrature rule to compute

any order of statistical moments of the output. Additionally, this data can also be used with other

UQ methods like non-intrusive polynomial chaos, stochastic collocation, and kriging to construct

1Einsum refers to the Einstein summation function in Numpy.
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a surrogate model to approximate the risk measures of the output, such as the probability of

failure or conditional value at risk.

6.2.3 Computational cost

Utilizing the AMTC strategy enables the computation of any statistical moment or risk

measure of the output with a fixed number of evaluations—specifically, k evaluations for each

univariate function and its gradient term, accompanied by a single function evaluation, gradient

evaluation, and Hessian evaluation at the mean of the input variables. With reverse-mode

automatic differentiation, for a function with d inputs, a single gradient vector evaluation, and

a full Hessian matrix evaluation carry the computational weight less than 3 and 3d model

evaluations [16], respectively. As a result, a conservative estimation of the model evaluation cost

for solving the d-dimensional UQ using GUDR with k quadrature points in each dimension of

the uncertain input is no more than 4kd +3d +4 model evaluations, which scales only linearly

with the dimension of the problem.

Figure 6.1. Computational graph of the GUDR approximation function
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Figure 6.2. Computational graph of tensor-grid evaluations after graph transformation

6.3 Numerical Results

In Sec 6.3.1, we compare the accuracy of four UQ methods for estimating the standard

deviation of the output: gradient-enhanced univariate dimension reduction (GUDR), univariate

dimension reduction (UDR), method of moments using a 2nd order Taylor series expansion, and

method of moments using a 3rd order Taylor series expansion. These methods are applied to

two UQ problems involving different mathematical functions. In Sec 6.3.2 and Sec 6.3.3, we

compare the convergence plots of GUDR, UDR, and the Monte Carlo methods in estimating

both the mean and the standard deviation of the output on a 4D UQ problem involving a rotor

aerodynamic analysis model and a 7D UQ problem involving an aircraft design multidisciplinary

model, respectively.
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6.3.1 2-dimensional and 3-dimensional UQ problems with mathematical
functions

We examine two UQ problems that involve mathematical functions defined by simple,

closed-form expressions. The first problem involves the function,

y1 = f (x1,x2) =
1

1+ x4
1 +2x2

2 + x4
2

(6.18)

with uncertain inputs,

Xi ∼ N (2,σ), i = 1,2. (6.19)

The second problem involves the function:

y2 = f (x1,x2,x3) = exp(1+0.5x2
1 +0.5x2

2 +0.5x2
3) (6.20)

with uncertain inputs:

Xi ∼ N (3,σ), i = 1,2,3. (6.21)

The quantity of interest (QoI) for both UQ problems is the standard deviation of the output Y1

and Y2, respectively. These problems are adapted from [78].

For these test problems, we have implemented five methods: UDR, GUDR, method of

moments using the 2nd-order Taylor series expansion (second-order second-moment (SOSM)),

method of moments using the 3rd-order Taylor series expansion (third-order second-moment

(TOSM)), and direct numerical integration. The UDR and GUDR methods are implemented

using 19 quadrature points in each dimension of the uncertain inputs to yield the most accurate

UQ results based on these two analytical approximation expressions. Conversely, the direct

numerical integration method utilizes the Monte Carlo method with 100,000 sample points, with

its UQ results considered as the ground truth.

The UQ results derived from these five methods, along with the relative errors of the
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Figure 6.3. UQ results for y1 = (1+ x4
1 +2x2

2 +54
2)

−1

four analytical expression methods, are plotted against the increasing values of input standard

deviations in Fig. 6.3 and Fig. 6.4 for Y1 and Y2, respectively. Our observations indicate that for

both problems, all of the UDR, GUDR, SOSM, and TOSM methods yield accurate results for the

standard deviation of the response when the standard deviation of the uncertain inputs is small.

As we increase the standard deviation, the errors for all four methods correspondingly escalate.

While the performances of UDR and SOSM are comparable, GUDR and TOSM also have

comparable performances and consistently outperform UDR and SOSM. Typically, the relative

errors of GUDR are less than those of UDR and SOSM by more than an order of magnitude.

This superior performance of GUDR can be attributed to its more accurate approximation of the

original function in comparison to UDR and the 2nd-order Taylor expansion. Additionally, the

comparable performances of GUDR and TOSM match our theoretical results showing that the

GUDR approximation function is expected to have comparable performance as the 3rd-order

Taylor expansion when estimating the standard deviation of the output.

6.3.2 4-dimensional UQ problem with rotor aerodynamic analysis model

The third test problem is a 4D UQ problem involving the aerodynamic analysis of a

rotor on an aircraft. The computational model applies the blade element momentum (BEM)

theory to compute the rotor performance metrics including the thrust and torque generated. The
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Figure 6.4. UQ results for y2 = e(1+0.5x2
1+0.5x2

2+0.5x2
3)

streamtube analyzed by the BEM model is shown in Fig. 6.5. Further details of the model can be

found in [81]. The objective of the UQ problem is to determine the mean and standard deviation

of the generated torque, given four uniform uncertain inputs shown in Tab. 6.1.

In this and the following test problems, we implemented four UQ methods: GUDR, UDR,

non-intrusive polynomial chaos (NIPC), and the Monte Carlo method. The computational models

were implemented in the Computational System Design Language (CSDL) [26]. The first-order

gradient evaluations required for GUDR were calculated using an automatically implemented

adjoint method detailed in [92], and the Hessian matrix was estimated via a finite difference

method. The NIPC results were generated using the software package Chaospy [22], using a

regression-based approach. We use the UQ results generated from the Monte Carlo method

with 10,000 sample points as the reference results and depict the convergence plots of the four

methods in Fig. 6.6.

Table 6.1. Input parameters and ranges for the rotor analysis problem

Uncertain inputs Distributions
Rotor speed (RPM) U(1600,1800)

Axial free-stream velocity (m/s) U(50,60)
Propeller radius (m) U(0.79,0.81)
Flight altitude (m) U(9000,10000)

From the results, it is evident that at a low evaluation cost (10s of equivalent model
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Figure 6.5. Streamtube for the blade element momentum model [81]
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Figure 6.6. Convergence plots for the 4D rotor analysis problem

evaluations), UDR, GUDR, and NIPC are capable of delivering more accurate results compared

to the Monte Carlo method in terms of both mean and standard deviation for this particular

problem. In terms of estimating the mean of the output, UDR and GUDR yield identical UQ

results when employing the same number of quadrature points in each dimension, but GUDR is

computationally more demanding than UDR. This observation is aligned with our theoretical

analysis, which affirms that both GUDR and UDR are fourth-order accurate and produce identical

results when estimating the mean of the output. Additionally, both UDR and GUDR are more

accurate than NIPC at low evaluation costs (10s of equivalent model evaluations).

As for the standard deviation of the output, UDR’s accuracy is comparable to NIPC,

while GUDR enhances the accuracy of UDR by almost an order of magnitude at the expense

of a slightly increased computational cost. This phenomenon can be attributed to the fact that
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the GUDR approximation function results in fewer relative errors than the UDR approximation

function when estimating the second and higher-order statistical moments. In this problem, with

20 equivalent model evaluations, GUDR can achieve a relative error of less than 0.1% for both

mean and standard deviation of the output, making the GUDR method the most affordable UQ

method to achieve this level of performance.

6.3.3 7-dimensional UQ problem with UAV design multidisciplinary
model

The fourth test problem is a 7D UQ problem derived from a practical aircraft design

scenario. This problem involves a high-altitude, laser beam-powered unmanned aerial vehicle

(UAV) cruising at a high altitude while receiving charge from a laser beam emitted by a ground

station. The concept of the UAV is illustrated in Fig. 6.7, while the laser beam engagement

scenario is depicted in Fig. 6.8. The computational model incorporates multiple disciplines,

such as aerodynamics, structures, thermals, power beaming, performance, and weight models.

This model calculates the required aircraft mass to meet certain criteria, including endurance,

maximum stress, and static margin. The meshes for the aerodynamics and structure solvers are

shown in Fig. 7.1. For further details on the computational model, we refer the reader to [72].

The objective of the UQ problem is to determine the mean and standard deviation of the

required aircraft mass, taking into account seven uncertain inputs with uniform distributions.

The specific uncertain inputs and their distributions are listed in Tab. 6.2. The convergence plots

of the four UQ methods are shown in Fig. 6.10.

Figure 6.7. The high-altitude, laser-powered airplane concept

Similar to the last test problem, the Monte Carlo method is outperformed by UDR,
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Figure 6.8. The laser beam engagement scenario

(a) 1D beam meshes for the structure solver (b) 2D aerodynamics meshes for the
aerodynamics solver

Figure 6.9. Meshes for structure and aerodynamics solvers

Table 6.2. Input parameters and ranges for the aircraft design problem

Uncertain inputs Distributions
Cruise mach number U(0.1,0.2)

Altitude(km) U(17,19)
Horizontal distance (km) U(250,300)

Pitch angle (deg) U(−2,2)
Payload mass (kg) U(50,100)

Aperture diameter (m) U(0.7,0.8)
Rotor speed (RPM) U(1200,1500)

GUDR, and NIPC at low evaluation costs. When estimating the mean of the output, GUDR is

slightly more expensive than UDR and both of them are more accurate than NIPC. However,

when estimating the standard deviation of the output, UDR has comparable performance to NIPC

at low function evaluation costs. In contrast, GUDR enhances the result of UDR by almost an

order of magnitude with a slight increase in computational cost. These observations are also
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Figure 6.10. Convergence plots for the 7D aircraft design problem

consistent with our theoretical results as GUDR can be significantly more accurate than UDR in

estimating second and higher-order statistical moments of the output. As a result, in this problem,

with the computational cost of 50 equivalent model evaluations, GUDR can achieve a relative

error of less than 1% for both the mean and standard deviation of the output, making the GUDR

method the most affordable UQ method for achieving this level of performance.

6.4 Chapter appendix

6.4.1 Univariate dimension reduction in 2D case

In this section, we derive the residual errors of the univariate dimension reduction (UDR)

method in estimating the mean and standard deviation for a 2D UQ problem. Consider an

UQ problem that involves a bivariate function f (u1,u2), the Taylor series expansion of f at

(u1 = µ1,u2 = µ2) can be expressed by
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f (u1,u2) = f (µ1,µ2)+
∂ f
∂u1

(µ1,µ2)(u1 −µ1)

+
∂ f
∂u2

(µ1,µ2)(u2 −µ2)+
1
2!

∂ 2 f
∂u2

1
(µ1,µ2)(u1 −µ1)

2

+
1
2!

∂ 2 f
∂u2

2
(µ1,µ2)(u2 −µ2)

2 +
∂ 2 f

∂u1∂u2
(µ1,µ2)(u1 −µ1)(u2 −µ2)

+
1
3!

∂ 3 f
∂u3

1
(µ1,µ2)(u1 −µ1)

3 +
1
3!

∂ 3 f
∂u3

2
(µ1,µ2)(u2 −µ2)

3

+
1
2!

∂ 3 f
∂u2

1∂u2
(µ1,µ2)(u1 −µ1)

2(u2 −µ2)+
1
2!

∂ 3 f
∂u1∂u2

2
(µ1,µ2)(u1 −µ1)(u2 −µ2)

2

+
1
4!

∂ 4 f
∂u4

1
(µ1,µ2)(u1 −µ1)

4 +
1
4!

∂ 4 f
∂u4

2
(µ1,µ2)(u2 −µ2)

4

+
1
3!

∂ 4 f
∂u3

1∂u2
(µ1,µ2)(u1 −µ1)

3(u2 −µ2)+
1
3!

∂ 4 f
∂u1∂u3

2
(µ1,µ2)(u1 −µ1)(u2 −µ2)

3

+
1

2!2!
∂ 4 f

∂u2
1∂u2

2
(µ1,µ2)(u1 −µ1)

2(u2 −µ2)
2 + . . .

(6.22)

In this case, the UDR method approximates the original function as

f̂ (u1,u2) = f (u1,µ2)+ f (µ1,u2)− f (µ1,µ2). (6.23)

The Taylor series expansion of the UDR approximation, f̂ , at (u1 = µ1,u2 = µ2) can be expressed

as

f̂ (u1,u2) = f (µ1,µ2)+
∂ f
∂u1

(µ1,µ2)(u1 −µ1)+
∂ f
∂u2

(µ1,µ2)(u2 −µ2)

+
1
2!

∂ 2 f
∂u2

1
(µ1,µ2)(u1 −µ1)

2 +
1
2!

∂ 2 f
∂u2

2
(µ1,µ2)(u2 −µ2)

2

+
1
3!

∂ 3 f
∂u3
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(6.24)

If we compare the Taylor series expansion of the original function with the UDR approximation,

all of the Taylor series terms in (6.24) are contained in (6.22), and the residual errors can be
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expressed as

f (u1,u2)− f̂ (u1,u2) =
∂ 2 f

∂u1∂u2
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(6.25)

From (6.25), we observe that the UDR approximation is only second-order accurate compared to

the original function. However, when it comes to estimating the mean of the output, the residual

errors can be expressed as

E[ f (U1,U2)]−E[ f̂ (U1,U2)] =
∫

Γ1

∫
Γ2

(
f (u1,u2)− f̂ (u1,u2)

)
ρ(u1)ρ(u2)du1du2

=
1

2!2!
∂ 4 f

∂u2
1∂u2

2
(µ1,µ2)E[(u1 −µ1)

2(u2 −µ2)
2]+ . . .

(6.26)

In comparison, for a 3rd-order Taylor series method which approximates the function as

f̃ (u1,u2) = f (µ1,µ2)+
∂ f
∂u1
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(6.27)
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The residual errors of the 3rd-order Taylor series method when estimating the mean of the output

can be expressed as

E[ f (U1,U2)]−E[ f̃ (U1,U2)] =
1

2!2!
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1∂u2

2
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+
1
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2
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(6.28)

Comparing the residual errors of the 3rd-order Taylor series method in (6.28) with the residual

errors of the UDR in (6.26). Both of the methods are fourth-order accurate in estimating the mean

of the output, but the relative errors of the UDR comprise fewer fourth-order integration terms

compared with 3rd-order Taylor series expansion. When it comes to estimating the second-order

statistical moments, the relative errors of the UDR can be expressed as:

E[ f (U1,U2)
2]−E[ f̂ (U1,U2)

2] =
∫
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∫
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(6.29)

The residual errors for 3rd order Taylor series method can be expressed as:

E[ f (U1,U2)
2]−E[ f̃ (U1,U2)

2] =
1
2!

f (µ1,µ2)
∂ 4 f

∂u2
1∂u2

2
(µ1,µ2)E[(u1 −µ1)

2(u2 −µ2)
2]+ . . .

(6.30)

Comparing the residual errors of the 3rd-order Taylor series expansion method in (6.37) with

the residual errors of the UDR in (6.29). Both of the methods are also fourth-order accurate in
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estimating the second-order moment of the output, but the relative errors of the UDR comprise

more fourth-order integration terms compared with 3rd-order Taylor series expansion.

6.4.2 Gradient-enhanced univariate dimension reduction in 2D case

In this section, we derive the residual errors of the gradient-enhanced univariate dimen-

sion reduction (GUDR) method in estimating the mean and standard deviation for a 2D UQ

problem. Consider an UQ problem that involves a bivariate function f (u1,u2), the GUDR

method approximates the original function as

f̄ (u1,u2) = y(u1,µ2)+ y(µ1,u2)− y(µ1,µ2)+(u1 −µ1)

(
∂ f
∂u1
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)
− ∂ 2 f
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(6.31)

The Taylor series of the involved univariate gradient terms at (u1 = µ1,u2 = µ2) can be expressed

by
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(6.32)
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(6.33)
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The Taylor series of GUDR approximation function, f̄ can be expressed as

f̄ (u1,u2) = f (µ1,µ2)+
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(6.34)

If we compare the Taylor series expansion of the original function with the GUDR approximation,

all of the Taylor series terms in (6.34) are contained in (6.22), and the residual errors can be

expressed as

f (u1,u2)− f̄ (u1,u2) =
1

2!2!
∂ 4 f

∂u2
1∂u2

2
(0,0)u2

1u2
2 + . . . (6.35)

which only include fourth and higher-order terms. When we estimate the first-order statistical

moment of the output, the GUDR approximation generates the same results as the UDR as

E[ f (u1,u2)]−E[ f̄ (u1,u2)] =
1

2!2!
∂ 4 f

∂u2
1∂u2

2
(µ1,µ2)E[(u1 −µ1)

2(u2 −µ2)
2]+ . . . (6.36)

When we estimate the second-order statistical moment of the output, the residual errors for

GUDR approximation can be expressed as

E[ f (u1,u2)
2]−E[ f̄ (u1,u2)

2] =
1
2!

f (µ1,µ2)
∂ 4 f

∂u2
1∂u2

2
(µ1,µ2)E[(u1 −µ1)

2(u2 −µ2)
2]+ . . . .

(6.37)
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Compared to the residual errors of the 3rd-order Taylor series method, shown in (6.37), the

residual errors of the GUDR approximation contain the same fourth-order integration terms.

6.4.3 Example code to implement computational graph transformation
in GUDR

In this section, we provide the example code to implement the computational graph

transformation method in GUDR for a 2D UQ problem. The Python code below assumes we

have the univariate model and gradient functions’ evaluations on quadrature points of each input

dimension, along with the function and gradient evaluations on the mean of the input. The code

shows how to use NumPy’s Einstein summation function to expand the sizes of certain inputs so

that we can generate the correct tensor-grid evaluations for the GUDR approximation function.

import numpy as np

k # number of quadrature points in each dimension

u_1 # quadrature points in u_1 , size: (k,1)

u_2 # quadrature points in u_2 , size: (k,1)

f1_u1 # quadrature points evaluations of f_1(u_1), size (k,1)

f2_u2 # quadrature points evaluations of f_2(u_2), size (k,1)

df1_du # quadrature points evaluations of df_1/du(u_1), size (k,2)

df2_du # quadrature points evaluations of df_2/du(u_2), size (k,2)

mean_u # mean of the inputs , size(2,)

f_mean_u = # function evaluation on mean of the inputs , size (1,)

df_du_mean_u = # gradient evaluation on mean of the inputs , size (2,)

d2f_du2_mean_u = # Hessian evaluation on mean of the inputs , size (2,2)

total_points = k** 2 # total input points k**2

# Use Einsum and reshape operations to expand the size of certain inputs

u_1 = np.einsum(’i...,p...->ip...’, u_1 , np.ones(k))

u_1 = np.reshape(u_1 , (total_points ,))

u_2 = np.einsum(’p...,i...->ip...’, u_2 , np.ones(k))

u_2 = np.reshape(u_2 , (total_points ,))
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f1_u1 = np.einsum(’i...,p...->ip...’, f1_u1 , np.ones(k))

f1_u1 = np.reshape(f1_u1 , (total_points ,))

f2_u2 = np.einsum(’p...,i...->ip...’, f2_u2 , np.ones(k))

f2_u2 = np.reshape(f2_u2 , (total_points ,))

df1_du = np.einsum(’i...,p...->ip...’, df1_du , np.ones(k))

df1_du = np.reshape(df1_du , (total_points , 2))

df2_du = np.einsum(’p...,i...->ip...’, df2_du , np.ones(k))

df2_du = np.reshape(df2_du , (total_points , 2))

# Evaluate GUDR approximation function on tensor -grid quadrature points

f_gudr = np.zeros(total_points ,)

for i in range(total_points):

u = np.array([u_1[i], u_2[i]])

a1 = np.array([0, u_2[i]- mean_u[1]])

a2 = np.array([u_1[i]- mean_u[0], 0])

term1 = f1_u1[i] + f2_u2[i] - f_mean_u

term2 = np.dot(a1, df1_du[i,:]) + np.dot(a2, df2_du[i,:])- np.dot((u-

mean_u), df_du_mean_u)

term3 = -0.5*np.einsum(’...i,...i->...’, (u-mean_u).T.dot(

d2f_du2_mean_u - np.diag(np.diag(

d2f_du2_mean_u))), (u-mean_u))

f_gudr[i] = term1 + term2+ term3

# f_gudr: GUDR approximation function evaluations on tensor -grid

quadrature points , size (k^2,)
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Chapter 7

Graph-accelerated large-scale multidisci-
plinary design optimization under uncer-
tainty of a laser-beam-powered aircraft

This chapter presents a detailed case study for a laser-beam-powered aircraft design

problem. The focus is on applying the graph-accelerated NIPC methods to solve a large-scale

multidisciplinary design optimization under uncertainty (MDOUU) problem. This study aims to

not only compare the results of MDO and MDOUU but also highlight the effectiveness of the

graph-accelerated NIPC method in tackling MDOUU problems.

The advancements in power-beaming technology have opened up possibilities for the

development of unmanned aircraft primarily powered by laser beams. This breakthrough offers

the potential to reduce the reliance on onboard energy storage, prompting the exploration of new

aircraft designs that can fully leverage this unique property. Expanding upon previous research

in MDO for similar aircraft, as discussed in [72], we develop a practical OUU problem tailored

to a specific mission scenario. This problem formulation accounts for three pivotal random

variables linked to flight conditions. The numerical results offer a comparative analysis of the

designs optimized through MDO and MDOUU for specific metrics. The findings highlight that

the MDOUU-optimized design exhibits greater robustness and reliability when subjected to the

defined uncertain inputs. Furthermore, we demonstrate a substantial acceleration in optimization

time, achieving a fivefold improvement by implementing the computational graph transformation
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method, AMTC. This efficiency enhancement results in a computational cost for solving the

MDOUU problem that is merely double that of solving the MDO problem.

7.1 Problem setup

In this problem, we aim to optimize the conceptual design of a twin-fuselage, high-

altitude unmanned airplane. This aircraft is uniquely engineered to accommodate a central pod

that receives power from an incoming laser beam and converts it to electrical power via an

internal photoelectric array. The airplane concept is shown in Fig. 3.6. We consider a simple

mission scenario where the aircraft is in cruise condition while being powered only by a laser

beam emitted from a ground station. The laser engagement scenario is shown in Fig. 6.8. The

detailed descriptions for all of the sub-models for each discipline can be found in [72].

7.1.1 Computational model and optimization formulations

Our computational model involves multiple disciplines, including aerodynamics, struc-

tural analysis, thermal dissipation, power beaming, and stability assessment. The aerodynamic

solver employs the vortex-lattice method to calculate the aerodynamic forces generated by

the wing and tail. In the structural analysis component, we assume a wing-box structure and

determine the Von-Mises stress at specific evaluation points on the beam cross-section, focusing

on areas where bending and shear stress are expected to be the greatest. For the power-beaming

model, we leverage data generated from the High Energy Laser End-to-End Operational Simu-

lation (HELEEOS) [23] software to compute beam propagation loss. The meshes used for the

structure and aerodynamics solvers are both shown in Fig. 7.1 Additionally, Fig. 7.2 provides a

visual representation of the wing box structure.

We begin by establishing an MDO problem, as outlined in [72]. The objective here is to

find the optimal aircraft design, with a focus on minimizing the total weight of the aircraft while

ensuring compliance with specified constraints. A detailed formulation of the MDO problem is

presented in Tab. 7.1, and the associated XDSM diagram is depicted in Fig. 7.3. It is important

113



(a) 1D beam meshes for the structure solver (b) 2D aerodynamics meshes for the
aerodynamics solver

Figure 7.1. Meshes for structure and aerodynamics solvers

Figure 7.2. The wing box structure with stree evaluation points

to note that, in addition to the optimization constraints outlined in Tab. 7.1, several requirements

are inherently embedded within the computational model. These encompass considerations such

as endurance, heat dissipation, and static margin, all of which contribute to shaping the final

aircraft design.

Figure 7.3. XDSM diagram of the computational mdoel

Upon examination of the MDO formulation presented in Tab. 7.1, we identified three
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Table 7.1. MDO problem formulation

DESCRIPTION RANGE (UNITS) QUANTITY

OBJECTIVE Aircraft total weight w (kg) 1
DESIGN VARIABLES Wing span scaling −10 ≤ bw ≤ 10 1

Tail span scaling −4 ≤ bt ≤ 4 1
Tail incidence −10 ≤ iht ≤ 10 (deg) 1

Pitch angle −10 ≤ θ ≤ 10 (deg) 1
Mach number 0.1 ≤ m ≤ 0.3 1
Rotor speed 500 ≤ n ≤ 3000(rpm) 1

Aperture diameter 0.25 ≤ da ≤ 1 (m) 1
Wing beam cap thickness 0.001 ≤ tcap ≤ 0.01(m) 14
Wing beam web thickness 0.001 ≤ tweb ≤ 0.01 (m) 14

Total: 35
CONSTRAINTS Optical power residual ro ≥ 0 1

Trim residual r( ˙⃗x)≤ 1e−6 1
Maximum stress s ≤ smax 70

Total: 72

pivotal uncertain inputs: flight altitude, horizontal distance, and payload weight. These random

variables are pivotal in this problem, as the aircraft operates across diverse mission scenarios. To

account for the variability of these three uncertain inputs within our optimization framework,

we formulate the MDOUU problem, as outlined in Tab. 7.2. This formulation falls into the

category of robust design optimization, wherein the objective function and inequality constraints

are expressed as linear combinations of the statistical moments of the stochastic outputs.

7.1.2 Graph-accelerated NIPC for MDOUU

Using the graph-accelerated NIPC methods to solve MDOUU problems involves a

four-step process:

1. Define the computational model in graph-based modelling software and generate its

computational graph

2. Generate the tensor-grid quadrature rule based on computational graph analysis.

3. Generate the modified computational graph using AMTC for efficient tensor-grid evalua-

tions.

115



Table 7.2. MDOUU problem formulation

DESCRIPTION RANGE (UNITS) QUANTITY

OBJECTIVE Aircraft total weight µW +3σW (kg) 1
DESIGN VARIABLES Wing span scaling −10 ≤ bw ≤ 10 1

Tail span scaling −4 ≤ bt ≤ 4 1
Tail incidence −10 ≤ iht ≤ 10 (deg) 1

Pitch angle −10 ≤ θ ≤ 10 (deg) 1
Mach number 0.1 ≤ m ≤ 0.3 1
Rotor speed 500 ≤ n ≤ 3000(rpm) 1

Aperture diameter 0.25 ≤ da ≤ 1 (m) 1
Wing beam cap thickness 0.001 ≤ tcap ≤ 0.01(m) 14
Wing beam web thickness 0.001 ≤ tweb ≤ 0.01 (m) 14

Total: 35
RANDOM VARIABLES Altitude U (4000,6000) (m) 1

Horizontal distance U (220,280) (km) 1
Payload weight U (40,60) (kg) 1

Total: 3
CONSTRAINTS Optical power residual µRo −3σRo ≥ 0 1

Trim residual µR +3σR ≤ 1e−6 1
Maximum stress µS +3σS ≤ Smax 70

Total: 72

4. Solve the MDOUU problem in the double-loop framework using the modified computa-

tional graph for evaluations.

In the MDOUU context, the UQ problems at different optimization iterations involve

the same computational graph and uncertain inputs but with different design variable values.

Consequently, there’s no need to regenerate the modified computational graph for each opti-

mization iteration. Instead, we only need to update the design variable values on the modified

computational graph at each optimization iteration. As a result, using the graph-accelerated

NIPC approach to solve the MDOUU problem barely adds up any computational cost, and the

acceleration it brought is directly related to the reduced repeated evaluations on the operation

level.
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7.2 Numerical results

In this study, we first investigate the performance of the graph-accelerated NIPC method

by applying it to the solution of the UQ problem with the initial design of the aircraft. We then

compare its performance with integration-based NIPC and regression-based NIPC methods. The

UQ results are also used to decide on the number of quadrature points we use in the MDOUU

problem. Following this, we tackle an MDO problem, as outlined in Tab.7.1, aimed at refining

the aircraft’s initial design. After optimizing the design through MDO, this improved design

serves as the starting point for addressing the MDOUU problem, detailed in Tab.7.2. We then

draw a comparison between the results of the MDO and MDOUU, evaluating them across various

metrics. This comparison underscores the effectiveness of the AMTC method. To ensure an

equitable comparison in terms of computational time, we opt for the finite-difference approach

to calculate gradients for all involved optimization problems.

7.2.1 Comparison of the UQ methods

We assess the performance of the graph-accelerated NIPC method by conducting a

comparative analysis against two other UQ techniques. The objective here is to compute the

mean and standard deviation of the objective function for the initial design of the aircraft, under

the effect of the three uncertain inputs we defined. The three methods under evaluation are

full-grid integration-based NIPC (integration-based NIPC), full-grid integration-based NIPC with

AMTC (integration-based NIPC with AMTC) and regression-based NIPC. The regression-based

NIPC results are generated using the software package Chaospy [22], with a random sampling

approach.

The convergence plots of the UQ methods are shown in Fig. 7.4. The results here show

that by using the AMTC method, the model evaluation cost of the integration-based NIPC method

can be reduced by more than one order of magnitude making it the clear winner compared to

the other two implemented methods. The significant acceleration here can be explained by
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Figure 7.4. Convergence plots of the UQ methods

Table 7.3. Sparsity ratio of the uncertain inputs

Uncertain inputs Sparsity ratio
Altitude 98.3%

Horizontal distance 0.4%
Payload weight 3.2%

looking at the sparsity ratio of each uncertain input shown in Tab. 7.3. The sparsity ratio was first

introduced in [100] as a measure for the percentage of dependent computational cost for each

uncertain input. From it, we observe that, out of the three uncertain inputs, two of them have

only a small percentage of the computational cost dependent on them. This means, that most

of the computationally dominant operations in this model are only dependent on one uncertain

input, and only need to be evaluated on the k quadrature points in that dimension. By eliminating

the redundant evaluations on the operation level, AMTC significantly accelerates the model

evaluations on the tensor-grid.

7.2.2 Comparison of the MDO and MDOUU results

Based on the UQ results, we choose to use the integration-based NIPC to solve the UQ

sub-problem in MDOUU. The full-grid Gauss quadrature points with 3 nodes in each dimension

are used to ensure a balance between accuracy and efficiency, and the AMTC method is used to

accelerate the model evaluations on tensor-grid quadrature points.
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Table 7.4. Comparison of MDO and MDOUU results

Initial design MDO-optimized design MDOUU-optimized design
Design variables:

bw 0 0.1145 0.1886
bt 0 0.3149 0.3313
iht 0 1.674 1.573
θ 0 -0.3495 -0.5340
m 0.15 0.1 0.1
n 1500 1083 1082
da 0.75 0.5318 0.5368

MDO objective 1024 588 607
MDO constraints:

Violation No. 19 0 0
Average violation (%) > 100% - -

OUU objective 1123 634 655
OUU constraints:

Violation No. 20 4 0
Average violation (%) > 100% 1.2% -

Number of opt. iterations - 58 26
Optimization time - 38 min 1h 18 min (with AMTC)

7h 52 min (without AMTC)

The MDO and MDOUU-optimized designs are compared with the initial design in

Tab. 7.4, and the visualization of MDO and MDOUU-optimized designs can be found in Fig. 7.5.

The results reveal a notable distinction between the MDO-optimized design and the initial design.

It is noteworthy that the MDO problem required 38 minutes for the optimizer to converge, leading

to a significant enhancement over the initial design. Specifically, it resulted in a 40% reduction

in the MDO objective function while satisfying all MDO constraints.

However, upon evaluating the MDOUU constraint functions on the MDO-optimized

design, we discovered that four constraints were violated, with an average violation of approxi-

mately 1.2%. This implies that the MDO-optimized design may not fully comply with certain

constraint functions when subjected to changes in flight conditions. Consequently, by employing

MDOUU to enhance the MDO-optimized design, we achieved an optimal design that success-

fully meets all of the MDOUU constraint functions. While the OUU-optimized design exhibits

a higher objective value compared to the MDO-optimized design, the fact that it satisfies all
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Figure 7.5. Visualizations of the MDO and MDOUU results
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Figure 7.6. Comparison of the probability density distributions of a stress constraint function
output

MDOUU constraints underscores its resilience when operating under varying flight conditions,

characterized as uncertain inputs in the MDOUU problem. The comparison between MDO and
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MDOUU results under the effect of the uncertain inputs in one of the stress constraint functions

that the MDO-optimized design violated is shown in Fig. 7.6. The results show that almost half

of the probability density distribution for the MDO-optimized design is over the maximum stress

limit while the entire distribution of the MDOUU-optimized design is below the maximum stress

limit. Furthermore, in terms of computational efficiency in solving the MDOUU problem, the

AMTC method plays a crucial role by reducing the total optimization time by approximately

fivefold. Consequently, the optimization time for solving the MDOUU problem is merely twice

that of solving the MDO problem

From an aircraft design perspective, it is worth noting that the MDOUU-optimized design

exhibits distinct characteristics compared to the MDO-optimized counterpart. Specifically, the

MDOUU-optimized design features a larger wing span, a greater tail span, and a generally thicker

beam cross-section. These design differences can be attributed to the inherent conservatism of

the MDOUU approach. The larger wing area in the MDOUU-optimized design is strategically

designed to generate sufficient lift, ensuring the aircraft can carry potentially heavier payloads.

Additionally, the stronger wing structure is designed to guarantee compliance with constraint

requirements under a wide range of flight conditions. In summary, the MDOUU-optimized

design prioritizes robustness and reliability across varying scenarios, which leads to these specific

design modifications.

Acknowledgments

The material presented in this paper is, in part, based upon work supported by DARPA

under grant No. D23AP00028-00

Chapter 7, in part, is a reprint of the material [99] as it appears in Wang, B., Orndorff,

N. C., Joshy, A. J., and Hwang, J. T., “Graph-accelerated large-scale multidisciplinary design

optimization under uncertainty of a laser-beam-powered aircraft,” AIAA SciTech 2024 Forum,

2024, p. 0169. The dissertation author was the primary investigator and author of this paper.

121



Chapter 8

Conclusion

The objective of this thesis is to devise efficient efficient uncertainty propagation methods

that can be seamlessly integrated into the existing gradient-based MDO framework. In this

chapter, I summarize the contributions made by my research and offer recommendations for

future work.

8.1 Summary of contributions

My first contribution is the development of a computational graph transformation method

named Accelerated Model Evaluations on Tensor Grids using Computational Graph Transforma-

tion (AMTC). This method enhances the efficiency of tensor-grid evaluations by leveraging the

computational graph sparsity inherent in the model. By integrating AMTC with the non-intrusive

polynomial chaos (NIPC) method, it effectively addresses a wide range of low-dimensional

uncertainty quantification (UQ) problems, typically involving fewer than four uncertain inputs.

This combined approach, known as the graph-accelerated NIPC method, also opens up a new

avenue of research to design the quadrature rule in a desired tensor structure so that the AMTC

method can make the best use of the computational graph sparsity.

My second contribution is the development of a framework for designing partially tensor-

structured quadrature rules compatible with the AMTC method. This framework constructs

the quadrature rules using a tailored quadrature method and selects the optimal tensor structure
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by analyzing the model’s computational graph. This advancement extends the applicability

of the graph-accelerated NIPC methods to a broader range of UQ problems, accommodating

higher-dimensional random spaces, typically with fewer than ten uncertain inputs.

My third contribution is the development of AS-AMTC, a method that integrates graph-

accelerated NIPC methods with the active subspace (AS) dimension reduction technique to

address high-dimensional UQ problems. During the creation of AS-AMTC, I also developed

AS-NIPC, which combines the AS method with integration-based NIPC methods to solve high-

dimensional UQ problems. Building on AS-NIPC, AS-AMTC merges the AS method with

graph-accelerated NIPC methods, providing a more efficient solution for high-dimensional UQ

problems (with more than ten uncertain inputs) with multidisciplinary systems.

My fourth contribution is the development of a UQ method called gradient-enhanced

univariate dimension reduction (GUDR). This method improves the accuracy of the well-known

univariate dimension reduction (UDR) method in estimating second and higher-order statistical

moments. The GUDR method incorporates univariate gradient terms into the UDR approximation

function and utilizes the AMTC for efficient tensor-grid evaluations. By employing an efficient

automatic differentiation technique, this method maintains the linear scalability of the UDR

method while significantly enhancing accuracy in estimating higher-order statistical moments.

8.2 Recommendations for future work

This thesis presents a suite of graph-accelerated UQ methods designed for tackling

multidisciplinary UQ and MDOUU problems across various scenarios. Despite their potential,

significant work remains to fully realize these methods’ capabilities in addressing practical,

large-scale MDOUU problems. Below, I outline several key questions that should be addressed

in future research:

First, a critical step towards fully integrating graph-accelerated NIPC methods into

the gradient-based MDO framework is the combination of the AMTC method with automatic
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differentiation to achieve efficient analytical derivative computations using modified computa-

tional graphs. Gradient-based optimization methods utilizing analytical derivatives can achieve

better-than-linear scalability, which is essential for enabling large-scale MDO. By integrating

AMTC with automatic differentiation, graph-accelerated NIPC methods can significantly im-

prove the efficiency of both model and gradient evaluations, thereby expanding the applicability

of large-scale MDOUU.

Second, the AS-AMTC and AS-NIPC methods proposed in this thesis are currently

applicable only to single-output computational models. To extend these methods to address

MDOUU problems, it is essential to develop strategies for managing computational models

with multiple outputs, such as those involving objective function outputs and constraint function

outputs in MDOUU problems.

Third, in this thesis, the graph-accelerated NIPC methods have been utilized solely for

estimating the statistical moments of the QoIs. The quadrature rules employed are designed from

the perspective of polynomial exactness, making them effective for this purpose. However, to

expand these methods for solving reliability-based design optimization problems, it is necessary

to develop more efficient quadrature methods capable of estimating complex risk measures, such

as the probability of failure or conditional value at risk.
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[10] Géraud Blatman and Bruno Sudret. Sparse polynomial chaos expansions and adaptive
stochastic finite elements using a regression approach. Comptes rendus mécanique,
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