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Short-Term Influence of Recent Trial History on Perceptual Choice
Changes with Stimulus Strength

Weiqian Jiang,a,b Jing Liu,a,b Dinghong Zhang,a Taorong Xiea and Haishan Yaoa,*
aInstitute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese

Academy of Sciences, Shanghai 200031, China
bUniversity of Chinese Academy of Sciences, Beijing 100049, China
Abstract—Perceptual decisions, especially for difficult stimuli, can be influenced by choices and outcomes in previous

trials. However, it is not well understood how stimulus strengthmodulates the temporal characteristics aswell as themag-

nitude of trial history influence. We addressed this question using a contrast detection task in freely moving mice. We

found that, at lower as compared to higher stimulus contrast, the current choice of the mice was more influenced by

choices and outcomes in the past trials and the influence emerged from a longer history. To examine the neural basis

of stimulus strength-dependent history influence, we recorded from the secondary motor cortex (M2), a prefrontal region

that plays an important role in cue-guided actions and memory-guided behaviors. We found that more M2 neurons con-

veyed information about choices on the past two trials at lower than at higher contrast. Furthermore, history-trial activity

in M2 was important for decoding upcoming choice at low contrast. Thus, trial history influence of perceptual choice

is adaptive to the strength of sensory evidence, which may be important for action selection in a dynamic environment.

© 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

Key words: choice history, contrast, decision making, rodent, secondary motor cortex.
INTRODUCTION

Humans and other animals integrate sensory inputs, internal
state, and past experience to select action in changing environ-
ments. Behavioral performance in this process is often influ-
enced by trial history. For example, in sensory delayed
comparison task, sensory perception is affected by previous
history of sensory stimuli (Ashourian and Loewenstein, 2011;
Karim et al., 2013; Akrami et al., 2018) and the effect can be
explained in the context of Bayesian inference (Körding and
Wolpert, 2006; Raviv et al., 2012). In dynamic foraging task
with probabilistic reward schedule, the choice of decision
maker is influenced by the history of choice and reward
(Sugrue et al., 2004; Corrado et al., 2005; Lau and Glimcher,
2005; Sugrue et al., 2005; Sul et al., 2011), which reflects
rational strategies and can be understood in the framework
of reinforcement learning (RL) theory (Sutton and Barto,
1998). According to RL theory, the feedback based on trial his-
tory is important for the update of value function in value-based
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rtex; PPTg, pedunculopontine
PSTH, peristimulus time histo-
receiver operating characteris-
, two-alternative forced choice.

.04.010
evier Ltd. All rights reserved.

1

decision making (Sugrue et al., 2005; Daw and Doya, 2006;
Lee et al., 2012). In competitive games in which the optimal
strategy is to behave randomly, the decisions of humans and
other animals are also influenced by the local history of
choices and rewards as in RL (Barraclough et al., 2004; Forder
and Dyson, 2016). Choice history biases still exist without the
information of feedback about choice outcome (Akaishi et al.,
2014; Braun et al., 2018). Thus, trial history influence is preva-
lent and may be a fundamental aspect in sensory perception,
decision making, and action selection.
In perceptual decision task, the optimal strategy should be

based on sensory factor, yet the choices of humans and
other animals are influenced not only by sensory stimulus
but also by previous choices and outcomes. For instance,
in monkeys performing a direction-discrimination task, the
choices exhibit dependencies across trials, and the effect
of such sequential dependencies on behavior is stronger
when the stimulus information is weaker (Gold et al.,
2008). In human perceptual decision task, the choices of
subjects are biased by the choice history (Fernberger,
1920; Abrahamyan et al., 2016; St John-Saaltink et al.,
2016; Braun et al., 2018), especially when the stimulus is
ambiguous (Fründ et al., 2014; Abrahamyan et al., 2016).
Similarly, the choices of rodents performing a sensory-
guided choice task are influenced by the successes and

https://doi.org/10.1016/j.neuroscience.2019.04.010
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failures in previous trials (Busse et al., 2011; Scott et al.,
2015; Thompson et al., 2016; Akrami et al., 2018). How-
ever, it is unclear how the integration of trial history and sen-
sory input is dynamically modulated by the strength of
sensory evidence.
Neural signals related to the previous choices or out-

comes of the animal have been found in many brain
regions, including prefrontal cortex, parietal cortex, premo-
tor cortex, and striatum (Barraclough et al., 2004; Genove-
sio et al., 2006; Kim et al., 2007; Seo and Lee, 2007; Seo
et al., 2009; Sul et al., 2010; Sul et al., 2011; Kim et al.,
2013; Yuan et al., 2015; Murakami et al., 2017; Scott
et al., 2017; Abzug and Sommer, 2018). For example, neu-
rons in rodent M2 region have been found to exhibit the ear-
liest choice-related signal among several frontal and striatal
regions, and M2 responses reflect the past choice or outcome
in both value-based and perceptual decision-making tasks (Sul
et al., 2011; Yuan et al., 2015; Scott et al., 2017; Siniscalchi
et al., 2019). However, it is unclear how history-related activity
in M2 is modulated by stimulus strength.
We addressed these questions using a contrast detection

task in mice. We found that the influence of trial history on the
current choice was stronger and arrived from a longer past
when the stimulus strength was weaker. In behaving mice,
the signatures of such stimulus-strength dependent trial history
influencewere present in the neural activities inM2. Our results
indicate that the length of recent trial history integratedwith sen-
sory evidence is dynamicallymodulated by stimulus strength at
both behavioral and neuronal level.
EXPERIMENTAL PROCEDURES

Animals

All procedures were approved by the Animal Care and Use
Committee at the Institute of Neuroscience, Chinese Acad-
emy of Sciences, and were in accordance with the guide-
lines of the Animal Advisory Committee at the Shanghai
Institutes for Biological Sciences. Data were collected from
a total of 39 male adult C57BL/6 mice (2–10 months old),
in which 8 were used for the experiments with electrophy-
siological recordings.
Behavior and visual stimuli

Behavioral training began after the mice were water-
deprived for 2 days. In the custom-design behavioral cham-
ber (36 × 17 × 29 cm, L × W × H), three ports were posi-
tioned along the transparent front wall and two spouts
were positioned in the left and right ports, respectively (Long
et al., 2015; Zhang et al., 2017). The behavioral chamber
was divided into three connected areas using two dividers
(Busse et al., 2011). The dividers were removed in sessions
with electrophysiological recordings or in some sessions of
the behavioral experiments. Visual stimuli were presented
on a 17” LCD monitor (Dell E1714S, mean luminance
39.5 cd/m2) placed 12 cm away from the front wall of the
chamber. Gamma correction was used to calibrate the
monitor. The monitor subtended 109.6o × 96.7o of visual
space, assuming that the mouse's head was at the central port
facing the stimulus. Sound speakers were placed inside the
chamber to provide auditory go signal and feedback signals.
The mice were trained to perform a two-alternative forced

choice (2AFC) contrast detection task using the following
steps (Felsen and Mainen, 2008; Stubblefield et al., 2013;
Long et al., 2015). In step 1, with the central port blocked,
the mouse nose-poked into the two side ports in an alternat-
ing sequence to receive water reward (4–5 μl). In step 2, the
central port was open and the left port was blocked. The
mouse initiated a trial by nose-poking into the central port.
After the mouse held its head for 150 ms, a vertically
oriented light bar (luminance = 149 cd/m2, 34.7o × 96.7o)
was presented on the right side of the screen over a back-
ground of mean luminance. After a minimum hold time of
300 ms following stimulus onset, an auditory go signal (a
100-ms, 8 kHz pure tone) appeared, and the mouse was
allowed to exit the central port to choose the right port for
water reward. If the hold time following stimulus onset was
less than 300 ms, the trial was invalid and no water was
given. The required hold time following stimulus onset was
gradually increased to 600 ms. After the mouse's perfor-
mance reached 60%, the right port was blocked and the left
port was open, and the mouse was trained to perform simi-
lar task to obtain water reward from the left port. In step 3, all
three ports were open, and the mouse initiated a trial by
nose-poking into the central port. After the mouse held its
head for 150 ms, a vertically oriented light bar (luminance =
149 cd/m2, 34.7o × 96.7o) was presented randomly on the
left or right side of the monitor. In a valid trial, the required
hold time following stimulus onset was 600 ms, and the
mouse was allowed to leave the central port after the go sig-
nal. If the mouse chose the port corresponding to the side of
the stimulus, it was rewarded by 4–5 μl of water. If the
mouse chose the opposite side, no water was delivered,
the screen was turned black, and an auditory white noise
was played for 1 s during the 4 s timeout period. The stimu-
lus disappeared after the mouse chose the side port. If the
hold time following stimulus onset was <600 ms, the trial
was invalid, and the stimulus disappeared after the mouse
exited the central port, with an auditory white noise played
for 1 s during the timeout period. In step 4, the mouse was
trained to detect the position of the light bar using a proce-
dure similar to that in step 3, except that the stimulus disap-
peared once the mouse exited the central port. The mouse
advanced to the next step after the performance reached
85% for 3 consecutive sessions. In step 5, light bar with
lower luminance was gradually introduced until a session
contained five blocks of contrasts (80 trials/block). The con-
trast of the light bar was defined as (L - Lb)/ (L + Lb), in
which L and Lb were the luminance of the light bar and the
background, respectively. The five blocks of contrasts were
presented in a descending sequence ([58%, 53%, 41%,
29%, 16%]). Once the performance was stable across multi-
ple sessions, the training was over and the mouse was used
in the final form of behavioral experiment.
Because random sequence of stimulus contrast across

trials may cause contrast adaptation (Ohzawa et al., 1982;
Sclar et al., 1989; Long et al., 2015), the contrast detection
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task was conducted in a block design manner, so that the
effect of past choice and outcome was not confounded by
the effect of contrast adaptation. Each session contained
five blocks of contrast (16%, 29%, 41%, 53%, and 58%,
80 trials/block). In each block, the light bar was presented
randomly on the left or right side, except that we did not
allow the bar to appear on the same side for more than three
consecutive trials or the bar to alternate between sides in
consecutive trials for more than three times (Busse et al.,
2011). The sequence of contrast blocks in each session
was chosen from the following: [58%, 53%, 41%, 29%,
16%], [58%, 16%, 53%, 41%, 29%], [41%, 29%, 58%,
53%, 16%], [29%, 58%, 16%, 41%, 53%], [58%, 53%,
41%, 16%, 29%], [41%, 29%, 16%, 58%, 53%], and [16%,
53%, 41%, 58%, 29%]. To analyze whether stimulus-
strength dependent trial history influence is affected by
block sequence, we required that a specific block sequence
was measured for at least 25 sessions. The mouse was
required to hold its head in the central port for 450 ms in some
sessions, and above or below 450 ms in other sessions. For
all conditions, the stimulus disappeared after the mouse exited
the central port. The behavior of each mouse was measured
for 18.2 ± 12.5 (mean ± SD) sessions.
To examine whether the trial history influence depends on

trial duration, we fixed the sequence of contrast blocks at
[58%, 53%, 41%, 29%, 16%], and manipulated trial duration
by varying the hold time required for a valid trial and the
timeout period following a wrong choice, or by adding or
removing the two dividers. There were four types of trial
duration manipulation. The two dividers were in the beha-
vioral chamber for the following three types: (1) hold time =
750 ms and timeout = 4 s; (2) hold time = 450 ms and
timeout = 2 s; (3) hold time = 0 ms and timeout = 1 s. For
the fourth type, hold time = 0 ms, timeout = 1 s, and the
two dividers were removed from the chamber.
For mice used in the above experiments, the sequence of

stimulus position across trials was not completely random.
For another group of mice (n = 7), we also used a beha-
vioral paradigm in which the sequence of stimulus position
was completely random (the sequence of contrast blocks
was [58%, 53%, 41%, 29%, 16%], 60 trials/block). For this
experiment, the behavior of each mouse was measured
for 7.4 ± 3.9 (mean ± SD) sessions.
For behavioral experiments used for electrophysiological

recordings, each session contained two blocks of contrast
(110 trials of 16% contrast and 220 trials of 53% contrast)
and started with the high contrast block. We used more
trials for 53% contrast in order to collect enough number of
wrong trials for the analysis of outcome preference index.
The hold time required for a valid trial was 450 ms, the time-
out period following a wrong choice was 2 s, and the two
dividers were removed from the chamber. The sequence
of stimulus position across trials was completely random.
Surgery

For mice used in the electrophysiological recordings, elec-
trodes (A2 × 2-tet-3 mm-150-150-121-H16_21mm, dDrive
mounted, NeuroNexus Technologies, Ann Arbor, MI, USA)
were implanted after behavioral training. The mouse was
injected intraperitoneally with a mixture of midazolam
(5 mg/kg), fentanyl (0.05 mg/kg), and medetomidine
(0.5 mg/kg). After the mouse was fully unresponsive to
toe-pinch, it was head-fixed in a stereotaxic apparatus.
The body temperature was maintained at 37 °C through a
heating blanket (FHC Inc., Bowdoin, ME, USA). A craniot-
omy (~ 1 mm diameter) was made above left M2 (AP
2.1 mm, ML 0.75 mm), and the dura was removed. The
micro-drive/electrode/rod package was mounted on a
stereotaxic manipulator and moved above the craniotomy
under the supervision of a binocular microscope. The elec-
trode was inserted into the cortex and the micro-drive was
fixed to the skull using dental cement. The micro-drive was
detached from the manipulator and protected with a cap.
The ground and reference wires of the electrode were con-
nected with a screw driven into the bone. The mouse was
injected with ceftriaxone sodium (2 mg/kg) subcutaneously
after the surgery.

Electrophysiology

Recordings in M2 were made with silicon probes with 2 × 2
tetrode-like arrangements on 2 shanks (A2 × 2-tet-3 mm-
150-150-121-H16_21mm, NeuroNexus Technologies).
The depth of the electrode was estimated by the number
of rotations of the screw on the micro-drive (one turn =
150 μm), and was advanced by ~50 μm after 3–5 recording
sessions. The neural signals were amplified and
filtered using a Cerebus 32-channel system (Blackrock
microsystems, Salt Lake City, UT, USA). Spiking signals
were sampled at 30 kHz. Signals collected over different
sessions at the same depth were combined into a single file
before spike sorting. Single units were isolated offline, by
manually clustering spike features derived from the two-
dimensional projections of spike waveform parameters
using MClust software (MClust-3.5, A. D. Redish,
University of Minnesota, Minneapolis, MN, USA) in Matlab
(MathWorks).

Analysis of behavior

To compute the correct rate for each stimulus, we calcu-
lated the percentage of left (or right) choices for those trials
in which the light bar was presented on the left (or right)
side, and averaged the two percentages.
Trial duration was defined as the interval between the

times of central port entry in two consecutive valid trials.
Note that the trial duration averaged across all valid trials
in a session could be larger than 20 s because there could
be invalid trials between two consecutive valid trials. To
examine whether the trial history influence depends on trial
duration, only those sessions in which the mean trial dura-
tion was <20 s were included in the analysis.
We used a logistic regression analysis to quantify the

influence of current stimulus contrast and previous trial out-
come on the choice of current trial (Lau and Glimcher, 2005;
Busse et al., 2011). For each contrast block in each ses-
sion, the choice of a given trial was modeled with a logistic
function: p ¼ 1

1þe−z ; where p is the probability of choosing
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right and z is a decision variable. In each trial t, the variable
z is a linear function of the sensory and history terms:

z tð Þ ¼ b0 þ v c tð Þ½ � þ
X

i

bs ið Þs t−ið Þ þ bf ið Þ f t−ið Þ� �
;

where c is the contrast in current trial, v weights the stimulus
contrast, i indicates i trial back (i ranges from 1 to 5), bs(i)
and bf(i) are the weights for the successes and failures in i
trial back, and b0 is the weight for a general bias. The bias
term b0 is negative (positive) for leftward (rightward) bias.
The dummy variables s(t − i) and f(t − i) have three possible
values: 1, −1, and 0. If the outcome in i trial back is a suc-
cess, s(t − i) is set to 1 (or − 1) if the stimulus is on the right
(or left), and f(t − i) is set to 0. If the outcome in i trial back is
a failure, f(t − i) is set to 1 (−1) if the stimulus is on the right
(left), and s(t − i) is set to 0.
For each session, we used the Matlab function glmfit to

apply the logistic regression model separately for each con-
trast block. The predictor matrix was defined as the follow-
ing. The first row was a constant to estimate b0. The next i
(i ranges from 1 to 5) row/rows were used to estimate the
weight of success in past trials. For example, if the model
included history influence of only one trial back (i= 1), the
second row of the matrix was s(t − 1). If the model included
history influence of three trials back (i= 3), the second row of
the matrix was s(t − 1), the third row was s(t − 2), and the
fourth row was s(t − 3). Following the row/rows for estimat-
ing the weight of success, there were another i (i ranges
from 1 to 5) row/rows organized in a similar manner to esti-
mate the weight of failure in past trials. The last row of the
matrix was used to estimate the weight of visual stimulus,
with c(t) set to 1 (or − 1) for stimulus presented on the right
(or left) (Busse et al., 2011).
For each contrast block, we fitted the model to the choices

and predicted the choices by applying a cross validation
procedure. We randomly divided the trials into training data-
set and test dataset, which contained equal number of trials.
The logistic regression was fitted using the training dataset
and the choices were predicted using the test dataset. The
prediction rate (PR) was computed as the percentage of
correctly predicted trials. The process of training and predic-
tion was repeated 1000 times, and the PR was averaged
across repeats. We used five different models, in which
the number of history trials varied from one to five, and com-
puted five PRs, respectively. Specifically, the model
included history terms in t-1 trial when we modeled the
effect of one trial back, and the model included history terms
in t-1, t-2, and t-3 trials when we modeled the effect of three
trials back. We also used a simple model including only the
visual term v(c) and the general bias term b0 to fit the
choices. For each history model with a specific number of
history trials, we computed a difference in prediction rate
(ΔPR), which was defined as the PR of the history model
subtracted by that of the simple model. We repeated the
same procedure for the other four contrast blocks in the
same session except that no history effect was considered
in the model, resulting in four baseline ΔPR values. The pro-
cess of calculating baseline ΔPR was repeated five times,
resulting in a total of 20 baseline ΔPRs. We defined a
threshold ΔPR as 3 SD above the mean of baseline ΔPRs.
For each contrast block in each session, if the ΔPR for at

least one i trial back (from one trial back to five trials back)
was above the threshold ΔPR, the optimal number of history
trials that could influence current choice was defined as the
one at which the ΔPR was maximum. If the ΔPR was lower
than the threshold ΔPR for any i trial back, the optimal num-
ber of history trials was set to zero. We used a one-way
repeated measures ANOVA with the Greenhouse–Geisser
correction to test the effect of stimulus contrast on the opti-
mal number of history trials.
For each contrast block in each session, we predicted the

choices of each mouse using the model containing history
terms for the optimal length of history trial, and computed
a ΔPR relative to the PR of a simple model without history
terms. For each mouse, we used Wilcoxon signed rank test
to determine whether ΔPR is significant.
To compute a history strategy index for each session, we

used the logistic regression model including only the history
terms at the optimal number of history trials. The model was
used to generate choices to a set of visual stimuli in the
behavioral experiments, and the history strategy index was
calculated as the fraction of trials correctly predicted by
the model (Hwang et al., 2017). Only those sessions in
which the optimal number of history trials was non-zero
were used for this analysis. We used ANOVA to determine
whether history strategy index exhibits significant difference
across different contrasts, and whether behavioral perfor-
mance differs among sessions with low (<0.55), middle
(>0.55 and ≤0.65), and high (>0.65) history strategy index.
We used F test to determine whether the variability of per-
formance is significantly different between sessions with
high and low (or between sessions with high and middle)
history strategy index.
Analysis of neuronal responses

For mice used in the electrophysiological experiments, hold
time was 0.71 ± 0.1 s (mean ± SD). We analyzed the neu-
ronal responses during the 1 s period before the mouse
exited the central port. Spikes within this 1 s period were
95.5% ± 6.2% (mean ± SD) of all the spikes occurred dur-
ing the hold time across trials. To quantify the selectivity of
each neuron for choice or outcome, we used an algorithm
based on the receiver operating characteristic (ROC) analy-
sis (Green and Swets, 1966) that measures the probability
of an ideal observer to correctly classify whether a given
response was recorded in one of two conditions (e.g., left or
right choice). A preference index was defined as 2(ROCarea –
0.5), which ranged from −1 to 1 (Felsen and Mainen, 2008;
Thompson et al., 2016). To compute choice (or outcome) pre-
ference index for current or previous trial, we grouped the
responses by the choice (or outcome) on the current trial,
one trial back, two trials back, or three trials back. The magni-
tude of the preference index indicates the degree of selectivity,
and the sign of the index denotes preference for contralateral
(+) or ipsilateral (−) choice, or preference for correct (−) or
wrong (+) choice. Cells had to satisfy two criteria to be included
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in the analyses: 1) more than 20 trials for each condition; 2) fir-
ing rate above 0.5 spikes/s. Among 100 neurons recorded, 88
neurons satisfied the criteria.
We used aMonte Carlo permutation test to determine the sta-

tistical significance of preference index. We randomly reas-
signed the responses to one of the two conditions and
repeated the same analysis to calculate a preference index.
This procedure was repeated 1000 times. The P value was
determined by the fraction of randomly generated preference
indexes exceeding the actual preference index. Statistical sig-
nificance was tested at α = 0.05. We used χ2 test to determine
whether the fraction of significant neurons is above chance
level or the fractions of significant neurons differ between
16% and 53% contrasts.
We also examined whether trial duration affects the trial

history-related activity in M2 at 16% contrast. For the
responses of each neuron grouped by choice at one trial
back, we separated the trials into two subsets, with trial
duration shorter and longer than the mean duration, respec-
tively. We used χ2 test to determine whether the fractions of
neurons with significant choice preference at one trial back
differ between trials with short and long duration.
A support vector machine (SVM) classifier with a nonlinear

kernel (Gaussian kernel) (Chang and Lin, 2011; Astrand et al.,
2014) was used to decode the animal's choice (or outcome)
in current or previous trials from the activities of M2 neurons.
For each trial, we used the neuronal responses (bin size =
0.1 s) during the 1 s period before the mouse exited the central
port. By applying the decoder
derived from the training dataset to
the test dataset, we performed the
classification using a 10-fold cross
validation procedure. The training
and test dataset were data from
90% and 10% of the trials, respec-
tively. During training, the classifier
separated the data into two classes
according to choice (or outcome)
on the current trial, one trial back,
or two trials back. During testing,
the decoder was presented with
neuronal responses in the test data-
set and produced prediction about
choice (or outcome) on the current
trial, one trial back, or two trials back.
The classification performance was
calculated as the percentage of cor-
rectly classified trials. The two key
parameters (box constraint and
scaling factor sigma of the Gaussian
kernel function) were calculated
through a nonlinear optimization
process using the Matlab function
fminsearch. The 10-fold cross vali-
dation was repeated 10 times. To
compare the classification perfor-
mance between choice (or out-
come) on the current trial and that
on one trial back (or two trials back),
we used a one-way repeated measures ANOVA followed by
Tukey's multiple comparisons test.
SVM classifier was also used to decode the animal's upcom-

ing choice from neuronal responses. The decoding was per-
formed using a 10-fold cross validation procedure. We
compared the decoding accuracy between themodel using neu-
ronal responses in current trial only (trial t) and that using
responses in both current and previous two trials (trial t, t-1,
and t-2). The decoding accuracy was quantified by the PR,
which was the percentage of trials correctly predicted by the
decoder. For 16% and 53% contrast, the total number of trials
used in this decoding analysis was 1239 and 1289, respectively.
Note that the number of trials for this analysis was smaller than
that in the classification analysis, because here we required that
spikes also occurred in trials t-1 and t-2 for trial t. The decoding
analysis was repeated 10 times. To compare the decoding
accuracy between the model using neuronal responses in cur-
rent trial only and that using responses in both current and pre-
vious two trials, we used Wilcoxon signed rank test.
RESULTS

Stimulus contrast modulates the trial history
influence on perceptual choice

We trained freely moving mice to perform a 2AFC contrast
detection task (Busse et al., 2011; Long et al., 2015; Zhang
et al., 2017). The mouse poked its nose in the central port of
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ber of history trials that could influence current choice was significantly different at different stimulus con-
trasts, with a larger number of history trials at lower contrast (Spearman's rank correlation coefficient r =
−1, P = 0.017). F(3.7, 481.4) = 21, P = 5 × 10−15, one-way repeated measures ANOVA with the Green-
house–Geisser correction. The data were from 131 sessions from 9 mice, in which hold time = 450 ms
and timeout period = 2 s. Error bar, ±SEM.
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the behavioral chamber to trigger stimulus presentation.
Visual stimulus was a vertical light bar presented randomly
on the left or right side of the monitor (Fig. 1A). The mouse
held its head in the central port until a go signal was pre-
sented, and the stimulus disappeared once the mouse
exited the central port to make a choice (Fig. 1B). Choosing
the port corresponding to the side the light bar was pre-
sented was counted as a correct choice, which was fol-
lowed by water reward. Choosing the other port was
counted as a wrong response, which was followed by a
timeout period. The contrasts of the light bar relative to the
background (mean luminance) ranged from 16% to 58%
(Fig. 1C) and were presented in a block-design manner.
Each contrast block consisted of 80 trials, and the sequence
of different contrast blocks was changed in different
sessions. The performance
increased with stimulus contrast
(Fig. 1D, 131 sessions from 9 mice),
consistent with previous reports
(Busse et al., 2011; Histed et al.,
2012; Long et al., 2015; Burgess et
al., 2017).
To examine the effect of trial his-

tory on behavioral choice, we used
a logistic regression model to fit the
choice on individual trials in each
session for each mouse (Lau and
Glimcher, 2005; Busse et al., 2011;
Abrahamyan et al., 2016; Hwang et
al., 2017). In the model, the mouse
flipped a coin to decide which side
to choose in each trial t, with a prob-
ability P of choosing right. The prob-
ability P is a logistic function of a
decision variable z that depends on
the sum of a sensory term (v), a gen-
eral bias (b0), and the history terms
(bs and bf), which are the outcomes
(success or failure) of the previous
trials (t-i trials).
To compare the history influence

across different stimulus strength,
the model was applied to fit the
choices in different contrast blocks
separately. For each contrast block
in each session, we modeled the
effect of different lengths of history
trials by varying the number of his-
tory trials from one to five. Fig. 2A
shows the weights for each of the
five models containing a specific
number of history trials, for a 16%
contrast block in an example ses-
sion. Specifically, the history terms
consisted of bs and bf in t-1 trial
when we modeled the effect of one
trial back (Fig. 2A, first row), and
consisted of bs and bf in t-1, t-2,
and t-3 trials when we modeled the
effect of three trials back (Fig. 2A, third row). We used each
of the five models to predict the animal's choices with a
cross-validation analysis. For each contrast block, we also
compared the predictive accuracy between the model con-
taining a specific number of history trials and a simple model
without history terms, yielding a ΔPR. Baseline ΔPRs (gray
dots in Fig. 2B) were computed using the other contrast
blocks in the same session and a threshold was defined
as 3 SD above the mean baseline ΔPR. As shown in
Fig. 2B, the ΔPR for an example session in a 16% contrast
block was higher than the threshold for one, two, and three
trials back, and was maximum at two trials back, indicating
that including the history terms for two trials back (i.e., bs
and bf in t-1 and t-2 trials) produces the largest improvement
in PR relative to the PR of a simple model. For the ΔPR in a
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cient r = −1, P = 0.017). The data were from 131 sessions from 9 mice,
in which hold time = 450 ms and timeout period = 2 s. Error bar, ±SEM.
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session in 58% contrast block (Fig. 2B), the ΔPR did not
cross the threshold for one through five trials back, indicat-
ing that including history terms does not improve the predic-
tive accuracy.
For each contrast block in each session, we assigned the

optimal number of history trials as the one producing the
maximum ΔPR above the threshold. If the ΔPR was lower
than the threshold for one through five trials back, the opti-
mal number of history trials was set to zero. For a population
of 131 sessions from 9 mice, the number of history trials
contributing to current choice was significantly different at
different contrasts (F(3.7, 481.4) = 21, P = 5 × 10−15, one-
way repeated measures ANOVA with the Greenhouse–
Geisser correction), with more history trials at lower contrast
(Spearman's rank correlation coefficient r = −1, P = 0.017,
Fig. 2C). For each contrast block in each session, we pre-
dicted the choices of each mouse using the model contain-
ing history terms for the optimal length of history trial, and
computed a ΔPR relative to the PR of a simple model
(Fig. 3A). Across the population, the ΔPR negatively corre-
lated with stimulus contrast (Spearman's rank correlation
coefficient r = −1, P = 0.017, Fig. 3B), indicating a stronger
effect of trial history on current choice at lower stimulus
strength. Together, these data suggest that the influence
of trial history is stronger and comes from a longer past
when the stimulus strength is weaker.
As the sequence of different contrast blocks varied across

sessions, behavioral performance in different blocks may be
regulated by other factors, such as changes in the motiva-
tional state (Berditchevskaia et al., 2016). We next exam-
ined the trial history influence separately for each type of
block sequence. As shown in Fig. 4A – 4F, although the
Spearman's rank correlation coefficient between the num-
ber of history trials and stimulus contrast varied with block
sequence, longer length of history influence at lower stimu-
lus contrast was observed in all cases.
For the experiments described above, the stimulus posi-

tion (left or right) across trials was not completely random
(see EXPERIMENTAL PROCEDURES). In another group
of mice for which the sequence of stimulus position was
completely random, we found that the optimal number of
history trials was also significantly higher at lower stimulus
contrast (F(3.2, 162) = 6.8, P = 1.8 × 10−4, one-way repeated
measures ANOVA with the Greenhouse–Geisser correc-
tion; Spearman's rank correlation coefficient r = −0.9, P =
0.083, n = 52 sessions from 7 mice, Fig. 4G).
It has been shown that trial duration affects the trial history

influence (Kwak et al., 2014). We further manipulated trial
duration of the behavior, by requiring the mouse to hold its
head at the central port for different amount of time, changing
the duration of the timeout period, or by adding/removing divi-
ders in the behavioral chamber. For low stimulus contrast at
16%, the number of history trials that could influence current
choice tended to decrease with trial duration (Spearman's rank
correlation coefficient r = −1, P = 0.083, Fig. 5), suggesting
that the memory of trial history decays over time.
We further determined to what degree the mouse used

history-dependent strategy in making choices. For each
session, we used the model including only history terms at
the optimal number of previous trials to predict choices to
a set of visual stimuli similar to those in the behavioral
experiments, and defined a history strategy index as the
fraction of correctly predicted trials (Hwang et al., 2017).
We found that the history strategy index was significantly
higher at low contrast than at high contrast (P =
3.7 × 10−7, ANOVA; Spearman's rank correlation coeffi-
cient r = −1, P = 0.017, Fig. 6A), suggesting that the mice
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tend to rely more on recent trial history in making choices
when the stimulus is weaker. For low stimulus contrast at
16%, when we divided the sessions into three groups based
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on the history strategy index, we found that the behavioral
performance decreased with history strategy index (P =
0.02, ANOVA, Fig. 6B). Nevertheless, the variability of per-
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rast (%)
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rast (%)
formance was lower for the sessions
with higher history strategy index
(P < 0.05, F test, Fig. 6B). Thus,
the results suggest that history-
dependent strategy impairs beha-
vioral performance and reduces the
variability of performance.

Trial history-related activity in
M2 is modulated by stimulus
contrast

To examine the neural basis of sti-
mulus strength-dependent history
influence, we recorded from M2, a
Fig. 4. Stimulus strength-dependent history
influence is observed in different block
sequences. (A-C) The data were from those
sessions in which hold time = 450 ms and
timeout period = 2 s (n = 9 mice). (A) The
sequence of contrast blocks was [58%,
53%, 41%, 29%, 16%], n = 49 sessions.
F(3.7, 178.1) = 5.7, P = 3.7 × 10−4; Spear-
man's rank correlation coefficient r = −0.9,
P = 0.083. (B) The sequence of contrast
blocks was [58%, 16%, 53%, 41%, 29%],
n = 35 sessions. F(3.6, 122.6) = 6.8, P =
1.1 × 10−4; Spearman's rank correlation
coefficient r = −1, P = 0.017. (C) The
sequence of contrast blocks was [41%,
29%, 58%, 53%, 16%], n = 27 sessions.
F(3.2, 83.8) = 10, P = 6.6 × 10−6; Spearman's
rank correlation coefficient r = −0.9, P =
0.083. (D-F) The data were from those ses-
sions in which hold time = 0 ms and timeout
period = 1 s (n = 10 mice). (D) The
sequence of contrast blocks was [58%,
53%, 41%, 16%, 29%], n = 30 sessions.
F(3.1, 89.1) = 9.8, P = 1 × 10−5; Spearman's
rank correlation coefficient r = −1, P =
0.017. (E) The sequence of contrast blocks
was [41%, 29%, 16%, 58%, 53%], n = 30
sessions. F(3.5, 102.7) = 5.9, P = 4.3 × 10−4;
Spearman's rank correlation coefficient r =
−1, P = 0.017. (F) The sequence of contrast
blocks was [16%, 53%, 41%, 58%, 29%],
n = 41 sessions. F(3.3, 130.4) = 13.2, P =
5.6 × 10−8; Spearman's rank correlation
coefficient r = −0.56, P = 0.37. (G) The data
were from those experiments in which the
sequence of contrast blocks was [58%,
53%, 41%, 29%, 16%], hold time =
450 ms and timeout period = 4 s, and the
light bar position across trials was comple-
tely random (n = 52 sessions from 7 mice).
F(3.2, 162) = 6.8, P = 1.8 × 10−4; Spear-
man's rank correlation coefficient r = −0.9,
P = 0.083. For the data in each panel, we
performed one-way repeated measures
ANOVA with the Greenhouse–Geisser cor-
rection. Error bar, ±SEM.
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region that shows the earliest action selection signals
among several frontal cortical and striatal areas and con-
veys information about past trials (Sul et al., 2011; Yuan et
al., 2015; Scott et al., 2017; Siniscalchi et al., 2019). To
ensure enough number of trials for low and high stimulus
contrasts, we used two blocks of contrast (16% and 53%)
for the electrophysiological experiments. We focused on
the responses within the 1 s period before the mouse exited
the central port, during which the mouse viewed the visual
stimulus and could integrate sensory input with recent trial
experience. Fig. 7A and B show the spikes and peristimulus
time histograms (PSTHs) for an example M2 neuron in
response to stimuli at 16% and 53% contrasts, respectively,
aligned to the time of central port exit. We grouped the
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different contrasts (P = 3.7 × 10−7, ANOVA). Spearman's rank correlation coeffi
Error bar, ±SEM. (B) Behavioral performance for sessions with low (<0.55), m
and high (>0.65) history strategy index (stimulus contrast = 16%). P = 0.02, ANO
131 sessions from 9 mice, in which hold time = 450 ms and timeout period = 2 s
responses by the choice on the current trial or previous trial
(from one trial back to three trials back) (left panel in Fig. 7A,
B), or by the outcome on the current trial or previous trial
(right panel in Fig. 7A, B). To quantify the selectivity of each
neuron for choice or outcome, we used an algorithm based
on the ROC analysis (Green and Swets, 1966), which mea-
sures the probability of an ideal observer to correctly clas-
sify a given response as left or right (correct or wrong)
choice. A preference index was defined as 2(ROCarea –
0.5), with a value ranging from −1 to 1 (Felsen and Mainen,
2008; Thompson et al., 2016). For the responses of the
example neuron to stimulus at 16% contrast, the choice pre-
ference was statistically significant at two trials back (P <
0.05, Monte Carlo permutation test), but not significant at
current trial or other previous trials (P > 0.3, Monte Carlo
permutation test, Fig. 7A). For the responses to stimulus
at 53% contrast, the outcome preference was statistically
significant at one trial back (P < 0.05, Monte Carlo permuta-
tion test), but not significant at current trial or other previous
trials (P > 0.2, Monte Carlo permutation test, Fig. 7B).
We next compared the choice (or outcome) preference

between 16% and 53% contrasts across the population
(Fig. 8A, B). For choice preference, the fraction of significant
neurons measured at 16% contrast was above chance level
for choices on one trial back or two trials back (χ2(3) = 10.7,
P = 0.01), and the fraction of significant neurons for choices
on previous trials was significantly higher at 16% contrast
than at 53% contrast (χ2(2) = 8, P = 0.02, Fig. 8C). For out-
come preference, the fraction of significant neurons for out-
comes on previous trials was not significantly different
between 16% and 53% contrasts (χ2(2) = 4.4, P = 0.11,
Fig. 8D). These data suggest that M2 activity in a perceptual
decision task is influenced by the animal's choice or out-
come in history trials, and the fractions of neurons convey-
ing information for choices on different past trials depend
on stimulus strength.
Because trial duration influenced the effect of trial history

on behavioral choice at 16% contrast (Fig. 5), we also
examined whether trial duration affects the trial history-
related activity in M2 at 16% contrast. For the responses
mid high
strategy index

 contrast

ategy index for stimuli at
cient r = −1, P = 0.017.
iddle (>0.55 and ≤.65),
VA. The data were from
. Error bar, ±SD.
of each neuron grouped by choice
at one trial back, we divided the trials
into two subsets with duration shorter
and longer than the mean duration,
respectively (short vs long duration:
P = 5.9 × 10−13, Wilcoxon signed
rank test, Fig. 8E). We found that
the fraction of neurons with signifi-
cant choice preference for one trial
back was significantly higher for trials
with short than with long duration
(χ2(1) = 6.94, P = 0.008, Fig. 8E),
consistent with the modulation of his-
tory influence by trial duration
observed at the behavioral level.
To further analyze the information

related to stimulus strength-
dependent history influence in M2,
we used a SVM classifier to decode
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neuronal information about the animal's choice (or outcome) in
current or previous trials (Chang and Lin, 2011; Astrand et al.,
2014). We trained the classifier on 90% of the data (training
dataset) and tested it on the remaining 10% of the data (test
dataset). During training, the classifier separated the data into
two classes according to choice (or outcome) on the current
trial, one trial back, or two trials back. During testing, the
decoder was presented with M2 responses in the test dataset
and produced prediction about choice (or outcome) on the cur-
rent trial, one trial back, or two trials back. For 16% contrast,
we found that the performance was significantly higher for
classifying choice on two trials back than that on current trial
(P < 0.05), and significantly higher for classifying outcome on
one trial back than that on current trial (P < 0.05, one-way
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repeated measures ANOVA followed by Tukey's multiple com-
parisons test, Fig. 9). For 53% contrast, the performance for
classifying choice or outcome was both higher for current trial
than for previous 1–2 trials (P < 0.05, one-way repeated mea-
sures ANOVA followed by Tukey's multiple comparisons test,
Fig. 9). Thus, at low stimulus contrast, choice or outcome infor-
mation of past 1–2 trials encoded by M2 neurons can be
extracted more reliably as compared to that in current trial; at
high stimulus contrast, current choice or outcome information
can be extracted more reliably as compared to that in previous
trials.
History-trial activity in M2 is important for decod-
ing behavioral choice at low contrast

To examine whether history-trial responses in M2 are used
to guide behavior, we used a SVM classifier to decode the
animal's upcoming choice from M2 responses. We hypothe-
sized that, if history-trial activity in M2 contributes to upcom-
ing choice, including history-trial responses in the algorithm
would increase the accuracy of the decoder to predict cur-
rent choice. To compare the decoding accuracy with and
without responses in the past trials, the SVM decoding
was performed separately for data using responses in cur-
rent trial only and data using responses in both current
and previous two trials. We found that, for 16% contrast,
the accuracy of decoding upcoming choice was significantly
higher for the model including responses in the past two
trials than that using responses in current trial only (P =
0.012, Wilcoxon signed rank test, Fig. 10A). For 53% con-
trast, including responses in the past two trials did not signif-
icantly affect the decoding accuracy (P = 0.12, Wilcoxon
signed rank test, Fig. 10B). These data suggest that M2
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responses in the past two trials are used to integrate with
current sensory input to guide the animal's choice when
the stimulus was weak.
DISCUSSION

In this study, we examined how stimulus contrast modulates
the integration of trial history and sensory input in percep-
tual decision making. We found that the influence of trial his-
tory on perceptual choice is stronger and more prolonged in
time when stimulus contrast is lower. We also found that the
activities of M2 neurons can be modulated by choice in one
or two trials back in a stimulus strength-dependent manner.
The integration of history trial signal and sensory input in M2
is important for decoding behavioral choice at low stimulus
contrast. Our results demonstrate that, for perceptual
choice, the short-term influence by recent trial history is
dynamically regulated by stimulus strength.

Relationship to previous works on trial history
influence

Trial history influence is widely observed in a variety of
tasks (Fecteau and Munoz, 2003). For value-based deci-
sion making, choice behavior is influenced by the choices
and outcomes in previous trials (Sugrue et al., 2004;
Corrado et al., 2005; Lau and Glimcher, 2005; Sul et al.,
2011), and performance is well described by RL model
(Sutton and Barto, 1998; Daw and Doya, 2006; Lee and
Seo, 2007; Sul et al., 2011). In the framework of RL, signals
related to the animal's previous choices may be necessary
for the association between choices and their delayed out-
comes (Lee and Seo, 2007), and signals related to previous
outcomes may be used to monitor the successfulness of the
animal's current strategy (Seo et al., 2007; Seo and Lee,
2008). For typical perceptual decision making task, the sti-
mulus sequence is random and perceptual judgment should
be based on the current sensory input. However, the per-
ceptual choices of humans and other animals are also
affected by the history of choices or outcomes (Fernberger,
1920; Gold et al., 2008; Busse et al., 2011; Fründ et al.,
2014; Scott et al., 2015; Abrahamyan et al., 2016; St
John-Saaltink et al., 2016; Thompson et al., 2016; Hwang
et al., 2017; Braun et al., 2018). Previous studies have
applied logistic regression models to understand the contri-
bution of history trials to current choice in perceptual deci-
sion making task, in which trials of different stimulus
strengths were randomized (Busse et al., 2011; Abraham-
yan et al., 2016; Thompson et al., 2016). These studies
either used previous one trial in the model (Busse et al.,
2011; Abrahamyan et al., 2016) or found negligible influ-
ence for two trials back (Thompson et al., 2016). In our
study, we found that the magnitude of trial history influence
was stronger at lower stimulus strength, consistent with pre-
vious reports (de Lafuente and Romo, 2005; Gold et al.,
2008; Fründ et al., 2014; Abrahamyan et al., 2016; Thomp-
son et al., 2016; Akrami et al., 2018). We extended previous
studies by revealing that the current choice could be influ-
enced by more number of history trials when the stimulus
was weaker. We also showed that the number of history
trials that could influence current choice decreased with trial
duration. This suggests that in perceptual task the memory
of recent trial history decays with time, similar to the tem-
poral discounting of past rewards in dynamic foraging task
(Sugrue et al., 2004; Corrado et al., 2005).
For humans judging the orientation of grating stimuli

embedded in random noise (St John-Saaltink et al., 2016)
or rats performing visual accumulation of evidence task
(Scott et al., 2015), the influence of previous trials on per-
ceptual choice could last for three trials. In our study, the
influence of history trials came from an average of two trials
back at 16% contrast. The difference between our study and
previous works (Gold et al., 2008; Scott et al., 2015;
St John-Saaltink et al., 2016; Thompson et al., 2016) in
terms of the timescale of the history influence may be due
to task design, stimulus difficulty, trial duration, or the differ-
ence in species.
The history influence in humans is often manifest as a

bias to repeat or alternate choices (choice history bias),
which is due to previous perceptual choices rather than pre-
vious motor responses (Akaishi et al., 2014; Braun et al.,
2018) or previously presented stimuli (St John-Saaltink et
al., 2016). The choice history bias could be adjusted follow-
ing changes in environmental statistics (Abrahamyan et al.,
2016; Braun et al., 2018), and the adjustment of choice bias
correlated with performance when stimulus sequences
exhibited autocorrelations (Braun et al., 2018). In tasks
using random stimulus sequence, however, choice history
bias was found to impair performance (Abrahamyan et al.,
2016). Our analysis showed that strong history influence
was associated with a decrease in behavioral performance
and a reduction in the variability of performance, implying
a trade-off between the effect of history influence on perfor-
mance and that on performance consistency.
Neural mechanism underlying trial history
influence

Many studies have examined neural correlates of trial his-
tory influence in different brain regions. Neural signals
encoding trial history information were found in the prefron-
tal cortex, parietal cortex, dorsal anterior cingulate cortex,
and supplementary eye field in monkey (Barraclough et
al., 2004; Genovesio et al., 2006; Seo and Lee, 2007; Seo
et al., 2009; Abzug and Sommer, 2018), and the striatum,
medial prefrontal cortex, orbitofrontal cortex, posterior parie-
tal cortex (PPC), and M2 in rodent (Kim et al., 2007; Sul et
al., 2010; Sul et al., 2011; Kim et al., 2013; Yuan et al.,
2015; Murakami et al., 2017; Scott et al., 2017). In monkey
premotor cortex, the variability of neuronal responses was
modulated by trial history (Marcos et al., 2013). In monkeys
performing a matching pennies task, the timescale for the
memory of past reward events was diverse across cortical
neurons and cortical areas (Bernacchia et al., 2011). For
humans performing perceptual judgements on stimulus
orientation, fMRI activity in primary visual cortex was biased
by the perceptual choice on the previous trial, reflecting
history-dependent perceptual decision (St John-Saaltink
et al., 2016). For motion discrimination task in monkey,
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although choice behavior was influenced by previous trials,
neural activities in the middle temporal visual or lateral intra-
parietal areas were not correlated with choice bias (Gold
et al., 2008). Recent studies also examined the causal role
of history-related neural signals in choice behavior. For
instance, rodent PPC exhibited history-related signals that
causally contributed to behavioral performance (Hwang
et al., 2017; Akrami et al., 2018). The activity of the pedun-
culopontine tegmental nucleus (PPTg) reflected recent trial
history and inactivation of the PPTg could decrease the his-
tory influence on action selection (Thompson et al., 2016).
In our study, we recorded from M2 to examine the neural

correlate of stimulus strength-dependent influence of trial
history on perceptual choice. Previous studies have shown
that rodent M2 plays an important role in cue-guided actions
and memory-guided behaviors (Erlich et al., 2011; Li et al.,
2015; Goard et al., 2016; Siniscalchi et al., 2016; Barthas
and Kwan, 2017; Kamigaki and Dan, 2017; Makino et al.,
2017; Gilad et al., 2018; Itokazu et al., 2018; Svoboda and
Li, 2018). Rodent M2 receives inputs from sensory areas,
sends output to many cortical and subcortical regions, and
is suggested to be a homolog of the premotor cortex, sup-
plementary motor area, or frontal eye field of monkey (Zingg
et al., 2014; Barthas and Kwan, 2017; Svoboda and Li,
2018). M2 neurons in rodent exhibit the earliest choice-
related activity among several frontal and striatal brain
regions and their activity reflects the past choice or outcome
(Sul et al., 2011; Yuan et al., 2015; Scott et al., 2017;
Siniscalchi et al., 2019). However, how M2 neurons dynami-
cally integrate sensory input and memory of recent experi-
ence is not well understood. Our results showed that M2
activities related to previous choice could be modulated by
stimulus strength, and the history-trial responses in M2
were important for decoding current choice when the stimu-
lus was weak. It is of interest for future study to examine
whether the history-related signals in M2 play a causal role
in the trial history influence of perceptual decision.
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