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Progressive Precision Surface Design
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Summary. We introduce a novel wavelet decomposition algorithm that makes a number of
powerful new surface design operations practical. Wavelets, and hierarchical representations
generally, have held promise to facilitate a variety of design tasks in a unified way by approx-
imating results very precisely, thus avoiding a proliferation of undergirding mathematical
representations. However, traditional wavelet decomposition is defined from fine to coarse
resolution, thus limiting its efficiency for highly precise surface manipulation when attempt-
ing to create new non-local editing methods.

Our key contribution is the progressive wavelet decomposition algorithm, a general-
purpose coarse-to-fine method for hierarchical fitting, based in this paper on an underly-
ing multiresolution representation called dyadic splines. The algorithm requests input via
a generic interval query mechanism, allowing a wide variety of non-local operations to be
quickly implemented. The algorithm performs work proportionate to the tiny compressed
output size, rather than to some arbitrarily high resolution that would otherwise be required,
thus increasing performance by several orders of magnitude.

We describe several design operations that are made tractable because of the progressive
decomposition. Free-form pasting is a generalization of the traditional control-mesh edit,
but for which the shape of the change is completely general and where the shape can be
placed using a free-form deformation within the surface domain. Smoothing and roughening
operations are enhanced so that an arbitrary loop in the domain specifies the area of effect.
Finally, the sculpting effect of moving a tool shape along a path is simulated.

1 Introduction

The process of designing geometric shapes via computation is a critical activity for
the making of films, computer games, automobiles and many other ends. Underpin-
ning this design activity are mathematical representations and associated algorithms
that facilitate a wide variety of manipulations of shape, such as creating overall pro-
portions, placing details, then deforming the shape or otherwise modeling various
quasi-physical manipulations. Unfortunately, no single mathematical representation
is known that will provide exact analytic results to all surface operations of interest.
Rather than introduce more and more specialized mathematics, a recent trend has
been to support many operations in a single, unified representation using approxi-
mation theory and hierarchical algorithms [6, 20, 14, 5, 24].
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Wavelets have been used in surface modeling by Gortler and Cohen [13], who
have introduced methods based upon an “oracle” which drives their adaptive refine-
ment. Other non-local design techniques have been proposed by Biermann et al. [3]
and by Litke et al. [21], who have extended this work to subdivision surfaces.

In this paper, we introduce a multiresolution framework that allows coarse-to-
fine (i.e. progressive) computation of a broad set of non-local shape manipulations.
This work formalizes and extend the hierarchical B-splines of Forsey and Bartels
[11, 12], creating new applications of this method.

The key technique we introduce is the progressive wavelet decomposition,
whereby the usual fine-to-coarse filtering and truncation is replaced by coarse-to-
fine selective refinement. This switch in orientation is generally not possible unless
the input data are represented and operations are evaluated in a generic hierarchical
fashion, which we term interval queries. The abstract input interface to the pro-
gressive wavelet decomposition is therefore in the form of an interval query ora-
cle, which the transform calls in response to selective refinement requests on the
operation output. The interval query mechanism is inspired by the methods of in-
terval analysis [23], and the research into modeling systems built on those concepts
[27, 17]. A simple, hierarchical parametric representation, dyadic splines [8], is used
at the lowest level. A dyadic spline is defined by alternately performing B-spline re-
finement and adding displacement vectors. The coarse-to-fine processing proceeds
in the following phases:

1. Split a leaf of the domain-interval bintree in two, and put the (so far uncom-
puted) wavelet coefficients overlapping these intervals at that scale onto to the
active coefficient list.

2. Invoke the interval-query oracle to the target function, which provides a local
Bézier patch estimate and error bound. Do this on all the domain intervals that
the newly-active wavelet coefficients depend on.

3. In this neighborhood, compute the estimated values and associated error bounds
of the scaling function coefficients, dyadic spline displacements, and wavelet
coefficients using the appropriate local weighted-average filters.

4. Propagate improved values up to coarser resolutions if warranted, using the
local wavelet decomposition filters.

The split request can be made in any order that an application chooses. A good
generic ordering of these requests involves placing the domain bintree leaves on a
priority queue ordered by the size of the error bounds in the neighborhood. These
phases are repeated over and over until a desired accuracy is achieved or a desired
time limit is reached.

We evaluate our approach with respect to six criteria:

1. Output-sensitive computation: Our progressive decomposition algorithm per-
forms work proportionate to the compressed (approximated) output size. This
is similar to the best algorithms in more specialized settings such as view-
dependent optimization [15, 7], multiresolution surface editing [11, 31], and
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multiresolution painting [2], yet provides a kind of generic “plug in” architec-
ture that eases the addition of new manipulation operations.

2. Guaranteed error bounds: The formulation of our transform not only is guar-
anteed to converge, but provides strict error bounds at every step in the progres-
sive sequence.

3. Fixed memory footprint: We provide a caching system for the interval queries
that allows the transform to restrict the working memory footprint to a tiny
subset of the total data accessed, traversed, evaluated or output.

4. Rate-distortion curves: Our coarse-to-fine processing produces accuracies
comparable to traditional fine-to-coarse methods at higher refinement, but suf-
fers somewhat at coarser resolutions because the selective refinement and local
approximations are based on “fuzzy” knowledge of the underlying function. In
a sense this is the price that must be paid to get progressive computation, but it
does not appear affect overall convergence rates.

5. Selective refinement: the algorithm allows applications that know where and
in what order they want detail in a function domain. Interestingly, this includes
feeding the output of the progressive transform into other interval-query oracles
and progressive transforms, leading to a closed system for progressive compu-
tation.

6. High-level design tools: We devised surface design applications that are in-
teresting in their own right but make a large point: they show the possibility
of quasi-physical operations that more closely match the intuition gained from
non-digital model building, as opposed to the tedium of “pulling on the con-
trol net” by hand. In a sense this follows in the footsteps of the development of
Computational Solid Geometry (CSG) [25], free-form deformations [26], and
hyperpatch modeling [16].

2 Dyadic Spline Representation

This section will give a brief review of the dyadic spline representation, giving its
formulation and the properties most critical the progressive decomposition algo-
rithm. Complete details are available in [8].

The general idea is depicted in Figure 1. An initial coarse grid of control points
is alternately split and perturbed until some limit function is produced. The common
uniform B-spline weighted averaging is used, and the perturbations are simple vec-
tor additions. The set of functions represented in this way is dense in Lp, meaning
that all functions of interest in practical situations can be accurately converted to a
dyadic spline.

Bintrees are based on the dyadic rational numbers
{

i/2� | i, � ∈ Z
}

where a hierarchy of one-dimensional intervals is indexed by level � and position i
as
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double

perturb

double

perturb

...

limit

Fig. 1. A dyadic spline is the limit of a sequence of doubling (B-spline refinement) and
perturbing (hierarchical displacement) operations. A broad class of functions can be stored
this way, but more importantly this view of a function facilitates a general form of progressive
evaluation and computation.

I�,i =
[
i/2�,(i+1)/2�

)
For higher dimensions, the hierarchy of one-dimensional intervals becomes a

hierarchy of two- or three-dimensional intervals by splitting intervals in half along
one axis at a time. These intervals have a level �, current axis a, and m indices
i1, . . . , im:

I�,a,i1,...,im = I�+1,i1 ×·· ·× I�+1,ia−1 × I�,ia ×·· ·× I�,im
This hierarchy is important since it forms the fundamental spatial structure that all
the various weighted averaging schemes use. Displacements and range positions
associated with I�,i will be denoted by D�,i and P�,i respectively. B-spline subdivision
can be expressed by a weighted-averaging formula

P�,2i = j an, jP�−1,i+ j

P�,2i+1 = j bn, jP�−1,i+ j

where the an, j and bn, j are weights derived from the dyadic rationals (see [7]). This
can be extended to include the displacements by the recurrence
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P�,2i = j an, jP�−1,i+ j +D�,2i

P�,2i+1 = j bn, jP�−1,i+ j +D�,2i+1

Note that in this simple form (without wavelets), the dyadic spline is defined by the
base control mesh P0 and displacements D� for � = 1, · · · ,¥ .

The 1-D formulation is extended to m dimensions by utilizing a tensor-product.
Here, the one-dimensional filtering is applied along each of the axes.

A formulation of dyadic splines that is most useful in this work involves the
specification of four linear operators (filters):

S = subdivide to obtain the next finer level
F = fit points to the next finer level
C = compact the displacements
E = expand displacements

These four filters are defined by the following fundamental relationship.
[

F
C

]
[S|E] =

[
I 0
0 I

]

In other words, the operation of fitting and compacting the differences from pre-
diction should be the inverse of the operation of subdividing and expanding the
compacted differences.

The subdivision operator S is defined by the dyadic spline recurrence

P� = SP�−1 +D�

The subdivision filter, combined with the fit, compaction and expansion filters, form
the usual wavelet decomposition bank depicted in Figure 2. (Note that the C operator
in effect eliminates the factor of two redundancy in the displacement representation
of a function.) The P�,i values are scaling function coefficients, and the compacted
displacements Q�,i are wavelet coefficients.

P1 Q1

P2 Q2

P3 Q3

P4 Q4
...

...

F S C
E

F S C
E

F S C
E

Fig. 2. The dyadic spline wavelet filter bank, showing the data flow dependencies and scale
relationships of the four filters F (fit), S (subdivide), C (compact) and E (expand).
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The fit operator approximates the ideal least-squares fit operator

F¥ = (ST S)−1ST

but with finite support. By setting the central (near diagonal) elements of F to F¥ ,
and leaving an appropriate number as available degrees of freedom, this inverse
property can be maintained by solving a tiny linear system (see [8] or [28]).

The filters are applied in various orders depending on the operation desired. For
traditional wavelet decomposition, one assumes some fine-level P� is given, and the
computation proceeds as

· · ·
P3 = FP4 Q3 = CP4

P2 = FP3 Q2 = CP3

· · ·
For synthesis, this is reversed:

· · ·
P3 = SP2 +EQ3

P4 = SP3 +EQ3

· · ·
To convert from the simple dyadic spline representation (base-mesh plus displace-
ments) to wavelets, while at the same time keeping a consistent and optimized ver-
sion of the displacements, the following is used:

· · ·
D3 + = FD4 Q3 = CD4 D4 = EQ3

D2 + = FD3 Q2 = CD3 D3 = EQ2

· · ·
This level of redundancy is useful for the formulation and implementation of sur-
face design operations. At the end of this process, only the base mesh and wavelet
coefficients are stored to disk or sent over the network.

3 Progressive Wavelet Decomposition

We will assume that the ideal target function (the result of an editing operation, for
example), is denoted g(t), and that we have available an oracle that will return a
local Bézier-curve estimate for t ∈ I�,i of g̃�,i(t) = j G�,i, jB�,i, j(t), where the G�,i, j

are control points and B�,i, j(t) are the Bernstein basis functions of some desired
polynomial degree [9]. In addition to the local polynomial, we also need an error
estimate E�,i such that g(t) ∈ [g̃�,i(t)−E�,i, g̃�,i(t)+E�,i] for t ∈ I�,i.

Suppose in a progressive decomposition that we desire to have estimates for P�,i

for some intermediate level of resolution �, for example at the leaves of the current
bintree refinement. Given the filters F, C, E, and S we can then compute all the
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positions P�′,i, displacements D�′,i and wavelet coefficients Q�′,i for levels �′ < �
(values at or coarser than �). So our problem is reduced to simulating what would
happen if we were to perform the wavelet filtering on the infinitely resolved Bézier
curves. Since the filtering process, even in this limit, is fundamentally just a linear
operation of weighted averaging, we can separately precompute the infinite-limit
wavelet decomposition of the Bernstein basis functions, and at runtime simply look
these results up to directly compute estimated positions P̃�,i as a weighted average
of the nearby estimate control points G�,i′, j:

P̃�,i =
j,s
bs, jG�,i+s, j

for the precomputed Bernstein-basis limit fits bs, j. Note that due to scale invariance
these weights depend only on relative position s and basis function index j, not on
the level �. The estimate fit kernels bs, j are shown in Figure 3. Note that the nonzero
weights are in a narrow local neighborhood.

n=1 k=1

n=2 k=1

n=3 k=2

Fig. 3. Estimate-fit kernels bs, j for dyadic splines of degree n = 1, · · · ,3 (with respective filter
width parameter k = 1,1,2), and for Bernstein basis functions for degrees 0,1,2.

The various positions, displacements and wavelet coefficients, P̃�′,i, D̃�′,i, and
Q̃�′,i, can now be computed using the wavelet filters. It is straightforward to obtain
strict error bounds on these values since error bounds on the inputs are known and
the entire process is simple linear weighted averaging [23].

The wavelet decomposition algorithm proceeds to use this machinery to create a
progressive sequence of increasingly accurate approximations to the target function
g(t). A pictorial example is shown in Figure 4. The target function in this case is a
sequence of “bumps within bumps” defined as the sum of transcendental functions,
specifically, translated and dilated versions of the “mother bump”

b(t) =
{

e− tan2( p2 t) if t ∈ (−1,1)
0 otherwise

These bump functions have closed forms for their derivatives of various degrees,
and known monotonic regions, so it is straightforward to create local estimates with
bounds.
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Fig. 4. A target function with extremely fine-scale features (shown as a sequence of insets)
is progressively computed into a wavelet decomposition under the max error norm (L¥ ). The
progressive transform selectively refines where errors are not guaranteed to be low, leading to
a natural adaptation of the refinement around the fine features. In this example, the transform
is computed over a thousand times faster than if a sufficiently fine uniform sampling of the
target function were used as the starting point.

The rate-distortion curve for the example is plotted in Figure 5 (in black), com-
pared to the usual greedy algorithm that uses fine-to-coarse processing to throw
away wavelet coefficients that contribute least to the error. Note especially that the
accuracies are relatively worse for the progressive transform at low numbers of coef-
ficients (due to it’s fuzzy awareness of the target function), yet it “catches up” to the
quality and convergence rates of the traditional greedy algorithm at higher counts.

The extension to the tensor-product setting is straightforward, as all the filtering
operations just described can be performed on one axis at a time just as with subdi-
vision. Whereas a univariate bintree decomposition I�,i was indexed by level � and
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Fig. 5. Coarse to fine progression of our new transform (black) is relatively low accuracy
compared to the traditional greedy algorithm at low coefficient counts, yet is nearly identical
at higher counts.

index i, the multivariate bintree requires an additional axis counter a ∈ {1, . . . ,m}
and multiple indices i1, . . . , im. To simplify the appearance of the multivariate bintree
intervals

I�,a,i1,...,in = I�+1,i1 ×·· ·× I�+1,ia−1 × I�,ia ×·· ·× I�,in

a shorthand of
IL ,i = I�,a,i1,...,in

will be used, where L = (�,a) and i = (i1, . . . , im). The composition L = (�,a) will
be referred to as a layer, and is analogous to the level in the univariate case. Note
that the intervals IL ,i still form a binary tree. The displacements are now denoted
DL ,i, and the positions PL ,i.

An example progression for a 2-D domain with a few conical bumps is shown
in Figure 6. Note how the progressive decomposition naturally adapts to the sharp
features of this target function.

In the remainder of this paper we will describe four high-level surface design
operations: smoothing, roughening, free-form pasting, and scraping. Smoothing has
been done by several research groups, with Kobbelt et al. [19] the most recent.
Both Kobbelt et al. and Ying et al. [30] have described roughening operations.
Free-form pasting has been described previously by Forsey and Bartels [11], while
scraping was described by Khodakovsky and Schröder [18]. Our contribution is to
use a common progressive wavelet transform methodology in the creation of these
operations.

4 Smoothing and Roughening within a General Loop

This section will describe the implementation of operations within a restricted do-
main area defined by a closed loop of Bézier curves. The first notion is that of
performing global smoothing, which is defined for smoothing parameter �s as
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Fig. 6. A demonstration of the progressive wavelet decomposition of a function as a height
with 2-D domain, consisting of two overlayed conical protrusions. The wavelet coefficients
are built in a coarse-to-fine sequence, shown from top to bottom.

D̄L ,i =

⎧⎨
⎩

DL ,i if � < �s

(�s − (�−1))DL ,i if �−1 < �s ≤ �
0 otherwise (�s ≤ �−1)

This is similar to the smoothing defined in [10], but here extended to higher dimen-
sions via tensor products.

For local smoothing, a generalization of the smoothing segment is needed. For
this, a smoothing area is defined using the concept of a trim curve [4], previously
used in the methods for trimmed surface patches. A trim curve c(t) is a continu-
ous, periodic mapping from t ∈ [0,1] to the surface domain (u,v) ∈ ´ 2. This curve
encloses a domain area that will serve as the locality to be smoothed.

The smoothing operation blends between the original displacements DL ,i and
the smoothed ones D̄L ,i. The blend factor q is defined as the fraction of DL ,i’s
interval of influence ID that overlaps the area enclosed by c(t). The computation of
this overlap is discussed below. The blend factor q is then applied as:

D̆L ,i = (1−q)DL ,i +qD̄L ,i
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Some results of local smoothing are shown in Figure 7.

Fig. 7. A formerly rough surface is smoothed within the area enclosed by a trim curve.

It is nontrivial to compute the area of overlap of an interval I and the area en-
closed by a trim curve c(t). However, the well-known Warnock algorithm for poly-
gon visibility [29] can be adapted to this problem. Although the concern here is
only for determining the area of a single “polygon” c(t) within a “view window”
I, the Warnock algorithm has a useful property of dividing I into smaller intervals
until each interval either misses c(t), c(t) crosses the interval in a simple way, or
the interval is small. Winding number computations are used in this algorithm to
determine which intervals (or which parts of crossed intervals) are inside the trim
curve. To apply the polygon techniques to a curve, the curve must be approximated
by a polygon. For the purposes of interactive editing, it is sufficient to ensure that
the approximation error is within a small fraction of the width of the interval I. If
c(t) is a dyadic spline, or is in B-spline form, standard subdivision techniques can be
applied to accomplish this [9]. In the implementation used here, “simple” crossings
consist of two or fewer polygon edges, and a bintree decomposition of I is used. An
example Warnock-style decomposition of a trim area is shown in Figure 8.

For roughening, we added random displacements in the manner of midpoint-
displacement fractals [22]. The direction of the displacements is taken to be in the
normal direction of a smoothed version of the surface, similar to what was done in
the curve case in [10]. The offset frame for a surface displacement DL ,i is defined
as the two unit tangents and unit normal at the point of maximum influence, taken
with respect to the smoothed version of the surface.
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Fig. 8. Decomposition of the trim-curve domain area using a variant of the Warnock algo-
rithm.

Let f (u,v) be the surface and f̄ (u,v) be a smoothed version of the surface for
smoothing parameter �s. Then the offset coordinate frame applied to offset displace-
ment D̂L ,i is then defined as

AL ,i = [p q r]

where

p = f̄u(um,vm)∥∥ f̄u(um,vm)
∥∥

q = f̄v(um,vm)∥∥ f̄v(um,vm)
∥∥

r = p×q
‖p×q‖

and (um,vm) is the domain point of maximum influence. Now the application of
AL ,i to D̂L ,i gives the standard displacement as

DL ,i = AL ,iD̂L ,i

This gives the effect that details track the position and orientation of the smooth
underlying surface.

Global roughening is produced by adding random vectors in the local smoothed-
normal direction to the fine-resolution wavelet coefficients. The localization of the
roughening effect is accomplished in the same manner as local surface smoothing.
An example of local roughening is shown in Figure 9.

5 Free-form Pasting

In this section we make a more flexible version of the Pasting operation introduced
in [1]. The idea is to allow an arbitrary template shape to be offset from the input sur-
face, where the placement of the template is given by a general domain-to-domain
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Fig. 9. Random fractal offsets are made in the local smoothed normal direction. The magni-
tude of the offset is modulated by the Warnock in/out overlap fractions.

mapping. This placement strategy is akin to a free-form deformation [26] in the
2-D case. We similarly choose a bicubic Bézier patch to formulate the 2-D to 2-D
mapping. The advantage over earlier pasting formulations is that we have somewhat
more general template placement and shape control, but most importantly our re-
sults are computed in progressive order to any accuracy for the precise, continuous
offset definition.

Let the input surface be f (u,v). Let g(s, t) be a scalar-valued template function
and let h(s, t) be an invertible domain-positioning function into (u,v). The basic
template edit effect is defined as

f̂ (u,v) = f (u,v)+ cG(u,v)

where c is a control vector for the generalized basis function

G(u,v) = g(h−1(u,v))

Note that h−1(u,v) is only defined for (u,v)∈ h(J) where J is the interval domain of
h(s, t). When appropriate, assume that G(u,v) is zero when (u,v) �∈ h(J). Also note
that the control vector c may be derived from another control vector ĉ that is defined
in a local offset frame A, similar to the offset-frame displacements for roughening.

The result of a template edit, f̂ (u,v), is approximated using the progressive
transform. Local estimates are formed using interval-analytic techniques. This ap-
proximation process is described shortly. An example result of template editing is
depicted in Figure 10.
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Fig. 10. A simple extruded hill shape is offset from the input surface in the continuous,
smoothed local normal directions. The placement of the offset template is specified with an
S-shaped bicubic Bézier patch controlled in the input-surface domain.

The template edit result f̂ (u,v) is approximated by using the progressive trans-
form to approximate the generalized basis function G(u,v) = g(h−1(u,v)). This ap-
proximation, denoted G̃(u,v), scales a control vector c before added it to f (u,v).
The approximate template-edit result is f̂ (u,v) = f (u,v)+ cG̃(u,v). Applying the
progressive decomposition algorithm to approximate G(u,v) reduces to finding lo-
cal estimates. The remainder of this section will discuss the computation of suitable
local estimates.

This discussion will use first-order interval estimates throughout. To develop an
estimate for g(h−1(u,v)), an estimate will first be constructed for h−1(u,v) based on
an estimate of h(s, t). This will be composed with an estimate of g(s, t) to give the
desired estimate of g(h−1(u,v)).

Let h(s, t) have the first-order interval estimate

h̃(s, t) = H

[
s
t

]
+

[
u0

v0

]
+d

where H is an invertible 2× 2 matrix, and d is an interval in (u,v) space. Assume
that this estimate holds for h−1(I), where I is an interval in (u,v) space. An interval
estimate for h−1(u,v) is

h̃−1(u,v) = H−1
[

u
v

]
+

[
s0

t0

]
+e

where
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[

s0

t0

]
= −H−1

[
u0

v0

]

and where the error interval e is chosen so that

e⊃−H−1d

This estimate holds for (u,v)∈ I. The error emay be computed as the bounding box
of the image of the four corners of d under the transform −H−1.

Now suppose g(s, t) has the estimate

g̃(s, t) = [gs gt ]
[

s
t

]
+g0 +g

for error interval g, and suppose this holds for (s, t) ∈ h−1(I). Then an estimate for
g(h−1(u,v)) over I is

[gs gt ]
(

H−1
[

u
v

]
+

[
s0

t0

]
+e

)
+g0 +g

For a surface f (u,v), let f̄ (u,v) be the smoothed version of the surface for
smoothing parameter �s1. The tangents of this smoothed surface are normalized to
give

p̂(u,v) = f̄u(u,v)∥∥ f̄u(u,v)
∥∥

q̂(u,v) = f̄v(u,v)∥∥ f̄v(u,v)
∥∥

These normalized tangents are approximated as dyadic splines (using the progres-
sive transform) to allow the second stage of smoothing. Let p̃(u,v) and q̃(u,v) be the
approximations to the normalized tangents, and p̄(u,v) and q̄(u,v) be the smoothed
versions of these for smoothing parameter �s2. A final normalization and cross prod-
uct gives the axis vectors of the desired offset frame

A(u,v) = [p(u,v) q(u,v) r(u,v)]

where

p(u,v) = p̄(u,v)
‖p̄(u,v)‖

q(u,v) = q̄(u,v)
‖q̄(u,v)‖

r(u,v) = p(u,v)×q(u,v)
‖p(u,v)×q(u,v)‖
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The continuous offset-frame template edit becomes

f̂ (u,v) = f (u,v)+A−1(um,vm)A(u,v)cG(u,v)

where (um,vm) is the domain point of maximum influence for G(u,v). The transform
A−1(um,vm) is optional, but has the desirable effect that pulling the control vector
c in (x,y,z) space causes the point f̂ (u,v) to move in the same direction, as would
happen when pulling the control vectors of conventional basis functions.

6 Precision Sculpting with Tool and Path

This section provides the interval-query mechanism for precisely sculpting a surface
by moving a tool shape along a path in the surface domain.

A single surface “scrape” is defined by specifying tool depth in an offset-frame
normal direction for each (u,v), where depth zero occurs at a smoothed version
of the surface. The offset frame tangent and normal directions p(u,v), q(u,v) and
r(u,v) are obtained from A(u,v) as in the smoothing/roughening operations. The
result of scraping is defined by the maximum of the tool depth and the depth of the
original surface with respect to the smooth surface.

Let f (u,v) be a given surface and f̄ (u,v) be the smoothed surface for some
smoothing parameter �s. Let DT (u,v) be the given tool depth function, and define
the surface depth as

DS(u,v) = −r(u,v) · ( f (u,v)− f̄ (u,v))

The result depth will be

D(u,v) = max{DT (u,v),DS(u,v)}

Since the surface position f (u,v) does not generally reside on the line through
f̄ (u,v) in the normal direction r(u,v), some means of blending from the surface to
the scrape boundary is needed. A scrape boundary occurs when DT (u,v) = DS(u,v).
A simple blending method is to linearly move the surface towards the normal line
as DS(u,v)−DT (u,v) goes from positive to zero. The blend factor is defined as

q =

⎧⎨
⎩

0 if DS(u,v)−DT (u,v) < 0
DS(u,v)−DT (u,v)

H if 0 ≤ DS(u,v)−DT (u,v) < H
1 if H ≤ DS(u,v)−DT (u,v)

where H is a user-supplied blend distance. The blend factor is applied to define the
scrape result as

f̂ (u,v) = f̄ (u,v)+D(u,v)r(u,v)+
q(( f (u,v)− f̄ (u,v)) ·p(u,v))p(u,v)+
q(( f (u,v)− f̄ (u,v)) ·q(u,v))q(u,v)
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Fig. 11. A single “scrape” of a tool shape along a path.

Interval estimates are used so that the progressive transform may capture the scrape
result as a dyadic spline. An example of a single scrape is shown in Figure 11.

Superimposing multiple scrapes as a simultaneous operation is performed by
letting the tool depth function be defined as the maximum of the individual scrape
tool depth functions

DT (u,v) = max
i

Di(u,v)

Otherwise the formulation above remains intact. The result of two simultaneous
scrapes is shown in Figure 12.

7 Conclusion and Future Work

The main discovery, in reviewing this work, is that (a) it is not obvious how to effi-
ciently perform wavelet compression directly to the results of mathematical surface
operations, yet (b) it is possible to be efficient when an intermediate interval-query
oracle supplies local Bézier estimates. We demonstrated by example that formu-
lating these operations as oracle responses is tractable for a significant number of
design modes that might be envisioned. We offer the following thoughts on future
challenges and potential applications:

– usefulness for other wavelets
The progressive decomposition algorithm should be applicable to wavelet repre-
sentations other than the dyadic splines. Only two parts of the top-down algorithm
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Fig. 12. Two overlayed surface scrapes.

have some sensitivity to the wavelets chosen: the comparison of the wavelet ap-
proximation versus the local estimate, and the incremental, sparse updates to the
wavelet coefficients as more active wavelets are added during processing. It seems
likely that these issues can be solved for many wavelet schemes, including those
defined on subdivision surfaces and volumes.

– tuning for various norms
The choices of which domain intervals to split and which intervals are “done”
should be made with the desired norm in mind. This seems to be fairly straight-
forward, but has not been investigated so far.

– optimization of rate-distortion curves
A major difficulty is trying to approach the optimal rate-distortion curves, es-
pecially early in the progressive approximation process. This is hard because
the local estimates only give fuzzy knowledge of the target function. Perhaps
an adaptive, recursive estimation strategy could be devised that would improve
this knowledge.

– general techniques for providing local estimates
In the discussions in this paper, the applications of the progressive decomposition
algorithm used ad hoc techniques to provide local estimates to target functions.
Current investigations are under way to find general, automatic methods for ob-
taining local estimates for a wide variety of target functions.
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Integrated modeling, finite-element analysis, and engineering design for thin-shell struc-
tures using subdivision. Computer-Aided Design 34, 2 (February), 137–148.

6. DEROSE, T. D., KASS, M., AND TRUONG, T. 1998. Subdivision surfaces in charac-
ter animation. In Proceedings of SIGGRAPH 98, ACM SIGGRAPH / Addison Wesley,
Orlando, Florida, Computer Graphics Proceedings, Annual Conference Series, 85–94.

7. DUCHAINEAU, M. A., WOLINSKY, M., SIGETI, D. E., MILLER, M. C., ALDRICH,
C., AND MINEEV-WEINSTEIN, M. B. 1997. ROAMing terrain: Real-time optimally
adapting meshes. IEEE Visualization ’97 (November), 81–88.

8. DUCHAINEAU, M. A. 1996. Dyadic Splines. PhD thesis, Dept. of Computer Science,
University of California, Davis. http://graphics.cs.ucdavis.edu/ duchaine/dyadic.html.

9. FARIN, G. 1999. NURBS: From Projective Geometry to Practical Use. A.K. Peters,
Natick MA.

10. FINKELSTEIN, A., AND SALESIN, D. H. 1994. Multiresolution curves. In Proceedings
of SIGGRAPH 94, ACM SIGGRAPH / ACM Press, Orlando, Florida, Computer Graphics
Proceedings, Annual Conference Series, 261–268.

11. FORSEY, D. R., AND BARTELS, R. H. 1988. Hierarchical b-spline refinement. In
Computer Graphics (Proceedings of SIGGRAPH 88), vol. 22, 205–212.

12. FORSEY, D. R., AND BARTELS, R. H. 1995. Surface fitting with hierarchical splines.
ACM Transactions on Graphics Systems 14, No. 2, 134–161.

13. GORTLER, S. J., AND COHEN, M. F. 1995. Hierarchical and variational geometric
modeling with wavelets. In 1995 Symposium on Interactive 3D Graphics, P. Hanrahan
and J. Winget, Eds., ACM SIGGRAPH, 35–42. ISBN 0-89791-736-7.

14. GUSKOV, I., VIDIMCE, K., SWELDENS, W., AND SCHRÖDER, P. 2000. Normal
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