
UNIVERSITY OF CALIFORNIA SAN DIEGO

Channel Coding Techniques for Communication over Networks and over
Channels with Memory

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical Engineering
(Communication Theory and Systems)

by

Nadim Ghaddar

Committee in charge:

Professor Young-Han Kim, Chair
Professor Laurence B. Milstein, Co-Chair
Professor Alireza Salehi Golsefidy
Professor Arya Mazumdar
Professor Paul H. Siegel

2022



Copyright

Nadim Ghaddar, 2022

All rights reserved.



The dissertation of Nadim Ghaddar is approved, and it is acceptable

in quality and form for publication on microfilm and electronically.

University of California San Diego

2022

iii



DEDICATION

To my parents, sister and brother

whose unconditional love and support

made this dissertation possible.

iv



EPIGRAPH

Next to the originator of a good sentence is the first quoter of it.

I hate quotations. Tell me what you know.

—Ralph Waldo Emerson

v



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Road to Channel Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Beyond P2P Channels: Coding over Networks . . . . . . . . . . . . . . . . 5
1.3 Beyond Memoryless Channels: Coding over Channels with Memory . . . . 6
1.4 Outline and Contributions of the Dissertaion . . . . . . . . . . . . . . . . 7

1.4.1 Coding Over Networks: A Lego-Brick Approach . . . . . . . . . . 7
1.4.2 Joint Estimation and Coding over Channels with Memory . . . . . 10
1.4.3 Polar Codes for Multiple Description Coding . . . . . . . . . . . . 11

Chapter 2 Towards a Lego-Brick Approach to Coding . . . . . . . . . . . . . . . . . . . . 12
2.1 Point-to-point Channel Codes: A Formal Definition . . . . . . . . . . . . . 12
2.2 Symmetrized Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Two Primitive Properties of Point-to-Point Codes . . . . . . . . . . . . . . 14
2.4 The Lego-Brick Approach to Coding over Networks . . . . . . . . . . . . . 16
2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 3 Multiterminal Source Coding: A Lego-Brick Approach . . . . . . . . . . . . . . 19
3.1 Slepian–Wolf Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Code for P2P BMS Channel → Slepian–Wolf Code . . . . . . . . . 20
3.1.3 Slepian–Wolf Code → Code for P2P BMS Channel . . . . . . . . . 23
3.1.4 Specialization to Lossless Source Coding . . . . . . . . . . . . . . . 25

3.2 Lossy Source Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Symmetric Source . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Asymmetric Source . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Wyner–Ziv Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Berger–Tung Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.2 Coding Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Multiple Description Coding . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vi



3.5.2 Coding Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Simulation Results: Lossy Source Coding . . . . . . . . . . . . . . . . . . 42

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.A Proof of Lemma 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.B Proof of Lemma 3.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.C Proof of Lemma 3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.D Proof of Lemma 3.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Chapter 4 Channel Coding over Networks: A Lego-Brick Approach . . . . . . . . . . . . . 48
4.1 Gelfand–Pinsker Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.2 Coding Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.3 Specialization to Asymmetric Channel Coding . . . . . . . . . . . 52

4.2 Marton Coding over Broadcast Channels . . . . . . . . . . . . . . . . . . . 54
4.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Coding Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Coding for Multiple Access Channels . . . . . . . . . . . . . . . . . . . . . 57
4.3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.2 Coding Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1 Gelfand–Pinsker Coding . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.2 Marton Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Chapter 5 Coding over Cloud Radio Access Networks: A Lego-Brick Approach . . . . . . 69
5.1 Downlink C-RAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.2 Coding Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Uplink C-RAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.2 Coding Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Chapter 6 Block-Markov Coding over Networks: A Lego-Brick Approach . . . . . . . . . . 84
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Asymmetric Channel Coding . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3 Lossy Source Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4 Other Coding Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5 Concluding Remarks on the Lego-Brick Approach . . . . . . . . . . . . . . 92

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.A Proof of Lemma 6.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.B Proof of Lemma 6.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Chapter 7 Joint Channel Estimation and Polar Coding over Channels with Memory . . . 97
7.1 Channel Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1.1 Finite-State Markov Channel . . . . . . . . . . . . . . . . . . . . . 98
7.1.2 Gauss-Markov Channel . . . . . . . . . . . . . . . . . . . . . . . . 98
7.1.3 Fading Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 Polar Coding Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3 Successive Cancellation Trellis Decoding . . . . . . . . . . . . . . . . . . . 101

vii



7.4 Joint Estimation and Decoding . . . . . . . . . . . . . . . . . . . . . . . . 104
7.4.1 Estimation-Aware Decoding . . . . . . . . . . . . . . . . . . . . . . 105
7.4.2 Iterative Estimation and Decoding . . . . . . . . . . . . . . . . . . 111

7.5 Joint Piloting and Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.6.1 Comparison Setup with Separate Estimation and Coding . . . . . 116
7.6.2 Finite-State Markov Channels . . . . . . . . . . . . . . . . . . . . . 117
7.6.3 Gauss-Markov Channel . . . . . . . . . . . . . . . . . . . . . . . . 119
7.6.4 Fading Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Chapter 8 Polar Codes for Multiple Description Coding . . . . . . . . . . . . . . . . . . . 126
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.2 Polarization over Multiple Access Channels . . . . . . . . . . . . . . . . . 128

8.2.1 Joint Polarization Technique . . . . . . . . . . . . . . . . . . . . . 128
8.2.2 Polarization Based on Monotone Chain Rules . . . . . . . . . . . . 130

8.3 Polar Codes for the MDC problem . . . . . . . . . . . . . . . . . . . . . . 131
8.3.1 MDC-MAC Duality . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.3.2 Proposed Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

viii



LIST OF FIGURES

Figure 1.1: Shannon’s model of a point-to-point communication system. . . . . . . . . . . . 3
Figure 1.2: (a) Two-user Gaussian broadcast channel. (b) The time-division rate region R

and the capacity region C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 1.3: Overview of the proposed coding schemes and their constituent building blocks,

along with the section number in which each coding scheme is presented. . . . . 8
Figure 1.4: (a) Separate channel estimation and coding. The transmitter alternates between

sending pilot sequences and coded data, and the receiver performs estimation and
decoding separately. (b) Joint channel estimation and coding. . . . . . . . . . . 10

Figure 2.1: The symmetrized channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 3.1: Illustration of a shift by H̃Xn in {0, 1}n space. . . . . . . . . . . . . . . . . . . 21
Figure 3.2: The relations between the random variables (Xn, Y n, Cn, Un) defined in Lemma 3.1.2.

Notice the similarity to Figure 2.1 when Sn in Figure 2.1 is set to H̃(Xn⊕V n). To
recover Xn from Y n, one can go through the path (Y n, Un)→ Cn → Rn → Xn.
To get Cn from (Y n, Un), one can apply a decoder of a point-to-point channel
code designed for the channel p̄. This explains the Slepian–Wolf coding scheme
shown in Fig. 3.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.3: A code for the symmetric channel p̄, defined in (3.2). . . . . . . . . . . . . . . . 22
Figure 3.4: A Slepian–Wolf code starting from a point-to-point channel code. . . . . . . . . 23
Figure 3.5: A linear Slepian–Wolf code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 3.6: A point-to-point channel code starting from a Slepian–Wolf code. . . . . . . . . 24
Figure 3.7: A lossless source code starting from a point-to-point channel code. . . . . . . . 26
Figure 3.8: A lossy source coding scheme for a symmetric source starting from a point-to-

point channel code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 3.9: Encoder and decoder of a lossy source code for an asymmetric source starting

from a point-to-point channel code and a lossless source code. . . . . . . . . . . 31
Figure 3.10: Encoder and decoder of a Wyner–Ziv coding scheme starting from a point-to-

point channel code and a Slepian–Wolf code. . . . . . . . . . . . . . . . . . . . . 33
Figure 3.11: Coding scheme for distributed lossy compression using a lossy source code and

a Wyner–Ziv code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 3.12: A multiple description code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 3.13: Encoder of a multiple description code using three point-to-point channel codes. 39
Figure 3.14: Decoder of a multiple description code using two lossless source decoders and a

Slepian–Wolf decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 3.15: Distortion level and bias of the sequence Un at the encoder side assuming a

Bern(0.3) source and a polar code of block length n = 1024. . . . . . . . . . . . 43
Figure 3.16: Rate-distortion tradeoff achieved by the lossy source coding scheme for a Bern(0.3)

source using polar codes of different block lengths. . . . . . . . . . . . . . . . . . 44

Figure 4.1: A Gelfand–Pinsker code (g, ψ) for a channel with a state that is known non-
causally at the encoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 4.2: A Gelfand–Pinsker coding scheme starting from a point-to-point channel code
and a Slepian–Wolf code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 4.3: A coding scheme for an asymmetric channel starting from a Slepian–Wolf code
and a point-to-point channel code. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 4.4: Marton coding for the two-user broadcast channel using an asymmetric channel
code and a Gelfand–Pinsker code. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 4.5: Coding scheme for multiple access channel using two asymmetric channel codes. 59

ix



Figure 4.6: Achieved rates of the Gelfand–Pinsker coding scheme over a Gaussian channel
with state at a fixed block error probability P thresholde = 10−2. . . . . . . . . . . 62

Figure 4.7: Simulation results of the Gelfand–Pinsker coding scheme for a block length n =
1024 and rate R = 0.5 over a Gaussian channel with state. . . . . . . . . . . . . 63

Figure 4.8: The sum-capacity for the different coding strategies over the broadcast channel. 66
Figure 4.9: Simulation results for the different coding strategies over a two-user Gaussian

broadcast channel for the same block length n = 1024 and sum-rate Rsum = 1. . 67

Figure 5.1: Downlink C-RAN problem with two users, two relays and a channel p(y1, y2 |x1, x2)
between the relays and the users. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 5.2: Encoding scheme at the central processor for the two-user, two-relay downlink
C-RAN problem using an asymmetric channel code, a Gelfand–Pinsker code and
two point-to-point channel codes. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 5.3: Encoding scheme at the relays and decoding scheme at the users for the downlink
C-RAN problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 5.4: The sum-capacity of the proposed coding scheme for the downlink C-RAN prob-
lem under different fronthaul capacity constraints. . . . . . . . . . . . . . . . . . 76

Figure 5.5: Simulation results of the downlink C-RAN coding scheme for a block length
n = 1024 and sum-rate Rsum = 0.75 under different fronthaul capacity constraints. 77

Figure 5.6: Uplink C-RAN problem with two users and two relays. . . . . . . . . . . . . . . 78
Figure 5.7: Coding scheme for the uplink C-RAN problem using a multiple access channel

code and a Berger–Tung code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 5.8: The sum-capacity of the proposed coding scheme for the uplink C-RAN problem

under different backhaul capacity constraints. . . . . . . . . . . . . . . . . . . . . 82
Figure 5.9: Simulation results of the uplink C-RAN coding scheme for a block length n =

1024 and sum-rate Rsum = 0.25 under different backhaul capacity constraints. . 83

Figure 6.1: A block-Markov coding scheme for an asymmetric channel in the first transmis-
sion block using the code (fsym, ϕsym). . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 6.2: A block-Markov coding scheme for an asymmetric channel in the jth transmission
block, for 2 ≤ j ≤ b− 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 6.3: Encoder of the block-Markov lossy source coding scheme in the jth coding block,
for 2 ≤ j ≤ b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 6.4: Decoder of the block-Markov lossy source code in the jth coding block, for
2 ≤ j ≤ b− 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 7.1: Polar transformation for a code of length N = 8. . . . . . . . . . . . . . . . . . 100
Figure 7.2: Conventional piloting scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 7.3: Shortening of polar codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 7.4: Comparison of block error probability performance of the different encoding and

decoding schemes using a polar code of blocklength N = 1024 over a finite-state
second-order Markov channel. The numbers on the plots correspond to the pilot
spacing at which the performance was achieved. . . . . . . . . . . . . . . . . . . 118

Figure 7.5: Comparison of block error probability performance of the different encoding and
decoding schemes over a Gauss-Markov channel with parameters η = 0.99 and
σ2
w = 0.0199. The numbers on the plots correspond to the pilot spacing at which

the performance was achieved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 7.6: Comparison of block error probability performance of the different encoding

and decoding schemes over a Rayleigh fading channel with normalized Doppler
frequency fm = 0.06. The numbers on the plots correspond to the pilot spacing
at which the performance was achieved. . . . . . . . . . . . . . . . . . . . . . . . 122

x



Figure 7.7: Comparison of block error probability performance of the different encoding
and decoding schemes over a Rayleigh fading channel with normalized Doppler
frequency fm = 0.1. The numbers on the plots correspond to the pilot spacing at
which the performance was achieved. . . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 7.8: Comparison of block error probability performance of the different encoding and
decoding schemes over a Rician fading channel with normalized Doppler frequency
fm = 0.06. The numbers on the plots correspond to the pilot spacing at which
the performance was achieved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Figure 8.1: El Gamal–Cover inner bound for a fixed pmf p(y, z |x). The dominant face of
this region is highlighted in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Figure 8.2: Channel splitting operation for two uses of a two-user MAC under the technique
of joint polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Figure 8.3: Five extremal channels for MAC. . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 8.4: MDC-MAC duality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Figure 8.5: Five extremal channels for the MDC problem. . . . . . . . . . . . . . . . . . . . 133

xi



LIST OF TABLES

Table 7.1: Table that shows the considered encoder-decoder pairs, along with the section
number where the proposed joint scheme is described. . . . . . . . . . . . . . . . 117

xii



ACKNOWLEDGEMENTS

Preparing for this dissertation over the past six years has been a humbling experience. I

learned a lot, and unlearned a lot. And for every single part in this process, I had to rely on the

support from others, and now is the right time to acknowledge that.

Little can language help me in describing how grateful and honored I am to be a student of

Prof. Young-Han Kim. Young-Han not only taught me how to approach a research problem, but he

also shaped my research interests. I came to UCSD six years ago with a very blurry vision of what

research problems I’d like to work on, and how to work on them. Young-Han, in a way, unclouded

that vision. In this process, he showed me how to think clearly, how to write precisely, how to prove

rigorously, and how to ask the right questions along the way. He challenged me at the times when I

was almost giving up, and when I did, he came to the rescue with new ideas and research avenues

for me to explore. On a technical level, Young-Han taught me everything I know about information

theory, and did it in the most thought-provoking and resourceful way. His commitment to working

on research problems that have both strong theoretical and practical foundations has been inspiring

to me; I hope I can approach this dichotomy in a similar way during my career. Young-Han, thank

you for the mentor and role model that you have been to me (and will continue to be). Your impact

goes way far beyond this PhD.

I am also grateful to Prof. Larry Milstein for his continued support throughout my PhD.

I collaborated with Prof. Milstein in my first project on joint channel estimation and polar coding.

His insights on the communication theory aspect of the problem were crucial for the results to see

light. His very detailed comments on my writing and presentation skills were always on point and

helped me grow as a technical writer and presenter. At a personal note, I am thankful for his overall

positive attitude towards me – and towards life in general – which helped me through the early stages

of my PhD. I am also grateful to the committee members Prof. Paul Siegel, Prof. Arya Mazumdar

and Prof. Alireza Salehi Golsefidy for graciously accepting to serve on the committee. I want

to especially thank Prof. Siegel for being very approachable throughout my PhD, for his support

whenever I needed it, and for his meticulously-planned Probabilistic Coding class. I also would

like to thank the late Prof. Alexander Vardy for his constructive comments during my qualifying

and preliminary examinations, and also for his comprehensive work on polar codes, some of which

inspired the results presented in this dissertation.

I am also deeply indebted to Prof. Lele Wang for her generous mentorship throughout my

PhD. Without Lele, I would not have made it to this stage. She has been my unofficial co-advisor

(she guided me for the most of my PhD), my favorite collaborator (five out of my eight technical

papers are based on joint works with her), and, above all, a genuinely kind friend (she’s always

generous with her advise and empathetic with her words). I am also grateful to Lele’s student, Ziao,

for an insightful ongoing collaboration.

I am very thankful for my summer internship opportunities at Samsung and Qualcomm.

xiii



Specifically, I would like to thank Dr. Hamid Saber and Dr. Jung Hyun Bae from Samsung and

Dr. Ari Klein from Qualcomm for being great mentors for me throughout the internship experiences

and for allowing me to explore some of my own ideas during the internships. I am thankful for

InterDigital and ETRI (Electronics and Telecommunications Research Institute) for their funding

which has supported my PhD journey. I would like to especially thank Dr. Liangping Ma from

InterDigital for being a friendly collaborator during the early times of my PhD.

San Diego has been home for the last six years, and it is the people I met here that

made it a special one. First, thank you to my labmates – Alankrita, Jiun-Ting, Jongha, Pinar and

Shouvik – for the friendly work environment throughout most of my PhD. Although COVID came

to ruin our daily meetups in the office and the impromptu lunches on campus (some were pretty

late:) ), I am grateful for their availability in weekly group meetings from which I learned a lot.

I would like to especially thank Shouvik for the brotherhood that we shared through most of my

PhD, the stimulating collaboration, and the countless food adventures in San Diego. I am also

thankful that my time in the group intersected shortly with our senior Fatemeh. Outside of the lab,

a special thank you goes to Rohan, Sukanya, Aditya, Anwesan and Shahar for their close friendship

throughout my PhD journey. To them, I owe an improved set of skills in Ping-Pong, a lot of fun

road trips exploring California and many memorable birthday celebrations. Thank you to Raghu,

Yuhan and Muhammad for all the fun dinner nights. Thank you to Ahmed and Mouna for being

the oldest friends I know (and for always reminding me that I’m a “kiddo” compared to them:) ).

Thank you to Govind, Sheel and Pranav for the many matches of Ultimate Frisbee (is it really a

national sport?). Thank you to Hanwen, Ayush and Vaishakh for friendly encounters on the fourth

floor of Atkinson Hall.

The presence of my cousins Manal, Ali and Leila in nearby Anaheim has given a warm

home-like feeling to my stay in California. No words can express how grateful I am to have had

them close by. Their home has been my go-to place throughout the last six years. A very special

thank you goes to Manal for helping me selflessly at every single step of this journey. My experience

in the US wouldn’t have been nearly as smooth without her support. (As a side note, she is also

the best cook that I have ever met:) ). Outside of California, I am grateful to the lifelong friendship

of Abed, Wajeb, Rami, Mounib, Razan, Kassir, Taha, and Natali, who never failed to keep me

going through their friendly banter. A heartfelt thank you goes to Rakshita for being my day-to-day

support system for the better part of my PhD.

Last, but definitely not the least, thank you to the people whom I owe everything to. Baba,

Mama, Fattouma and Hammoudi, thank you for all your sacrifices that made me who I am. My

deepest gratitude is that you are my family. It is to you I dedicate this dissertation.

xiv



Chapter 2, in part, is a reprint with permission of the material as it appears in the paper:

Nadim Ghaddar, Shouvik Ganguly, Lele Wang, and Young-Han Kim, “A Lego-brick approach to

coding for network communication,” arXiv:2211.07208, November 2022, which is in preparation

to be submitted to IEEE Transactions on Information Theory. The dissertation author was the

primary investigator and author of this paper. This work was supported in part by the Institute

for Information & Communication Technology Planning & Evaluation (IITP) grant funded by the

Korean government (MSIT) (No. 2018-0-01659, 5G Open Intelligence-Defined RAN (ID-RAN)

Technique based on 5G New Radio), in part by the NSERC Discovery Grant No. RGPIN-2019-05448,

and in part by the NSERC Collaborative Research and Development Grant CRDPJ 543676-19.

Chapter 3, in part, is a reprint with permission of the material as it appears in the papers:

Nadim Ghaddar, Shouvik Ganguly, Lele Wang, and Young-Han Kim, “A Lego-brick approach to

coding for network communication,” arXiv:2211.07208, November 2022, which is in preparation to be

submitted to IEEE Transactions on Information Theory, and Nadim Ghaddar, Shouvik Ganguly,

Lele Wang, and Young-Han Kim, “A Lego-brick approach to lossy source coding,” in 2022 17th

Canadian Workshop on Information Theory (CWIT), pp. 45–50, 2022. The dissertation author

was the primary investigator and author of these papers. This work was supported in part by

the Institute for Information & Communication Technology Planning & Evaluation (IITP) grant

funded by the Korean government (MSIT) (No. 2018-0-01659, 5G Open Intelligence-Defined RAN

(ID-RAN) Technique based on 5G New Radio), in part by the NSERC Discovery Grant No. RGPIN-

2019-05448, and in part by the NSERC Collaborative Research and Development Grant CRDPJ

543676-19.

Chapter 4, in part, is a reprint with permission of the material as it appears in the papers:

Nadim Ghaddar, Shouvik Ganguly, Lele Wang, and Young-Han Kim, “A Lego-brick approach to

coding for network communication,” arXiv:2211.07208, November 2022, which is in preparation to

be submitted to IEEE Transactions on Information Theory, and Nadim Ghaddar, Shouvik Ganguly,

Lele Wang, and Young-Han Kim, “A Lego-brick approach to coding for asymmetric channels and

channels with state,” in 2021 IEEE International Symposium on Information Theory (ISIT), pp.

1367–1372, 2021. The dissertation author was the primary investigator and author of these papers.

This work was supported in part by the Institute for Information & Communication Technology

Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2018-0-01659,

5G Open Intelligence-Defined RAN (ID-RAN) Technique based on 5G New Radio), in part by the

NSERC Discovery Grant No. RGPIN-2019-05448, and in part by the NSERC Collaborative Research

and Development Grant CRDPJ 543676-19.

Chapter 5, in part, is a reprint with permission of the material as it appears in the paper:

Nadim Ghaddar, Shouvik Ganguly, Lele Wang, and Young-Han Kim, “A Lego-brick approach to

coding for network communication,” arXiv:2211.07208, November 2022, which is in preparation

to be submitted to IEEE Transactions on Information Theory. The dissertation author was the

xv



primary investigator and author of these papers. This work was supported in part by the Institute

for Information & Communication Technology Planning & Evaluation (IITP) grant funded by the

Korean government (MSIT) (No. 2018-0-01659, 5G Open Intelligence-Defined RAN (ID-RAN)

Technique based on 5G New Radio), in part by the NSERC Discovery Grant No. RGPIN-2019-05448,

and in part by the NSERC Collaborative Research and Development Grant CRDPJ 543676-19.

Chapter 6, in part, is a reprint with permission of the material as it appears in the papers:

Nadim Ghaddar, Shouvik Ganguly, Lele Wang, and Young-Han Kim, “A Lego-brick approach to

coding for network communication,” arXiv:2211.07208, November 2022, which is in preparation to

be submitted to IEEE Transactions on Information Theory, Nadim Ghaddar, Shouvik Ganguly, Lele

Wang, and Young-Han Kim, “A Lego-brick approach to lossy source coding,” in 2022 17th Canadian

Workshop on Information Theory (CWIT), pp. 45–50, 2022, and Nadim Ghaddar, Shouvik Ganguly,

Lele Wang, and Young-Han Kim, “A Lego-brick approach to coding for asymmetric channels and

channels with state,” in 2021 IEEE International Symposium on Information Theory (ISIT), pp.

1367–1372, 2021. The dissertation author was the primary investigator and author of these papers.

This work was supported in part by the Institute for Information & Communication Technology

Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2018-0-01659,

5G Open Intelligence-Defined RAN (ID-RAN) Technique based on 5G New Radio), in part by the

NSERC Discovery Grant No. RGPIN-2019-05448, and in part by the NSERC Collaborative Research

and Development Grant CRDPJ 543676-19.

Chapter 7, in part, is a reprint with permission of the material as it appears in the papers:

Nadim Ghaddar, Young-Han Kim, Laurence B. Milstein, Liangping Ma, and Byung K. Yi, “Joint

channel estimation and coding over channels with memory using polar codes,” in IEEE Transactions

on Communications, vol. 69, no. 10, pp. 6575-6589, Oct. 2021, and Nadim Ghaddar, Young-Han

Kim, Laurence B. Milstein, Liangping Ma, and Byung K. Yi, “Joint channel estimation and error

correction for finite-state markov channels using polar codes,” in 2018 IEEE Global Communications

Conference (GLOBECOM), pp. 1–6, 2018. The dissertation author was the primary investigator

and author of these papers.

Chapter 8, in part, is a reprint with permission of the material as it appears in the paper:

Alankrita Bhatt, Nadim Ghaddar, and Lele Wang, “Polar coding for multiple descriptions using

monotone chain rules,” in 2017 55th Annual Allerton Conference on Communication, Control, and

Computing (Allerton), pp. 565-571, Oct 2017. The dissertation author was the primary investigator

and author of this paper.

xvi



VITA

2014 B. E. in Computer and Communications Engineering cum laude,
American University of Beirut, Lebanon

2016 M. Sc. in Communication Systems, École Polytechnique Fédérale
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Next-generation wireless communication systems will have to deal with an unprecedented

number of communicating users and devices while enabling orders-of-magnitude of performance im-

provement in speed and connectivity. With the increasingly complex network structure and the

high spectral efficiency requirements, it becomes extremely inefficient to rely on traditional chan-

nel coding paradigms that do not take into account the structure of the network and its inherent

properties. Unlike conventional channel coding schemes that are designed under the assumption

of a single sender and a single receiver communicating over a memoryless channel, this disserta-

tion investigates low-complexity channel coding techniques that take advantage of the number of

communicating devices in a network and the inherent memory in the channel. In communication
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over networks, low-complexity channel coding schemes that achieve the best known information

theoretic performance are constructed starting from simple coding blocks. In communication over

channels with memory, practical channel coding techniques that exploit the memory in the channel

are developed. In both cases, the proposed coding techniques have the potential of addressing the

increasing-spectral-efficiency requirement in next-generation wireless communication systems.

xix



Chapter 1

Introduction

In his plenary talk in the 2001 IEEE International Symposium on Information Theory,

Robert J. McEliece asked: “Are turbo-like codes effective on nonstandard channels?” [1]. At the

time, it was well-understood that such codes perform pretty well on binary-input memoryless sym-

metric channels. Hence, it was natural to investigate how such codes perform in more general

settings, e.g., over channels that are non-binary, non-memoryless, non-symmetric, and mutliuser.

The basic conclusion that McEliece alluded to is that binary turbo codes [2] and their relatives

(e.g., low density parity check codes [3, 4, 5]) have the potential to be used effectively over non-

standard channels using low-complexity graph-based iterative decoding. Fast-forward to around a

decade later, coding theory saw a couple of extraordinary breakthroughs that are manifested by

the invention of polar codes [6] and spatially coupled codes [7]. Not only that these two families

of codes achieve the capacity of binary-input memoryless symmetric channels, but they also do so

with efficient encoding and decoding algorithms. Therefore, today more than ever, there is a need

to investigate the degree to which the results on standard channels can be extended to more general

communication scenarios.

Concurrent with the advances in coding theory, the mobile industry is growing at an un-

precedented rate. According to Cooper’s law [8], which tracks the performance of wireless commu-

nication systems through time, the number of mobile connections per unit area has increased by a

factor of 106 over the past fifty years. Cooper’s study divides this factor of one million into three

parts: a factor of 25 is due to allocation of more spectrum, a factor of 25 is due to improved spectral

efficiency of physical layer techniques, and a factor of 1600 is attributed to the use of more base

stations in significantly denser spatial configurations. Indeed, the trend of increased deployment of

ultra-dense base stations is especially evident in 5G systems, with base stations (cells) being de-

ployed every 100 meters in certain urban areas. There are two major implications of such closely

packed base stations. First, the interference between different users and base stations becomes much

stronger. This is exacerbated by the expected explosion of the number of communicating users (and
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devices) due to emerging applications in transportation systems, smart cities, and cloud computing.

Second, the channels between the base stations and the users become much more complex and inter-

dependent. Hence, traditional assumptions on underlying channel models such as memorylessness

and symmetricity become of little practical value. With such complex network structure, many users

and interfering radio, it becomes extremely inefficient to rely on standard channel coding techniques

that do not take into account the structure of the networks and their inherent properties.

Inspired by the theoretical advances and the pressing need in practice, this dissertation

is an attempt to devise low-complexity channel coding techniques for nonstandard channel models.

In particular, we consider channels that involve multiple senders and receivers (i.e., networks), and

channels that have memory. Before digging into the details, a brief description of the contributions

of this dissertation is given below (please see Section 1.4 for a more elaborate discussion of the

contributions).

Coding for Network Communication. Most existing channel coding techniques developed for

network communication are either based on dividing the network into separate point-to-point links

(i.e., links that involve a single sender and a single receiver) – and hence, are far from being rate-

optimal for network communication – or are based on the use of high-complexity encoding and

decoding methods such as joint typicality encoding and maximum likelihood decoding – and hence,

are not practical. Towards the ambitious goal of closing this gap between what is theoretically

known to be optimal for communication over networks and what is practically feasible, we take

a Lego-brick approach to transform conceptual coding schemes developed in network information

theory to practical implementations. In this approach, we identify basic coding blocks for one (or

more) communication setting and combine them together to build another coding block for a more

complex communication setting1. The result of this research thread is a collection of coding schemes

for several network scenarios that are both rate-optimal and practical, and that can be implemented

starting from existing coding blocks designed for binary-input memoryless symmetric point-to-point

channels.

Coding over Channels with Memory. In many practical scenarios, the memory in a channel

asserts itself through time-varying channel state parameters that are unknown to both the sender

and the receiver. The common paradigm of designing coding schemes for such channels is to assume

that the receiver is able to compute accurate estimates of these parameters prior to decoding (e.g.,

using a known pilot sequence). This separation of channel estimation and decoding is known to be

sub-optimal from an information theoretic perspective, since the distribution of the channel state

process is ignored in the decoding procedure. Alternatively, instead of estimating the channel states

and then performing channel decoding separately, we devise a joint channel estimation and coding

scheme that incorporates the tasks of pilot symbol insertion and channel estimation into the encoding

and decoding procedures of polar codes over several channel models with memory. The result of this

1Can you see the analogy to building Lego’s?
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work is a polar-coding-based technique to code over channels with memory which requires less pilot

overhead and seems particularly suited to be used over fast-varying channels.

To establish the context of these contributions, we first go through a brief history of coding

theory in Section 1.1, along with the most important code constructions that are capacity-achieving

over point-to-point channels. In Sections 1.2 and 1.3, we briefly motivate the main two themes of

this dissertation, namely, coding over networks and coding over channels with memory. Finally, in

Section 1.4, we elaborate on the main contributions of this dissertation and its overall outline.

1.1 Road to Channel Capacity

The technology of communication and computing advanced at a breathtaking pace in the

twentieth century, particularly after Claude Shannon’s landmark paper “A Mathematical Theory

of Communication” in 1948 [9], which constituted the birth of the field of information theory. In

his paper, Shannon posed the fundamental question: what is the maximum rate at which reliable

communication is possible, and how can we efficiently communicate close to this rate? He considered

the architecture depicted in Figure 1.1, where a sender wishes to communicate a k-bit message M

to a receiver over a noisy channel. The message is mapped by an encoder to an n-symbol channel

input sequence Xn(M), and the received channel output sequence Y n is mapped by a decoder to a

message estimate M̂(Y n).

M M̂Xn Y n
ChannelEncoder Decoder

Figure 1.1: Shannon’s model of a point-to-point communication system.

Shannon took an asymptotic approach to characterize the necessary and sufficient condition

for reliable communication. His ingenious formulation of the point-to-point communication problem

led to the following fundamental theorem.

Point-to-pint channel coding theorem. Suppose that the channel is discrete and memoryless

with input X, output Y and conditional probability p(y |x) that specifies the probability of receiving

the symbol y when x is transmitted. The decoder wishes to find an estimate M̂ of the message with

a small probability of decoding error P{M̂ ̸=M}. Shannon formulated the problem as one of finding

the channel capacity C, which is the maximum rate R = k/n in bits per channel transmission at

which the probability of error can be made arbitrarily small when n is sufficiently large. He elegantly

characterized the channel capacity as

C = max
p(x)

I(X;Y ) bits/transmission, (1.1)
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where I(X;Y ) denotes the mutual information between the channel input X and the channel output

Y .

Shannon’s construction of an encoder-decoder pair that achieves the capacity of a discrete

memoryless channel was based on random coding. By looking at an ensemble of codes generated

according to the capacity-achieving input distribution (i.e., the one that maximizes (1.1)) and ana-

lyzing the error probability of a typicality decoder, Shannon showed that there should exist at least

one code in the ensemble that achieves the capacity of the channel. Other classic proofs of Shannon’s

achievability theorem based on random coding are found in [10, 11, 12]. For a detailed overview

of related results in information theory, the interested reader is referred to the standard textbooks

in [13] and [14].

Nonetheless, due to their large decoding complexity, random codes are not amenable to

practical applications. Therefore, ever since Shannon’s 1948 paper, the quest for finding low-

complexity codes that approach capacity has been the central objective of coding theory. From

algebraic constructions (such as Hamming [15], Golay [16], Reed–Muller [17, 18], Bose–Chaudhuri–

Hocquenghem [19, 20] and Reed–Solomon codes [21]) to probabilistic constructions (such as turbo [2],

low-density parity-check [3, 4, 5], and expander codes [22]), to the polar [6] and spatially coupled

codes [7] mentioned earlier, coding theory has made significant strides to approach and later achieve

Shannon’s fundamental limit of reliable communication over discrete memoryless point-to-point

channels. The main code constructions known to achieve Shannon’s capacity for point-to-point

channels are the following:

Random-coding-based constructions. A random code whose codewords are generated (pair-

wise) independently according to the capacity-achieving input distribution achieves the capacity of

all discrete memoryless channels2. Moreover, a random linear code achieves the capacity of discrete

memoryless symmetric channels. However, in both cases, no low-complexity decoding method is

known, in general, for these codes.

Spatially coupled codes. Spatially coupled low-density parity-check codes achieve the capacity

of all binary-input memoryless symmetric channels. These codes can be decoded efficiently using

the iterative message-passing algorithm.

Polar codes. Polar codes achieve the capacity of all binary-input memoryless symmetric channels

using the low-complexity successive cancellation decoding algorithm. The achievability proof is

based on the intriguing phenomenon of channel polarization.

Reed–Muller codes. Reed–Muller codes achieve the capacity of binary erasure channels using

maximum-a-posteriori (MAP) decoding [25]. Moreover, Reed–Muller codes have a vanishing bit-

error-rate over all binary-input memoryless symmetric channels using bitwise maximum-a-posteriori

2In fact, it is sufficient that the weight distribution of the code (i.e., the distribution of the number of 1’s in the
codewords) is close to that of the random ensemble to establish capacity achievability [23, 24].
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(bit-MAP) decoding [26]. However, in both cases, the decoder has a complexity that is exponential

in the block length, and, thus, is not friendly to practical implementations.

1.2 Beyond P2P Channels: Coding over Networks

The simplistic model of a communication system as a single source-destination pair com-

municating over a noisy channel does not capture many important aspects of real-world networks.

Wireless communication systems, for example, use a shared broadcast medium between potentially

multiple senders and multiple receivers. Inspired by Shannon’s formulation of the point-to-point

communication problem, network information theory aims to study the fundamental limits of reli-

able communication over networks and the optimal coding schemes that can achieve those limits.

The codes developed in network information theory require techniques beyond point-to-point chan-

nel coding, and can achieve, in general, strictly larger rates compared to the basic approach of coding

over the point-to-point links of a network.

Let’s consider an example. A two-user Gaussian broadcast channel, which is used to model

the downlink of a cellular system, is depicted in Figure 1.2a. The sender wishes to communicate a

message Mj to each user j at a rate Rj , for j = 1, 2. The channel output at the each user can be

expressed as

Y1 = g1X + Z1,

Y2 = g2X + Z2,

where Z1 ∼ N (0, 1) and Z2 ∼ N (0, 1) are independent noise components at the receivers, and

g21 > g22 , that is, the channel seen by receiver 1 is stronger than that seen by receiver 2. Assume

that the transmitter is subject to an average transmission power constraint P . One approach to

communicate over this channel is to send the messages separately to each user (e.g., in different

time intervals or frequency bands) using the point-to-point channel codes discussed previously. In

this case, we can reliably communicate at rate pairs (R1, R2) in the “time-division region” R shown

in Figure 1.2b, where Cj = 1
2 log(1 + g2jP ) is the capacity of the point-to-point Gaussian channel

X → Yj with signal-to-noise ratio g2jP , for j = 1, 2. Cover [27] showed that a strictly larger rate

region can be achieved by adding the codewords for the two messages and sending the sum over

the channel. The stronger receiver 1 decodes both codewords, while the weaker receiver 2 treats

the other codeword as noise and decodes only its own codeword. This superposition coding scheme

allows to communicate at any rate pair in the capacity region C shown in Figure 1.2b, a strictly

larger region compared to the time-division region R. Similar improvements in communication rates

can be achieved for the uplink (multiple access channel), intercell interference (interference channel)

and many other practically-motivated network models. These intriguing results motivate the quest

to find practical low-complexity coding schemes for communication over networks. For a detailed

overview of results in network information theory, we refer to the textbook [28] which contains an
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Figure 1.2: (a) Two-user Gaussian broadcast channel. (b) The time-division rate region R and the

capacity region C.

encyclopedic coverage of this area.

1.3 Beyond Memoryless Channels: Coding over Channels

with Memory

Most real-world channels have memory. Most prominently, fading channels in wireless

communication are time-varying due to multiple signal paths and user mobility, and introduce

channel gains that randomly change over time. The traditional solution to deal with channel memory

is to interleave the encoded sequence of symbols prior to transmission and to deinterleave the received

output sequence prior to decoding3. If the interleaving span is long enough, the interleaved channel

may be considered memoryless, in which case the point-to-point channel codes discussed earlier can

be used. Nonetheless, such an approach is known to be sub-optimal from an information theoretic

perspective as the rates that can be achieved over the interleaved channel – under the assumption

of no memory – are strictly smaller than the capacity of the original channel [30]. Note that the

interleaving process itself does not reduce the capacity of the channel; it is the code which ignores

the inherent channel memory that is insufficient to achieve it.

Moreover, when the memory in the channel is manifested through unknown state parame-

ters that change randomly over time (e.g., fading channels), the underlying assumption that governs

the design of most existing channel coding techniques is that the receiver is able to estimate the

state parameters accurately enough prior to decoding. In most practical systems, a predetermined

training sequence (also known as a pilot sequence), containing no actual information, is transmitted

to help the receiver in this task. Once estimates of the channel states at the pilot symbol positions

3For example, such an interleaving process is used in 5G systems in both the control and data channels [29].
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are computed, the receiver interpolates (i.e., “tracks” the channel) to get estimates of the chan-

nel states at the data symbol positions, and only then proceeds to perform channel decoding. As

mentioned earlier, this separation of estimation and decoding is sub-optimal in general, particularly

when the channel states are changing at a fast rate (e.g., in the case of high mobility) [31, 32]. This

motivates the quest for finding low-complexity encoders and decoders that take into account the

inherent memory in the channel.

1.4 Outline and Contributions of the Dissertaion

This dissertation tells a story about coding over nonstandard channels, in particular, chan-

nels with multiple senders and receivers (i.e., networks) and channels with memory. Let us first give

a bird’s eye view on the structure of this thesis. The topic of Chapters 2 to 6 is the Lego-brick

approach to coding over networks: in Chapter 2, we motivate this approach and describe necessary

tools that will be used in subsequent chapters; in Chapter 3, we talk about source coding problems

with multiple terminals; in Chapter 4, we discuss channel coding problems over networks; Chap-

ter 5 talks about coding over cloud radio access networks, and Chapter 6 describes modified coding

schemes based on block-Markov coding. Since the coding schemes presented in these chapters be-

come more involved from one chapter to the other, it is recommended that Chapters 2 to 6 are

read in the order that they are presented. In Chapter 7, we talk about channels with memory and

describe a joint channel estimation and polar coding scheme over these channels. In Chapter 8, we

describe a polar coding scheme for the multiple description coding problem. Each of Chapters 7

and 8 is self-contained, and can be read independently from other chapters.

1.4.1 Coding Over Networks: A Lego-Brick Approach

Our first contribution is a systematic framework for designing coding schemes for network

communication [33]. Starting from point-to-point channel codes that are designed for symmetric

channels (such as the ones mentioned in Section 1.1), we identify basic properties that these codes

should satisfy so that they can be used in the construction of a coding scheme for a given network

information theory problem. Viewing the channel codes that satisfy those properties as “black

boxes”, we will provide guidelines onto how to assemble them together in order to construct a

practical coding scheme for a given network problem. We will refer to such an approach to coding

as a “Lego-brick approach” and to the constituent channel codes as “Lego bricks”, taking a literal

analogy to building complex Lego objects starting from simple components. In particular, we will

construct coding schemes for the problems of lossless source coding [9], Slepian–Wolf coding [34],

lossy source coding [35], Wyner–Ziv coding [36], Gelfand–Pinkser coding [37], asymmetric channel

coding [9], multiple description coding [38], Berger–Tung coding [39], coding for multiple access

channels [40], Marton coding for broadcast channels [41], and coding for cloud radio access networks
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Figure 1.3: Overview of the proposed coding schemes and their constituent building blocks, along

with the section number in which each coding scheme is presented.

(C-RAN’s) [42]. The code constructions are friendly to practical implementation and can achieve

rate regions that are strictly larger compared to the naive approach of coding over the point-to-point

links of a network. In fact, for most of the problems that we consider, the achieved rate regions are

the best known inner bounds4, provided that the constituent Lego bricks are rate-optimal.

Figure 1.3 illustrates the different coding problems considered in this dissertation, along

with their constituent Lego bricks. Arrows pointing from a set of coding problems towards another

coding problem means that codes for these problems can be used as building blocks in the design

of a code for the designated problem. More specifically, coding schemes for the following problems

will be constructed starting from the following codes.

1. Code for point-to-point symmetric channel → Lossless source code

2. Code for point-to-point symmetric channel → Slepian–Wolf code

3. Slepian–Wolf code → Code for point-to-point symmetric channel

4. Code for point-to-point symmetric channel + Lossless source code → Lossy source code

5. Code for point-to-point symmetric channel + Slepian–Wolf code → Wyner–Ziv code

4The exceptions are the downlink (uplink) C-RAN problems, where the rate regions achieved through our con-
structions can be improved through the high-complexity joint encoding (decoding) of the user messages.
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6. Code for point-to-point symmetric channel + Slepian–Wolf code → Gelfand–Pinsker code

7. Code for point-to-point symmetric channel + Slepian–Wolf code → Asymmetric channel code

8. Two lossy source codes + Wyner–Ziv code → Multiple description code

9. Lossy source code + Wyner–Ziv code → Berger–Tung code

10. Asymmetric channel code + Gelfand–Pinsker code → Marton code for broadcast channel

11. Two asymmetric channel codes → Code for the two-user multiple access channel

12. Two lossy source codes + Marton code for broadcast channel→ Code for the downlink C-RAN

problem

13. Multiple access channel code + Berger–Tung code → Code for the uplink C-RAN problem

Therefore, all the coding schemes can be constructed starting from point-to-point channel codes

designed for symmetric channels.

In Chapter 2, we formally define the point-to-point channel coding problem and describe

the primitive properties that point-to-point channel codes should satisfy so that they can be used

as building blocks in a coding scheme for network communication. We will also describe in detail

the motivations behind the Lego-brick approach and the related work in the literature.

In Chapter 3, we discuss the source coding problems, namely, the problems of lossless

source coding, Slepian–Wolf coding, lossy source coding, Wyner–Ziv coding, Berger–Tung coding

and multiple description coding. For each coding problem, we give explicit constructions of coding

schemes starting from basic building blocks and analyze the performance. We also provide simulation

results for the lossy source coding problem.

In Chapter 4, we proceed to the channel coding problems, namely, the problems of

Gelfand–Pinsker coding, asymmetric channel coding, Marton coding over broadcast channels and

coding over multiple access channels. For each coding problem, explicit constructions are given and

the performance of the coding schemes is analyzed. Simulation results are provided for Gelfand–

Pinsker coding and Marton coding.

In Chapter 5, we describe coding schemes for cloud radio access networks (uplink and

downlink). These networks, by nature, involve both source and channel coding counterparts, and,

hence, are treated in a separate chapter. Indeed, the constructions for these networks will use tools

from the previous two chapters. Simulation results are provided for the both the uplink and downlink

scenarios.

In Chapter 6, we describe modified constructions for all the previous coding schemes

based on block-Markov coding. Unlike the previous constructions, the coding schemes described

in this chapter involve properties of the Lego bricks that can be easily verified in practice for any

off-the-shelf code. Unfortunately, this comes at the cost of a larger implementation complexity, a

9
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Figure 1.4: (a) Separate channel estimation and coding. The transmitter alternates between sending

pilot sequences and coded data, and the receiver performs estimation and decoding separately. (b)

Joint channel estimation and coding.

small penalty incurred in the achievable rates, and a worse performance guarantee. The coding

schemes have a block-Markov structure, i.e., the input to one coding block might depend on the

inputs/outputs of previous coding blocks.

1.4.2 Joint Estimation and Coding over Channels with Memory

Our second main contribution is a joint channel estimation and polar coding scheme for

channels with memory [43]. Unlike the conventional approach of first estimating all channel param-

eters and then performing channel decoding separately (Figure 1.4a), the proposed scheme incorpo-

rates a subset of reliable estimates of channel parameters into the decoding procedure and computes

decoding metrics averaged over the statistical behavior of the channel (Figure 1.4b). Moreover,

the structure of polar codes is exploited to develop a pilot arrangement scheme that embeds pilot

symbols within the polar codewords. The contributions of this part can be summarized by the

following.

1. A polar decoding algorithm for finite-state Markov channels of any order. An “estimation-

aware” variant of the algorithm that computes decoding metrics conditioned on channel esti-

mates is also presented.

2. A successive cancellation decoder for the Gauss-Markov channel. As the channel state alphabet

is not finite in this case, the decoder is not a straightforward extension from that of finite-state

Markov channels.

3. An iterative estimation-decoding scheme that incorporates reliably-decoded bits into subse-

quent iterations of channel estimation. The scheme uses list decoding of polar codes to identify
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the reliably-decoded bits.

4. A pilot arrangement scheme that uses the special encoding structure of polar codes to align

known pilot symbols with code bits. Equivalent to the shortening of a polar code, the scheme

improves on existing shortening schemes in the literature by adding flexibility in choosing the

positions of the shortened bits.

The simulation results over finite-state Markov channels, Gauss-Markov channels and flat-fading

channels demonstrate significant performance gains compared to separate estimation and coding.

These contributions will be the subject of Chapter 7.

1.4.3 Polar Codes for Multiple Description Coding

Our third main contribution is a polar coding scheme for the multiple description coding

problem that can achieve the entire El Gamal–Cover inner bound for this problem [44]. A key

ingredient in this result is exploiting an interesting duality between the multiple description coding

problem and the multiple access channel coding problem. The coding scheme we develop in this

part is inherently different than our previous Lego-brick design (see multiple description coding in

Figure 1.3). In particular, the proof technique here is specific to polar codes, and the construction

can achieve any point on the dominant face of the El Gamal–Cover rate region (not just a corner

point). Due to these differences, this result will be addressed separately and will be the subject of

Chapter 8.
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Chapter 2

Towards a Lego-Brick Approach to

Coding

In this chapter, we build towards a unified framework for coding over networks starting

from simple coding blocks. We start with defining the point-to-point channel coding problem in

Section 2.1. In Section 2.2, we define the notion of a symmetrized channel, which will turn out to be

crucial in most of our code constructions over networks. In Section 2.3, we identify two properties of

point-to-point channel codes that allow to translate their performance to network settings, namely,

the error probability and the decoding distance. Sections 2.4 and 2.5 are devoted to motivate the

Lego-brick approach to coding and describe the related previous work, respectively. We start from

point-to-point channel coding.

2.1 Point-to-point Channel Codes: A Formal Definition

Consider a binary-input discrete memoryless channel p(y |x) with an input alphabet X =

{0, 1}, an output alphabet Y and a collection of conditional probability mass functions (pmf’s)

p(y |x) on Y for each x ∈ X . A (k, n) point-to-point channel code (f, ϕ) for the channel p(y |x)
consists of

• a codebook C ⊆ {0, 1}n of size |C| = 2k,

• an encoder f : [2k]→ C that maps each message m ∈ [2k] to a codeword xn = f(m),

• a decoder ϕ : Yn → C that assigns a codeword estimate x̂n = ϕ(yn) to each received sequence

yn.

The rate of the code is R = k/n. We say that the channel code is linear if for any two codewords

cn, c̃n ∈ C, we have cn⊕ c̃n ∈ C. A linear code can be alternatively defined by its parity-check matrix
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Hn−k×n and its decoding function ϕ. In this case, the codebook can be written as C = {cn : Hcn =

0n−k}. With a slight abuse of notation, when the code is linear and its parity-check matrix is H,

we will refer to it as a (k, n) linear point-to-point channel code (H,ϕ).

Remark 2.1.1. Given any (n − k) × n parity-check matrix H, we will assume throughout this

dissertation that the last n− k columns of H are linearly independent, i.e., H =
[
A B

]
for some

nonsingular (n − k) × (n − k) matrix B. We also introduce the following linear transformation of

the parity-check matrix,

H̃ =

[
0

B−1H

]
=

[
0 0

B−1A I

]
, (2.1)

where 0 denotes the all-zero matrix of the appropriate dimension.

Definition 2.1.1 (BMS Channel). We say that a binary-input memoryless channel p(y |x) is sym-

metric (abbreviated, a BMS channel) if there exists a permutation π : Y → Y such that π−1 = π

and p(y |x) = p(π(y) |x⊕ 1) for all y ∈ Y and x ∈ {0, 1}. The channel p(y |x) is asymmetric if it is

not symmetric.

Remark 2.1.2. The capacity-achieving input distribution for a BMS channel is the uniform distri-

bution [45, Theorem 4.5.2]. Note that this is the only input distribution that can be attained using

linear code ensembles.

2.2 Symmetrized Channel

Given any binary-input channel p(y |x) (that is not necessarily symmetric) and any input

distribution p(x) (that is not necessarily uniform), a technique that will be crucial for us in our

code constructions is the concept of a symmetrized channel corresponding to the joint distribution

p(x, y) = p(x)p(y |x), defined as follows [46].

Definition 2.2.1 (Symmetrized Channel). Given a binary-input channel p(y |x) and an input

distribution p(x) (not necessarily uniform), the symmetrized channel corresponding to p(x, y) =

p(x)p(y |x) is defined as the channel p̄ with input alphabet X = {0, 1}, output alphabet Y × {0, 1}
and transition probabilities

p̄(y, v |x) = pX,Y (x⊕ v, y).

Remark 2.2.1. The following are immediate consequences of the definition of a symmetrized chan-

nel.

(i) The channel p̄ is symmetric under permutation π
(
(y, v)

)
= (y, v ⊕ 1). In other words, for any

s ∈ {0, 1},
p̄(y, v |x) = p̄(y, v ⊕ s |x⊕ s),

which extends naturally when considering length-n sequences.
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Figure 2.1: The symmetrized channel.

(ii) The channel p̄ is, in particular, the conditional distribution pȲ |X̄ when X̄ = X⊕V , Ȳ = (Y, V ),

(X,Y ) is distributed according to p(x, y), and V ∼ Bern(1/2) is independent of (X,Y ).

(iii) Since X̄ ∼ Bern(1/2) and the channel p̄ is symmetric, it follows that the capacity of the

symmetrized channel p̄ is

I(X̄; Ȳ ) = H(X̄)−H(X̄ | Ȳ ) = 1−H(X ⊕ V |Y, V ) = 1−H(X |Y ).

Observations (i) and (ii) made above are illustrated in Figure 2.1. If (Xn, Y n) are i.i.d.

according to p(x, y), then the symmetrized channel p̄ is exactly the channel between X̄n = Xn⊕V n

and (Y n, V n), where V n is an i.i.d Bern(1/2) sequence that is independent of (Xn, Y n). Furthermore,

the symmetric property of the channel p̄ implies that, for any arbitrary sequence Sn, the channel

between X̃n = X̄n ⊕ Sn and (Y n, V n ⊕ Sn) is also described by p̄. This property will turn out to

be useful in several of our constructions in the coming chapters.

2.3 Two Primitive Properties of Point-to-Point Codes

Given a (k, n) linear point-to-point channel code (H,ϕ) designed for a BMS channel p(y |x),
we will focus throughout this dissertation on two properties of the code, namely, the error probability

and the decoding distance, which we define precisely below.

(1) Error probability: Let Xn ∼ Unif(C), where C is the codebook corresponding to H, and let Y n

be the output of the channel p(y |x) when the input is Xn. The error probability ϵ of the code

(H,ϕ) when used over the channel p(y |x) is defined as the probability of decoding error, i.e.,

ϵ ≜
∑
xn∈C

(
2−k P{ϕ(Y n) ̸= Xn | Xn = xn}

)
.

Shannon’s point-to-point channel coding theorem [9], along with its achievability proof using

linear codes [12], state that a sequence of (nR, n) linear codes having a vanishing error probability
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over the BMS channel p(y |x) exists if and only if the rate R < I
(
Bern(1/2), p(y |x)

)
, where

I
(
Bern(1/2), p(y |x)

)
means the mutual information I(X;Y ) of the channel p(y|x) when the

input X ∼ Bern(1/2). Note that since the channel is symmetric, I
(
Bern(1/2), p(y |x)

)
is, in

fact, the capacity of the channel.

(2) Decoding distance: Let Y n be an i.i.d. p(y) sequence, where p(y) ≜
∑
x

1
2p(y |x) is the marginal

output distribution when the input distribution is Bern(1/2). DefineXn = ϕ(Y n). The decoding

distance δ of the code (H,ϕ) with respect to the channel p(y |x) is defined as the total variation

distance between the distribution of (Xn, Y n) (let’s denote that by q(xn, yn)) and the i.i.d.

1
2p(y |x) distribution, i.e.,

δ ≜
1

2

∑
xn,yn

∣∣∣∣∣q(xn, yn)− 1

2n

n∏
i=1

p(yi |xi)

∣∣∣∣∣ .
The decoding distance can be understood as a measure of the stochastic behavior of the decoding

function ϕ in comparison to the “backward” channel p(x |y) corresponding to the capacity-

achieving input distribution. A sequence of (nR, n) linear codes with a vanishing decoding

distance exists if and only if the rate R > I
(
Bern(1/2), p(y |x)

)
. To see this, one can refer

to results on the distributed channel synthesis problem, introduced by Bennett et al. in [47]

and further characterized by Cuff in [48]. In this problem, an i.i.d. source Ȳ n distributed

according to p(ȳ) is encoded by an index M ∈ [2nRs ] to a decoder that wishes to produce an

output X̄n such that the joint distribution of (X̄n, Ȳ n) is indistinguishable (in total variation

distance) from a given joint i.i.d distribution p(x̄, ȳ). This is referred to as “synthesizing” the

channel p(x̄ | ȳ). The main result in the distributed channel synthesis literature [48] is that

there exists a construction of an encoder-decoder pair to synthesize p(x̄ | ȳ) if and only if the

channel synthesis rate Rs is larger than I(X̄; Ȳ ). We point out that, when X̄ ∼ Bern(1/2),

the construction in [48] can be generalized to a linear construction1. Therefore, one can see

that the condition of a small decoding distance on the point-to-point channel code (H,ϕ) is

similar in nature to the condition imposed in the distributed channel synthesis problem, where

the information bits corresponding to the output of ϕ can be seen as the index shared to the

decoder in channel synthesis. Note that the encoder of the construction for the distributed

channel synthesis problem would be the decoder of our point-to-point channel code, while the

decoder of the channel synthesis construction is the encoder of the point-to-point code.

In short, whereas the probability of error is a measure of the error correction capability of the code

when simulated over the symmetric channel, the decoding distance is a measure of the shaping ca-

pability of the decoding function. Note that polar codes under successive cancellation decoding are

known to have a vanishing error probability [6] and a vanishing decoding distance [49] asymptoti-

cally over any BMS channel. In the coming chapters, we will construct coding schemes for various

1This holds because Theorem VII.1 in [48] only uses the pairwise independence of the codewords.
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problems in network information theory starting from one (or more) point-to-point channel codes.

The properties of the point-to-point channel codes (either error probability or decoding distance)

will be instrumental in translating the performance guarantees from one communication setting to

another.

2.4 The Lego-Brick Approach to Coding over Networks

Today’s modern infrastructure is becoming increasingly interconnected through information

networks. Emerging applications in transportation systems, power systems, smart cities, cloud

computing and digital healthcare, call for exceptionally efficient coding schemes to process, store

and communicate the massive amounts of network data. In practice, the common paradigm of

designing coding schemes over networks is to decompose the network into separate point-to-point

links, where a point-to-point channel code is used over each link. Despite the practical convenience,

such an approach is known to be sub-optimal from an information theoretic perspective, even when

each link is utilized at its full capacity.

Network information theory studies the fundamental limits of network communication and

the optimal coding schemes that achieve those limits. At a conceptual level, this theory has been

hugely successful, with several basic coding schemes that are applicable to a variety of network

models, and some optimal in certain special cases. Except for a few simple use cases, however,

the coding schemes developed in network information theory have barely had any impact on the

design of communication systems over networks. Even basic coding schemes such as Gelfand–

Pinsker coding [37], Marton coding [41] and compress-and-forward relaying [50] have not been used

in practice in any meaningful manner in the forty years since their inception. The main reason

behind this noticeable gap between theory and practice is that most of these coding schemes, albeit

being conceptually beautiful, are not in an easily-implementable form, which is exemplified by the

ubiquitous use of high-complexity coding techniques such as joint typicality encoding and decoding,

and maximum likelihood decoding.

As mentioned before, this part of the dissertation is an attempt to close the aforementioned

gap between theory and practice, so that all the beautiful coding schemes in network information

theory (e.g., all the ones described in [28]) can be implemented in real systems to their full potential.

To achieve this goal, we take a modular approach to transform the conceptual coding schemes de-

veloped in network information theory into practical implementations. More specifically, we identify

basic coding schemes that are designed for one (or more) communication setting and satisfy cer-

tain properties2, and combine them together to build a more complex coding scheme for a different

communication setting. Under such a framework, we ask:

2The error probability and the decoding distance of a code designed for a point-to-point BMS channel are two
examples of such properties.
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• What are the most primitive properties that the basic coding schemes should satisfy while

being versatile in building coding schemes for network communication?

• How can such coding blocks be assembled together in different network communication sce-

narios?

• How do the performance guarantees and the achievable rate regions translate in different

communication settings?

The Lego-brick approach to coding over networks aims to answer these questions for various problems

in network information theory. In this dissertation, we focus on the coding problems mentioned in

Section 1.4.1 and Figure 1.3. As we shall see, such an approach to coding allows one to leverage

commercial off-the-shelf codes that are designed for single-user symmetric channels (e.g., all the ones

mentioned in Section 1.1, or even hypothetical codes to be invented in the future) to build practical

coding schemes for multiuser communication.

It turns out that the only two properties of the constituent point-to-point codes which

allows to translate their performance to network communication settings are the error probability

and the decoding distance. Bounds on the performance of our code constructions will be derived

in terms of these two properties regardless of other properties of the code. Such flexibility allows

us to be tightly coupled with the most recent development in coding theory for point-to-point

communication (in terms of performance), but at the same time to be completely decoupled from it

(in terms of architecture).

2.5 Related Work

The approach of designing coding schemes for network information theory problems starting

from simple blocks is not new in general. In [51], Wyner constructed a Slepian–Wolf code for a

doubly symmetric binary source starting from a point-to-point channel code designed for the binary

symmetric channel (BSC). The duality between general Slepian–Wolf problems and point-to-point

channel coding problems was further explored in [52, 46], where a maximum-likelihood channel

decoder was assumed. In [53], linear Slepian–Wolf codes were constructed starting from “off-the-

shelf” linear channel codes designed for symmetric channels, where the exact relation of the rates

and probability of error between the two problems was established. Further, a general method for

constructing codes for asymmetric point-to-point channels was described in [54]; the coding scheme

uses a lossless source code and a channel code designed for a symmetric channel as its constituent

building blocks. Moreover, codes for the broadcast channel and the multiple access channel were

constructed in [55] starting from basic coding blocks. In particular, in our recent works of [56]

and [57], coding schemes for lossy source coding, asymmetric channels and channels with state were

constructed starting from point-to-point channel codes designed for symmetric channels.
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In a similar spirit, many attempts to design practical coding schemes for multi-terminal

scenarios have closely followed the footsteps of point-to-point channel coding. Polar codes, for ex-

ample, have been specialized to several problems in network information theory, including, but not

limited to, the Slepian–Wolf problem [58], the lossy source coding problem [49], Gelfand–Pinsker

problem [59], the multiple description coding problem [60, 44], multiple-access channels [61, 62],

broadcast channels [54], interference channels [63], and relay channels [64, 65]. Sparse graph codes

with logarithmic check node degrees have also been shown to achieve the optimal rates for various

coding problems under maximum likelihood decoding, including the lossy source coding problem [66],

the Gelfand–Pinsker problem and the Wyner–Ziv problem [67]. Alternatively, low-density generator-

matrix (LDGM) codes were shown to approach the rate-distortion bound for the lossy source coding

problem under variants of the low-complexity message-passing decoder [68]. Spatially coupled com-

pound LDPC/LDGM codes were also shown to achieve optimal rates for the problems of lossy source

coding, Wyner–Ziv coding and Gelfand–Pinsker coding under message-passing decoding [69, 70]. For

Gaussian channels with Gaussian state that is known noncausally at the encoder (i.e., the dirty pa-

per coding problem [71]), lattice codes have been shown to achieve capacity [72], and variants of

these codes with practical decoders have been proposed in the literature (e.g., [73, 74]).

Given this introduction to the Lego-brick approach to coding and the existing literature,

we are now ready to construct coding schemes for source and channel coding over networks. We

start from source coding in the next chapter.
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Chapter 3

Multiterminal Source Coding: A

Lego-Brick Approach

In this chapter, we deal with multiterminal source coding problems. Starting from basic

coding blocks, we construct coding schemes for: Slepian–Wolf coding and lossless source coding in

Section 3.1, lossy source coding in Section 3.2, Wyner–Ziv coding in Section 3.3, Berger–Tung coding

in Section 3.4 and multiple description coding in Section 3.5. In Section 3.6, we show simulation

results for the lossy source coding problem.

3.1 Slepian–Wolf Coding

In this section, we establish an “equivalence” between constructing a code for a linear point-

to-point BMS channel and constructing a binary Slepian–Wolf code. In other words, we show that a

code for any binary Slepian–Wolf problem can be designed starting from a linear code for a suitable

BMS channel. Conversely, a linear code for any BMS channel can be constructed starting from a

binary Slepian–Wolf code. In both cases, the optimal rate can be achieved asymptotically provided

that the constituent Lego brick is rate-optimal. As a special case, the Slepian–Wolf coding scheme

can be specialized to lossless source coding of a binary source. The duality between Slepian–Wolf

coding and coding for a BMS channel has been previously noted in [51, 52, 46, 53]; in particular,

the constructions provided in this section are equivalent to the ones in [53].

3.1.1 Problem Statement

A binary Slepian–Wolf problem p(x, y) consists of a source alphabet X = {0, 1}, an ar-

bitrary side information alphabet Y, and a joint pmf p(x, y) over X × Y [34]. A discrete memo-

ryless source X with side information Y generates a jointly i.i.d. random process {(Xi, Yi)} with
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(Xi, Yi) ∼ p(x, y). The goal is to represent a length-n source sequence Xn using as few bits as

possible to a decoder that has access to the side information sequence Y n and wishes to find an

estimate X̂n of Xn. An (ℓ, n) code (g, ψ) for the Slepian–Wolf problem p(x, y) consists of

• an index set I ⊆ {0, 1}n such that |I| = 2ℓ,

• an encoder g : Xn → I that maps each source sequence xn to an index sn = g(xn), and

• a decoder ψ : I × Yn → Xn that assigns a source estimate x̂n = ψ(sn, yn) to each index sn

and side information sequence yn.

The rate of the code is R = ℓ/n. The average probability of error of the code is ϵ = P{X̂n ̸= Xn}.
A rate R, 0 ≤ R ≤ 1, is said to be achievable for the binary Slepian–Wolf coding problem if there

exists a sequence of (nR, n) codes with vanishing error probability asymptotically. The classical

result of Slepian and Wolf states that any rate R > H(X |Y ) is achievable for the Slepian–Wolf

coding problem [34].

The Slepian–Wolf code is linear when the encoding function g is linear, i.e., if for any

xn, x̃n ∈ {0, 1}n, we have g(xn⊕ x̃n) = g(xn)⊕ g(x̃n). When the encoding function g can be defined

as a matrix multiplication g(xn) =

[
0

Hxn

]
, where H is an ℓ× n matrix, we will refer to the code as

an (ℓ, n) linear Slepian–Wolf code (H,ψ).

3.1.2 Code for P2P BMS Channel → Slepian–Wolf Code

Consider a binary Slepian–Wolf problem p(x, y), as defined in the previous section. We will

construct a linear Slepian–Wolf code for this problem starting from a linear point-to-point channel

code for a BMS channel. The BMS channel of interest is the symmetrized channel corresponding to

p(x, y), as defined in Section 2.2. The following lemma will be helpful to describe the Slepian–Wolf

coding scheme.

Lemma 3.1.1. Let H be a parity-check matrix for a codebook C, and let H̃ be as defined in (2.1).

Define S = {sn ∈ {0, 1}n : sk = 0k}. Then,

(i) For any xn ∈ {0, 1}n, there exists a unique sn ∈ S such that xn ⊕ sn ∈ C. In particular,

sn = H̃xn.

(ii) If Xn is i.i.d. Bern(1/2), then Xn ⊕ H̃Xn ∼ Unif(C).

(iii) If Cn ∼ Unif(C) and Sn ∼ Unif(S) are independent, then Cn ⊕ Sn is i.i.d. Bern(1/2).

Proof. See Appendix 3.A.
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Xn iid∼ Bern(1/2) Cn ∼ Unif(C)

H̃Xn

Figure 3.1: Illustration of a shift by H̃Xn in {0, 1}n space.

Intuitively, part (ii) of Lemma 3.1.1 gives a general way of generating a codeword uniformly at

random starting from a uniformly distributed binary sequence, as illustrated in Figure 3.1. Con-

versely, part (iii) generates a uniformly distributed binary sequence starting from a codeword chosen

uniformly at random.

The main idea of the construction of the Slepian–Wolf coding scheme is captured in the

following lemma.

Lemma 3.1.2. Let (Xn, Y n) be i.i.d. according to p(x, y), and V n be i.i.d. Bern(1/2) and in-

dependent of (Xn, Y n). Let p̄ be the symmetrized channel corresponding to p(x, y), as defined in

Definition 2.2.1. Consider a parity-check matrix H for a codebook C, and let H̃ be as defined in

(2.1). Consider the sequences

Cn = Xn ⊕ V n ⊕ H̃Xn ⊕ H̃V n,

Un = V n ⊕ H̃V n ⊕ H̃Xn.
(3.1)

Then,

P{Cn = cn, Un = un, Y n = yn} = 1

2k

n∏
i=1

p̄(yi, ui | ci)

for every cn ∈ C, un ∈ {0, 1}n and yn ∈ Yn.

Proof. Lemma 3.1.2 can be seen as a recast of Lemmas 2 and 3 in [53]. For completion, the proof is

provided in Appendix 3.B.

Lemma 3.1.2 says that if Y n is the output of the channel p(y |x) when the channel input is Xn,

then, for a uniformly distributed binary sequence V n, the sequences (Y n, Un) are distributed as the

outputs of the channel p̄ when the channel input is Cn, a uniformly distributed codeword in the

codebook C, where Cn and Un are as defined in (3.1). The relations between the different random

variables is illustrated in Figure 3.2.

Now, we are ready to construct a coding scheme for the Slepian–Wolf problem p(x, y). The

coding scheme uses the following point-to-point channel code.

Lego Brick 3.1.1 (P2P → SW): a (k, n) linear point-to-point channel code (H,ϕ) with codebook

C for the symmetrized channel p̄ corresponding to p(x, y), which is defined over an input alphabet
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V n

Xn

Xn ⊕ V n

Y n

H̃(Xn ⊕ V n)

p(y|x)

(Y n, V n)p̄(y, v|x)

Cn (Y n, Un) = (Y n, V n ⊕ H̃V n ⊕ H̃Xn)p̄(y, v|x)

Figure 3.2: The relations between the random variables (Xn, Y n, Cn, Un) defined in Lemma 3.1.2.

Notice the similarity to Figure 2.1 when Sn in Figure 2.1 is set to H̃(Xn ⊕ V n). To recover Xn

from Y n, one can go through the path (Y n, Un)→ Cn → Rn → Xn. To get Cn from (Y n, Un), one

can apply a decoder of a point-to-point channel code designed for the channel p̄. This explains the

Slepian–Wolf coding scheme shown in Fig. 3.4.

C̃n ∼ Unif(C) Ĉn
p̄(y, v|x) ϕ

Ỹ n

Ũn

Figure 3.3: A code for the symmetric channel p̄, defined in (3.2).

X = {0, 1} and output alphabet Y × {0, 1} by

p̄(y, v |x) = pX,Y (x⊕ v, y). (3.2)

Let ϵ be the average probability of error of the code (H,ϕ) when used over the channel p̄.

Figure 3.3 shows the channel code (H,ϕ) when used over the channel p̄. The average

probability of error ϵ of the code can be expressed as

ϵ = P{ϕ(Ũn, Ỹ n) ̸= C̃n}.

Figure 3.4 illustrates the block diagram of the Slepian–Wolf coding scheme that uses the

point-to-point channel code (H,ϕ). The coding scheme can be described as follows.

Encoding: Upon observing the source sequence xn, the sender transmits sn = H̃xn, where H̃ is as

defined in (2.1).

Decoding: Upon observing the side information sequence yn and receiving the index sn, the decoder

declares x̂n = ϕ(sn⊕vn⊕ H̃vn, yn)⊕sn⊕vn⊕ H̃vn as the source estimate, where vn is a realization

of a random dither generated independently at the decoder. Notice the similarity of this decoding

method with the observations made through Fig. 3.2.
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SnXn Un Ĉn X̂n

H̃

H̃

SW Encoder

ϕ

SW Decoder

Y n

V n

Figure 3.4: A Slepian–Wolf code starting from a point-to-point channel code.

Analysis of probability of error: We have

P{X̂n ̸= Xn} = P{ϕ(V n ⊕ H̃V n ⊕ H̃Xn, Y n)⊕ H̃Xn ⊕ H̃V n ⊕ V n ̸= Xn}

= P{ϕ(V n ⊕ H̃V n ⊕ H̃Xn, Y n) ̸= Xn ⊕ V n ⊕ H̃(Xn ⊕ V n)}

= P{ϕ(Un, Y n) ̸= Cn}
(a)
= P{ϕ(Ũn, Ỹ n) ̸= C̃n}

= ϵ,

where (a) follows from Lemma 3.1.2. Note that since the probability of error averaged over V n is ϵ,

there exists a deterministic vn sequence such that the probability of error is bounded by ϵ.

Rate: By construction, the rate of the Slepian–Wolf code is (n− k)/n.

Remark 3.1.1. Recall the definition of (X̄, Ȳ ) in Remark 2.2.1. A sequence of codes for the channel

p̄ with a vanishing error probability exists if and only if the rate is smaller than

I(X̄; Ȳ ) = H(X̄)−H(X̄ | Ȳ ) = 1−H(X ⊕ U |Y, U) = 1−H(X |Y ).

It follows that, if the rate of the code for the channel p̄ is k
n = I(X̄; Ȳ )− γ for some γ > 0, then the

rate of the Slepian–Wolf code is n−k
n = H(X |Y ) + γ.

Conclusion: From each linear (k, n) code for the BMS channel p̄ defined in (3.2) with average

probability of error ϵ, one can construct a linear (n−k, n) code for the Slepian–Wolf problem p(x, y)

with average probability of error ϵ.

3.1.3 Slepian–Wolf Code → Code for P2P BMS Channel

Now, we consider a BMS channel p(y |x). We show that a code for this channel can be

constructed starting from the following Slepian–Wolf code.

Lego Brick 3.1.2 (SW → P2P): an (n − k, n) linear Slepian–Wolf code (H,ψ) for the problem

p(x, y) = 1
2p(y |x) with an average probability of error ϵ.
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X̂n

Ỹ n 0

HX̃n

X̃n HX̃n

H ψ

Figure 3.5: A linear Slepian–Wolf code.

Ĉn

P2P Encoder

ψp(y|x)Xn Y n

P2P Decoder

Cn

V n V n

 0

HV n



Figure 3.6: A point-to-point channel code starting from a Slepian–Wolf code.

Figure 3.5 shows the Slepian–Wolf code (H,ψ), where (X̃n, Ỹ n) are i.i.d. sequences dis-

tributed according to p(x, y). The average probability of error ϵ of the Slepian–Wolf code can be

written as

ϵ = P

{
ψ

([
0

HX̃n

]
, Ỹ n

)
̸= X̃n

}
.

To construct a code for the channel p(y |x), let V n be an i.i.d. Bern(1/2) random dither

shared between the encoder and the decoder, and let Cn ∈ C represent the message to be transmitted,

where C is the codebook corresponding to H. Figure 3.6 illustrates the block diagram of the point-

to-point channel code. The coding scheme can be summarized as follows:

Encoding: To send the message cn ∈ C, the sender transmits xn = cn⊕ vn, where vn is a realization

of a random dither shared between the encoder and the decoder.

Decoding: Upon observing yn, the decoder declares ĉn = ψ(H̄vn, yn)⊕ vn as the message estimate.

Analysis of probability of error: We have

P{Ĉn ̸= Cn} = P

{
ψ

([
0

HV n

]
, Y n

)
⊕ V n ̸= Cn

}

(a)
= P

{
ψ

([
0

HXn

]
, Y n

)
̸= Xn

}

(b)
= P

{
ψ

([
0

HX̃n

]
, Ỹ n

)
̸= X̃n

}
= ϵ,

where (a) follows since HXn = HCn ⊕HV n = HV n, and (b) follows since after dithering with the

uniform V n, (Xn, Y n) are identically distributed as (X̃n, Ỹ n) in the Slepian–Wolf problem. Note
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that since the probability of error averaged over V n is ϵ, there exists a deterministic vn sequence

such that the probability of error is bounded by ϵ.

Rate: Since |C| = 2k, the rate of the point-to-point channel code is k/n.

Remark 3.1.2. If the rate of the Slepian–Wolf code is n−k
n = H(X |Y ) + γ for some γ > 0, then

the rate of the point-to-point channel code is

1−H(X |Y )− γ = I
(
Bern(1/2), p(y |x)

)
− γ,

where I
(
Bern(1/2), p(y |x)

)
is the capacity of the BMS channel p(y |x).

Conclusion: From each linear (n−k, n) Slepian–Wolf code for the problem p(x, y) = 1
2p(y |x) with

average probability of error ϵ, one can construct a linear (k, n) code for the BMS channel p(y |x)
with average probability of error ϵ.

3.1.4 Specialization to Lossless Source Coding

As a special case of Slepian–Wolf coding, a lossless source code for a binary source can

be implemented using a linear point-to-point channel code that is designed for a binary symmetric

channel (BSC). This observation is well-understood in the literature [75]. Here, we describe an

explicit construction which uses any linear off-the-shelf code designed for a BSC. The construction

that we present will turn out to be useful in constructing coding schemes for other more complicated

problems. The construction is very similar to the Slepian–Wolf construction in the special case of

no side information.

To see this, consider a binary memoryless source that generates an i.i.d. Bern(θ) sequence

Xn for some θ ∈ (0, 1/2). As in Slepian–Wolf coding, the goal is to represent the source sequence

using as few bits as possible to a decoder that wishes to find an estimate X̂n of the sequence. The

definition of a lossless source code, its rate and probability of error follow similarly as in Slepian–

Wolf coding, with the exception that a lossless source decoder has no access to any side information

sequence.

Recall the coding scheme presented in Section 3.1.2. When there is no side information,

the symmetrized channel corresponding to p(x) is a BSC(pX(1)). Therefore, a lossless source coding

scheme for a Bern(θ) source can be constructed starting from a point-to-point channel code designed

for BSC(θ), as given in the following Lego brick.

Lego Brick 3.1.3 (P2P → Lossless): a (k, n) linear point-to-point channel code (H,ϕ) designed

for BSC(θ) with average probability of error ϵ when used over the channel.

Figure 3.7 shows the lossless source coding scheme, where Xn is an i.i.d. Bern(θ) source

sequence, and V n is an i.i.d. Bern(1/2) sequence generated at the decoder independently of Xn.
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SnXn Un Ĉn X̂n

H̃

H̃

Encoder
Lossless

ϕ

Lossless Decoder

V n

Figure 3.7: A lossless source code starting from a point-to-point channel code.

Notice the similarity of the lossless source coding scheme to the Slepian–Wolf coding scheme (Fig-

ure 3.4), except that no side information sequence is used at the decoder side. As before, the rate of

the lossless source code is (n− k)/n, and its average probability of error is given by ϵ, which follows

by specializing Lemma 3.1.2 to the case when p(y) is deterministic and independent of p(x).

Remark 3.1.3. If the rate of the channel code is k
n = 1−H(θ)− γ for some γ > 0, then the rate

of the lossless source code is H(θ) + γ.

Remark 3.1.4. Conversely, a lossless source code can be used to construct a point-to-point channel

code for a binary symmetric channel (BSC).

3.2 Lossy Source Coding

In this section, we construct coding schemes for the lossy source coding problem starting

from simple Lego bricks. We consider two cases: the first is the case of a symmetric source, and

the second corresponds to a general asymmetric source. The distinction is made because a simpler

construction is possible for the former case. More specifically, in the case of a symmetric source, our

coding scheme is constructed starting from a single point-to-point symmetric channel code, whereas

the coding scheme for the general asymmetric source uses both a point-to-point symmetric channel

code and a lossless source code. In both cases, the proposed coding scheme is rate-optimal provided

that the constituent Lego bricks are rate-optimal.

3.2.1 Problem Statement

Introduced by Shannon in [35], the problem of lossy compression of a binary memoryless

source generates an i.i.d. random process {Xi} with Xi ∼ Bern(θ) for some θ ∈ (0, 1/2]. The goal is

to efficiently represent a source sequence Xn when some distortion is allowed during reconstruction.

More formally, an (R,n) code for the lossy source coding problem consists of

• an index set I such that |I| = 2nR,

• an encoder g : {0, 1}n → I that assigns an index m ∈ I to each source sequence xn, and
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• a decoder ψ : I → {0, 1}n that assigns an estimate x̂n to each index m ∈ I.

The rate of the code is R, and its expected distortion is

1

n
E
[
dH(Xn, X̂n)

]
=

1

n

∑
xn

p(xn)dH
(
xn, ψ(g(xn))

)
,

where dH(., .) denotes the Hamming distance metric. A rate-distortion pair (R,D) is said to be

achievable if there exists a sequence of (R,n) codes with

lim sup
n→∞

1

n
E
[
dH(Xn, X̂n)

]
≤ D.

The rate-distortion function R(D) is defined as the infimum of all rates R such that (R,D) is

achievable.

Shannon [35] showed that the rate-distortion function for a Bern(θ) source can be expressed

as

R(D) =

H(θ)−H(D) for 0 ≤ D < θ,

0 for D ≥ θ.

Shannon’s random coding scheme assigns, for each typical source sequence xn, a reconstruction

sequence x̂n that is jointly typical with xn for some desired conditional pmf p(x̂ |x). For the case of

a binary source, the desired conditional pmf p(x̂ |x) corresponds to the case when the “backward”

channel p(x | x̂) is a BSC(D).

3.2.2 Symmetric Source

Consider a realization of a symmetric source Xn iid∼ Bern(1/2), and let D ∈ (0, 1/2) be

some desired distortion level. We will construct a lossy source coding scheme for this source starting

from the following point-to-point channel code. The coding scheme seeks to generate a sequence X̂n

that “looks” like the output of a BSC(D) when the input is Xn.

Lego Brick 3.2.1 (P2P → Sym. Lossy): a (k, n) linear point-to-point channel code (H,ϕ) for

BSC(D) with a decoding distance δ.

Recall from Section 2.3 the definition of the decoding distance of a point-to-point channel

code designed for a BMS channel. The main ingredient in the lossy source coding scheme is utilizing

the shaping capability of the decoding function ϕ – manifested by its decoding distance property δ –

in order to generate a sequence according to the desired distribution (or “close” to it). In the simple

setting of a symmetric source, this can be done by simply declaring the output of the decoding

function as the source reconstruction, and the corresponding information bits as the index shared

to the decoder, as depicted in Figure 3.8, where G is the generator matrix of the code (H,ϕ), and

Info(.) is the function that takes as input a codeword in a linear code and outputs the corresponding

information bits. The coding scheme can be summarized as follows.
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Decoder

Sym. Lossy

Xn

Sym. Lossy Encoder

ϕ Info(.)
Uk

G X̂n

Figure 3.8: A lossy source coding scheme for a symmetric source starting from a point-to-point

channel code.

Encoding: Upon observing the source sequence xn, the encoder stores the information sequence uk

such that ϕ(xn) = ukG.

Decoding: Upon observing the index uk, the decoder declares the sequence x̂n = ukG as the source

estimate.

Analysis of the average distortion: Let q(xn, x̂n) denote the distribution of (Xn, X̂n), and let

p(xn, x̂n) be the desired i.i.d. distribution, i.e.,

p(xn, x̂n) =
1

2n
Dwt(xn⊕x̂n)(1−D)n−wt(xn⊕x̂n)

Since X̂n = ϕ(Xn) and Xn iid∼ Bern(1/2) (which is the channel output distribution of BSC(D) under

the capacity-achieving input distribution), the average distortion is given by

1

n
E[dH(Xn, X̂n)] =

1

n

∑
xn,x̂n

q(xn, x̂n)dH(xn, x̂n)

=
1

n

∑
xn,x̂n

p(xn, x̂n)dH(xn, x̂n) +
1

n

∑
xn,x̂n

(q(xn, x̂n)− p(xn, x̂n)) dH(xn, x̂n)

(a)

≤ D +
1

2

∑
xn,x̂n

|q(xn, x̂n)− p(xn, x̂n)|

(b)
= D + δ,

where (a) holds since p(x̂n |xn) is equivalent to n independent uses of BSC(D) and the fact that∑
i ci(ai − bi) ≤ 1

2

∑
i |ai − bi| whenever 0 ≤ ci ≤ 1 and

∑
i ai =

∑
i bi, and (b) follows by the

definition of the decoding distance of the code (H,ϕ).

Rate: The rate of the coding scheme is R = k
n .

Remark 3.2.1. Following the discussion in Section 2.3, a sequence of linear point-to-point channel

codes for BSC(D) with a vanishing decoding distance δ exists if (and only if1) the rate is larger than

1−H(D).

Remark 3.2.2. Note that for this construction, it suffices to have a point-to-point channel code

that satisfies ∣∣∣∣ 1n E[dH(Xn, ϕ(Xn))]−D
∣∣∣∣ ≤ δ,

1The “only if” part clearly holds by our current construction and the lossy source coding theorem.
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rather than the more stringent condition of the decoding distance. Nonetheless, we show the decoding

distance condition here for illustrative purposes, as it introduces the idea of using a decoding function

for shaping a binary sequence, a theme that will be recurrent in several chapters of this dissertation.

Conclusion:From a point-to-point channel code for BSC(D) with decoding distance δ, one can

construct an (R,n) lossy source code for a symmetric source with an expected distortion that is

bounded by D + δ.

3.2.3 Asymmetric Source

Now, we consider the case of a general binary memoryless source that generates an i.i.d.

Bern(θ) sequence Xn for some θ ∈ (0, 1/2). Let D ∈ (0, θ) be some desired distortion level2, and

define

α ≜
θ −D
1− 2D

.

Note that X̂ ∼ Bern(α) when the conditional distribution p(x | x̂) is BSC(D), which is the desired

conditional distribution of the source given the reconstruction as inspired by Shannon’s random

coding scheme [35]. Let p(x, x̂) denote the desired joint distribution between the source and the

reconstruction, i.e.,

p(x, x̂) = αx̂(1− α)1−x̂Dx⊕x̂(1−D)1−x⊕x̂. (3.3)

The proposed lossy source coding scheme in this general setting utilizes a point-to-point channel

code and a lossless source code. At the encoder side, the point-to-point channel code is used to

generate a sequence according to the desired distribution of the reconstruction (i.e., the i.i.d. Bern(α)

distribution), and the lossless source code is used to compress that sequence to the decoder. Another

key ingredient in the coding scheme is the assumption that the two codebooks are nested.

Before we describe the coding scheme, we state the following lemma, which will be useful

in several constructions in this dissertation.

Lemma 3.2.1. Let p̄(ỹ, ṽ | x̃) be the symmetrized channel corresponding to a given joint distribution

p(x̃, ỹ). Let (H,ϕ) be a point-to-point channel code designed for p̄, and let δ be its decoding distance.

Let Ỹ n be i.i.d. according to p(ỹ) and Ṽ n be i.i.d. Bern(1/2) such that Ỹ n and Ṽ n are independent,

and let Ũn = ϕ(Ỹ n, Ṽ n)⊕ Ṽ n. Then,

1

2

∑
ũn,ỹn

∣∣∣∣∣P{Ũn = ũn, Ỹ n = ỹn} −
n∏
i=1

pX̃,Ỹ (ũi, ỹi)

∣∣∣∣∣ ≤ δ.
Proof. See Appendix 3.C.

Intuitively, given an i.i.d sequence Ỹ n distributed according to p(ỹ), Lemma 3.2.1 suggests a general

method of constructing a sequence Ũn such that the joint distribution of (Ỹ n, Ũn) is δ-away in total

2Clearly, when D ≥ θ, a rate-zero coding scheme is possible by deterministically outputting the all-zero sequence
as the source reconstruction.
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variable distance from a given joint i.i.d distribution p(x̃, ỹ). This can be done using a point-to-point

channel code with a decoding distance δ over the symmetrized channel p̄ corresponding to p(x̃, ỹ).

This technique will be used in several constructions in the dissertation.

Now, we are ready to describe the lossy source coding scheme of a general asymmetric

source. The coding scheme can be constructed from the following point-to-point channel code and

lossless source code.

Lego Brick 3.2.2 (P2P→ Lossy): a (k1, n) linear point-to-point channel code (H1, ϕ1) with code-

book C1 for the channel

p̄(x, v | x̂) = pX,X̂(x, x̂⊕ v). (3.4)

Let δ denote the decoding distance of the code (H1, ϕ1) with respect to the channel p̄.

Lego Brick 3.2.3 (Lossless → Lossy): an (n− k2, n) lossless source code (H2, ϕ2) for a Bern(α)

source with average probability of error ϵ. Let C2 be the codebook corresponding to H2. We assume

that C2 ⊆ C1, i.e., the two codebooks are nested.

Remark 3.2.3. The channel p̄ defined in (3.4) is the symmetrized channel corresponding to the

joint distribution p(x, x̂) (see Section 2.2 for a formal definition of a symmetrized channel).

Remark 3.2.4. Since C2 ⊆ C1, we will assume, without loss of generality, that H1 is a submatrix

of H2, i.e., H2 =

[
H1

Q

]
for some (k1 − k2)× n matrix Q.3

Starting from the aforementioned building blocks, Figure 3.9 shows the block diagram of

the lossy source coding scheme, where V n is an i.i.d. Bern(1/2) random dither shared between the

encoder and the decoder. The lossy encoder generates the sequence Un = ϕ1(X
n, V n)⊕ V n which

has a distribution that is δ-away in total variation distance from the i.i.d. Bern(α) distribution.

This is a consequence of Lemma 3.2.1. Further, since H1U
n = H1V

n and

H2U
n =

[
H1U

n

QUn

]
=

[
H1V

n

QUn

]
,

the lossy decoder is able to reconstruct an estimate X̂n of the sequence Un using only the index QUn

(since V n is shared randomness with the decoder) and the lossless source decoder ϕ2. The following

lemma states that the joint distribution of (Xn, X̂n) is (δ+ ϵ)-away in total variation distance from

the desired i.i.d. p(x, x̂) distribution.

Lemma 3.2.2. Let q(xn, x̂n) denote the distribution of (Xn, X̂n), and let p(xn, x̂n) be the desired

i.i.d. p(x, x̂) distribution, where p(x, x̂) is as defined in (3.3). Then,

1

2

∑
xn,x̂n

|q(xn, x̂n)− p(xn, x̂n)| ≤ δ + ϵ.

3Note that such a relation between H1 and H2 can be obtained for any pair of nested linear codes by basic row
operations and column permutations.
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Figure 3.9: Encoder and decoder of a lossy source code for an asymmetric source starting from a

point-to-point channel code and a lossless source code.

Proof. See Appendix 3.D.

Therefore, the coding scheme can be summarized as follows.

Encoding: Upon observing the source sequence xn, the encoder computes the sequence un =

ϕ1 (x
n, vn) ⊕ vn and transmits the index mk1−k2 = Qun, where vn is a realization of a random

dither shared with the decoder.

Decoding: Upon observing the index mk1−k2 , the decoder declares the sequence

x̂n = ϕ2




0

H1v
n

mk1−k2




as the source estimate.

Analysis of the average distortion: The average distortion of the coding scheme can be bounded as

1

n
E[dH(Xn, X̂n)] =

1

n

∑
xn,x̂n

q(xn, x̂n)dH(xn, x̂n)

=
1

n

∑
xn,x̂n

p(xn, x̂n)dH(xn, x̂n) +
1

n

∑
xn,x̂n

(q(xn, x̂n)− p(xn, x̂n)) dH(xn, x̂n)

(a)

≤ D +
1

2

∑
xn,x̂n

|q(xn, x̂n)− p(xn, x̂n)|

(b)

≤ D + δ + ϵ,

where (a) holds since p(xn | x̂n) is equivalent to n independent uses of BSC(D) and the fact that∑
i ci(ai − bi) ≤ 1

2

∑
i |ai − bi| whenever 0 ≤ ci ≤ 1 and

∑
i ai =

∑
i bi, and (b) follows by

Lemma 3.2.2.

Rate: The rate of the coding scheme is R = k1−k2
n .

Remark 3.2.5. A sequence of linear point-to-point channel codes for the channel p̄ with a vanishing

decoding distance δ exists if (and only if) the rate is larger than 1−H(X̂ |X). This follows by the

discussion in Section 2.3 and the properties of a symmetrized channel (Remark 2.2.1).
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Remark 3.2.6. If the rate of the point-to-point channel code is k1
n = 1 −H(X̂ |X) + γ1 for some

γ1 > 0, and the rate of the lossless source code is n−k2
n = H(α) + γ2 = H(X̂) + γ2 for some γ2 > 0,

then the rate of the lossy source code is

k1 − k2
n

= I(X; X̂) + γ1 + γ2 = H(θ)−H(D) + γ1 + γ2.

Conclusion: Starting from a (k1, n) linear point-to-point channel code with decoding distance δ

and an (n− k2, n) lossless source code with an average probability of error ϵ, we have constructed a

(k1−k2n , n) lossy source code that targets a conditional distribution p(x̂ |x) with an average distortion

that is bounded by D+ δ+ ϵ. Note that the point-to-point channel code should be designed for the

symmetrized channel p̄ – and not, for example, for BSC(D) – since the source is asymmetric, and,

hence, the source sequence Xn is not distributed according to the channel output distribution of a

BSC.

3.3 Wyner–Ziv Coding

The lossy source coding scheme presented in the previous section can be easily extended to

the binary Wyner–Ziv coding problem, simply by replacing the lossless source code with a Slepian–

Wolf code. Let us first review the binary Wyner–Ziv coding problem [36]. This problem consists

of a source alphabet X = {0, 1}, arbitrary side information alphabet Y, a reconstruction alphabet

X̂ = {0, 1}, and a joint pmf p(x, y) over X ×Y. The source generates a jointly i.i.d. random process

{(Xi, Yi)} with (Xi, Yi) ∼ p(x, y). The goal is to efficiently represent a length-n source sequence Xn

to a decoder which has access to the side information sequence Y n and wishes to reconstruct the

source sequence up to some distortion level D. The definitions of a Wyner–Ziv code, its expected

distortion and achievable rates are the same as in Section 3.2.1, with the exception that the decoding

function takes an additional input, namely, the side information sequence. Wyner and Ziv [36]

showed that for any conditional pmf p(x̂ |x) such that E[d(X, X̂)] ≤ D, any rate R > I(X; X̂ |Y ) is

achievable with a distortion level D.

In what follows, let D be some desired distortion level, and let p(x̂ |x) be a desired con-

ditional pmf of the reconstruction given the source such that E[d(X, X̂)] ≤ D, where d(., .) is the

Hamming distortion metric. A code for the Wyner–Ziv coding problem can be constructed starting

from the following point-to-point channel code and Slepian–Wolf code.

Lego Brick 3.3.1 (P2P→WZ): a (k1, n) linear point-to-point channel code (H1, ϕ1) with codebook

C1 for the channel

p̄(x, v | x̂) = pX̂,X(x̂⊕ v, x).

Let δ denote the decoding distance of the code (H1, ϕ1) with respect to the channel p̄.
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Figure 3.10: Encoder and decoder of a Wyner–Ziv coding scheme starting from a point-to-point

channel code and a Slepian–Wolf code.

Lego Brick 3.3.2 (SW →WZ): an (n− k2, n) Slepian–Wolf code (H2, ϕ2) for the problem

p(x̂, y) =
∑
x

p(x, y)p(x̂ |x),

with codebook C2 and average probability of error ϵ. We assume that the two codebooks are nested,

i.e., C2 ⊆ C1.

Figure 3.10 shows the block diagram of the Wyner–Ziv coding scheme, where V n is an

i.i.d. Bern(1/2) random dither shared between the encoder and the decoder. The main difference

in comparison to the lossy source coding scheme of Section 3.2.3 is that a Slepian–Wolf decoder

is used instead of the lossless source decoder. The Slepian–Wolf decoder utilizes the available side

information sequence at the decoder side. The description of the coding scheme and the analysis of

its average distortion follow similarly as in the lossy source coding scheme.

Remark 3.3.1. If the rate of the point-to-point channel code is k1
n = 1 −H(X̂ |X) + γ1 for some

γ1 > 0, and the rate of the Slepian–Wolf code is n−k2
n = H(X̂ |Y ) + γ2 for some γ2 > 0, then the

rate of the Wyner–Ziv code is

k1 − k2
n

= H(X̂ |Y )−H(X̂ |X) + γ1 + γ2
(a)
= I(X; X̂ |Y ) + γ1 + γ2,

where the equality (a) holds since Y and X̂ are independent given X.

Conclusion: Starting from a (k1, n) linear point-to-point channel code with decoding distance δ

and an (n− k2, n) Slepian–Wolf code with an average probability of error ϵ, we have constructed a

(k1−k2n , n) Wyner–Ziv code that targets a conditional distribution p(x̂ |x) with an average distortion

that is bounded by D + δ + ϵ.

3.4 Berger–Tung Coding

In this section, we describe a Berger–Tung coding scheme for distributed lossy compression

starting from a lossy source code and a Wyner–Ziv code. First, we start by reviewing the problem

of distributed lossy compression.
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3.4.1 Problem Statement

Consider the problem of distributed lossy compression consisting of two source alphabets

X1 = X2 = {0, 1}, two reconstruction alphabet X̂1 = X̂2 = {0, 1}, and a joint pmf p(x1, x2) over

X1 × X2. Two discrete memoryless sources generate two jointly i.i.d. source sequences Xn
1 and

Xn
2 such that (X1i, X2i) ∼ p(x1, x2). The goal to efficiently represent the two sequences using two

separate encoders to a decoder that wishes to reconstruct the sequences with some distortion levels

D1 and D2. More specifically, an (R1, R2, n) code for the distributed lossy compression problem

consists of

• two index setM1 andM2 such that |Mj | = 2nRj , j = 1, 2,

• two encoders gj : Xnj → Mj for j = 1, 2, such that encoder g1 assigns an index m1 to each

source sequence xn1 , and encoder g2 assigns an index m2 to each source sequence xn2 , and

• a decoder ψ :M1 ×M2 → X̂n1 × X̂n2 that assigns a pair of estimates (x̂n1 , x̂
n
2 ) to each index

pair (m1,m2).

A rate-distortion quadruple (R1, R2, D1, D2) is said to be achievable if there exists a sequence of

(R1, R2, n) codes such that

lim sup
n→∞

1

n
E[dH(Xn

j , X̂
n
j )] ≤ Dj , j = 1, 2,

where dH(., .) denotes the Hamming distance metric. The optimal rate-distortion region R(D1, D2)

for distributed lossy compression is defined as the closure of the set of rate pairs (R1, R2) such that

(R1, R2, D1, D2) is achievable.

The optimal rate-distortion region for the distributed compression problem is not known in

general. Berger [39] and Tung [76] showed that a rate pair (R1, R2) is achievable for the distributed

lossy compression problem with distortion pair (D1, D2) if

R1 > I(X1; X̂1 | X̂2),

R2 > I(X2; X̂2 | X̂1),

R1 +R2 > I(X1, X2; X̂1, X̂2)

(3.5)

for some conditional pmf p(x̂1 |x1)p(x̂2 |x2) such that E[dH(X, X̂j)] ≤ Dj , j = 1, 2.

3.4.2 Coding Scheme

Consider two conditional pmf’s p(x̂1 |x1) and p(x̂2 |x2) such that E[dH(X, X̂j)] ≤ Dj , for

j = 1, 2. This completely specifies the source-reconstruction joint distribution as

p(x1, x2, x̂1, x̂2) = p(x1, x2)p(x̂1 |x1)p(x̂2 |x2).

The coding scheme for distributed lossy compression uses a lossy source code and a Wyner–Ziv code

that target the desired conditional pmf’s, as described in the following Lego-brick definitions.
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Figure 3.11: Coding scheme for distributed lossy compression using a lossy source code and a Wyner–

Ziv code.

Lego Brick 3.4.1 (Lossy → BT): an (R1, n) lossy source code (g1, ψ1) for a p(x1)-source that

targets a conditional distribution p(x̂1 |x1) s.t. for Xn
1

iid∼ p(x1) and X̂
n
1 = ψ1

(
g1(X

n
1 )
)
, we have

1

2

∑
xn1 ,x̂

n
1

∣∣∣∣∣P{Xn
1 = xn1 , X̂

n
1 = x̂n1} −

n∏
i=1

p(x1i)p(x̂1i |x1i)

∣∣∣∣∣ ≤ δ1 (3.6)

for some δ1 > 0.

Lego Brick 3.4.2 (WZ → BT): an (R2, n) Wyner–Ziv code (g2, ψ2) for a p(x2, x̂1)-source that

targets a conditional distribution p(x̂2 |x2) s.t. for (Xn
2 , X̂

n
1 )

iid∼ p(x2, x̂1) and X̂
n
2 = ψ2

(
g2(X

n
2 ), X̂

n
1

)
,

we have
1

2

∑
xn2 ,x̂

n
2

∣∣∣∣∣P{Xn
2 = xn2 , X̂

n
2 = x̂n2} −

n∏
i=1

p(x2i)p(x̂2i |x2i)

∣∣∣∣∣ ≤ δ2 (3.7)

for some δ2 > 0.

Remark 3.4.1. Note that a lossy source code satisfying condition (3.6) can be constructed starting

from a point-to-point channel code and a lossless source code, as described in Section 3.2.3. Also, a

Wyner–Ziv code satisfying condition (3.7) can be constructed starting from a point-to-point channel

code and a Slepian–Wolf code, as described in Section 3.3.

Figure 3.11 shows the block diagram of a distributed lossy compression code that uses the

aforementioned Lego bricks. The coding scheme can be summarized as follows.

Encoding: Upon observing the source sequence xn1 , the first encoder transmits the indexm1 = g1(m1)

to the decoder. Similarly, upon observing the source sequence xn2 , the second encoder transmits the

index m2 = g2(m2) to the decoder.

Decoding: Upon observing the index pair (m1,m2), the decoder declares the sequence x̂n1 = ψ1(m1)

as the source estimate of the first source sequence, and the sequence x̂n2 = ψ2(m2, x̂
n
1 ) as the source

estimate of the second source sequence.

Analysis of the average distortion: Similar to the distortion analysis in Section 3.2.3, it can be shown

using conditions (3.6) and (3.7) that the average distortions of the Berger–Tung coding scheme can
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be bounded as

1

n
E[dH(Xn

1 , X̂
n
1 )] ≤ D1 + δ1,

1

n
E[dH(Xn

2 , X̂
n
2 )] ≤ D2 + δ1 + δ2.

Rate: The coding scheme attains the rate pair (R1, R2).

Remark 3.4.2. If the rate of the lossy source code is R1 = I(X1; X̂1) + γ1 for some γ1 > 0, and

the rate of the Wyner–Ziv code is R2 = I(X2; X̂2 |X̂1)+γ2 for some γ2 > 0, then the coding scheme

can achieve the rate pair

(R1, R2) =
(
I(X1; X̂1) + γ1, I(X2; X̂2 | X̂1) + γ2

)
.

Note that
(
I(X1; X̂1), I(X2; X̂2 |X̂1)

)
is a corner point of the rate-distortion region given in (3.5).

By changing the order of decoding and switching the roles of the lossy source code and the Wyner–Ziv

code, another corner point can be approached.

Remark 3.4.3. A similar coding scheme can be constructed for a distributed compression problem

with L sources using one lossy source code and L−1 Wyner–Ziv codes, where the decoder successively

decodes the source sequences.

Conclusion: Starting from an (R1, n) lossy source code and an (R2, n) Wyner–Ziv code, we con-

structed an (R1, R2, n) Berger–Tung code.

3.5 Multiple Description Coding

In this part, we describe a coding scheme for the multiple description coding problem

starting from two lossy source codes and one Wyner–Ziv code. For illustrative purposes, each of the

lossy source codes and Wyner–Ziv code will be described using their respective constituent codes,

as described in previous sections. Therefore, we will construct a multiple description coding scheme

starting from three point-to-point channel codes, two lossless source codes and a Slepian–Wolf code.

Provided that these constituent codes are rate-optimal, the coding scheme can achieve a corner

point of the El Gamal–Cover rate-distortion region for this problem. First, we start by describing

the multiple description coding problem.

3.5.1 Problem Statement

Initially formulated by Gersho and Witsenhausen, and further studied by Wolf, Wyner,

Ziv, El Gamal, and Cover [38, 77, 78, 79], the multiple description coding problem studies the rates

at which a discrete memoryless source can be represented to multiple decoders through multiple

descriptions. In particular, we consider a binary source sequence Xn iid∼ Bern(θ) to be encoded
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through two descriptions such that each description by itself can be used to reconstruct the source

with some distortions D1 and D2, and the two descriptions together can be used to reconstruct

the source with a lower distortion D0, as depicted in Figure 3.12. The goal is to characterize the

optimal tradeoff between the description rate pair (R1, R2) and the distortion triple (D0, D1, D2).

An (R1, R2, n) multiple description code consists of

• two index sets I1 and I2 such that |Ij | = 2nRj , j = 1, 2,

• an encoder g : {0, 1}n → I1 × I2 that assigns two indices m1 and m2 to each source sequence

xn, and

• three decoders ψj , j = 0, 1, 2, such that decoder ψ1 assigns an estimate x̂n1 to each index

m1 ∈ I1, decoder ψ2 assigns an estimate x̂n2 to each index m2 ∈ I2, and decoder ψ0 assigns an

estimate x̂n0 to each index pair (m1,m2) ∈ I1 × I2.

A rate-distortion quintuple (R1, R2, D0, D1, D2) is said to be achievable if there exists a sequence of

(R1, R2, n) codes such that

lim sup
n→∞

1

n
E[dH(Xn, X̂n

j )] ≤ Dj j = 0, 1, 2,

where dH(., .) denotes the Hamming distance metric. The optimal rate-distortion regionR(D0, D1, D2)

is defined as the closure of the set of rate pairs (R1, R2) such that (R1, R2, D0, D1, D2) is achievable.

The optimal rate–distortion region for the multiple description coding problem is not known

in general. A number of random-coding-based achievability results have been proposed by El Gamal

and Cover [79], Chen, Tian, Berger, and Hemami [80], Berger and Zhang [81], among others. In

particular, a rate pair (R1, R2) is achievable by El Gamal and Cover’s coding scheme [79] with

distortions (D0, D1, D2) if

R1 > I(X; X̂1)

R2 > I(X; X̂2)

R1 +R2 > I(X; X̂0, X̂1, X̂2) + I(X̂1; X̂2)

(3.8)

for some conditional pmf p(x̂0, x̂1, x̂2 |x) such that E[dH(X, X̂j)] ≤ Dj , j = 0, 1, 2. The coding

scheme that we present next targets a corner point in El Gamal and Cover’s rate region.

3.5.2 Coding Scheme

Inspired by El Gamal–Cover characterization of an achievable rate region, let p(x̂0, x̂1, x̂2 |x)
be some desired conditional pmf that satisfies E[dH(X, X̂j)] ≤ Dj , for each j = 0, 1, 2. Therefore,

the source-reconstruction joint distribution can be written as

p(x, x̂0, x̂1, x̂2) = p(x)p(x̂0, x̂1, x̂2 |x).
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Figure 3.12: A multiple description code.

As in the construction of the lossy source coding scheme in Section 3.2.3, the main idea at the encoder

side will be to generate sequences according to the desired distributions of the reconstructions, and

then use lossless source coding to convey these sequences to the decoders. Hence, the coding scheme

for the multiple description coding problem can be constructed starting from the following Lego

bricks.

Lego Brick 3.5.1 (P2P → MDC): a (k11, n) linear point-to-point channel code (H11, ϕ11) with

codebook C11 for the channel

p̄1(x, v | x̂1) = pX,X̂1
(x, x̂1 ⊕ v). (3.9)

Let δ1 denote the decoding distance of the code (H11, ϕ11) with respect to the channel p̄1.

Lego Brick 3.5.2 (Lossless → MDC): an (n − k12, n) lossless source code (H12, ϕ12) for a

Bern(pX̂1
(1)) source with codebook C12 and average probability of error ϵ1. We further assume that

C12 ⊆ C11.

Lego Brick 3.5.3 (P2P → MDC): a (k21, n) linear point-to-point channel code (H21, ϕ21) with

codebook C21 for the channel

p̄2(x, x̂1, v | x̂2) = pX,X̂1,X̂2
(x, x̂1, x̂2 ⊕ v). (3.10)

Let δ2 denote the decoding distance of the code (H21, ϕ21) with respect to the channel p̄2.

Lego Brick 3.5.4 (Lossless → MDC): an (n − k22, n) lossless source code (H22, ϕ22) for a

Bern(pX̂2
(1)) source with codebook C22 and average probability of error ϵ2. We further assume that

C22 ⊆ C21.

Lego Brick 3.5.5 (P2P → MDC): a (k01, n) linear point-to-point channel code (H01, ϕ31) with

codebook C01 for the channel

p̄0(x, x̂1, x̂2, v | x̂0) = pX,X̂1,X̂2,X̂0
(x, x̂1, x̂2, x̂0 ⊕ v). (3.11)

Let δ0 denote the decoding distance of the code (H01, ϕ01) with respect to the channel p̄0.
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Figure 3.13: Encoder of a multiple description code using three point-to-point channel codes.

Lego Brick 3.5.6 (SW → MDC): an (n − k02, n) Slepian–Wolf code (H02, ϕ02) for the problem

p
(
x̂0, (x̂1, x̂2)

)
with codebook C02 and average probability of error ϵ0. We further assume that C02 ⊆

C01.

Remark 3.5.1. Due to nestedness, we will assume, without loss of generality, that Hj1 is a subma-

trix of Hj2 for each j = 0, 1, 2, i.e., Hj2 =

[
Hj1

Qj

]
for some (kj1 − kj2)× n matrix Qj .

Remark 3.5.2. The point-to-point channels p̄1, p̄2 and p̄0 are the symmetrized channels corre-

sponding to the joint distributions p
(
x̂1, x

)
, p
(
x̂2, (x̂1, x

)
) and p

(
x̂0, (x̂1, x̂2, x)

)
, respectively.

Figure 3.13 and Figure 3.14 show the block diagrams of the encoder and decoder of the

multiple description code, respectively, where (V n0 , V
n
1 , V

n
2 ) are i.i.d. Bern(1/2) random dithers such

that V n1 is shared with decoder 1, V n2 is shared with decoder 2, and all three random dithers are

shared with decoder 0. Similar to lossy source coding, the basic idea of the coding scheme is to gener-

ate three sequences (Un0 , U
n
1 , U

n
2 ) whose distribution is “close” to the i.i.d. p(x̂0, x̂1, x̂2) distribution,

and then lossless source compression to recover estimates of the sequences at the decoders. The

construction of the sequences (Un0 , U
n
1 , U

n
2 ) is done successively at the encoder side (Figure 3.13).

That is, first, the sequence Un1 is generated using the decoding function ϕ11. Then, Un1 is inputted

to the decoding function ϕ21 to construct the sequence Un2 . Intuitively, this step attempts to gen-

erate Un2 according to the conditional distribution p(x̂2 |x, x̂1). Similarly, (Un1 , U
n
2 ) are inputted to

the decoding function ϕ01 to construct the sequence Un0 according to the conditional distribution

p(x̂0 |x, x̂1, x̂2). By repeated applications of Lemma 3.2.1 and the definition of decoding distance, it
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Figure 3.14: Decoder of a multiple description code using two lossless source decoders and a Slepian–

Wolf decoder.

follows that

1

2

∑
un0 ,u

n
1 ,u

n
2

∣∣∣∣∣P{Un0 = un0 , U
n
1 = un1 , U

n
2 = un2} −

n∏
i=1

pX̂0,X̂1,X̂2
(u0i, u1i, u2i)

∣∣∣∣∣ ≤ δ0 + δ1 + δ2.

Moreover, for each j = 0, 1, 2, we have

Hj2U
n
j =

[
Hj1

Qj

]
Unj =

[
Hj1V

n
j

QjU
n
j

]
,

where QjU
n
j , j = 0, 1, 2, are indices transmitted to the decoders. Therefore, the decoder can recover

the estimates of the source sequence knowing the shared indices and random dithers. The coding

scheme can be summarized as follows.

Encoding: Upon observing the source sequence xn, the encoder computes the sequence un1 =

ϕ11 (x
n, vn1 ) ⊕ vn1 and transmits the index mk11−k12

1 = Q1u
n
1 to decoder 1 and decoder 0, where

vn1 is a realization of a random dither shared with the decoders. The encoder then computes the

sequences un2 = ϕ21 (x
n, un1 , v

n
2 )⊕vn2 and un0 = ϕ01 (x

n, un1 , u
n
2 , v

n
0 )⊕vn2 , and transmits the index pair

(mk21−k22
22 ,mk01−k02

02 ) = (Q2u
n
2 , Q0u

n
0 )

to decoder 2 and decoder 0, where vn2 is a random dither shared with decoder 2 and decoder 0, and

vn0 is a random dither shared with the decoder 0.

Decoding: Upon observing the index mk11−k12
1 , decoder 1 declares the sequence

x̂n1 = ϕ12




0

H11v
n
1

mk11−k12
1


 (3.12)
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as the source estimate. Upon observing the index mk21−k22
22 , decoder 2 declares the sequence

x̂n2 = ϕ22




0

H21v
n
2

mk21−k22
22


 (3.13)

as the source estimate. And upon observing the index triplet (mk11−k12
1 ,mk21−k22

22 ,mk01−k02
02 ), decoder

0 first computes the sequences x̂n1 and x̂n2 as in (3.12) and (3.13), and declares the sequence

x̂n0 = ϕ02




0

H01v
n
0

mk01−k02
02

 , x̂n1 , x̂n2


as the source estimate (recall that ϕ02(.) is a Slepian–Wolf decoder with side information sequences

x̂n1 and x̂n2 ).

Analysis of the average distortion: Similar to the analysis in lossy source coding, it can be shown

that the average distortions can be bounded as

1

n
E[dH(Xn, X̂n

1 )] ≤ D1 + δ1 + ϵ1

1

n
E[dH(Xn, X̂n

2 )] ≤ D2 + δ1 + δ2 + ϵ2

1

n
E[dH(Xn, X̂n

0 )] ≤ D0 + δ0 + δ1 + δ2 + ϵ0 + ϵ1 + ϵ2

Rate: The coding scheme attains the rate pair

(R1, R2) =

(
k11 − k12

n
,
k21 − k22 + k01 − k02

n

)
.

Remark 3.5.3. Following the discussion in Section 2.3 and the properties of a symmetrized channel

(Remark 2.2.1), it follows that if the rates of point-to-point channel codes are

k11
n

= 1−H(X̂1 |X) + γ11,

k21
n

= 1−H(X̂2 |X, X̂1) + γ21,

k01
n

= 1−H(X̂0 |X, X̂1, X̂2) + γ01,

for some γ11, γ21, γ01 > 0, and the rates of the two lossless source codes and Slepian–Wolf code are,

respectively,
n− k12
n

= H(X̂1) + γ12,

n− k22
n

= H(X̂2) + γ22,

n− k02
n

= H(X̂0 | X̂1, X̂2) + γ02,
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for some γ12, γ22, γ02 > 0, then the multiple description coding scheme attains the rate pair

(R1, R2) =

(
k11 − k12

n
,
k21 − k22 + k01 − k02

n

)
=
(
I(X; X̂1) + γ11 + γ12, I(X, X̂1; X̂2) + I(X; X̂0 | X̂1, X̂2) + γ21 + γ22 + γ01 + γ02

)
.

Note that the rate pair
(
I(X; X̂1), I(X, X̂1; X̂2)+I(X; X̂0 |X̂1, X̂2)

)
is a corner point of the El Gamal–

Cover rate-distortion region given in (3.8). By reversing the order of generating the sequences Un1

and Un2 at the encoder side, another corner point can be achieved.

Conclusion: Starting from three point-to-point channel codes, two lossless source codes and a

Slepian–Wolf code, a code for the multiple description coding problem can be constructed.

3.6 Simulation Results: Lossy Source Coding

In this section, we simulate the lossy source coding scheme of Figure 3.9 for a Bern(0.3)

source (i.e., θ = 0.3) using polar codes with successive cancellation decoding as the constituent point-

to-point channel codes. The lossless source decoder used in the construction can be implemented

using a polar code designed for a binary symmetric channel, as described in Section 3.1.4. To

construct the polar codes (i.e., identify the information sets), we use Arıkan’s method of sorting

upper bounds on the Bhattacharyya parameters of the synthetic polar bit-channels [6]. Since our

coding scheme requires that the two codes are nested, the information set corresponding to the polar

code (H2, ϕ2) is chosen to be a subset of that of the code (H1, ϕ1).

We first consider the encoder of Figure 3.9. We would like to see if the decoder ϕ1 correctly

shapes the sequence Un according to the desired distribution. To this end, let Denc and αenc denote

respectively the distortion level and the bias of the sequence Un at the encoder side, i.e.,

Denc =
1

n
E[dH(Un, Xn)],

αenc =
1

n
E[wt(Un)],

where dH(., .) denotes the Hamming distance metric and wt(.) denotes the Hamming weight. Fig-

ure 3.15 shows the plot of the achieved distortion level and bias at the encoder side for a block

length n = 1024. For comparison, the desired distortion and bias are also plotted. Note that the

desired bias α corresponds to the mapping D 7→ θ−D
1−2D . At each distortion level D, the rate of the

polar code (H1, ϕ1) is chosen to be close to the theoretical limit, i.e., we take k1
n ≈ 1 − H(X̂ |X).

The results demonstrate that the achieved distortion and bias at the encoder side follow closely the

desired design values. This implies that polar codes indeed have good shaping properties, even at

finite block length.

Next, the entire lossy source coding scheme of Figure 3.9 is simulated. The rate-distortion

tradeoff for the coding scheme is shown in Figure 3.16 for different block lengths n = 256, n = 1024,
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Figure 3.15: Distortion level and bias of the sequence Un at the encoder side assuming a Bern(0.3)

source and a polar code of block length n = 1024.

and n = 4096. For good error performance of the lossless source decoder, the rate k2
n should be

chosen with a small gap to its theoretical limit, i.e., we take k2
n = 1 − H(X̂) − γ for some small

“back-off” parameter γ > 0. In our simulations, we used γ = 1/8. Each simulation point shown

in Figure 3.16 corresponds to a chosen rate pair (k1n ,
k2
n ) of the constituent channel codes, where

the rate of the coding scheme is k1−k2
n . For reference, the rate-distortion function is also shown.

Clearly, the practical performance approaches the theoretical limit for increasing block lengths.

The simulation results demonstrate that off-the-shelf codes can be leveraged in the construction of

practical lossy source coding schemes. For more details about the simulation setup, our code is

available on GitHub [82].
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Appendix

3.A Proof of Lemma 3.1.1

(i) Let xn ∈ {0, 1}n, and let H̃ be as defined in (2.1). Then sn ≜ H̃xn ∈ S, and

H(xn ⊕ sn) = Hxn ⊕
[
A B

] [ 0 0

B−1A I

]
xn = Hxn ⊕Hxn = 0,

where H =
[
A B

]
for some nonsingular matrix B. Therefore, xn ⊕ sn ∈ C. Now, assume

there exists sn1 , s
n
2 ∈ S, sn1 ̸= sn2 , such that xn ⊕ sn1 ∈ C and xn ⊕ sn2 ∈ C. Thus, Hsn1 = Hsn2 ,

which implies that Bsn1,k+1 = Bsn2,k+1, and, therefore, s
n
1 = sn2 . A contradiction.

(ii) Let Cn = Xn ⊕ H̃Xn. For any cn ∈ C, we have

P{Cn = cn} =
∑
sn∈S

P{Xn ⊕ H̃Xn = cn, H̃Xn = sn}

=
∑
sn∈S

P{Xn = cn ⊕ sn}P{H̃Xn = sn |Xn = cn ⊕ sn}

(a)
=
∑
sn∈S

1

2n

=
1

2k
,

where (a) follows since for any cn ∈ C and sn ∈ S,

H̃(cn ⊕ sn) = 0n ⊕

[
0 0

B−1A I

][
0k

snk+1

]
= sn.

(iii) Let V n = Cn ⊕ Sn. For any vn ∈ {0, 1}n, we have

P{V n = vn} =
∑
sn∈S

P{V n = vn, Sn = sn}

=
∑
sn∈S

P{Cn = vn ⊕ sn, Sn = sn}

=
1

2n−k

∑
sn∈S

P{Cn = vn ⊕ sn}

(a)
=

1

2n
,
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where (a) follows by part (i).

3.B Proof of Lemma 3.1.2

Let Rn = Xn ⊕ V n. Thus, Cn = Rn ⊕ H̃Rn. Since Rn is i.i.d. Bern( 12 ), it follows by

Lemma 3.1.1 that Cn is uniformly distributed over C. Now, for any yn ∈ Yn and un ∈ {0, 1}n, we
have

P{Y n = yn, Un = un |Cn = cn} = P{Y n = yn, V n ⊕ H̃V n ⊕ H̃Xn = un |Xn ⊕ V n ⊕ H̃Xn ⊕ H̃V n = cn}

= P{Y n = yn, Xn = cn ⊕ un |Xn ⊕ V n ⊕ H̃(Xn ⊕ V n) = cn}
(b)
= P{Y n = yn, Xn = cn ⊕ un}

=

n∏
i=1

pX,Y (ci ⊕ ui, yi)

=

n∏
i=1

p̄(yi, ui | ci),

where (b) follows since Rn = Xn ⊕ V n is independent of Xn, which implies that Cn and (Xn, Y n)

are independent. This completes the proof.

3.C Proof of Lemma 3.2.1

Denote X̃n = ϕ(Ỹ n, Ṽ n). Thus, Ũn = X̃n ⊕ Ṽ n. The decoding distance δ of the code

(H,ϕ) with respect to the channel p̄ can be bounded as follows.

δ =
1

2

∑
ỹn,ṽn,x̃n

∣∣∣∣∣P{Ỹ n = ỹn, Ṽ n = ṽn, X̃n = x̃n} − 1

2n

n∏
i=1

p̄(ỹi, ṽi | x̃i)

∣∣∣∣∣
=

1

2

∑
ỹn,ṽn,x̃n

∣∣∣∣∣P{Ỹ n = ỹn, Ṽ n = ṽn, Ũn = x̃n ⊕ ṽn} − 1

2n

n∏
i=1

pX,Y (x̃i ⊕ ṽi, ỹi)

∣∣∣∣∣
=

1

2

∑
ỹn,ṽn,ũn

∣∣∣∣∣P{Ỹ n = ỹn, Ṽ n = ṽn, Ũn = ũn} − 1

2n

n∏
i=1

pX,Y (ũi, x̃i)

∣∣∣∣∣
≥ 1

2

∑
ỹn,ũn

∣∣∣∣∣∑
ṽn

(
P{Ỹ n = ỹn, Ṽ n = ṽn, Ũn = ũn} − 1

2n

n∏
i=1

pX,Y (ũi, ỹi)

)∣∣∣∣∣
=

1

2

∑
ỹn,ũn

∣∣∣∣∣P{Ũn = ũn, Ỹ n = ỹn} −
n∏
i=1

pX,Y (ũi, ỹi)

∣∣∣∣∣
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3.D Proof of Lemma 3.2.2

Let q(xn, un, x̂n) be the joint distribution of (Xn, Un, X̂n), and let p(xn, un, x̂n) be defined

as

p(xn, un, x̂n) =

(
n∏
i=1

pX,X̂(xi, ui)

)
1{x̂n=un}.

In the block diagram of Figure 3.9, since Un = ϕ1(X
n, V n)⊕V n, we have that H1U

n = H1V
n, and,

thus, [
0

H2U
n

]
=


0

H1U
n

QUn

 =


0

H1V
n

Mk1−k2

 ,
i.e., the input to the lossless source decoder is the index corresponding to Un. It follows that

1

2

∑
xn,x̂n

|q(xn, x̂n)− p(xn, x̂n)| ≤ 1

2

∑
xn,un,x̂n

|q(xn, un, x̂n)− p(xn, un, x̂n)|

≤ 1

2

∑
xn,un,x̂n

|q(xn, un)− p(xn, un)| q(x̂n |xn, un) + 1

2

∑
xn,un,x̂n

p(xn, un)
∣∣q(x̂n |xn, un)− 1{un=x̂n}

∣∣
=

1

2

∑
xn,un

|q(xn, un)− p(xn, un)|+ 1

2

∑
xn,un,x̂n:
un ̸=x̂n

p(xn, un)q(x̂n |xn, un)

+
1

2

∑
xn,un

p(xn, un)
(
1− qX̂n|Xn,Un(u

n |xn, un)
)

(a)

≤ δ +
1

2
ϵ+

1

2
ϵ

= δ + ϵ,

where (a) follows by Lemma 3.2.1 and the definition of the probability of error of a lossless source

code.
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Chapter 4

Channel Coding over Networks: A

Lego-Brick Approach

In this chapter, we proceed to discuss the channel coding problems for network communi-

cation. In Section 4.1, we describe a coding scheme for the Gelfand–Pinsker problem and show that

coding for an asymmetric point-to-point channel can follow as a special case of it. In Section 4.2, we

construct a Marton coding scheme for broadcast channels and show that it can achieve a corner point

of the Marton rate region. In Section 4.3, we describe a coding scheme for multiple access channels.

Simulation results for Gelfand–Pinsker coding and Marton coding are provided in Section 4.4.

4.1 Gelfand–Pinsker Coding

In this section, we describe a coding scheme for the binary-input Gelfand–Pinsker problem

starting from a Slepian–Wolf code and a point-to-point channel code designed for a BMS channel.

Provided that the constituent codes are rate-optimal, the coding scheme can achieve the optimal

rate region for the Gelfand–Pinsker problem. First, let’s start by describing the Gelfand–Pinsker

problem.

4.1.1 Problem Statement

The binary-input Gelfand–Pinsker problem consists of a discrete memoryless channel with

state p(y |x, s)p(s), input alphabet X = {0, 1}, state alphabet S, output alphabet Y, a collection

of conditional probability mass functions p(y, s |x) on Y × S for each x ∈ X , and a probability

mass function p(s) on S, where the state sequence (S1, S2, . . .) is i.i.d. with Si ∼ p(si) and is

available noncausally only at the encoder [37]. An (R,n) code (g, ψ) for the Gelfand–Pinsker problem

p(y|x, s)p(s) consists of
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p(y|x, s)Xn

Sn

g
M

ψ
Y n M̂

Figure 4.1: A Gelfand–Pinsker code (g, ψ) for a channel with a state that is known noncausally at

the encoder.

• a message setM such that |M| = 2nR,

• an encoder g :M×Sn → Xn that assigns a codeword xn = g(m, sn) to each message m and

state sequence sn, and

• a decoder ψ : Yn →M that assigns an estimate m̂ = ψ(yn) to each received sequence yn.

The average probability of error of the code is P{M̂ ̸= M}. An (R,n) Gelfand–Pinsker code (g, ψ)

is depicted in Figure 4.1.

A rate R is said to be achievable for the Gelfand–Pinsker problem if there exists a sequence

of (R,n) Gelfand–Pinsker codes with vanishing error probability asymptotically. The classical result

by Gelfand and Pinsker [37] states that any rate

R < max
p(x|s)

(
I(X;Y )− I(X;S)

)
, (4.1)

is achievable for the Gelfand–Pinsker problem. Gelfand and Pinsker’s random coding scheme assigns,

for each message m and state sequence sn, a codeword xn that is jointly typical with sn for some

conditional pmf p(x|s).

4.1.2 Coding Scheme

Consider a binary-input Gelfand–Pinsker problem p(y |x, s)p(s), and let Sn be an i.i.d.

state sequence distributed according to p(s) that is available to the encoder. Inspired by Gelfand

and Pinsker’s random coding scheme, we construct in the following a coding scheme that shapes

the channel input sequence according to some desired conditional distribution p(x |s)of the channel

input given the state sequence1. At the same time, the channel input sequence should encode the

message to the decoder. As we shall see, a key ingredient in achieving these two goals is the nested

structure of a pair of linear codes.

More specifically, the Gelfand–Pinsker coding scheme can be constructed from a Slepian–

Wolf code and a point-to-point channel code, as described in the following Lego bricks.

1For example, p(x |s) can be chosen to be the maximizer of (4.1).
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p(y|x, s) Y n

V n2

Sn

Un

GP Encoder

Xn

ϕ2


0

B−1

 V n−k1
1

Mk1−k2




H̃2

ϕ1

 0

V n−k11



Q
M̂k1−k2

GP Decoder

X̂n

Figure 4.2: A Gelfand–Pinsker coding scheme starting from a point-to-point channel code and a

Slepian–Wolf code.

Lego Brick 4.1.1 (SW → GP): an (n− k1, n) linear Slepian–Wolf code (H1, ϕ1) for the problem

p(x, y) =
∑
s

p(s)p(x | s)p(y |x, s).

Let C1 be the codebook corresponding to H1, and let ϵ be the average probability of error of the

Slepian–Wolf code.

Lego Brick 4.1.2 (P2P→GP): a (k2, n) linear point-to-point channel code (H2, ϕ2) with codebook

C2 for the channel

p̄(s, v |x) = pX,S(x⊕ v, s). (4.2)

Let δ denote the decoding distance of the code (H2, ϕ2) with respect to the channel p̄. Furthermore,

we assume that the two codes are nested, i.e., C2 ⊆ C1.

Remark 4.1.1. Since C2 ⊆ C1, we will assume, without loss of generality, that H1 is a submatrix

of H2, i.e., H2 =

[
H1

Q

]
for some (k1 − k2) × n matrix Q. Further, let H2 =

[
A B

]
, where B is

nonsingular, and let H̃2 be as defined in Remark 2.1.1.

Remark 4.1.2. The channel p̄ in (4.2) is the symmetrized channel corresponding to the desired

joint distribution p(x, s) = p(s)p(x |s).

Figure 4.2 shows the block diagram of the Gelfand–Pinsker coding scheme, where V n−k11

is an i.i.d. Bern(1/2) random dither shared between the encoder and the decoder, and V n2 is an

i.i.d. Bern(1/2) sequence generated independently at the encoder (not necessarily shared with the

decoder). To simplify the notation, let us denote the input to the Gelfand–Pinsker encoder in

Figure 4.2 by

Zn ≜


0

B−1

[
V n−k11

Mk1−k2

] . (4.3)
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The coding scheme uses the decoding function ϕ2 to shape the channel input Xn according to the

desired distribution. To see why this holds in the construction of Figure 4.2, let Un = Zn⊕V n2 ⊕H̃2V
n
2

denote one of the two inputs to ϕ2, where the second input is Sn. Notice that by Lemma 3.1.1,

V n2 ⊕H̃2V
n
2 ∼ Unif(C2), and Un is i.i.d. Bern(1/2) (and independent of Sn). Hence, by Lemma 3.2.1,

the sequence Xn = ϕ2(S
n, Un)⊕ Un satisfies that

1

2

∑
xn,sn

∣∣∣∣∣P{Xn = xn, Sn = sn} −
n∏
i=1

p(xi, si)

∣∣∣∣∣ ≤ δ, (4.4)

and thus, the distribution of (Xn, Sn) is δ-away in total variation distance from the desired joint

distribution.

Moreover, it holds that

[
H1X

n

QXn

]
= H2X

n = H2U
n (a)
= H2Z

n =
[
A B

]
0

B−1

[
V n−k11

Mk1−k2

] =

[
V n−k11

Mk1−k2

]
,

where (a) follows since V n2 ⊕ H̃2V
n
2 ∈ C2. Therefore, H1X

n = V n−k11 , which is the index inputted

to the Slepian–Wolf decoder ϕ1 at the decoder side.

Remark 4.1.3. Intuitively, the Gelfand–Pinsker construction can be understood as follows. The

sequence V n−k11 represents a coset shift of the outer code C1, whereas the messageMk1−k2 represents

a coset shift of the inner code C2 within the outer code. Since H2X
n = H2Z

n (by construction),

the channel input Xn belongs to the coset of the inner code C2 indexed by (V n−k11 ,Mk1−k2). Since

the sequence V n−k11 is shared between the encoder and the decoder, the coset shift with respect to

the outer code C1 is known to the decoder, which can be leveraged by the Slepian–Wolf decoder to

recover an estimate of the channel input sequence, and, hence, the message. Note that the idea of

using such a nested structure to code over a Gelfand–Pinsker channel has been considered in [83],

where a joint typicality encoder and decoder was used.

Therefore, the coding scheme can be summarized as follows.

Encoding: To transmit the message mk1−k2 upon observing the state sequence sn, the encoder

computes the sequence zn as in (4.3) using a random dither vn−k11 shared with the decoder, and

sends xn = ϕ2(s
n, zn⊕ vn2 ⊕ H̃2v

n
2 )⊕ zn⊕ vn2 ⊕ H̃2v

n
2 over the channel, where vn2 is a random dither

generated independently at the encoder.

Decoding: Upon observing the channel output yn, the decoder computes x̂n = ϕ1

([
0

vn−k11

]
, yn

)
,

and declares m̂k1−k2 = Qx̂n as the message estimate.

Analysis of the probability of error: Let q(xn, sn) be the distribution of (Xn, Sn) in Figure 4.2, and

let p(xn, sn) be the i.i.d. distribution according to p(x, s). The average probability of error can be
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bounded as

P{M̂k1−k2 ̸=Mk1−k2} ≤ P{X̂n ̸= Xn}

=
∑
xn,sn

P{X̂n ̸= Xn |Xn = xn, Sn = sn}q(xn, sn)

=
∑
xn,sn

P{X̂n ̸= Xn |Xn = xn, Sn = sn}
(
q(xn, sn)− p(xn, sn)

)
+
∑
xn,sn

P{X̂n ̸= Xn |Xn = xn, Sn = sn}p(xn, sn)

(a)

≤ 1

2

∑
xn,sn

∣∣q(xn, sn)− p(xn, sn)∣∣+ ϵ

(b)

≤ δ + ϵ,

where (a) holds since
∑
i ci(ai − bi) ≤

1
2

∑
i |ai − bi| whenever 0 ≤ ci ≤ 1 and

∑
i ai =

∑
i bi and by

the fact that P{X̂n ̸= Xn|Xn = xn, Sn = sn} depends only on the channel p(y|x, s), and (b) follows

by equation (4.4).

Rate: The rate of the coding scheme is R = k1−k2
n .

Remark 4.1.4. Recall from Section 2.3 and Remark 2.2.1 that a sequence of point-to-point channel

codes with a vanishing decoding distance δ over the channel p̄ defined in (4.2) exists if (and only if)

the rate is larger than 1−H(X |S).

Remark 4.1.5. If the rate of the point-to-point channel code is k2
n = 1 −H(X |S) + γ1 for some

γ1 > 0, and the rate of the Slepian–Wolf code is n−k1
n = H(X |Y ) + γ2 for some γ2 > 0, then the

rate of the Gelfand–Pinsker coding scheme is

R =
k1 − k2
n

= H(X |S)−H(X |Y )− γ1 − γ2 = I(X;Y )− I(X;S)− γ1 − γ2.

Conclusion: Starting from an (n − k1, n) Slepian–Wolf code with an average probability of error

ϵ and a (k2, n) linear point-to-point channel code with decoding distance δ, we have constructed a

(k1−k2n , n) Gelfand–Pinsker code that targets a conditional distribution p(x |s) of the channel input

given the channel state and has an average probability of error that is bounded by δ + ϵ.

4.1.3 Specialization to Asymmetric Channel Coding

The problem of coding for an asymmetric point-to-point channel (Section 2.1) can be seen

as a special case of the Gelfand–Pinkser coding problem when the channel state is constant and

independent of the channel output. This observation has been previously formalized in [55]. For

completion, we give the details here, along with the resulting construction of an asymmetric channel

coding scheme.
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Suppose we have an (R,n) code (g, ψ) for the binary-input Gelfand–Pinsker problem

p(y |x, s)p(s), where p(y |x, s) = p(y |x) (i.e., the channel output is independent of the state given

the channel input) and pS(0) = 1. Let ϵ be the average probability of error of the code. Define

f : [2nR]→ {0, 1}n by f(m) = g(m,0). Then, (f, ψ) forms a code for the channel p(y |x) with length

n, rate R and average probability of error∑
m

2−nR.P{ψ(Y n) ̸= m |Xn = f(m)} =
∑
m

2−nR.P{ψ(Y n) ̸= m |Xn=g(m,0)}

=
∑
m

2−nR
(
P{ψ(Y n) ̸= m |Xn=g(m,0), Sn=0}

n∏
i=1

pS(0)

+
∑
sn ̸=0

P{ψ(Y n) ̸= m |Xn=g(m,0), Sn=sn}
n∏
i=1

pS(si)
)

(a)
=
∑
m

2−nR P{ψ(Y n) ̸= m |Xn=g(m,0), Sn=0}

(b)
=
∑
m

2−nR
(
P{ψ(Y n) ̸= m |Xn=g(m,0), Sn=0}

n∏
i=1

pS(0)

+
∑
sn ̸=0

P{ψ(Y n) ̸= m |Xn=g(m, sn), Sn=sn}
n∏
i=1

pS(si)
)

=
∑
m,sn

2−nR
( n∏
i=1

pS(si)
)
P{ψ(Y n) ̸= m |Xn=g(m, sn), Sn=sn}

= ϵ,

where (a) and (b) follow since
∏n
i=1 pS(si) = 0 for sn ̸= 0.

Therefore, the Gelfand–Pinsker coding scheme described in Section 4.1.2 can be used to

construct an asymmetric channel code in the special case when the state sequence is the constant

all-zero sequence, i.e., pS(0) = 1. To this end, consider a binary-input channel p(y |x) that is not

necessarily symmetric. Let the capacity-achieving input distribution be p(x) ∼ Bern(α) for some

α ∈ (0, 1/2) (i.e., a non-uniform distribution). By specializing the Lego bricks of the Gelfand–Pinsker

coding scheme to the case when pS(0) = 1 and the desired p(x |s) is BSC(α), the asymmetric channel

coding scheme can be constructed using the following Lego bricks.

Lego Brick 4.1.3 (SW→ Asym): an (n−k1, n) linear Slepian–Wolf code (H1, ϕ1) for the problem

p(x, y) = p(x)p(y |x) with codebook C1 and average probability of error ϵ.

Lego Brick 4.1.4 (P2P→Asym): a (k2, n) linear point-to-point channel code (H2, ϕ2) for BSC(α)

with codebook C2 and decoding distance δ. Furthermore, we assume that the two codes are nested,

i.e., C2 ⊆ C1.

Remark 4.1.6. As before, it is assumed that H1 is a submatrix of H2, i.e., H2 =

[
H1

Q

]
for some

(k1 − k2)× n matrix Q, and H2 =
[
A B

]
, for some non-singular matrix B.
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Figure 4.3: A coding scheme for an asymmetric channel starting from a Slepian–Wolf code and a

point-to-point channel code.

Figure 4.3 shows the block diagram for the asymmetric channel coding scheme, which can

be seen as a specialization of the Gelfand–Pinsker coding scheme when the state sequence is the

constant all-zero sequence. The description of the coding scheme and the analysis of its probability

of error follow similarly as in the Gelfand–Pinsker case.

Remark 4.1.7. If the rate of the point-to-point channel code is k2
n = 1 − H(X) + γ1 for some

γ1 > 0, and the rate of the Slepian–Wolf code is n−k1
n = H(X |Y ) + γ2 for some γ2 > 0, then the

rate of the asymmetric channel coding scheme is

k1 − k2
n

= I(X;Y )− γ1 − γ2.

Remark 4.1.8. The asymmetric channel encoder shown in Figure 4.3 is almost identical to the lossy

source decoder shown in Figure 3.9 (when the constituent lossless source decoder is implemented

using a point-to-point channel code). Similarly, the lossy source encoder is almost identical to the

asymmetric channel decoder (when the constituent Slepian–Wolf decoder is implemented using a

point-to-point channel code). This suggests some form of duality between the two constructions. A

similar observation can be made between the Gelfand–Pinsker and Wyner–Ziv constructions.

Conclusion: Starting from an (n − k1, n) Slepian–Wolf code with an average probability of error

ϵ and a (k2, n) linear point-to-point channel code with decoding distance δ, we have constructed a

(k1 − k2, n) code for an asymmetric point-to-point channel that targets an input distribution p(x)

and has an average probability of error that is bounded by δ + ϵ.

4.2 Marton Coding over Broadcast Channels

In this section, we construct a Marton coding scheme for the K-user broadcast channel

with K transmit antennas starting from an asymmetric channel code and a Gelfand–Pinsker code.

The coding scheme that we present can achieve a corner point in the Marton coding achievable rate

region. First, let us review the channel coding problem over a broadcast channel.
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4.2.1 Problem Statement

A binary-input discrete memoryless broadcast channel with K users and K transmit an-

tennas consists of a binary input alphabet X = {0, 1}, output alphabets Y1, . . . ,YK , and a collection

of conditional probability mass functions p(yK1 |xK1 ) on Y1 × · · · × YK for each (x1, . . . , xK) ∈ XK .

An (R1, . . . , RK , n) code (g, ψ1, . . . , ψK) for the channel p(yK1 |xK1 ) consists of

• message setsM1, . . . ,MK such that |Mj | = 2nRj for each j ∈ [K],

• an encoder g : M1 × · · · × MK → XKn that maps each message tuple (m1, . . . ,mK) to K

codewords (xn1 , . . . , x
n
K) = g(m1, . . . ,mK),

• decoders ψj : Ynj → Mj , for j ∈ [K], that assign message estimates m̂j = ψj(y
n
j ) to each

received sequence ynj .

We say that the rate of the code is the tuple (R1, . . . , RK), and its sum-rate is Rsum = R1+ · · ·+RK .

The average probability of error of the code over the channel is defined as

ϵ = P
{
M̂j ̸=Mj for some j ∈ [K]

}
.

A rate tuple (R1, . . . , RK) is said to be achievable for the broadcast channel if there exists a sequence

of (R1, . . . , RK , n) codes with vanishing error probability asymptotically. Marton [41] described a

random coding scheme for the broadcast channel that assigns, for each message tuple (m1, . . . ,mK),

a sequence (xn1 , . . . , x
n
K) that are jointly typical for some input distribution p(x1, . . . , xK). For

such a distribution, the achievable rate region of Marton’s coding scheme is the set of rate tuples

(R1, . . . , RK) such that

R(S) <
∑
j∈S

I(Xj ;Yj)− I∗(XS),

for all S ⊆ [K], where R(S) =
∑
j∈S Rj , XS = (Xj : j ∈ S), and I∗(XS) =

∑
j∈S I(Xj ;X[j−1]∩S).

For example, for K = 2 and an input distribution p(x1, x2), the achievable rate region is the set of

rate pairs (R1, R2) such that

R1 < I(X1;Y1),

R2 < I(X2;Y2),

R1 +R2 < I(X1;Y1) + I(X2;Y2)− I(X1;X2).

(4.5)

4.2.2 Coding Scheme

Consider a two-user broadcast channel p(y1, y@ |x1, x2) with two transmit antennas. In-

spired by Marton’s coding scheme, the proposed construction targets an input distribution p(x1, x2)

and uses the following asymmetric channel code and Gelfand–Pinsker code as its constituent Lego

bricks.
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Figure 4.4: Marton coding for the two-user broadcast channel using an asymmetric channel code

and a Gelfand–Pinsker code.

Lego Brick 4.2.1 (Asym→Marton): an (R1, n) asymmetric channel code (g1, ψ1) for the channel

p(y1 |x1) =
∑
y2,x2

p(x2 |x1)p(y1, y2 |x1, x2),

which targets an input distribution p(x1), such that, for M1 ∼ Unif([2nR1 ]), the channel input

Xn
1 = g1(M1) satisfies

1

2

∑
xn1

∣∣∣∣∣P{Xn
1 = xn1} −

n∏
i=1

p(x1i)

∣∣∣∣∣ ≤ δ1, (4.6)

for some δ1 > 0. Let ϵ1 be the average probability of error of the asymmetric channel code when the

channel input distribution is i.i.d. according to p(x1).

Lego Brick 4.2.2 (GP → Marton): an (R2, n) code (g2, ψ2) for the Gelfand–Pinsker problem

defined by

p(x1)p(y2 |x2, x1) = p(x1)
∑
y1

p(y1, y2 |x1, x2),

which targets a conditional distribution p(x2 |x1), such that, when M2 ∼ Unif([2nR2 ]) and X̃n
1 is

i.i.d. p(x1) sequence, the channel input X̃n
2 = g2(M2, X̃

n
1 ) satisfies

1

2

∑
xn1 ,x

n
2

∣∣∣∣∣P{X̃n
1 = xn1 , X̃

n
2 = xn2} −

n∏
i=1

p(x1i, x2i)

∣∣∣∣∣ ≤ δ2, (4.7)

for some δ2 > 0. Let ϵ2 be the average probability of error of the Gelfand–Pinsker code when the

conditional distribution of the channel input given the channel state is i.i.d. according to p(x2 |x1).

Remark 4.2.1. Each of the asymmetric channel code and the Gelfand–Pinsker code can be con-

structed starting from a point-to-point channel code and a Slepian–Wolf code, as described in Sec-

tion 4.1.

Figure 4.4 shows the block diagram of the Marton coding scheme for the broadcast chan-

nel. The main idea is to shape the channel input according to the desired distribution. From
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conditions (4.6) and (4.7), it follows from standard arguments that

1

2

∑
xn1 ,x

n
2

∣∣∣∣∣P{Xn
1 = xn1 , X

n
2 = xn2} −

n∏
i=1

p(x1i, x2i)

∣∣∣∣∣ ≤ δ1 + δ2,

which says that the channel input distribution is (δ1 + δ2)-away in total variation distance from the

desired target distribution. The average probability of error of the coding scheme can be bounded

as

P
{
{M̂1 ̸=M1} ∪ {M̂2 ̸=M2}

}
≤ δ1 + δ2 + ϵ1 + ϵ2,

which follows by a similar analysis as in Section 4.1. The rate of the coding scheme is the pair

(R1, R2).

Remark 4.2.2. If the rate of the asymmetric channel code is R1 = I(X1;Y1)− γ1 for some γ1 > 0,

and the rate of the Gelfand–Pinsker code is R2 = I(X2;Y2) − I(X1;X2) − γ2 for some γ2 > 0, it

follows that the rate of the Marton coding scheme is

(R1, R2) = (I(X1;Y1)− γ1, I(X2;Y2)− I(X1;X2)− γ2) .

Note that the rate pair (I(X1;Y1), I(X2;Y2)− I(X1;X2)) is a corner point of Marton’s rate region

for the broadcast channel, given in (4.5). If the encoding order is reversed (i.e., Xn
2 is encoded using

an asymmetric channel code and used as a state sequence to encode M1), another corner point of

the rate region can be achieved.

Remark 4.2.3. A similar coding scheme can be constructed for a K-user broadcast channel using

one asymmetric channel code and K − 1 Gelfand–Pinsker codes, where the encoder successively

encodes the input sequences.

Conclusion: Starting from an asymmetric channel code and a Gelfand–Pinsker code, we have

constructed a Marton code for the K-user broadcast.

4.3 Coding for Multiple Access Channels

In this section, we describe a coding scheme for the multiple access channel that uses two

asymmetric channel codes and successive cancellation decoding. The coding scheme can achieve the

corner points of the optimal rate region for the multiple access channel.

4.3.1 Problem Statement

We consider the problem of coding for a binary-input discrete memoryless multiple access

channel consisting of input alphabets X1 = X2 = {0, 1}, an arbitrary output alphabet Y and a

collection of conditional probability mass functions p(y |x1, x2) for each (x1, x2) ∈ X1 × X2. An

(R1, R2, n) code for the multiple access channel consists of
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• two message setsM1 andM2 such that |Mj | = 2nRj , j = 1, 2,

• encoders gj :Mj → Xnj for j = 1, 2, that map each message mj to a codeword xnj ,

• a decoder ψ : Yn → M1 × M2 that assigns message estimates (m̂1, m̂2) to each received

sequence yn.

The average probability of error of the code is ϵ = P
{
{M̂1 ̸=M1} ∪ {M̂2 ̸=M2}

}
. A rate pair

(R1, R2) is said to be achievable for the multiple access channel if there exists a sequence of (R1, R2, n)

codes with vanishing error probability asymptotically. It is well-known that a rate pair (R1, R2) is

achievable if

R1 < I(X1;Y |X2),

R2 < I(X2;Y |X1),

R1 +R2 < I(X1, X2;Y ),

(4.8)

for some pmf p(x1)p(x2). The multiple access channel coding problem was first alluded to by

Shannon [40], and the characterization of the optimal rate region is due to Ahlswede [84], and

Slepian and Wolf [85]. In the following, we will show how two asymmetric channel codes can be

used to achieve a corner point of the rate region (4.8).

4.3.2 Coding Scheme

The coding scheme for the multiple access channel uses two asymmetric channel codes that

target two desired input pmf’s p(x1) and p(x2), and employs a successive cancellation decoder to

decode the messages at the receiver side. Hence, the coding scheme for the multiple access channel

can be constructed using the following two Lego bricks.

Lego Brick 4.3.1 (Asym →MAC): an (R1, n) asymmetric channel code (g1, ψ1) for the channel

p(y |x1) =
∑
x2

p(x2)p(y |x1, x2),

which targets an input distribution p(x1), such that, for M1 ∼ Unif([2nR1 ]), the channel input

Xn
1 = g1(M1) satisfies

1

2

∑
xn1

∣∣∣∣∣P{Xn
1 = xn1} −

n∏
i=1

p(x1i)

∣∣∣∣∣ ≤ δ1, (4.9)

for some δ1 > 0. Let ϵ1 be the average probability of error of the asymmetric channel code when the

channel input distribution is i.i.d. according to p(x1).

Lego Brick 4.3.2 (Asym →MAC): an (R2, n) asymmetric channel code (g2, ψ2) for the channel

p(y, x1 |x2) = p(x1)p(y |x1, x2),
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Figure 4.5: Coding scheme for multiple access channel using two asymmetric channel codes.

which targets an input distribution p(x2), such that, for M2 ∼ Unif([2nR2 ]), the channel input

Xn
2 = g2(M2) satisfies

1

2

∑
xn2

∣∣∣∣∣P{Xn
2 = xn2} −

n∏
i=1

p(x2i)

∣∣∣∣∣ ≤ δ2, (4.10)

for some δ2 > 0. Let ϵ2 be the average probability of error of the asymmetric channel code when the

channel input distribution is i.i.d. according to p(x2).

Remark 4.3.1. Each of the asymmetric channel codes can be constructed starting from a point-

to-point channel code and a Slepian–Wolf code, as described in Section 4.1.3.

Figure 4.5 shows the block diagram of the coding scheme. Inspired by the random coding

scheme for the multiple access channel [85], the two asymmetric channel encoders are used to target

the desired joint pmf’s p(x1) and p(x2) at the encoder side, and the decoder recovers estimates of the

messages sequentially, as per successive cancellation decoding. At the encoder side, conditions (4.9)

and (4.10) on the asymmetric channel codes guarantee that

1

2

∑
xnj

∣∣∣∣∣P{Xn
j = xnj } −

n∏
i=1

p(xji)

∣∣∣∣∣ ≤ δj ,
for each j = 1, 2. The coding scheme can be summarized as follows.

Encoding: The two encoders encode their messages using the point-to-point channel encoders, i.e.,

encoder 1 transmits xn1 = g1(m1) upon observing the message m1, and encoder 2 transmits xn2 =

g2(m2) upon observing the message m2.

Decoding: Upon observing the output sequence yn, the decoder declares m̂1 = ψ1(y
n) as the estimate

of the first user’s message. Then, the decoder computes x̂n1 = g1(m̂1) and declares m̂2 = ψ2(y
n, x̂n1 )

as the estimate of the second user’s message.

Analysis of probability of error: Denote by q(xnj ) the distribution of Xn
j and by p(xnj ) the i.i.d.

distribution according to p(xj), for j = 1, 2. Define X̂n
j = gj(M̂j), for j = 1, 2. Then the average
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probability of error of the coding scheme can be bounded as

P
{
{M̂1 ̸=M1} ∪ {M̂2 ̸=M2}

}
= P

{
{X̂n

1 ̸= Xn
1 } ∪ {X̂n

2 ̸= Xn
2 }
}

=
∑
xn1 ,x

n
2

q(xn1 )q(x
n
2 )P

{
{X̂n

1 ̸= Xn
1 } ∪ {X̂n

2 ̸= Xn
2 } |Xn

1 = xn1 , X
n
2 = xn2

}
(a)

≤
∑
xn1 ,x

n
2

p(xn1 )p(x
n
2 )P

{
{X̂n

1 ̸= Xn
1 } ∪ {X̂n

2 ̸= Xn
2 } |Xn

1 = xn1 , X
n
2 = xn2

}
+

1

2

∑
xn1 ,x

n
2

|q(xn1 )q(xn2 )− p(xn1 )p(xn2 )|

(b)

≤
∑
xn1 ,x

n
2

p(xn1 )p(x
n
2 )P{X̂n

1 ̸= Xn
1 |Xn

1 = xn1 , X
n
2 = xn2}

+
∑
xn1 ,x

n
2

p(xn1 )p(x
n
2 )P{X̂n

2 ̸= Xn
2 |Xn

1 = xn1 , X
n
2 = xn2 , X̂

n
1 = xn1}

+
1

2

∑
xn1

|q(xn1 )− p(xn1 )|+
1

2

∑
xn2

|q(xn2 )− p(xn2 )|

(c)

≤ ϵ1 + ϵ2 + δ1 + δ2,

where (a) holds since
∑
i ci(ai − bi) ≤

1
2

∑
i |ai − bi| whenever 0 ≤ ci ≤ 1 and

∑
i ai =

∑
i bi, (b)

holds by the union bound, and (c) holds by conditions (4.9) and (4.10) and the definition of average

probability of error.

Rate: The coding scheme attains the rate pair (R1, R2).

Remark 4.3.2. If the rate of the first asymmetric channel code is R1 = I(X1;Y )−γ1 for some γ1 >

0, and the rate of the second asymmetric channel code is R2 = I(X2;X1, Y )−γ2 = I(X2;Y |X1)−γ2
for some γ2 > 0, then the coding scheme attains the rate pair

(R1, R2) = (I(X1;Y )− γ1, I(X2;Y |X1)− γ2) .

Note that the rate pair (I(X1;Y ), I(X2;Y |X1)) is a corner point of the rate region given in (4.8).

By reversing the decoding order and appropriately modifying the channels that the two asymmetric

channel codes are designed for, another corner point of the rate region can be achieved.

Remark 4.3.3. A similar coding scheme can be constructed for the K-user multiple access channel

using K asymmetric channel codes, where the decoder successively decodes the user messages.

Conclusion: Starting from K asymmetric channel codes, we have constructed a code for the K-user

multiple access channel.
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4.4 Simulation Results

4.4.1 Gelfand–Pinsker Coding

The Gelfand–Pinsker coding scheme described in Section 4.1 can be simulated using two

point-to-point channel codes. This can be done by constructing the Slepian–Wolf code (H1, ϕ1)

using its constituent point-to-point code as described in Section 3.1.2. If R1 and R2 are the rates

of the two point-to-point codes, it follows that the rate of the Gelfand–Pinsker coding scheme is

R = R1 −R2.

We consider a binary-input Gaussian channel with a binary state whose channel output

can be expressed as

Y = X + gS + Z,

where X ∈ {−
√
P ,
√
P} is the channel input, S ∈ {−

√
P ,
√
P} is a channel state that is known

noncausally only at the encoder with P{S = −
√
P} = θ, and Z ∼ N (0, 1) is a sample from an i.i.d.

Gaussian noise process. In our simulations, we use g = 0.9 and θ = 0.1.

The proposed Gelfand–Pinsker coding scheme can be used to code over the given chan-

nel model. We use polar codes with successive cancellation decoding as the constituent point-

to-point channel codes. To construct the polar codes (i.e., identify the information sets), we use

Arıkan’s method of sorting upper bounds on the Bhattacharyya parameters of the synthetic po-

lar bit-channels [6]. To ensure nestedness, the information set of the polar code corresponding to

(H2, ϕ2) is taken to be a subset of that corresponding to the code (H1, ϕ1). Inspired by the char-

acterization (4.1) of achievable rates for the Gelfand–Pinsker problem, the proposed coding scheme

targets the the conditional distribution p∗(x |s) that maximizes I(X;Y )− I(X;S), i.e.,

p∗(x | s) = argmax
p(x|s)

(I(X;Y )− I(X;S)) . (4.11)

Since X and S are binary, the optimization (4.11) can be solved efficiently using off-the-shelf numer-

ical solvers (or simply using a grid search over the two parameters that define p(x |s)). The rates

R1 and R2 are chosen “close” to their theoretical limits (see Remark 4.1.5) when the conditional

distribution of the channel input given the channel state is p∗(x |s). More precisely, we take

R1 = 1−H(X |Y )− γ,

R2 = 1−H(X |S),
(4.12)

where γ > 0 is a “back-off” parameter from the theoretical limit, which allows for a reasonable error

probability for the code (H1, ϕ1). In our Gelfand–Pinsker simulations, we used γ = 3/16.

We compare the proposed coding scheme with the simple strategy that encodes the trans-

mitter’s message using a point-to-point channel code while ignoring the available state sequence.

Since the induced channel input distribution would be Bern(1/2) in this case, we refer to this strat-

egy as the “symmetric coding” strategy. For a fair comparison, we also use a polar code with
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Figure 4.6: Achieved rates of the Gelfand–Pinsker coding scheme over a Gaussian channel with state

at a fixed block error probability P thresholde = 10−2.

successive cancellation decoding. The polar code is designed for the average channel pavg(y |x) ≜∑
s p(s)p(y |x, s). Note that this symmetric coding scheme is a special case of our proposed Gelfand–

Pinsker coding scheme for the case when R2 = 0. Therefore, our goal here is to show that using

strictly positive rates R2 to target the conditional pmf p∗(x |s) can achieve superior performance

compared to the naive approach of coding for the average channel pavg.

Let us first look at the theoretical limit of the two coding strategies as a function of power

level P . As mentioned before, the maximum achievable rate of the proposed Gelfand–Pinsker coding

scheme is CGP ≜ I(X;Y )−I(X;S) evaluated under the maximizing conditional distribution p∗(x |s),
whereas the maximum achievable rate of the symmetric coding strategy is Csym ≜ I(X;Y ) when X

is Bern(1/2) and independent of S. The plots with solid lines in Figure 4.6 show the evaluation of

CGP and Csym as a function of P . The plots demonstrate that, in theory, Gelfand–Pinsker coding

can achieve larger rates asymptotically compared to the symmetric coding strategy.

Before we explain the meaning of the dashed curves of Figure 4.6, we turn our attention to

Figure 4.7, which plots the block error probability performance of the two coding strategies for the

same block length n = 1024 and rate R = 0.5. To find the maximizing distribution p∗(x |s) for the
Gelfand–Pinsker coding scheme, our approach is to consider the power level P ∗ at which CGP = R+γ.

By choosing R1 and R2 according to (4.12), this guarantees that the overall rate of the Gelfand–

Pinsker coding scheme is R. The power level P ∗ can be estimated from the plot of Figure 4.6.
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n = 1024, Rate = 0.5

Figure 4.7: Simulation results of the Gelfand–Pinsker coding scheme for a block length n = 1024

and rate R = 0.5 over a Gaussian channel with state.

As shown in Figure 4.7, the Gelfand–Pinsker coding scheme shows significant performance gain

compared to symmetric coding.

By repeating the same experiment for different values of the rate R, one can plot R as a

function of the power level P , for a fixed block error probability P threshold
e = 10−2. This is shown in

the dashed curves of Figure 4.6. For example, for a rate R = 0.5, we know from Figure 4.7 that the

Gelfand–Pinkser coding scheme achieves an error probability of 10−2 when the power level is around

4 dB, whereas the symmetric coding scheme has an error probability of 10−2 when the power level

is around 5.5 dB. A similar approach is taken for other values of R. The dashed curves of Figure 4.6

show that the Gelfand–Pinsker coding scheme can achieve larger rates in practice as well. These

results demonstrate the importance of “shaping” the channel input with respect to the known state

sequence. For more details about the simulation setup, our code is available on GitHub [82].

4.4.2 Marton Coding

Now, we verify the practicality of the Marton coding scheme through simulations. We

consider a two-user Gaussian broadcast channel with two transmit antennas and a single receive
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antenna for each user. The channel can be modeled by the following input-output relations:[
Y1

Y2

]
= HchW

[
X1

X2

]
+

[
Z1

Z2

]
, (4.13)

where Hch =

[
1 g

g 1

]
is the channel gain matrix with g = 0.9, W is a 2 × 2 precoding matrix

used by the transmitter (if needed), X1 ∈ {±1} and X2 ∈ {±1} are BPSK-modulated signals

corresponding to the channel input codewords (i.e., bit 0 is mapped to +1 and bit 1 is mapped to

−1),

[
Z1

Z2

]
∼ N

(
0, I
)
is a vector of independent Gaussian noise components (I is the 2× 2 identity

matrix), and Y1 and Y2 are the channel outputs at the users’ side. The transmitter wishes to send

messages to the users at an overall sum-rate Rsum, while being subject to a sum-power constraint

P such that

E[∥WX2
1∥2] ≤ P. (4.14)

For a given input distribution p(x1, x2) and a precoding matrix W satisfying the power

constraint (4.14), recall from (4.5) that the sum-capacity can be expressed as

Csum

(
p(x1, x2),W

)
≜ I(X1;Y1) + I(X2;Y2)− I(X1;X2). (4.15)

The following coding strategies for the broadcast channel will be compared.

• “Marton coding with optimal precoding”2: corresponds to the proposed coding scheme that

targets the channel input distribution p∗marton,opt(x1, x2) and precoding matrix W ∗
marton, opt

that maximize the sum-capacity given in (4.15), while satisfying the power constraint (4.14).

• “Marton coding without precoding”: corresponds to the proposed coding scheme that targets

the channel input distribution p∗marton(x1, x2) that maximizes the sum-capacity given in (4.15),

while setting the precoding matrix to W =
√

P
2 I.

• “Symmetric coding with optimal precoding”: corresponds to the strategy that sets the pre-

coding matrix to W ∗
sym,opt that maximizes the sum-capacity given in (4.15), while setting the

input distribution to the i.i.d. Bern(1/2) distribution (i.e., the two messages are encoded in-

dependently using two separate point-to-point channel codes, and the correlation between the

two transmitted signals is attributed only to the linear precoder).

• “Symmetric coding without precoding”: corresponds to the strategy that encodes the two

messages independently using two separate point-to-point channel codes, while setting the

precoding matrix to W =
√

P
2 I.

2Marton coding over the Gaussian broadcast channel is often seen as an instance of “dirty paper coding” [71].
However, note that the channel input is binary in our case.
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• “Minimum mean-square error (MMSE) precoding”: corresponds to the strategy that encodes

the two messages independently using two separate point-to-point channel codes, while apply-

ing the MMSE precoding matrix WMMSE = λ(HT
chHch + K

P I)
−1HT

ch at the transmitter side,

where K = 2 is the number of users and λ is a constant to satisfy the power constraint (4.14).

The MMSE precoding matrix is sometimes referred to as the “transmit Wiener filter” [86].

• “Zero-forcing precoding”: corresponds to the strategy that encodes the two messages inde-

pendently using two separate point-to-point channel codes, while applying the zero-forcing

precoding matrix WZF = λH−1
ch at the transmitter side, where λ is a constant to satisfy the

power constraint (4.14). Such a strategy suppresses the interference in the channel.

• “Time division”: corresponds to the strategy that serves only a single user of the channel. That

is, a single message is encoded using a point-to-point channel code, and the same codeword is

transmitted across both antennas. The power allocation between the two transmit antennas is

done so as to optimize the received signal-to-noise ratio. This is done by setting the precoding

matrix to Wtime−division =

[√
λ1 0

0
√
λ2

]
, where (λ1, λ2) is the solution of


maximize (

√
λ1 + g

√
λ2)

2

subject to λ1 + λ2 = P,

λ1 ≥ 0, λ2 ≥ 0.

Before simulating the proposed Marton coding scheme, we first plot the sum-capacity

Csum given in equation (4.15) for the different coding strategies. For the coding strategies that

optimize over the channel input distribution and/or the precoding matrix, we use particle swarm

optimization [87, 88] as an efficient heuristic method to perform the optimization. Figure 4.8 shows

the plot of Csum as a function of the sum-power constraint P for the different coding strategies

over the two-user Gaussian broadcast channel model given by (4.13). Clearly, Marton coding with

optimal precoding can achieve strictly larger sum-rates asymptotically compared to the other coding

strategies. When no precoding is employed, Marton coding can still achieve significantly larger sum-

rates compared to common linear precoding strategies used in practice such as MMSE precoding

and zero-forcing precoding. This demonstrates the significance of stochastically shaping the channel

input signals over the broadcast channel and motivates our Lego-brick design of a realizable Marton

coding scheme using commercial off-the-shelf codes. Such an observation has been previously noted

in the literature (e.g., [89, 90]).

Next, we simulate the different coding strategies over the Gaussian broadcast channel

model using polar codes with successive cancellation decoding as the constituent point-to-point

channel codes. The coding strategies are compared for the same block length n = 1024 and sum-

rate Rsum = 1. Recall that each of the asymmetric channel code and the Gelfand–Pinkser code can
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Figure 4.8: The sum-capacity for the different coding strategies over the broadcast channel.

be implemented using a pair of point-to-point channel codes, as described in Section 4.1. It follows

that four polar codes are needed to implement the Marton coding scheme. Let (R11, R12, R21, R22)

be the rates of the polar codes, where (R11, R12) are the rates of the two polar codes needed to

construct the asymmetric channel code and (R21, R22) are the rates of the two polar codes needed

to construct the Gelfand–Pinsker code. The rates (R11, R12, R21, R22) are chosen “close” to their

theoretical limits (see Remarks 4.1.5 and 4.1.7). More precisely, for the Marton coding scheme, we

take

R11 = 1−H(X1 |Y1)− γ,

R12 = 1−H(X1),

R21 = 1−H(X2 |Y2)− γ,

R22 = 1−H(X2 |X1),

(4.16)

where γ > 0 is a “back-off” parameter from the theoretical limit, which allows for a reasonable

error probability3. Note that the sum-rate attained by the coding scheme is equal to R11 − R12 +

R21 − R22. Hence, in order to guarantee that this sum-rate is equal to Rsum, the target distribu-

tion p∗marton,opt(x1, x2) and precoding matrix W ∗
marton,opt are chosen to be the maximizers of Csum

when considering the power level P ∗ at which Csum = Rsum + 2γ.4 Given the target distribution

3Note that the back-off parameter is only used along R11 and R21 since these rates correspond to the polar codes
used for error correction. In contrast, our simulations show that the polar codes used for shaping perform pretty well,
even at rates very close to the theoretical limit; hence, no back-off is needed for R12 and R22.

4The power level P ∗ can be estimated from the plot of Figure 4.8.
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Figure 4.9: Simulation results for the different coding strategies over a two-user Gaussian broadcast

channel for the same block length n = 1024 and sum-rate Rsum = 1.

p∗marton,opt(x1, x2) and the precoding matrix W ∗
marton,opt, the rates (R11, R12, R21, R22) are chosen

according to (4.16). A similar approach is taken to find the target distribution p∗marton(x1, x2) and

the precoding matrix W ∗
sym,opt. In our simulations over the broadcast channel, we used γ = 1/16.

For more details about the simulation setup, our code is available on GitHub [82].

The simulation results are shown in Figure 4.9. Clearly, the Marton coding scheme with

optimal precoding can achieve improved block error rate performance compared to the other coding

strategies. Even when no precoding is used, the Marton coding scheme can achieve better perfor-

mance compared to common coding strategies often employed in practice, such as time division,

MMSE precoding and zero-forcing precoding.

Remark 4.4.1. Note that all the coding strategies that are considered in this part can be imple-

mented as instances of the proposed Marton coding scheme (Figure 4.4) for particular choices of the

rates (R11, R12, R21, R22), the target channel input distribution p(x1, x2) and the precoding matrix

W .
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Chapter 5

Coding over Cloud Radio Access

Networks: A Lego-Brick Approach

In the last two chapters, we have constructed coding schemes for several multiterminal

source and channel coding problems. In this chapter, we build on the previous constructions to

address the problem of coding over multihop networks. In specific, we focus on cloud radio access

networks.

Cloud radio access networks (C-RAN’s) are a key part in the deployment of 5G systems [91,

92]. These networks model the case when multiple base stations are coordinated by a cloud-based

central processor (CP) through capacity-limited wired or wireless links. In a downlink C-RAN

scenario, the processing is done by the central processor assuming no capacity constraints, and then

the baseband signals are digitized and sent over the capacity-limited links to the base stations.

Similarly, in an uplink C-RAN scenario, the received signals at the based stations are digitized and

sent over the capacity-limited links to the CP. Such an approach often calls for high link capacity

requirements.

Alternatively, in this chapter, we consider coding schemes for the downlink and uplink

C-RAN architecture (depicted in Figures 5.1 and 5.6 respectively) that view the entire system as a

two-hop relay network. In this model, the base stations act as relays that send the prescribed signals

from the CP to the users in the downlink scenario and compress the received signals to the CP in

the uplink scenario. Such a model was studied, for example, in [93, 94, 95, 96, 97]. We construct

coding schemes for both the downlink and uplink scenarios starting from basic coding blocks which

we have previously considered in this dissertation. We show that the constructions can achieve

well-known inner bounds for these network models. Moreover, through simulations, we demonstrate

that the coding schemes can be implemented in real-world systems. We consider downlink C-RAN’s

in Section 5.1 and uplink C-RAN’s in Section 5.2.
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5.1 Downlink C-RAN

In this section, we present a coding scheme for the two-user, two-relay downlink C-RAN

problem starting from a Marton code for a broadcast channel and two lossy source codes. The

coding scheme can achieve the corner points of the generalized compression strategy characterized

in [94]. First, let’s start by defining the coding problem for the downlink C-RAN model.

5.1.1 Problem Statement

Consider the downlink of a cloud radio access network (C-RAN) with two users and two

relays [42], as shown in Figure 5.1. A central processor (CP) communicates with the relays through

noiseless fronthaul links of finite capacities C1 and C2. A memoryless channel p(y1, y2 |x1, x2) is

assumed between the relays and the users, with an input alphabet X 2 = {0, 1}2 and output alphabet

Y1 × Y2. An (R1, R2, n) code for the downlink C-RAN problem consists of

• message setsM1,M2 such that |M1| = 2nR1 and |M2| = 2nR2 ,

• index sets S1, S2 such that |S1| = 2nC1 and |S2| = 2nC2 ,

• an encoder g : M1 ×M2 → S1 × S2 at the CP that maps each message pair (m1,m2) to a

pair of indices (s1, s2) = g(m1,m2),

• encoders hj : Sj → Xn at the jth relay for j = 1, 2, that map each index sj to a codeword

xnj = hj(sj),

• decoders ψj : Ynj → Mj for j = 1, 2, that assign message estimates m̂j = ψ1(y
n
j ) to each

received sequence ynj .

The average probability of error of the code is ϵ = P
{
{M̂1 ̸= M1} ∪ {M̂2 ̸= M2}

}
. A rate pair

(R1, R2) is said to be achievable for the downlink C-RAN problem if there exists a sequence of

(R1, R2, n) codes with vanishing error probability asymptotically.

Coding schemes for the downlink C-RAN model have been proposed in [94, 93, 96, 97],

among many others. In particular, Patil and Yu study in [94] a coding scheme for the downlink C-

RAN problem which utilizes Marton’s multicoding scheme for broadcasting followed by multivariate

compression for transmission over the fronthaul links. The achievable rate region of Patil and Yu’s

coding scheme is the set of rate tuples (R1, R2) satisfying

R1 < I(U1;Y1),

R2 < I(U2;Y2),

R1 +R2 < I(U1;Y1) + I(U2;Y2)− I(U1;U2),

(5.1)
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Figure 5.1: Downlink C-RAN problem with two users, two relays and a channel p(y1, y2 |x1, x2)
between the relays and the users.

for some joint distribution p(u1, u2, x1, x2) such that

C1 > I(U1, U2;X1)

C2 > I(U1, U2;X2)

C1 + C2 > I(U1, U2;X1, X2) + I(X1;X2).

(5.2)

Note that a strictly larger rate region can be achieved using the distributed decode-and-forward

relaying scheme [93]. Notice the similarity of the rate region in (5.1) to the rate region of Marton

coding over broadcast channels (equation (4.5)).

5.1.2 Coding Scheme

As mentioned before, the coding scheme for the downlink C-RAN model can be constructed

starting from a Marton code for a broadcast channel and two lossy source codes. The Marton codes

shape the channel input distribution while reliably sending messages to the intended users, whereas

the lossy source codes compress the encoded signals to accommodate the limited capacity constraints

of the fronthaul links. For illustrative purposes, we will describe the Marton code by its constituent

asymmetric channel code and Gelfand–Pinsker code, as described in Section 4.2. Similarly, each

lossy source code will be implemented using its constituent point-to-point channel code and lossless

source code, as described in Section 3.2.3. Therefore, the following Lego bricks (one asymmetric

channel code, one Gelfand–Pinsker code, two point-to-point channel codes and two lossless source

codes) will be used in the construction. Inspired by Patil and Yu’s random coding scheme, our

coding scheme targets a joint distribution p(u1, u2, x1, x2) at the CP1. Later, we show that the

coding scheme can achieve a corner point in the Patil-Yu rate region given in (5.1) and a corner

point in the compression region given in (5.2).

Lego Brick 5.1.1 (Asym → DL C-RAN): an (R1, n) asymmetric channel code (f1, ψ1) for the

1For example, p(u1, u2, x1, x2) can be chosen to maximize the maximum achievable sum-rate I(U1;Y1)+I(U2;Y2)−
I(U1;U2), while satisfying the compression constraints given in (5.2).
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channel

p(y1 |u1) =
∑
u2,x1,
x2,y2

p(u2, x1, x2 |u1)p(y1, y2 |x1, x2),

which targets an input distribution p(u1), such that, for M1 ∼ Unif([2nR1 ]), the sequence Un1 =

g1(M1) satisfies

1

2

∑
un1

∣∣∣∣∣P{Un1 = un1} −
n∏
i=1

p(u1i)

∣∣∣∣∣ ≤ δ1, (5.3)

for some δ1 > 0. Let ϵ1 be the average probability of error of the asymmetric channel code when the

channel input distribution is i.i.d. according to p(u1).

Lego Brick 5.1.2 (GP→ DL C-RAN): an (R2, n) code (f2, ψ2) for the Gelfand–Pinsker problem

defined by

p(u1)p(y2 |u2, u1) = p(u1)
∑

x1,x2,y1

p(x1, x2 |u1, u2)p(y1, y2 |x1, x2),

which targets a conditional distribution p(u2 |u1), such that, when M2 ∼ Unif([2nR2 ]) and Ũn1 is an

i.i.d. p(u1) sequence, the sequence Ũn2 = g2(M2, Ũ
n
1 ) satisfies

1

2

∑
un1 ,u

n
2

∣∣∣∣∣P{Ũn1 = un1 , Ũ
n
2 = un2} −

n∏
i=1

p(u1i, u2i)

∣∣∣∣∣ ≤ δ2, (5.4)

for some δ2 > 0. Let ϵ2 be the average probability of error of the Gelfand–Pinsker code when the

conditional distribution of the channel input given the channel state is i.i.d. according to p(u2 |u1).

Lego Brick 5.1.3 (P2P → Lossy → DL C-RAN): a (k31, n) linear point-to-point channel code

(H31, ϕ31) with codebook C31 for the channel

p̄3(u1, u2, v |x1) = pU1,U2,X1
(u1, u2, x1 ⊕ v). (5.5)

Let δ3 denote the decoding distance of the code (H31, ϕ31) with respect to the channel p̄3.

Lego Brick 5.1.4 (Lossless → Lossy → DL C-RAN): an (n − k32, n) lossless source code

(H32, ϕ32) for a Bern(pX1(1)) source with codebook C32 and average probability of error ϵ3. We

further assume that C32 ⊆ C31 (i.e., the two codes are nested) and that k31 − k32 < nC1.

Lego Brick 5.1.5 (P2P → Lossy → DL C-RAN): a (k41, n) linear point-to-point channel code

(H41, ϕ41) with codebook C41 for the channel

p̄4(u1, u2, x1, v |x2) = pU1,U2,X1,X2(u1, u2, x1, x2 ⊕ v). (5.6)

Let δ4 denote the decoding distance of the code (H41, ϕ41) with respect to the channel p̄4.

Lego Brick 5.1.6 (Lossless → Lossy → DL C-RAN): an (n − k42, n) lossless source code

(H42, ϕ42) for a Bern(pX2
(1)) source with codebook C42 and average probability of error ϵ4. We

further assume that C42 ⊆ C41 (i.e., the two codes are nested) and that k41 − k42 < nC2.
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Figure 5.2: Encoding scheme at the central processor for the two-user, two-relay downlink C-RAN

problem using an asymmetric channel code, a Gelfand–Pinsker code and two point-to-point channel

codes.

Remark 5.1.1. The channels p̄3 and p̄4 are the symmetrized channels corresponding to the joint

distributions p
(
x1, (u1, u2)

)
and p

(
x2, (u1, u2, x1)

)
, respectively.

Remark 5.1.2. Without loss of generality, assume that Hj1 is a submatrix of Hj2 for j = 3, 4, i.e.,

Hj2 =

[
Hj1

Qj

]
for some (kj1 − kj2)× n matrix Qj .

Figure 5.2 and Figure 5.3 show the block diagrams of the coding scheme at the cen-

tral processor, relays and users. The key point at the central processor is to construct a tuple

(Un1 , U
n
2 , X

n
1 , X

n
2 ) that is close in total variation distance to the i.i.d. distribution according to

p(u1, u2, x1, x2), and then compress (Xn
1 , X

n
2 ) through a pair of indices that are sent to the relays

through the fronthaul links. The relays recover estimates of (Xn
1 , X

n
2 ), which are transmitted to the

users through the channel. Using standard arguments that were used throughout this dissertation,

it follows from conditions (5.3), (5.4), and Lemma 3.2.1 that

1

2

∑
un1 ,u

n
2 ,

xn1 ,x
n
2

∣∣∣∣∣P{Un1 = un1 , U
n
2 = un2 , X

n
1 = xn1 , X

n
2 = xn2} −

n∏
i=1

p(u1i, u2i, x1i, x2i)

∣∣∣∣∣ ≤ δ1 + δ2 + δ3 + δ4,

which says that the distribution of (Un1 , U
n
2 , X

n
1 , X

n
2 ) is (δ1 + δ2 + δ3 + δ4)-away in total variation

distance from the i.i.d. p(u1, u2, x1, x2) distribution. Furthermore, the average probability of error

of the coding scheme can be bounded as

P
{
{M̂1 ̸=M1} ∪ {M̂2 ̸=M2}

}
≤ δ1 + δ2 + δ3 + δ4 + ϵ1 + ϵ2 + ϵ3 + ϵ4,
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Figure 5.3: Encoding scheme at the relays and decoding scheme at the users for the downlink C-RAN

problem.

following similar bounding techniques as in previous chapters.

The coding scheme attains the rate pair (R1, R2), and the compression rates are k31−k32
n

and k41−k42
n . Notice that these compression rates do not exceed the fronthaul link capacities (by

assumption).

Remark 5.1.3. Similar to the analysis of the Marton coding scheme of Section 4.2, the rate tuple

(R1, R2) can be made arbitrarily close to (I(U1;Y1), I(U2;Y2) − I(U2;U1)) for sufficiently large

n, which is a corner point of the region of rate constraints, given in (5.1). On the other hand,

following the discussion on the achievable rates of the lossy source coding scheme (specifically,

Remarks 3.2.5 and 3.2.6), the compression rate pair
(
k31−k32

n , k41−k42n

)
can be made arbitrarily close

to
(
I(U1, U2;X1), I(U1, U2, X1;X2)

)
for sufficiently large n, which is a corner point of the region of

compression constraints, given in (5.2). It follows that our coding scheme can be used to achieve

a corner point of the Patil-Yu region. If the encoding order is modified, other corner points of the

rate region can be achieved.

Conclusion: By adapting a similar approach for the general K-user, L-relay downlink C-RAN

problem, a coding scheme for this problem can be constructed starting from one asymmetric channel

code, K − 1 Gelfand–Pinsker codes, L point-to-point channel codes and L lossless source codes.

5.1.3 Simulation Results

By implementing each of the lossless source codes, the Gelfand–Pinsker code and the

asymmetric channel code using their constituent point-to-point channel codes as described in Sec-

tions 3.1.4, 4.1.2 and 4.1.3, the coding scheme for downlink C-RAN can be simulated using point-

to-point channel codes. We consider a two-user two-relay model with a Gaussian channel between
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the relays and the users, i.e., the channel output can be expressed as[
Y1

Y2

]
= HchΛ

[
X1

X2

]
+

[
Z1

Z2

]
(5.7)

where Hch =

[
1 g

g 1

]
is the channel gain matrix with g = 0.9, Λ =

[√
λ1 0

0
√
λ2

]
is a power

allocation matrix for the relays2, X1 ∈ {±1} and X2 ∈ {±1} are BPSK-modulated signals, and[
Z1

Z2

]
∼ N

(
0, I
)
is a vector of independent Gaussian noise components. The transmitter wishes

to send messages to the users at an overall sum-rate Rsum, and each relay is subject to a power

constraint P such that λj ≤ P for each j = 1, 2.

We first look at the sum-capacity of the proposed coding scheme under different power

constraints P and fronthaul capacity constraints C1 and C2. We know from (5.1) that the sum-

capacity of the coding scheme is given by

Csum ≜ max
p(u1,u2,x1,x2)∈D(C1,C2),

(λ1,λ2)∈K(P )

I(U1;Y1) + I(U2;Y2)− I(U1;U2), (5.8)

where D(C1, C2) is the set of joint distributions p(u1, u2, x1, x2) that satisfy the compression con-

straints given in (5.2), and

K(P ) = {(λ1, λ2) : 0 ≤ λ1 ≤ P, 0 ≤ λ2 ≤ P}.

We use the genetic algorithm [98, 88] as an efficient heuristic method to perform the optimization

in (5.8). Figure 5.4 shows the plot of Csum as a function of the power constraint P under different

fronthaul capacity constraints C1 and C2. As expected, the sum-capacity of the proposed coding

scheme is improved when the fronthaul link capacities are increased. Note that when C1 ≥ 1 and

C2 ≥ 1, the sum-capacity of the downlink C-RAN coding scheme corresponds to that of the Marton

coding scheme of Section 4.4.2 when the transmitter is subject to a per-antenna power constraint

and the precoding matrix is restricted to be a diagonal matrix.

Next, the proposed coding scheme for the downlink C-RAN problem is simulated for a

block length n = 1024 and a sum-rate Rsum = 0.75 using polar codes with successive cancellation

decoding as the constituent point-to-point channel codes. Note that each of the asymmetric channel

code and the Gelfand–Pinsker code can be implemented using a pair of point-to-point channel codes,

and each of the lossless source codes can be implemented using a single point-to-point channel code.

Hence, the downlink C-RAN coding scheme can be constructed starting from eight polar codes. Let

(R11, R12, R21, R22, R31, R32, R41, R42) be the rates of the constituent polar codes, where (R11, R12)

are the rates of the two polar codes needed to construct the asymmetric channel code, (R21, R22)

2Note that since the two relays do not communicate and the fronthaul links are capacity-limited, we do not consider
the possibility of applying a general precoding matrix as in Section 4.4.2.
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Figure 5.4: The sum-capacity of the proposed coding scheme for the downlink C-RAN problem

under different fronthaul capacity constraints.

are the rates of the two polar codes needed to construct the Gelfand–Pinsker code, (R31, R32) are

the rates of the two polar codes needed to construct the codes C31 and C32, and (R41, R42) are the

rates of the two polar codes needed to construct the codes C41 and C42. The rates are chosen “close”

to their theoretical limits, i.e., we set

R11 = 1−H(U1 |Y1)− γr,

R12 = 1−H(U1),

R21 = 1−H(U2 |Y2)− γr,

R22 = 1−H(U2 |U1),

R31 = 1−H(X1 |U1, U2),

R32 = 1−H(X1)− γc,

R41 = 1−H(X2 |U1, U2, X1),

R42 = 1−H(X2)− γc,

(5.9)

where γr > 0 and γc are “back-off” parameters from the theoretical limit that are used for the

polar codes involved in error correction (i.e., not shaping). Note that the sum-rate attained by the

coding scheme is equal to R11 − R12 + R21 − R22. Hence, in order to guarantee that this sum-

rate is equal to Rsum, the coding scheme targets the joint distribution p∗(u1, u2, x1, x2) and the

power levels (λ∗1, λ
∗
2) that maximize Csum under the optimization problem of (5.8), where the power

constraint P is set to be equal to the power level P ∗ at which Csum = Rsum +2γr.
3 Under the joint

distribution p∗(u1, u2, x1, x2) and the power levels (λ∗1, λ
∗
2), the rates of the constituent polar codes

are set according to (5.9). Note that γc should be chosen so that R31−R32 ≤ C1 and R41−R42 ≤ C2.

3Note that the power level P ∗ can be estimated using the plot of Figure 5.4.
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Figure 5.5: Simulation results of the downlink C-RAN coding scheme for a block length n = 1024

and sum-rate Rsum = 0.75 under different fronthaul capacity constraints.

In our simulations over the downlink C-RAN channel model, we used γr = 1/8 and γc = 5/32. For

more details about the simulation setup, our code is available on GitHub [82]. The block error rate

performance of the downlink C-RAN coding scheme is shown in Figure 5.5 for different fronthaul

capacity constraints C1 and C2. The results demonstrate the practicality of the proposed coding

scheme over the downlink C-RAN channel model.

5.2 Uplink C-RAN

Now, we turn our attention to the uplink C-RAN channel model, as depicted in Figure 5.6.

We construct a coding scheme for this model starting from a multiple access channel code and a

Berger–Tung code. We show that the coding scheme can achieve a corner point of the network

compress-and-forward rate region with successive decoding characterized in [95]. As usual, we start

with defining the coding problem for uplink C-RAN’s.

5.2.1 Problem Statement

Consider the uplink of a cloud radio access network (C-RAN) with two users and two

relays [42], as shown in Figure 5.6. Two users wish to communicate with a central processor (CP)

through two relays that are connected to the CP through noiseless backhaul links of finite capacities
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Figure 5.6: Uplink C-RAN problem with two users and two relays.

C1 and C2. A memoryless channel p(y1, y2 |x1, x2) is assumed between the users and the relays,

with an input alphabet X 2 = {0, 1}2 and output alphabet Y1 × Y2. An (R1, R2, n) code for uplink

C-RAN problem consists of

• message setsM1,M2 such that |M1| = 2nR1 and |M2| = 2nR2 ,

• index sets S1, S2 such that |S1| = 2nC1 and |S2| = 2nC2 ,

• encoders gj :Mj → Xn at the jth user for j = 1, 2 that map each message mj to a codeword

xnj ,

• encoders hj : Ynj → Sj at the jth relay for j = 1, 2 that map each received sequence ynj to an

index sj = hj(y
n
j ),

• decoder ψ : S1 × S2 →M1 ×M2 at the CP that assign message estimates (m̂1, m̂2) to each

index pair (s1, s2).

The average probability of error of the code is defined as ϵ = P
{
{M̂1 ̸= M1} ∪ {M̂2 ̸= M2}

}
. A

rate pair (R1, R2) is said to be achievable for the uplink C-RAN problem if there exists a sequence

of (R1, R2, n) codes with vanishing error probability asymptotically.

Coding schemes for the uplink C-RAN problem have been proposed in [99, 100, 93] based

on the network compress-and-forward relaying scheme [101]. In [95], it is shown that for a particular

decoding order of messages and quantization codewords at the CP, successive decoding can achieve

the same maximum sum-rate as the joint decoding approach of the coding schemes in [99, 100, 93].

In particular, the achievable rate region of network compress-and-forward with successive decoding

is the closure of the convex hull of all rate pairs (R1, R2) satisfying [95]

R1 < I(X1; Ŷ1, Ŷ2 |X2),

R2 < I(X2; Ŷ1, Ŷ2 |X1),

R1 +R2 < I(X1, X2; Ŷ1, Ŷ2),

(5.10)
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for some product distribution p(x1)p(x2)p(ŷ1 |y1)p(ŷ2 |y2) such that

C1 > I(Y1; Ŷ1 | Ŷ2),

C2 > I(Y2; Ŷ2 | Ŷ1),

C1 + C2 > I(Y1, Y2; Ŷ1, Ŷ2).

(5.11)

Notice the similarity of the rate region in (5.10) to the rate region of a multiple access channel (equa-

tion (4.8)), and the similarity of the compression constraints in (5.11) to the achievable rate region

by the Berger–Tung coding scheme for the distributed lossy compression problem (equation (3.5)).

5.2.2 Coding Scheme

Now, we construct a coding scheme for the uplink C-RAN problem starting from a multiple

access channel code and a Berger–Tung code. The coding scheme will target a given product

distribution p(x1)p(x2)p(ŷ1 |y1)p(ŷ2 |y2)4. Therefore, the desired input-output joint distribution can

be given by

p(x1, x2, y1, y2, ŷ1, ŷ2) = p(x1)p(x2)p(y1, y2 |x1, x2)p(ŷ1 | y1)p(ŷ2 | y2).

The multiple access channel code will encode the messages over the channel p(ŷ1, ŷ2 |x1, x2), whereas
the Berger–Tung will compress the received channel outputs at the relays with a joint distribution

p(y1, y2). More specifically, the coding scheme for the uplink C-RAN problem uses the following

Lego bricks.

Lego Brick 5.2.1 (MAC → UL C-RAN): an (R1, R2, n) code (f1, f2, ϕ) for the multiple ac-

cess channel p(ŷ1, ŷ2 |x1, x2) which targets input distributions p(x1)p(x2), such that, for Mj ∼
Unif([2nRj ]), the channel input Xn

j = fj(Mj) satisfies

1

2

∑
xnj

∣∣∣∣∣P{Xn
j = xnj } −

n∏
i=1

p(xji)

∣∣∣∣∣ ≤ δMAC
j , (5.12)

for j = 1, 2 and some δMAC
1 , δMAC

2 > 0. Let ϵ be the average probability of error of the multiple

access channel code when the channel input distributions are i.i.d. according to p(x1)p(x2).

Lego Brick 5.2.2 (BT→UL C-RAN): an (R3, R4, n) Berger–Tung code (f3, f4, ψ) for a p(y1, y2)-

source that targets conditional distributions p(ŷ1 |y1)p(ŷ2 |y2), such that, for (Y n1 , Y
n
2 )

iid∼ p(y1, y2),

the sequences (Ŷ n1 , Ŷ
n
2 ) = ψ

(
g3(Y

n
1 ), g4(Y

n
2 )
)
satisfy

1

2

∑
ynj , ŷ

n
j

∣∣∣∣∣P{Y nj = ynj , Ŷ
n
j = ŷnj } −

n∏
i=1

p(yji)p(ŷji | yji)

∣∣∣∣∣ ≤ δBT
j (5.13)

for j = 1, 2 and some δBT
1 , δBT

2 > 0. Furthermore, we assume that R3 < C1 and R4 < C2.
4For example, such a product distribution can be chosen to maximize the maximum achievable sum-rate

I(X1, X2; Ŷ1, Ŷ2).
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Figure 5.7: Coding scheme for the uplink C-RAN problem using a multiple access channel code and

a Berger–Tung code.

Remark 5.2.1. The multiple access channel code can be implemented using two asymmetric channel

codes, as described in Section 4.3, and the Berger–Tung code can be implemented using a lossy source

code and a Wyner–Ziv code, as described in Section 3.4.

Figure 5.7 shows the block diagram of the uplink C-RAN problem. The multiple access

channel code is used to encode the user messages while shaping the channel input signals, whereas

the Berger–Tung code is used to compress the received signals over the backhaul links. The central

processor first decodes the compressed codewords using the Beger–Tung decoder, then decodes the

user messages using the multiple access channel decoder. Following similar bounding techniques

seen thus far, the average probability of error of the coding scheme can be bounded as

P
{
{M̂1 ̸=M1} ∪ {M̂2 ̸=M2}

}
≤ ϵ+ δMAC

1 + δMAC
2 + δBT

1 + δBT
1 .

The user rate pair is given by (R1, R2). Note that the conditions R3 < C1 and R4 < C2 are needed

so that the compression rates of the coding scheme do not exceed the backhaul link capacities.

Remark 5.2.2. For sufficiently large n, the user rate pair (R1, R2) can be chosen to be arbitrarily

close to a corner point of the rate region given in (5.10). Similarly, for sufficiently large n, the com-

pression rate pair (R3, R4) can be chosen to be arbitrarily close to a corner point of the compression

rate region given in (5.11).

Remark 5.2.3. Note that the uplink C-RAN coding scheme can be implemented using point-

to-point channel codes by constructing the multiple access channel and Berger–Tung codes using

their constituent point-to-point channel codes, as described in Sections 4.3 and 3.4 respectively.

Nevertheless, note that our construction of a Berger–Tung code using point-to-point channel codes

requires binary sources. Hence, the channel output alphabets Y1 and Y2 of the uplink C-RAN model

should be binary in this case.

Conclusion: By adapting the coding scheme to the generalK-user, L-relay uplink C-RAN problem,

a coding scheme in the general case can be constructed starting from aK-user multiple access channel

and a Berger–Tung code for a distributed lossy compression problem with L sources.
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5.2.3 Simulation Results

By implementing the multiple access channel code and the Berger–Tung code using their

constituent point-to-point channel codes as described in Sections 4.3 and 3.4 respectively, the coding

scheme for uplink C-RAN can be simulated using point-to-point channel codes. We consider a two-

user two-relay model with a binary-quantized Gaussian channel between the users and the relays.

That is, the channel output at the relays can be expressed as

Ỹ1 = X1 + gX2 + Z1,

Ỹ2 = X2 + gX1 + Z2,

Y1 = q1(Ỹ1),

Y2 = q2(Ỹ2),

where g = 0.9, (X1, X2) ∈ {−
√
P ,
√
P}2 are BPSK-modulated signals, (Z1, Z2) ∼ N (0, I) are

independent Gaussian noise components, and q1(.) and q2(.) are binary quantizers. The use of

binary quantizers is motivated by the cases when the backhaul links are severely capacity-limited

(e.g., when C1 ≤ 1 and C2 ≤ 1).

We first look at the sum-capacity of the proposed coding scheme as a function of the power

constraint P and the backhaul capacity constraints C1 and C2. We know from (5.10) that the

sum-capacity of the coding scheme can be expressed as

Csum ≜ max
p(x1)p(x2)p(ŷ1|y1)p(ŷ2|y2)∈D(C1,C2)

I(X1, X2; Ŷ1, Ŷ2), (5.14)

where D(C1, C2) is the set of all product distributions p(x1)p(x2)p(ŷ1 |y1)p(ŷ2 |y2) that satisfy the

compression constraints given in (5.11). We use the genetic algorithm [98, 88] as an efficient heuristic

method to perform the optimization in (5.14). The quantizers q1(.) and q2(.) are optimized using

the Lloyd-Max algorithm [102, 103]. That is, for any pair of input distributions p(x1) and p(x2),

the distribution of Ỹ1 (resp., Ỹ2) is derived and used to compute the optimal partition points and

quantization levels of q1(.) (resp., q2(.)) using Lloyd-Max. Fig. 5.8 shows the plot of Csum as a

function of the power constraint P under different backhaul capacity constraints C1 and C2.

Next, the proposed coding scheme for the uplink C-RAN problem is simulated for a block

length n = 1024 and a sum-rate Rsum = 0.25 using polar codes with successive cancellation decoding

as the constituent point-to-point channel codes. Note that the multiple access channel code can be

implemented using two asymmetric channel codes, each of which can be implemented using a pair

of point-to-point channel codes. Moreover, the Berger–Tung code can be implemented using a lossy

source code and a Wyner–Ziv code, each of which can be implemented using a pair of point-to-point

channel codes. Hence, the uplink C-RAN coding scheme can be constructed starting from eight

polar codes. Let (R11, R12, R21, R22, R31, R32, R41, R42) be the rates of the constituent polar codes,

where (R11, R12) and (R21, R22) are the rates of the two polar codes needed to construct the first
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Figure 5.8: The sum-capacity of the proposed coding scheme for the uplink C-RAN problem under

different backhaul capacity constraints.

and second asymmetric channel code respectively, and (R31, R32) and (R41, R42) are the rates of the

two polar codes needed to construct the lossy source code and Wyner–Ziv code respectively. The

rates are chosen “close” to their theoretical limits, i.e., we set5

R11 = 1−H(X1 | Ŷ1, Ŷ2)− γr,

R12 = 1−H(X1),

R21 = 1−H(X2 | Ŷ1, Ŷ2, X1)− γr,

R22 = 1−H(X2),

R31 = 1−H(Ŷ1 |Y1),

R32 = 1−H(Ŷ1)− γc,

R41 = 1−H(Ŷ2 |Y2),

R42 = 1−H(Ŷ2 | Ŷ1)− γc,

(5.15)

where γr > 0 and γc are “back-off” parameters from the theoretical limit that are used for the

polar codes involved in error correction (i.e., not shaping). Note that the sum-rate attained by the

coding scheme is equal to R11 − R12 + R21 − R22. Hence, in order to guarantee that this sum-

rate is equal to Rsum, the coding scheme targets the distributions p(x1)p(x2)p(ŷ1 |y1)p(ŷ2 |y2) that
maximize Csum under the optimization problem of (5.14), where the power constraint P is set to

be equal to the power level P ∗ at which Csum = Rsum + 2γr.
6 Under the target distributions, the

rates of the constituent polar codes are set according to (5.15). Note that γc should be chosen so

that R31 − R32 ≤ C1 and R41 − R42 ≤ C2. In our simulations over the uplink C-RAN channel

5These theoretical limits can be derived for the uplink C-RAN model as a consequence of Remarks 3.2.6, 3.3.1,
and 4.1.7.

6Note that the power level P ∗ can be estimated using the plot of Fig. 5.8.
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Figure 5.9: Simulation results of the uplink C-RAN coding scheme for a block length n = 1024 and

sum-rate Rsum = 0.25 under different backhaul capacity constraints.

model, we used γr = 1/8 and γc = 5/32. For more details about the simulation setup, our code is

available on GitHub [82]. The block error rate performance of the uplink C-RAN coding scheme is

shown in Fig. 5.9 for different backhaul capacity constraints C1 and C2. The results demonstrate

the practicality of the proposed coding scheme over the uplink C-RAN channel model. Note that

the observed error floor is due to binary quantization.
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Chapter 6

Block-Markov Coding over

Networks: A Lego-Brick Approach

6.1 Motivation

In most constructions we presented so far in this dissertation, the decoding distance of a

point-to-point channel code designed for a BMS channel was used as a primitive property in one

of the constituent Lego bricks. Unfortunately, the decoding distance is difficult to be estimated

for commercial off-the-shelf codes since it involves the computation of the total variation distance

between distributions over exponentially large alphabets. To circumvent this inconvenience, we

present in this chapter modified coding schemes involving properties that are easily verifiable in

practice. More precisely, the assumptions that we will be made on the Lego bricks in this chapter

will be over alphabets with size that is at most polynomial in the block length. Moreover, the

coding schemes presented here will not make any assumption of nestedness between the constituent

Lego bricks, which was often assumed in the constructions thus far. However, as we shall see,

these benefits will come at the cost of larger implementation complexity, a small penalty incurred in

achievable rates, and a worse performance guarantee. In particular, the coding schemes presented

in this section will have a block-Markov structure, i.e., they will be defined upon the transmission

of several blocks of information, and the inputs to one encoding/decoding block can depend on the

outputs of previous blocks.

The modified coding schemes presented in this chapter are based on assumptions made

about the distributions of the decoding Hamming distance spectrum or the decoding joint-type

spectrum (both terms will be defined shortly). The assumptions made are easily verifiable in practice

since the both distributions can be estimated efficiently for any commercial off-the-shelf code via

Monte Carlo simulations. It turns out that all the previous constructions can be modified to work
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under these simplified assumptions. Moreover, the block-Markov constructions will not require any

constituent codebooks to be nested, unlike the previous constructions which often assumed that

the codebook corresponding to one Lego brick is a subcode of another. One major consequence of

these constructions is the following: one can assemble any set of point-to-point channel codes with

good error correction capabilities with any set of point-to-point channel codes with good shaping

properties to construct coding schemes that can achieve the inner bounds for the different problems

considered in this dissertation.

The following definitions will be used in the block-Markov constructions of coding schemes.

Definition 6.1.1 (Decoding Hamming Distance Spectrum). Given a linear point-to-point chan-

nel code (H,ϕ) for a binary-input binary-output channel p(y |x), the decoding Hamming distance

spectrum W is defined as

W ≜ dH
(
V n, ϕ(V n)

)
,

where V n is i.i.d. Bern(1/2), and dH(., .) denotes the Hamming distance metric. Therefore, we have

that W ∈ {0, 1, . . . , n}, and

P{W = w} =
∣∣{vn ∈ Fn2 : dH

(
vn, ϕ(vn)

)
= w}

∣∣
2n

,

for 0 ≤ w ≤ n.

Definition 6.1.2 (Joint-Type). Given a pair of sequences (xn, yn) ∈ Xn × Yn, the joint-type of

(xn, yn), denoted type(xn, yn), is the number of occurrence of each symbol pair (x, y) ∈ X × Y in

(xn, yn), i.e.,

type(xn, yn) = (π(x, y |xn, yn))(x,y)∈X×Y ,

where π(x, y |xn, yn) = |{i : 1 ≤ i ≤ n, xi = x, yi = y}|.

Definition 6.1.3 (Decoding Joint-Type Spectrum). Consider a symmetric binary-input channel

p(y |x) and a linear point-to-point channel code (H,ϕ). Let Y n be an i.i.d. according to p(y), where

p(y) =
∑
x

1
2p(y |x), and define Xn = ϕ(Y n). The decoding joint-type spectrum T is defined as the

joint-type of the pair (Xn, Y n), i.e.,

T ≜ type(Xn, Y n).

For example, if Y = {0, 1}, then T = (T00, T01, T10, T11), where Txy is the number of occurrences of

the symbol pair (x, y) in the sequences (Xn, Y n), for x, y ∈ {0, 1}.

The main differences that can be observed in comparison with the previous constructions

are the following.

• The modified constructions do not require any constituent codebooks to be nested, unlike

the previous constructions which often assumed that the codebook corresponding to one Lego

brick is a subcode of another.
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• The modified coding schemes have a block-Markov structure, i.e., the inputs to one encod-

ing/decoding block can depend on other coding blocks. Such a structure allows to share

information about the transmitted sequences across coding blocks.

• The assumptions made on the Lego bricks of the modified constructions involve the distribution

of either the decoding Hamming distance spectrum or the decoding joint-type spectrum of the

constituent codes, both of which can be estimated efficiently in practice for any commercial off-

the-shelf code. More specifically, the constructions here will imply that a decoding Hamming

distance spectrum that is “close” to a Binomial distribution, or a decoding joint-type spectrum

that is “close” to a Multinomial distribution are preferred, where “closeness” is measured via

the total variation distance metric.

• A uniformly chosen random permutation that is shared between the encoder and the de-

coder is used in the modified constructions. The random permutation allows to shape the

binary sequences according to the desired distribution, as will be shown in Lemma 6.2.1 and

Lemma 6.3.1.

Although all the coding schemes that we considered have a block-Markov variant, for

conciseness, we will focus on two problems: the asymmetric channel coding problem in Section 6.2

and the lossy source coding problem for an asymmetric source in Section 6.3. These two constructions

already give the gist of the idea, and the extension to other coding problems becomes straightforward.

6.2 Asymmetric Channel Coding

Consider the problem of coding for an asymmetric channel p(y |x), where the capacity-

achieving input distribution is p(x) ∼ Bern(α) for some α ∈ (0, 1/2). The coding scheme we present

here is defined upon the transmission of b blocks of information for some fixed b, and is constructed

starting from the following three Lego bricks.

Lego Brick 6.2.1 (SW→ Asym): an (n−k1, n) linear Slepian–Wolf code (H1, ϕ1) for the problem

p(x, y) = p(x)p(y |x) with an average probability of error ϵ.

Lego Brick 6.2.2 (P2P→Asym): a (k2, n) linear point-to-point channel code (H2, ϕ2) for BSC(α)

with a decoding Hamming distance spectrum W2 satisfying

1

2

n∑
w=0

∣∣∣P{W2 = w} −
(
n

w

)
αw(1− α)n−w

∣∣∣ ≤ δ, (6.1)

for some δ > 0. We assume that k2 < k1.

Lego Brick 6.2.3 (P2P → Asym): a (ksym, n) point-to-point channel code (fsym, ϕsym) for the

channel p(y|x) with average probability of error ϵsym.
1

1For example, one can use any code that approaches the symmetric capacity of the channel. Note that this code
will be used only in the first transmission block.
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p(y|x)fsym
H1X

n
(2) ϕsym

Ĥ1Xn
(2)

Figure 6.1: A block-Markov coding scheme for an asymmetric channel in the first transmission block

using the code (fsym, ϕsym).

Remark 6.2.1. Since the alphabet size ofW2 is linear in n, the distribution ofW2 can be estimated

for any off-the-shelf channel code via simulations. Hence, condition (6.1) is easily verifiable in

practice. In words, this condition states that the distribution of the decoding Hamming distance

spectrum is δ-away in total variation distance from a Binom(n, α) distribution.

Remark 6.2.2. Let H2 =
[
A B

]
for some nonsingular matrix B. Also, let H̃2 is as defined

in (2.1).

Now, we are ready to describe the coding scheme. For each j ∈ [b], let V n(j) be an i.i.d.

Bern(1/2) random dither shared between the encoder and the decoder, and let Γ(j) : [n] → [n] be

a permutation chosen uniformly at random and shared between the encoder and the decoder. We

describe the encoding procedure starting from the bth block. Given a message M(b) ∈ {0, 1}n−k2 ,
the encoder computes the sequence Zn(b) as follows.

Zn(b) =

[
0

M(b)

]
, (6.2)

where 0 consists of k2 zeros. Then, for each j = b, . . . , 2, the encoder computes the sequences X̃n
(j),

Xn
(j) and Z

n
(j−1) as follows.

X̃n
(j) = ϕ2

(
Zn(j) ⊕ V

n
(j)

)
⊕ Zn(j) ⊕ V

n
(j),

Xn
(j) = Γ(j)

(
X̃n

(j)

)
,

Zn(j−1) =


0

H1X
n
(j)

M(j−1)

 ,
(6.3)

where M(j−1) ∈ {0, 1}k1−k2 . Note that the sequence Zn(j−1) in the (j − 1)-th transmission block

depends on the syndrome vector corresponding to the channel input Xn
(j) in the jth block. Further-

more, notice that the sequences Zn(j) satisfy that H̃2Z
n
(j) = Zn(j) for each j = 2, . . . , b. Finally, in

the first block, the transmitter uses the encoder fsym to encode the syndrome vector H1X
n
(2), where

Xn
(2) is the transmitted sequence in the second block. Fig. 6.1 and Fig. 6.2 show the block diagrams

of the coding scheme in the first block and the remaining blocks, respectively. Note that a loss in

the overall rate is incurred in the first block, where no message is transmitted. However, this loss

decays as 1/b, and, thus, by choosing b large enough, the rate loss becomes negligible.
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p(y|x)
Y n(j)

ϕ1

 0

Ĥ1Xn
(j)

 
0

̂H1Xn
(j+1)

M̂k1−k2
(j)


H̃2

BM Asym Decoder

X̂n
(j)

V n(j)

BM Asym Encoder

Xn
(j)

ϕ2


0

H1Xn
(j+1)

Mk1−k2
(j)


Γ(j)

X̃n
(j) Γ−1

(j)

V n(j)̂̃
X
n

(j)

Figure 6.2: A block-Markov coding scheme for an asymmetric channel in the jth transmission block,

for 2 ≤ j ≤ b− 1.

The following lemma states that under this construction, the distribution of the channel

input Xn
(j) is δ-away in total variation distance from the i.i.d. Bern(α) distribution, for each j =

2, . . . , b.

Lemma 6.2.1. For the arrangement shown in Fig. 6.2, we have

1

2

∑
xn

∣∣∣P{Xn
(j) = xn} − αwt(xn)(1− α)n−wt(xn)

∣∣∣ ≤ δ,
for each j = 2, . . . , b.

Proof. See Appendix 6.A.

At the decoder side, the coding scheme proceeds as follows. In the first transmission

block, the decoder uses the decoder ϕsym to get an estimate Ĥ1Xn
(2) of H1X

n
(2). In the subsequent

blocks, the decoder views (Xn
(j), Y

n
(j)) as realizations of the Slepian–Wolf problem p(x, y), uses the

Slepian–Wolf decoder ϕ1 to recover Xn
(j) using the estimate Ĥ1Xn

(j) from previous blocks, and then

reverse-engineers the operations at the encoder to get an estimate M̂(j) of the message in the jth

block and an estimate ̂H1Xn
(j+1) of the subsequent index.

For the probability of error of the coding scheme, consider the performance of a genie-aided

decoder which recovers an estimate of M(j) in the jth block based on the channel output Y n(j) and

the syndrome vector H1X
n
(j) (which is supplied correctly by a genie regardless of any decoding errors

in previous blocks). Notice that such a decoder would have the same probability of error over the b

blocks as our decoder. To see this, observe that a decoding error can propagate from one block to

another only through an error in the syndrome vector H1X
n
(j). Consider the first block where such

an error happens. Both decoders would make an error in that block, which is precisely an error event

over the b blocks, irrespective of decisions made in subsequent blocks. A similar argument has been

made in the analysis of the successive cancellation decoding of polar codes [6]. Therefore, it suffices

to analyze the error probability of the genie-aided decoder over the b blocks of transmission. Using

similar bounding techniques as in Section 4.1.2, the average probability of error of the genie-aided
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decoder in the jth block can be bounded as

P{M̂(j) ̸=M(j)} ≤ δ + ϵ,

and, thus, the average probability of error of our coding scheme over the b transmission blocks can

be bounded using the union bound as

P
{
M̂(j) ̸=M(j) for some j ∈ [b]

}
≤ (b− 1)(δ + ϵ) + ϵsym,

where ϵsym is the average probability of error of the code used in the first block. The rate of the

coding scheme is given by

R =
(b− 1)(k1 − k2) + n− k1

nb
.

Remark 6.2.3. A point-to-point channel code with a decoding Hamming distance spectrum that

is arbitrarily close in total variation distance to a Binom(n, α) distribution exists for sufficiently

large n if and only if the rate k2/n of the code is larger than 1−H(α) = 1−H(X). To show this,

the same argument of Section 2.3 based on distributed channel synthesis can be used. Similarly, a

Slepian–Wolf code for p(x, y) with arbitrarily small error probability exists for sufficiently large n

if and only if its rate n−k1
n is larger than H(X |Y ). It follows that the rate R of the block-Markov

asymmetric channel coding scheme can be made arbitrarily close to I(X;Y ) for sufficiently large n

and b.

6.3 Lossy Source Coding

Now, we consider the problem of lossy source coding of a Bern(θ) source for some θ ∈
(0, 1/2), as defined in Section 3.2.1. In this part, we construct a coding scheme for this problem

starting from a point-to-point channel code and a lossless source code that satisfy some easily-

verifiable properties. In this case, an assumption about the decoding joint-type spectrum of the

point-to-point channel code will be made. The coding scheme will be defined upon its operation on b

blocks of source sequences. To this end, letD be some desired distortion level, and p(x | x̂) ∼ BSC(D)

be the desired conditional pmf of the source given the reconstruction. Under this conditional pmf,

the distribution of the reconstruction is p(x̂) ∼ Bern(α), where

α =
θ −D
1− 2D

.

The coding scheme is constructed using the following Lego bricks.

Lego Brick 6.3.1 (P2P → Lossy): a (k1, n) linear point-to-point channel code (H1, ϕ1) for the

channel

p̄(x, v | x̂) = pX,X̂(x, x̂⊕ v),
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V n(j)

X̃n
(j)

Ũn(j)Zn(j) Un(j)

Xn
(j)

ϕ1

 0

PUn(j+1)

 Q
Mk1−k2

(j)
Γ(j)

Γ−1
(j)

BM Lossy Encoder

Figure 6.3: Encoder of the block-Markov lossy source coding scheme in the jth coding block, for

2 ≤ j ≤ b.

such that the code’s decoding joint-type spectrum T satisfies

dTV
(
T, Multinomial(n; p000, . . . , p111)

)
≤ δ (6.4)

for some δ > 0, where dTV (., .) denotes the total variation distance and

pi1i2i3 =
1

2
pX,X̂(i1, i2 ⊕ i3), i1, i2, i3 ∈ {0, 1}.

Lego Brick 6.3.2 (Lossless → Lossy): an (n− k2, n) lossless source code (H2, ϕ2) for a BSC(α)

source with average probability of error ϵ such that k2 < k1.

Remark 6.3.1. Condition (6.4) says that the distribution of T is δ-away in total variation dis-

tance from a multinomial distribution. This condition can be easily verified in practice since the

distribution of T can be estimated efficiently for any commercial off-the-shelf code. Recall that a

multinomial random variable M ∼ Multinomial(n; p1, . . . , pK) models the number of counts of each

side of a K-sided die when rolled n times, where p1, . . . , pK are the probabilities of observing each

side. We have

P{M = (m1, . . . ,mK)} = n!

m1! · · ·mK !
pm1
1 · · · p

mK
K

for each (m1, . . . ,mK) such that
∑K
i=1mi = n.

Remark 6.3.2. Let P and Q denote submatrices of H2 such that H2 =

[
P

Q

]
, for some (n− k1)×n

matrix P and (k1 − k2)× n matrix Q.

Fig. 6.3 shows the encoding scheme of the lossy source code, where V n(j) is a random

dither shared with the decoder, and Γ(j) is a random permutation chosen uniformly at random and

shared with the decoder. Similar to the coding scheme of Section 3.2.3, the main idea is to use the

available Lego bricks to generate a sequence Un(j) with a distribution that is “close” to the i.i.d. p(x̂)

distribution and then convey the sequence “losslessly” to the decoder.
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BM Lossy Decoder

X̂n
(j)

X̂n
(j)

ϕ2


0

P̂Un
(j)

Mk1−k2
(j)


̂̃
Un(j)

H̃1

V n(j)  0

̂PUn
(j+1)


Γ−1
(j)

Figure 6.4: Decoder of the block-Markov lossy source code in the jth coding block, for 2 ≤ j ≤ b−1.

The encoding procedure starts from the bth block. For each j = b, . . . , 2, the encoder

computes the sequences Zn(j), Ũ
n
(j), and U

n
(j) as follows.

Zn(j) =

[
0

PUn(j+1)

]
⊕ V n(j),

Ũn(j) = ϕ1

(
Γ−1
(j)(X

n
(j)), Z

n
(j)

)
⊕ Zn(j),

Un(j) = Γ(j)(Ũ
n
(j)),

(6.5)

where PUn(b+1) = 0n−k1 . Notice that, for each j = 2, . . . , b, we have

H̃1Ũ
n
(j) = H̃1Z

n
(j) =

[
0

PUn(j+1)

]
⊕ H̃1V

n
(j). (6.6)

The next lemma states that the distribution of (Xn
(j), U

n
(j)) in Fig. 6.3 is δ-away in total variation

distance from the i.i.d. p(x, x̂) distribution.

Lemma 6.3.1. Let q(xn, un) be the true distribution of (Xn
(j), U

n
(j)). Then, we have

1

2

∑
xn,un

∣∣∣∣∣q(xn, un)−
n∏
i=1

pX,X̂(xi, ui)

∣∣∣∣∣ ≤ δ,
for each j = 2, . . . , b.

Proof. See Appendix 6.B.

Fig. 6.4 shows the decoding scheme of the lossy source code. The decoder uses the lossless

source decoder and the estimate P̂Un(j) of PUn(j) which the decoder had found in previous coding

blocks to compute the reconstruction sequence X̂n
(j). The decoder then reverse-engineers the opera-

tions at the encoder side and computes an estimate ̂PUn(j+1) for the subsequent coding block using

the observation of (6.6), as shown in Fig. 6.4. Using similar arguments as in Section 3.2.3, it can be

shown that the average distortion of the coding scheme over the b blocks can be bounded as

1

b− 1

b∑
j=2

1

n
E[dH(Xn

(j), X̂
n
(j))] ≤ D + δ + bϵ,
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where the factor b in front of ϵ pertains to the use of the union bound on the error probability over

b blocks. In this analysis, we assume that in the first coding block, PUn(2) is passed to the decoder

error-free. The rate of the coding scheme is

R =
(b− 1)(k1 − k2) + n− k1

(b− 1)n
.

Remark 6.3.3. A point-to-point channel code with a decoding joint-type spectrum that is arbitrar-

ily close in total variation distance to a multinomial distribution exists for sufficiently large n if and

only if the rate k1/n of the code is larger than 1−H(X̂ |X). A similar argument as in Section 2.3

based on distributed channel synthesis can be used to show this. Similarly, a lossless source code

for a Bern(α) source with arbitrarily small error probability exists for sufficiently large n if and only

if its rate n−k2
n is larger than H(α) = H(X̂). It follows that the rate R of the block-Markov lossy

source coding scheme can be made arbitrarily close to I(X; X̂) for sufficiently large n and b.

6.4 Other Coding Problems

The two coding schemes presented in Sections 6.2 and 6.3 for the asymmetric channel

coding problem and the lossy source coding problem were constructed starting from Lego bricks

that satisfy some easily-verifiable properties. In a similar way, all other coding schemes that we have

seen in Chapters 3, 4 and 5 can be modified to start from such Lego bricks. For all coding schemes,

the constructions will have a window size of 2, i.e., the encoding and decoding of the current sequence

block will depend only on either the previous block or the subsequent block. This is favorable from

a practical point of view as it allows to reduce the space complexity of the algorithms.

Since the block-Markov constructions do not require any constituent codebooks to be

nested, it follows that one can assemble any set of point-to-point channel codes with good error

correction capabilities (i.e., small probability of error) with any set of point-to-point channel codes

with good shaping properties (i.e., a decoding Hamming distance spectrum that is “close” to a

Binomial, or a decoding joint-type spectrum that is “close” to a Multinomial) to achieve the best

known inner bounds for the problems discussed in this dissertation.

6.5 Concluding Remarks on the Lego-Brick Approach

The Lego-brick framework we developed in Chapters 2–6 is promising, and provides guide-

lines to implement practical coding schemes for network communication. The proposed code con-

structions can achieve larger rates in theory and demonstrate better performance in practice com-

pared to the naive approach of coding over the point-to-point links of a network. Moreover, the

computational complexity of the proposed constructions is governed by the encoding/decoding com-

plexities of the constituent Lego bricks, which can be taken “off-the-shelf”; hence, the constructions

are friendly to hardware implementation using existing coding blocks.
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Two interesting observations that can be made regarding the proposed constructions are the

following. First, one can see some form of duality between some of the constructions. For example,

the encoder of the asymmetric channel coding scheme looks almost identical to the decoder of the

lossy source coding scheme, and vice versa. Such a relation is well-known in the literature and

has been pointed out in [49] and [104]. Nonetheless, note that, in our construction, the asymmetric

channel encoder has a “shaping role”, whereas the lossy source decoder has an “error correction role”.

Although not mathematically precise, this suggests some form of duality between error correction

and shaping in our constructions, which can be seen as analogous to the well-understood packing-

and-covering duality in network information theory. Similar observations can be made between the

Gelfand–Pinkser coding scheme and the Wyner–Ziv coding scheme, between the Marton coding

scheme and the Berger–Tung coding scheme, as well as between the downlink and uplink C-RAN

code constructions. Secondly, as is apparent from most of our constructions, randomization plays an

important role in the design of coding schemes for network communication. The Lego bricks were

often used alongside a “dithering” brick, which generates a binary sequence uniformly at random, or

an “interleaver” brick, which applies a permutation chosen uniformly at random to a binary sequence.

Such randomness can shape signals into a desired structure, and will often be assumed to be shared

between the encoders and decoders. Note that sharing randomness between the transmitter and

the receiver is a common practice in wireless communications, e.g., sharing the (pseudo)random

spreading code in code-division multiple access (CDMA) systems [105] or sharing the interleaving

pattern in 5G NR systems [29].

We end this part of the dissertation by discussing some ideas for future work.

• First, most of our constructions required that the channels are binary-input and/or the sources

are binary sources. It is of particular interest to extend these constructions to channels with

non-binary channel inputs and sources that are non-binary; this would allow one to establish

a general framework for implementing coded modulation techniques for multiuser settings.

• Secondly, all the constructions that we presented in this dissertation allow to transmit at rates

that were already known to be information-theoretically achievable. In doing so, we utilized

tools such as nested linear structures, linear codes with good shaping properties, and block-

Markov coding. The next challenge is to exploit these practically-motivated building blocks in

order to achieve new and tighter inner bounds for open problems in network information

theory.

• Thirdly, to the best of the knowledge of the author, apart from polar codes, there are no

other known low-complexity point-to-point channel codes with a provably vanishing decoding

distance. It would be interesting to study how other codes perform in the decoding

distance regime (compared to the more-prominently studied error probability regime). Ul-

timately, the goal would be to construct new families of point-to-point channel codes
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with the property of a vanishing decoding distance. As we saw, this property can be

crucial for constructing rate-optimal coding schemes in multiuser settings.

With these ideas, we conclude our study on the Lego-brick approach to coding for net-

work communication. In the next chapter, we develop channel coding techniques for a different

communication setting, namely, point-to-point channels with memory.
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Appendix

6.A Proof of Lemma 6.2.1

Consider the block diagram shown in Fig. 6.2. Since Zn(j) ⊕ V
n
(j) is i.i.d Bern(1/2) for each

j = 2, . . . , b, then the sequence X̃n
(j) satisfies that

wt(X̃n
(j)) = dH

(
ϕ2(Z

n
(j) ⊕ V

n
(j)), Z

n
(j) ⊕ V

n
(j)

) d
=W2,

where
d
= denotes equality in distribution and W2 is the decoding Hamming distance spectrum of the

code (H2, ϕ2). It follows that, for any sequence xn with wt(xn) = w, we have that

P{Xn
(j) = xn} =

∑
x̃n:wt(x̃n)=w

P{Γ(j)(x̃
n) = xn}P{X̃n

(j) = x̃n}

=
∑

x̃n:wt(x̃n)=w

w!(n− w)!
n!

P{X̃n
(j) = x̃n}

=
1(
n
w

) P{wt(X̃n
(j)

)
= w}

=
1(
n
w

) P{W2 = w}.

Hence,

1

2

∑
xn

∣∣∣P{Xn
(j) = xn} − αwt(xn)(1− α)n−wt(xn)

∣∣∣ = 1

2

∑
xn

∣∣∣∣∣P{W2 = wt(xn)}(
n

wt(xn)

) − αwt(xn)
(
1− α

)n−wt(xn)

∣∣∣∣∣
=

1

2

n∑
w=0

∣∣∣∣P{W2 = w} −
(
n

w

)
αw(1− α)n−w

∣∣∣∣
≤ δ,

where the last step holds since W2 satisfies condition (6.1).
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6.B Proof of Lemma 6.3.1

Consider the encoding scheme shown in Fig. 6.3. Denote Cn(j) = ϕ1(X̃
n
(j), Z

n
(j)). Since X̃

n
(j)

is i.i.d. according to p(x) and Zn(j) is i.i.d. Bern(1/2), and (X̃n
(j), Z

n
(j)) are independent, we have that

type
(
Cn(j), (X̃

n
(j), Z

n
(j))
)

satisfies condition (6.4). Since Ũn(j) = Cn(j)⊕Z
n
(j), it follows using standard bounding techniques that

dTV

(
type(X̃n

(j), Ũ
n
(j)), Multinomial(n; p00, p01, p10, p11)

)
≤ δ, (6.7)

where pij = pX,X̂(i, j), for i, j ∈ {0, 1}.
Now, let (xn, un) be a pair of sequences such that type(xn, un) = t, where t ≜ (t00, t01, t10, t11)

such that
∑
i,j tij = n. Then, we have that

q(xn, un) =
∑

(x̃n,ũn):
type(x̃n,ũn)=t

P{Γ(x̃n) = xn,Γ(ũn) = un}P{X̃n
(j) = x̃n, Ũn(j) = ũn}

=
∑

(x̃n,ũn):
type(x̃n,ũn)=t

t00!t01!t10!t11!

n!
P{X̃n

(j) = x̃n, Ũn(j) = ũn}

=
t00!t01!t10!t11!

n!
P
{
type(X̃n

(t), Ũ
n
(t)) = t

}
.

Therefore,

1

2

∑
xn,un

∣∣∣∣∣q(xn, un)−
n∏
i=1

pX,X̂(xi, ui)

∣∣∣∣∣ = 1

2

∑
t=(t00,t01,t10,t11):∑

tij=n

∑
xn,un:

type(xn,un)=t

∣∣∣∣∣q(xn, un)−
n∏
i=1

pX,X̂(xi, ui)

∣∣∣∣∣
=

1

2

∑
t=(t00,t01,t10,t11):∑

tij=n

∑
xn,un:

type(xn,un)=t

∣∣∣∣∣∣ t00!t01!t10!t11!n!
P
{
type(X̃n

(t), Ũ
n
(t)) = t

}
−

1∏
i,j=0

p
tij
ij

∣∣∣∣∣∣
=

1

2

∑
t=(t00,t01,t10,t11):∑

tij=n

∣∣∣∣∣∣P
{
type(X̃n

(t), Ũ
n
(t)) = t

}
− n!

t00!t01!t10!t11!

1∏
i,j=0

p
tij
ij

∣∣∣∣∣∣
≤ δ,

where the last inequality holds from (6.7).
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Chapter 7

Joint Channel Estimation and

Polar Coding over Channels with

Memory

In this chapter, we shift our attention to channels with memory. We devise a polar-coding-

based strategy for joint channel estimation and coding over several channel models with memory. We

show that the exploitation of the knowledge of the channel state distribution in channel decoding can

result in substantial decoding performance gains. In Section 7.1, we describe the different channel

models considered in this work, namely, the finite-state Markov channel, the Gauss-Markov channel,

and the flat-fading channel. In Section 7.2, we briefly review some basics of polar coding and set

up the necessary notation. In Section 7.3, the SCTD algorithm will be described for finite-state

Markov channels of any finite order. The algorithm is given in sufficient detail that can allow for

an independent implementation. Section 7.4 presents a joint estimation and decoding scheme that

consists of an “estimation-aware” decoding algorithm for the three channel models, and an iterative

procedure of estimation and decoding that incorporates reliable bits into subsequent iterations of

channel estimation. On the other hand, Section 7.5 describes a joint piloting and encoding scheme

consisting of a pilot arrangement pattern based on shortened polar codes. Section 7.6 is devoted

to our simulation experiments over the different channel models. Finally, Section 7.7 concludes our

work on channels with memory. Let’s start with the channel models.

7.1 Channel Models

In this section, the three channel models considered in this chapter are defined. The

channels in all three models are binary-input with channel input alphabet X = {0, 1}, channel
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state alphabet H and channel output alphabet Y. H is finite in the finite-state channel model

(Section 7.1.1), whereas H = R in the Gauss-Markov channel model (Section 7.1.2), and H = C in

the fading channel model (Section 7.1.3), where R and C are the sets of real and complex numbers,

respectively. We consider N uses of the channels. With a slight abuse of notation, we denote by

XN
1 , Y N1 and HN

1 the channel input, channel output and channel state vectors, respectively, in all

three cases. Throughout this chapter, we will assume that XN
1 and HN

1 are mutually independent,

i.e., the transmitter has no channel state information.

7.1.1 Finite-State Markov Channel

The first channel model that is considered is a finite-stateMth-order Markov channel model

W , where the channel state alphabet H is finite, and the channel state process (Hn)n≥0 is an Mth

order Markov chain. We denote the initial M states of the Markov chain by the M -dimensional

random vector HM
i = (H1−M , . . . ,H−1, H0). The distribution of HM

i will be denoted by π. Recall

that Mth order Markovity implies that for each n > 0 and any sequence hn1−M ∈ Hn+M , we have

that

P{Hn= hn|Hn−1
1−M = hn−1

1−M} = P{Hn= hn|Hn−1
n−M = hn−1

n−M}.

The probability of observing y ∈ Y, given that x ∈ X is transmitted and h ∈ H is the channel state,

will be denoted by W (y|x, h). Note that the channel output alphabet Y is not necessarily finite.

Finite-state Markov channels have been widely used to model error bursts in wireline telephone

networks [106, 107] and later on to model fading channels in mobile radio communications [108].

7.1.2 Gauss-Markov Channel

In a Gauss-Markov channel model, the channel output at time i in a block of length N can

be expressed as

Yi = His(Xi) + Zi, i = 1, . . . , N,

where Xi ∈ X , s : {0, 1} → {1,−1} is the mapping corresponding to antipodal modulation, Zi ∈ R
follows a discrete-time Gaussian noise process with covariance matrix σ2

zI, and Hi ∈ R is the channel

state and is modeled as a first-order Gauss-Markov process with parameter η ∈ (0, 1), i.e.,

Hi = ηHi−1 +Wi, i = 1, . . . , N,

where W1,W2, . . . are i.i.d, zero-mean Gaussians with variance σ2
w. Notice that the channel state

here can take any value on the real line, and thus, is not restricted to a finite set. Such a model has

been previously considered in [109, 110] to model the temporal correlation in fading channels.

98



7.1.3 Fading Channel

We consider Clarke’s isotropic scattering model of the flat-fading channel [111], which is

one of the most widely accepted statistical models of the fading random process. In this model, the

channel state Hi is complex-valued, with independent in-phase and quadrature components Ii and

Qi, each following a Gaussian process with mean µ√
2
and autocovariance function given by

RI [k] = RQ[k] = σ2
hJ0(2πfmk), (7.1)

where σ2
h is the variance of the Gaussian processes, fm = fDTs is the maximum Doppler frequency

normalized by the sampling rate 1/Ts, and J0(.) is the zero-th order Bessel function of the first

kind. Note that the envelope of this complex-valued Gaussian process is a stationary process whose

first-order distribution is Rician with shape parameter ρ = µ2

2σ2
h
and scale parameter Ω = µ2 +2σ2

h.
1

When µ = 0, the model corresponds to the Rayleigh flat-fading channel [112, Chapter 9]. Given

that the channel state Hi follows this model, the channel output at time index i in a block of length

N can be written as

Yi = His(Xi) + Zi, i = 1, . . . , N,

where Xi ∈ X , s : {0, 1} → {1,−1} is the mapping corresponding to antipodal modulation, and Zi

is a zero-mean, complex-valued, circularly-symmetric Gaussian random variable with variance σ2
z .

7.2 Polar Coding Preliminaries

Consider a polar code of block length N = 2n and information set A, with |A| = K, i.e.,

the number of frozen bits is N −K. The code rate is therefore Rcode =
K
N . We denote by UN1 the

information bit vector (which includes frozen bits), and by XN
1 the corresponding codeword, which

is transmitted over a binary-input channel.

The matrix Gn is used to denote the n-fold Kronecker product of the matrix F =

[
1 0

1 1

]
.

Gn is referred to as the base matrix for a polar code of length N = 2n. Note that the generator

matrix of the polar code is the submatrix of Gn formed by taking the rows with indices belonging

to A. One basic property of Gn is that all base matrices of polar codes with block lengths less than

1The shape parameter can be understood as the ratio between the power in the direct line-of-sight path and the
power in other scattered paths. The scale parameter is understood as the total power in all paths.
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Figure 7.1: Polar transformation for a code of length N = 8.

N , i.e., Gn−i, i = 1, . . . , n− 1, appear as sub-matrices of Gn, e.g.

Gn =

[
Gn−1 0

Gn−1 Gn−1

]

=


Gn−2 0 0 0

Gn−2 Gn−2 0 0

Gn−2 0 Gn−2 0

Gn−2 Gn−2 Gn−2 Gn−2

 = · · · , (7.2)

where 0 denotes the all-zero matrix of the appropriate dimension. This simple property will turn

out to be useful in the description of the pilot arrangement pattern based on shortened polar codes

in Section 7.5. Figure 7.1 shows the polar transformation based on G3 for a code of length N = 8.

We proceed now to define some notation that will be useful in our later description of

decoding algorithms. First, we associate each bit in the polar transformation to a variable B,

indexed by a triplet (λ, ϕ, β), where

0 ≤λ ≤ n,

1 ≤ϕ ≤ 2λ,

1 ≤β ≤ 2n−λ.

(7.3)

Thus, the bit variable will be denoted by Bλ,ϕ,β . That is, for any triplet (λ, ϕ, β) that satisfies

(7.3), Bλ,ϕ,β corresponds to a particular bit in the polar transformation. For example, in Figure 7.1,

u81 = (B3,ϕ,1)
8
ϕ=1 and x81 = (B0,1,β)

8
β=1 , and bits in different circled regions at a particular λ

correspond to different values of β. In order to aid in the exposition, we will refer hereafter to index
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λ as the layer, index ϕ as the phase and index β as the branch2. Also, for the sake of brevity, we

will often use the shorthand notation

Λ = 2λ.

In addition to the bit variable Bλ,ϕ,β , we define a probability array variable P , indexed by a

triplet (λ, ϕ, β) satisfying (7.3) and a bit b ∈ {0, 1}, which will be denoted by Pλ,ϕ,β [b]. Analogously,

for Arıkan’s successive cancellation decoder over memoryless channels, one can think of Pλ,ϕ,β [b]

as the likelihood probabilities of the synthetic bit-channels [6, Equations (17) and (18)]. Here,

nonetheless, Pλ,ϕ,β [b] will correspond to an array of probability values that are associated with the

event that the bit Bλ,ϕ,β takes value b. The array size of Pλ,ϕ,β [b] and the analytical expression it

corresponds to will vary in different sections of this chapter. In each case, Pλ,ϕ,β [b] will be explicitly

defined.

7.3 Successive Cancellation Trellis Decoding

After Arıkan’s seminal work on polar coding for BMS channels, attempts followed to apply

polar codes to channels with memory. In [114, 115], Şaşoğlu showed that Arıkan’s recursive construc-

tion polarizes a large class of processes with memory, including ones corresponding to finite-state

Markov channels of any arbitrary finite order. More recently, the authors in [116] showed that the

polarization of Markov channels happens at the same rate as in the memoryless setting. This result

implies that polar codes can attain vanishing error probability over these channels. In [117, 118], a

practical polar decoding algorithm for finite-state first-order Markov channels was proposed, namely,

the successive cancellation trellis decoder (SCTD). The algorithm generalizes successive cancellation

decoding, taking into account the Markov property of the channel state. In this section, we provide

a detailed description of the SCTD algorithm. In comparison to [117] and [118], our description

extends the algorithm to finite-state Markov channels of any finite memory order.

To this end, we will assume that HN
1 follows a finite-state Mth order Markov chain (Sec-

tion 7.1.1). The distribution π of the initial M states of the Markov chain is assumed to be known

to the decoder. As in the memoryless setting, SCTD decoding defines synthetic channels W
(ϕ,β)
λ ,

the recursive structure of which assists in an efficient implementation of the decoder. More precisely,

for a triplet (λ, ϕ, β) satisfying (7.3), the channel W
(ϕ,β)
λ has input alphabet X × HM and output

alphabet YΛ ×X ϕ−1 ×HM , and its conditional probability will be generally denoted by3

W
(ϕ,β)
λ (yΛ, uϕ−1

1 , hMf |uϕ, hMi ),

where hMi ≜ h
(β−1)Λ
(β−1)Λ−M+1 and h

M
f ≜ hβΛβΛ−M+1 represent the initial and finalM states corresponding

to layer λ and branch β, where the dependence on (λ, β) is dropped for notation convenience. Also,

2We follow the same nomenclature as Tal and Vardy’s list decoding paper [113].
3In our description, we will assume that Y is a countable set, yet the decoder for the case when Y is uncountable

follows by simply replacing conditional probabilities with the corresponding densities.

101



although not particularly shown in the notation, yΛ, here, represents a contiguous subvector of the

channel output corresponding to layer λ and branch β, i.e., yΛ ≜ yβΛ(β−1)Λ+1. As an example, in

Figure 7.1, if M = 2, then at layer λ = 2 and branch β = 2, we would have yΛ = y85 , h
M
i = (h3, h4),

and hMf = (h7, h8).

Now, we can proceed to describe the decoding algorithm. Recall that the fundamental

requirement in any polar decoder is to compute, for each 1 ≤ ϕ ≤ N , the probabilities P{Y N1 =

yN1 , U
ϕ−1
1 = ûϕ−1

1 |Uϕ = uϕ}, which can be expressed by

P{Y N1 = yN1 , U
ϕ−1
1 = ûϕ−1

1 |Uϕ = uϕ}

=
∑

(hMi ,h
M
f )

∈H2M

π(hMi )P{Y N1 = yN1 , U
ϕ−1
1 = ûϕ−1

1 , HN
N−M+1 = hMf |Uϕ = uϕ, H

M
i = hMi }

=
∑

(hMi ,h
M
f )

∈H2M

π(hMi )W (ϕ,1)
n (yN1 , û

ϕ−1
1 , hMf |uϕ, hMi )

(7.4)

The main idea in SCTD is that the conditional probabilities W
(ϕ,β)
λ (yΛ, uϕ−1

1 , hMf |uϕ, hMi ) can be

recursively computed, starting from the “base condition”

W
(1,β)
0 (yβ , hβ |xβ , hβ−1

β−M ) = p(hβ |hβ−1
β−M )W (yβ |xβ , hβ), (7.5)

where 1 ≤ β ≤ N and p(hβ |hβ−1
β−M ) are the transition probabilities of the Mth-order Markov chain.

The recursion is formalized in Theorem 1, which can be seen as a recast of [119, Theorem 2] for

Markov channels of any order.

Theorem 1. Let (λ, ϕ, β) satisfy (7.3), and let ψ = ⌈ϕ/2⌉. Then

W
(2ψ−1,β)
λ (yΛ1 , u

2ψ−2
1 , hMf |u2ψ−1, h

M
i )

=
∑

h̃M∈HM

(∑
u2ψ

1

2

(
W

(ψ,2β−1)
λ−1 (y

Λ/2
1 , u2ψ−2

1,o ⊕ u2ψ−2
1,e , h̃M |u2ψ−1 ⊕ u2ψ, hMi )

W
(ψ,2β)
λ−1 (yΛΛ/2+1, u

2ψ−2
1,e , hMf |u2ψ, h̃M )

))
,

(7.6)

W
(2ψ,β)
λ (yΛ1 , u

2ψ−1
1 , hMf |u2ψ, hMi )

=
∑

h̃M∈HM

1

2

(
W

(ψ,2β−1)
λ−1 (y

Λ/2
1 , u2ψ−2

1,o ⊕ u2ψ−2
1,e , h̃M |u2ψ−1 ⊕ u2ψ, hMi )

W
(ψ,2β)
λ−1 (yΛΛ/2+1, u

2ψ−2
1,e , hMf |u2ψ, h̃M )

)
,

(7.7)

where u2ψ1,o and u2ψ1,e denote subsequences of u2ψ1 consisting of odd and even indices, respectively.

Proof. The proof follows in the same way as [118, Theorem 2], while noting that for an Mth-order

Markov channel, (Y Λ
Λ/2+1, X

Λ
Λ/2+1, H

Λ
Λ−M+1) is conditionally independent of (Y

Λ/2
1 , X

Λ/2
1 , HM

i ), given

H
Λ/2
Λ/2−M+1, for any 0 ≤ λ ≤ n and Λ = 2λ.
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Algorithm 1: Successive Cancellation Trellis Decoder

Input: Received vector yN1 , information set A.
Output: Decoded information vector ûN , Decoded codeword x̂N , Bit-channel

likelihoods Lout.

1 for β = 1, . . . , N do // base condition (7.5)

2 for hMi ∈ HM do

3 for hβ ∈ H do

4 hMf ←
(
(hi)

M
2 , hβ

)
5 P0,1,β [0][⟨hMi , hMf ⟩]← p(hβ |hMi )W (yβ |0, hβ)
6 P0,1,β [1][⟨hMi , hMf ⟩]← p(hβ |hMi )W (yβ |1, hβ)

7 for ϕ = 1, . . . , N do

8 computeProb(n,ϕ)

9 if ϕ ∈ Ac then // frozen bit

10 Bn,ϕ,1 ← 0

11 else // apply equation (7.4)

12 Bn,ϕ,1 ← argmax
b∈{0,1}

∑
(hMi ,h

M
f )

∈H2M

π(hMi )Pn,ϕ,1[b][⟨hMi , hMf ⟩]

13 Lout[ϕ]←
∑

hMi ,h
M
f

π(hMi )Pn,ϕ,1[Bn,ϕ,1][⟨hMi , hMf ⟩]

14 if ϕ mod 2 = 0 then

15 updateBitValues(n,ϕ)

16 return
(
ûN = (Bn,ϕ,1)

N
ϕ=1, x̂

N = ûNGn, Lout
)
.

Theorem 1 hints at a decoding algorithm for Mth-order finite-state Markov channels.

Through the recursive computation of the conditional probabilities of W
(ϕ,β)
λ using equations (7.6)

and (7.7), a decoder can make a decision on Uϕ by maximizing P{Y N1 = yN1 , U
ϕ−1
1 = ûϕ−1

1 |Uϕ = uϕ},
which can be evaluated for each uϕ ∈ {0, 1} using equation (7.4). Therefore, in the context of a finite-

state Markov channel, it makes sense to define Pλ,ϕ,β [b] as an array corresponding to the conditional

probabilities of W
(ϕ,β)
λ , where each entry in the array is associated with one tuple (hMi , h

M
f ) ∈ H2M .

That is, for each b ∈ {0, 1} and (hMi , h
M
f ) ∈ H2M , we define

Pλ,ϕ,β [b][⟨hMi , hMf ⟩] =W
(ϕ,β)
λ (yΛ1 , û

ϕ−1
1 , hMf |b, hMi ),

where ⟨hMi , hMf ⟩ is an index corresponding to (hMi , h
M
f ). It follows that Pλ,ϕ,β [b] has a size of |H|2M ,

and is assumed to be initialized to zeros prior to decoding.

Following this description, Algorithms 1, 2 and 3 show an implementation of the SCTD

decoder. Note that Algorithm 3 is identical to [113, Algorithm 4], and is provided here for completion.
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Algorithm 2: computeProb(λ,ϕ)

Input: Layer λ, phase ϕ.

1 if λ = 0 then return

2 ψ ← ⌈ϕ/2⌉
3 if ϕ mod 2 = 1 then computeProb(λ− 1,ψ)

4 for β = 1, . . . , 2n−λ do

5 if ϕ mod 2 = 1 then // apply equation (7.6)

6 for u ∈ {0, 1} do
7 for (hMi , h

M
f ) ∈ H2M do

8 Pλ,ϕ,β [u][⟨hMi , hMf ⟩]←
∑̃
hM

∑
u′

1
2 Pλ−1,ψ,2β−1[u⊕ u′][⟨hMi , h̃M ⟩].

9 Pλ−1,ψ,2β [u
′][⟨h̃M , hMf ⟩]

10 else // apply equation (7.7)

11 u← Bλ,ϕ−1,β

12 for u′ ∈ {0, 1} do
13 for (hMi , h

M
f ) ∈ H2M do

14 Pλ,ϕ,β [u
′][⟨hMi , hMf ⟩]←

∑̃
hM

1
2Pλ−1,ψ,2β−1[u⊕ u′][⟨hMi , h̃M ⟩].

15 Pλ−1,ψ,2β [u
′][⟨h̃M , hMf ⟩]

The notation (hi)
M
2 in Line 4 of Algorithm 1 means the subvector of hMi consisting of the last M −1

entries. It is not difficult to see that since the conditional probabilities ofW
(ϕ,β)
λ need to be computed

for each (hMi , h
M
f ) ∈ H2M , and each requires a summation over |H|M terms

(
equations (7.6) and

(7.7)
)
, it follows that the complexity of the algorithm is O(|H|3MN logN). Thus, the algorithm is

practical only for low memory order and few-to-moderate number of states.

Note that a list decoding version of the algorithm follows almost identically as in the

memoryless setting [113]. Instead of estimating each bit as being either zero or one, one can explore

both possibilities, while maintaining a maximum of L candidate codewords at each step, where L is

the list size. The complexity of the list decoding version of the algorithm is O(|H|3MLN logN).

7.4 Joint Estimation and Decoding

In this section, a joint estimation and decoding scheme at the receiver end is described,

composed of two components. The first component is an “estimation-aware” decoder, which lever-

ages the knowledge from channel estimation in the decoding procedure while averaging over the

distribution of the channel state. A decoder is presented for each channel model described in Sec-
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Algorithm 3: updateBitValues(λ,ϕ)

Input: Layer λ, phase ϕ.

Require: ϕ is even.

1 ψ ← ⌈ϕ/2⌉
2 for β = 1, . . . , 2n−λ do

3 Bλ−1,ψ,2β−1 ← Bλ,ϕ−1,β ⊕Bλ,ϕ,β
4 Bλ−1,ψ,2β ← Bλ,ϕ,β

5 if ψ mod 2 = 0 then updateBitValues(λ− 1,ψ)

tion 7.1. Next, an iterative approach to estimation and decoding is given. The approach uses the

output from list decoding to incorporate reliably-decoded bits into subsequent iterations of channel

estimation.

7.4.1 Estimation-Aware Decoding

The previous description of SCTD in Section 7.3 assumed no knowledge about the realiza-

tions of the channel states. That is, in principle, SCTD can be used to overcome any uncertainty

about the channel without the need of transmitting any pilot symbols, as long as the channel is a

finite-state Markov channel (Section 7.1.1). However, simulations show that SCTD, as described

so far, is far from achieving a reasonable decoding performance in practice, and therefore, the use

of pilot symbols is essential. In the following, we first show that SCTD can be modified to allow

incorporating channel estimates at the pilot symbol positions into channel decoding. We refer to

the modified decoder as an estimation-aware decoder for finite-state Markov channels. We then

propose a successive cancellation decoder for the Gauss-Markov channel (Section 7.1.2), an essential

component of which is using channel estimates in decoding. Finally, by modeling the channel state

process in fading channels as a Gauss-Markov process, the proposed decoder for the Gauss-Markov

channel can be used to decode polar codes over fading channels (Section 7.1.3). Hereafter, we denote

by P the set of pilot symbol positions and by ĥP the channel estimates at the pilot positions. For

now, we will assume that pilot symbols are inserted periodically in between coded symbols to aid

in channel estimation (see Figure 7.2)4. The channel state realizations at the pilot symbol positions

adhere to the correlation properties of the channel state process for each channel model.

Finite-State Markov Channel

The estimation-aware decoder for finite-state Markov channels makes a decision on Uϕ, for

each 1 ≤ ϕ ≤ N , based on the evaluation of the expression in (7.4) conditioned on the channel

4The pilot arrangement scheme described in Section 7.5, however, will align pilot symbols with shortened bits of
a shortened polar code, i.e., in that case, pilot symbols are part of the codeword.
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codeword x
: pilot symbols

Figure 7.2: Conventional piloting scheme

estimates at the pilot positions. That is, the decoder computes, for each 1 ≤ ϕ ≤ N and each

uϕ ∈ {0, 1},
P{Y N1 = yN1 , U

ϕ−1
1 = ûϕ−1

1 |Uϕ = uϕ, HP = ĥP}.

The main observation is that conditioning on the channel estimates ĥP does not alter the

recursive structure of equations (7.6) and (7.7), and the only needed modification to the SCTD

algorithm is in the base condition (7.5), i.e., in the computation of conditional probabilities at layer

λ = 0. Notice that we have

W
(1,β)
0 (yβ , hβ |xβ , hβ−1

β−M , ĥP) = p(hβ |hβ−1
β−M , ĥP)W (yβ |xβ , hβ), (7.8)

where p(hβ |hβ−1
β−M , ĥP) can be efficiently computed using the Markovity of the channel state process.

To see this, notice that

p(hβ |hβ−1
β−M , ĥP) =

p(ĥP |hββ−M+1)p(hβ |h
β−1
β−M )

p(ĥP |hβ−1
β−M )

,

where p(hβ |hβ−1
β−M ) are the transition probabilities of the Markov chain, and p(ĥP |hβ−1

β−M ), 1 ≤ β ≤ N ,

can be computed recursively by noticing that

p(ĥP |hβ−1
β−M ) =

∑
hβ

p(hβ |hβ−1
β−M )p(ĥP |hββ−M+1).

Therefore, the estimation-aware decoder substitutes lines 5 and 6 in Algorithm 1 by the corre-

sponding computation designated by equation (7.8). Clearly, this modification does not alter the

complexity of the algorithm, which remains at O(|H|3MLN logN). Note that the proposed decoder

computes decoding metrics by conditioning on the channel estimates at the pilot symbol positions,

while the channel at the data symbol positions is averaged over its Markov distribution. In other

words, the proposed decoding algorithm does not use any interpolation between channel estimates.

Gauss-Markov Channel

The SCTD-based decoder described earlier cannot be readily used over a Gauss-Markov

channel model (Section 7.1.2). Since the channel states in this model can take any value on the

real line (i.e., do not belong to a finite set), equations (7.6) and (7.7) cannot be evaluated for every

possible (h0, hf ) ∈ R2. Therefore, a successive cancellation decoder that overcomes this distinction
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of the Gauss-Markov channel model is described here. We refer to this decoder as the Gauss-

Markov successive cancellation decoder. The basic assumption of the decoder is that pilot symbols

are inserted in between sub-blocks of the codeword that are of size that is a power of 2. Therefore,

in what follows, we let S = 2s denote the spacing between pilot symbols.

As for finite-state channels, the goal for an “estimation-aware” polar decoder over the

Gauss-Markov channel is to compute, for each 1 ≤ ϕ ≤ N ,

p(ûϕ−1
1 )f

(
yN1 | (û

ϕ−1
1 , uϕ), ĥP

)
=
∑
uNϕ+1

1

2N−1

∫
f
(
yN1 , hPc | (û

ϕ−1
1 , uϕ, u

N
ϕ+1), ĥP

)
δhPc ,

=
∑
uNϕ+1

1

2N−1

∫
f(hPc | ĥP)

N∏
i=1

e
− (yi−his((u

N
1 Gn)i))

2

2σ2z√
2πσ2

z

δhPc ,

(7.9)

where ûϕ−1
1 are the previously decoded bits at the ϕ-th decoding stage and ĥP are channel estimates

at the pilot symbol positions. Notice that for each uNϕ+1, the evaluation of the integral in (7.9) can

be done very efficiently due to the Gaussianity of the channel state process. However, the evaluation

of (7.9) still requires a summation over 2N−ϕ terms, which blows up the decoding complexity.

The Gauss-Markov successive cancellation decoder overcomes the exponential decoding complexity

by making use of the conditioning on the channel estimates at the pilot positions. More precisely,

conditioned on the channel estimates ĥP , one can view the marginalization over the joint distribution

of the channel states as a product of marginalizations over smaller blocks, each of length equal to

the pilot spacing. This follows from the first-order Markovity of the Gauss-Markov channel. When

the pilot spacing S is a power of 2, this decomposition is in line with the polar coding recursive

structure.

The Gauss-Markov successive cancellation decoder is best understood through an example.

Consider a polar code of length N = 16. Let pilot symbols be inserted in between sub-blocks of the

codeword of length S = 4 (see Figure 7.2), and let ĥP = (ĥp1 , ĥp2 , ĥp3) be the channel estimates at

the pilot symbol positions. Let x161 be any channel input vector. Since the channel state process

in a Gauss-Markov channel is first-order Markov, the conditional density f(y161 |x161 , ĥP) can be

factorized as

f
(
y161 |x161 , ĥP

)
= f

(
y41 |x41, ĥp1

)
f
(
y85 |x85, ĥp1 , ĥp2

)
f
(
y129 |x129 , ĥp2 , ĥp3

)
f
(
y1613 |x1613, ĥp3

)
.

This factorization is the essence of the proposed decoder for the Gauss-Markov channel. Note that

this equality wouldn’t hold without the conditioning on ĥP . Since the pilot spacing is a power of 2,

each term in this factorization corresponds to a smaller constituent polar code of length 4. Therefore,

one can proceed in the same way as in polar decoding for memoryless channels except that the base

case of the recursion would correspond to one term of this factorization.
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To this end, recall the notation defined in Section 7.2, in particular the probability variable

Pλ,ϕ,β [b], where b ∈ {0, 1} and the triplet (λ, ϕ, β) satisfies (7.3). In the context of the Gauss-Markov

channel, it is meaningful to define Pλ,ϕ,β [b] as

Pλ,ϕ,β [b] = p(ûϕ−1
1 )f

(
yΛ | (ûϕ−1

1 , b), ĥP
)

(a)
= p(ûϕ−1

1 )f
(
yΛ | (ûϕ−1

1 , b), ĥprev, ĥnext
)
,

(7.10)

where ĥprev and ĥnext are channel estimates at the previous and next pilot positions respectively, and

S = 2s is the pilot spacing. The equality (a) follows because the channel state process is first-order

Markov. Notice that, in this case, Pλ,ϕ,β [b] corresponds to a single probability value (i.e., an array

of size 1). From (7.9) and (7.10), it follows that, for each 1 ≤ ϕ ≤ N , we have

p(ûϕ−1
1 )f

(
yN1 | (û

ϕ−1
1 , uϕ), ĥP

)
= Pn,ϕ,1[uϕ].

Algorithms 4 and 5 show a high-level description of the Gauss-Markov successive cancel-

lation decoder. The main distinction compared to the SCTD decoder described previously is that

at layer λ = s, the Gauss-Markov successive cancellation decoder computes the probability pairs at

each branch by an exact evaluation through summing over all possible binary vectors in that branch

(Lines 9 and 10 in Algorithm 5). In other words, the base case here corresponds to the layer λ = s,

and not λ = 0. This allows the decoder to use the channel estimates in evaluating the conditional

densities.

Notice that given the information vector at layer λ and branch β, (Y Λ, HΛ) is jointly

Gaussian. Therefore, for each u ∈ {0, 1}S , the evaluation of the integral in Line 9 of Algorithm 5 can

be efficiently done since it corresponds to the marginalization of a jointly Gaussian random variable.

It follows that the computation done in Line 10 requires summing over at most 2S−1 terms, which

makes the decoding complexity of the Gauss-Markov successive cancellation decoder in the order of

O(2SN logN). Note that the description of the algorithm directly entails a list decoding version

of it, analogous to the memoryless setting [113], the complexity of which becomes O(2SLN logN),

where L is the list size. The fundamental premise here is that the pilot spacing S is often small,

and thus this decoding complexity is still acceptable for practical implementations. Indeed, the

pilot spacing for the demodulation reference signal (DMRS) in the 5G New Radio (NR) standards

is limited to 4 over various channels, e.g. the physical downlink control channel (PDCCH) over

which polar codes are used [120]. In case a large pilot spacing is required, we propose a complexity

reduction method in Section 7.6.3, which uses interpolation between channel estimates at certain

positions to reduce the decoding complexity.

Fading Channel

To design a decoder for the fading channel model (Section 7.1.3) that takes into account the

inherent channel memory, the idea is to model the fading processes as Gauss-Markov processes and re-
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Algorithm 4: Gauss-Markov Successive Cancellation Decoder

Input: Received vector yN1 , channel estimates ĥP at pilot positions, pilot spacing S,

information set A.
Require: S = 2s for some s.

Output: Decoded information vector ûN , Decoded codeword x̂N , Array of bit-channel

likelihoods Lout.

1 for ϕ = 1, . . . , N do

2 computeProb GM(yN1 ,ĥP,S,n,ϕ)

3 if ϕ ∈ Ac then // frozen bit

4 Bn,ϕ,1 ← 0

5 else

6 Bn,ϕ,1 ← argmax
b∈{0,1}

Pn,ϕ,1[b]

7 if ϕ mod 2 = 0 then

8 updateBitValues(n,ϕ)

9 ûN = (Bn,ϕ,1)
N
ϕ=1; x̂

N = ûNGn; Lout = (Pn,ϕ,1[ûϕ])
N
ϕ=1

10 return
(
û, x̂, Lout

)
.

use the Gauss-Markov successive cancellation decoder. More precisely, since a Gauss-Markov process

can be seen as a first-order autoregressive process, we use autoregressive modeling to approximate

the underlying fading processes (Ii)i≥0 and (Qi)i≥0 [121]. That is, the processes (Ii)i≥0 and (Qi)i≥0

can be approximated by the first-order autoregressive processes (Îi)i≥0 and (Q̂i)i≥0
5, such that, for

1 ≤ i ≤ N ,

Îi = γÎi−1 + V̂i + c,

Q̂i = γQ̂i−1 + Ṽi + c,
(7.11)

where γ ∈ (0, 1), c ∈ R is a constant, and V̂1, V̂2, . . . and Ṽ1, Ṽ2, . . . are i.i.d, zero-mean Gaussian

random variables with variance σ2
v . By solving the Yule-Walker equations [121, Chapter 4], we get

that the appropriate parameters of the autoregressive model should be

γ =
RI [1]

RI [0]
,

c =
(
1− γ

) µ√
2
,

σ2
v = RI [0]−

(RI [1])
2

RI [0]
,

(7.12)

5Note that a higher-order autoregressive process would be a better approximation to the fading process, but an
appropriate decoder should be designed in that case.
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Algorithm 5: computeProb GM(yN1 ,ĥP,S,λ,ϕ)

Input: Received vector yN1 , channel estimates ĥP at pilot positions, pilot spacing S,

layer λ, phase ϕ.

1 if λ < s then return;

2 ψ ← ⌈ϕ/2⌉
3 if λ = s then

4 for β = 1, . . . , 2n−λ do

5 ûϕ−1
1 ← (Bλ,ξ,β)

ϕ−1
ξ=1

6 prev← previous pilot index

7 next← next pilot index

8 for b ∈ {0, 1} do
9 Pλ,ϕ,β [b]←

∑
u∈{0,1}S :
uϕ1=(ûϕ−1

1 ,b)

1
2S−1

∫
f(yΛ1 , h

Λ
1 |u, ĥprev, ĥnext)δhΛ1

10 else

11 if ϕ mod 2 = 1 then

12 computeProb GM(yN1 ,ĥP,S,λ− 1,ψ)

13 for β = 1, . . . , 2n−λ do

14 if ϕ mod 2 = 1 then

15 for u ∈ {0, 1} do
16 Pλ,ϕβ [u]←

∑
u′

1
2Pλ−1,ψ,2β−1[u⊕ u′].Pλ−1,ψ,2β [u

′]

17 else

18 u← Bλ,ϕ−1,β

19 for u′ ∈ {0, 1} do
20 Pλ,ϕ,β [u

′]← 1
2Pλ−1,ψ,2β−1[u⊕ u′].Pλ−1,ψ,2β [u

′]

where RI [.] is as defined in equation (7.1). Note that autoregressive modeling of fading channels is

not new and has been previously considered in [122].

By using the Gauss-Markov successive cancellation decoder described previously and as-

suming that the underlying Gaussian processes of the fading process follow the model in (7.11),

one can design a decoder for the flat-fading channel. This decoder takes into account the inherent

memory in the channel (up to first-order), in contrast to baseline decoders used in practice which

completely ignore the channel memory in decoding. Note that a similar approach can be followed

for any channel model with memory, provided that the distribution of the channel state process is

known to the receiver.
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7.4.2 Iterative Estimation and Decoding

The second component of the proposed decoder is an iterative process that alternates

between channel estimation and decoding in order to boost the decoding performance. Before we

describe the iterative scheme, we state a helpful observation.

From equation (7.4), it can be seen that for ϕ = N , the polar decoder computes the

conditional probability given by

P{Y N1 = yN1 , U
N−1
1 = ûN−1

1 |UN = uN}.

Notice that, for a particular ûN ∈ {0, 1}, this quantity is proportional to the likelihood of the

codeword x̂N1 = ûN1 Gn. That is, we have that

P{Y N1 = yN1 , U
N−1
1 = ûN−1

1 |UN = uN} ∝ P{Y N1 = yN1 |XN
1 = x̂N1 }.

In other words, if the likelihood of the decoded codeword is of interest, one need not compute it

separately; it comes “for free” from the SCTD decoder.

Based on this observation, an iterative process of channel estimation and decoding is pro-

posed. The idea is to utilize the output from list decoding of polar codes to identify bits that have

been decoded reliably. Once these bits are identified, another iteration of channel estimation is

performed, where the set of reliably decoded bits, along with the original set of pilot symbols, is

used for estimation. This gives a larger set of channel estimates, which can boost the decoding

performance in subsequent iterations.

What remains is to understand how the output from list decoding can be used to identify

reliably-decoded bits. Recall that the output from list decoding is a list of L candidate codewords

{(x̂N1 )1, . . . , (x̂
N
1 )L}, along with the likelihood of each codeword P{Y N1 = yN1 |XN

1 = (x̂N1 )j}, 1 ≤
j ≤ L (based on the previous observation). Using this output, the fraction of candidate codewords

that assign each bit to 0 and the fraction of codewords that assign it to 1 are computed, where each

candidate codeword is weighted by its channel likelihood. More specifically, after the kth iteration

of decoding, we compute, for each 1 ≤ i ≤ N and b ∈ {0, 1},

w
(k)
i (b) =

L∑
j=1,

(x̂i)j=b

P{Y N1 = yN1 |XN
1 = (x̂N1 )j}

L∑
j=1

P{Y N1 = yN1 |XN
1 = (x̂N1 )j}

,

where (x̂N1 )j is the jth candidate codeword from list decoding, (x̂i)j is its ith bit, and P{Y N1 =

yN1 |XN
1 = (x̂N1 )j} is its channel likelihood. w

(k)
i (b) represents the “weighted” fraction of candidate

codewords in the list that take the value b in the ith position. If w
(k)
i (b) ≥ δ for some threshold

parameter δ ∈ ( 12 , 1], then the ith bit is declared reliable, and its value b is used in a subsequent

iteration of channel estimation. That is, if P(k) is the set of bit positions whose known values are
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used in the kth iteration of channel estimation, then we have that

P(k+1) = P ∪
{
i : w

(k)
i (b) ≥ δ for some b ∈ {0, 1}

}
,

where P is the set of pilot symbol positions. Needless to mention, at the first iteration (prior to any

decoding), the channel estimator uses only the pilot symbols for estimation, i.e., P(1) = P. Notice

that when δ = 1, the bits that are agreed upon by all candidate codewords are deemed reliable and

used in subsequent iterations of channel estimation.

The iterative estimation and decoding scheme is summarized in Algorithm 6, where SCTD list

and GaussMarkovDecoder list are the list decoding versions of the estimation-aware SCTD decoder

and the Gauss-Markov successive cancellation decoder, respectively. The outputs u, x and Lout of

these decoders are all L × N matrices, where each row corresponds to a candidate codeword. We

also assume that the rows are ordered in decreasing order of channel likelihood. Note that, in Line

7 of Algorithm 6, Lout[j,N ] is the likelihood of the last bit-channel for the jth candidate codeword,

and x[j, i] is the ith bit of the jth candidate codeword.

7.5 Joint Piloting and Encoding

At the encoder side, we propose a pilot arrangement scheme that uses the special structure

of the base matrix Gn to fix some bits within the transmitted polar codeword. These bits are used as

pilot bit symbols to assist in channel estimation. We show that if the spacing between the pilot bit

symbols is chosen to be a power of 2, the low encoding complexity of polar codes can be preserved at

O(N logN). The scheme can be viewed as a shortening scheme for polar codes, where the shortened

bits are aligned with the pilot symbol positions (i.e., shortened bits are actually transmitted), and

the knowledge of their values is used at the receiver side for both channel estimation and channel

decoding.

Let P be the desired shortening pattern, i.e., the set of desired shortened bit positions6.

We would like to design the polar code to have xP = 0 for any codeword xN . This implies that there

are certain parity check constraints that the information vector uN should satisfy. Therefore, we

think of uN as a codeword chosen from a codebook C̃ governed by these parity check constraints (see

Figure 7.3). If GAP denotes the submatrix of Gn consisting of rows with indices in A and columns

with indices in P, then we should have that xP = 0 = uAGAP (conventionally, frozen bits are set

to 0). It is easy to see, therefore, that the parity check matrix of C̃ is H̃ = (GAP)
T , and thus the

code C̃ is fully defined.

It is not guaranteed though that the encoding of C̃ can be done efficiently. Nonetheless, we

argue in the following that the encoding complexity of C̃ is linear in the blocklength if the spacing

between shortened bits is chosen to be a power of 2. To this end, we assume S = 2s is the spacing

6Since the shortened bits are actually intended to be transmitted as pilot symbols, we think of P as the set of pilot
positions, as before.
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Algorithm 6: Iterative Estimation and Decoding

Input: Received vector yN1 , pilot set P, pilot spacing S, information set A, list size L,
number of iterations Imax, threshold parameter δ.

Output: Decoded information vector û.

1 for k = 1, . . . , Imax do

2 if k = 1 then

// pilot symbols are zero bits

3 P(1) ← P, B(1) ← 0|P|

4 else

// identify reliably decoded bits

5 R ← ∅, B ← ∅
6 for i = 1, . . . , N , b ∈ {0, 1} do

7 wi(b)←

L∑
j=1,x[j,i]=b

Lout[j,N ]

L∑
j=1

Lout[j,N ]

8 if wi(b) > δ then

9 R ← R∪ {i}, B ← B ∪ {b}

10 P(k) ← P ∪R, B(k) ← 0|P| ∪ B

11 ĥP(k) ← ChannelEstimation(yN1 ,P(k),B(k))
12 [u,x,Lout]← SCTD list(yN1 , ĥP(k) , S,A, L)

// Replace with GaussMarkovDecoder list for Gauss-Markov channel

13 return ûN = (u[1, i])Ni=1.

between shortened bits, and define Np =
N
S to be the number of shortened bits (i.e., pilot symbols)

within a coded block. Now, consider the set Pm defined by

Pm =
{
m+ (k − 1)S : 1 ≤ k ≤ Np

}
, 1 ≤ m ≤ S.

Given S, Pm represents a family of shortening patterns, indexed by the position m of the first

shortened bit, where the spacing between shortened bits is S. In the following, we will show that

for any 1 ≤ m ≤ S such that S = 2s, one can design a shortened polar code with shortening pattern

Pm, while maintaining the O(N logN) encoding complexity.

Recall from equation (7.2) that the base matrices for polar codes with small blocklengths

appear as sub-matrices of the base matrix of codes of larger blocklength. For example, if Np = 8,
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Figure 7.3: Shortening of polar codes

then Gn can be written as

Gn =



Gs 0 0 0 0 0 0 0

Gs Gs 0 0 0 0 0 0

Gs 0 Gs 0 0 0 0 0

Gs Gs Gs Gs 0 0 0 0

Gs 0 0 0 Gs 0 0 0

Gs Gs 0 0 Gs Gs 0 0

Gs 0 Gs 0 Gs 0 Gs 0

Gs Gs Gs Gs Gs Gs Gs Gs


, (7.13)

where each 0 here is the S × S all-zero matrix. Notice that, for the shortening pattern Pm, the

parity check constraints in H̃ correspond to columns of Gn that are spaced by S, starting from

the m-th column. Due to the lower-triangular structure of Gn, the information vector uN can be

divided into smaller subvectors of length S, where each subvector should satisfy exactly one parity

check equation, irrespective of other subvectors. The parity check equation is governed by the mth

column of Gs. Therefore, the encoding of C̃ boils down to the encoding of Np single-parity-check

codes, each with blocklength S. Hence, the encoding complexity of C̃ is O(NpS) = O(N), and the

overall encoding complexity (including polar encoding) is O(N logN). Finally, we point out that

the shortening scheme can also be used in conjunction with high-order modulation techniques (e.g.,

QPSK), where consecutive bits are desired to be shortened. In this case, each subvector of uN should

satisfy multiple parity check equations, provided that the spacing between shortened symbols is a

power of 2. Since these equations are governed by columns of Gs, the encoding complexity can be

maintained at O(N logN).

This shortening scheme improves on existing shortening schemes (e.g. [123]), since the bits

in uN involved in the parity check constraints do not have to belong to the frozen set, but can be

actual information bits. Additionally, the scheme gives flexibility in choosing the index of the first

shortened bit, and the only requirement is that the spacing between shortened bits is a power of

2. Note that this construction can be viewed as a concatenation of a parity-check code and a polar
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code, which can be exploited by a successive cancellation list decoder for early pruning of candidate

paths [124]. Also, a benefit of this piloting scheme can arise from implementation considerations, as

the scheme allows a fixed-sized decoder to accommodate various pilot densities.

The shortening scheme, albeit being independently interesting, is not the focus of this

chapter. In our proposed scheme, we think of the shortened bits as pilot symbols that are transmitted

over the channel. We also focus on the special case where the pilot symbol positions (equivalently,

the shortened bit positions) are multiples of a power of 2, i.e., when pilot symbols are sent starting

from the Sth position. Thus, in the remainder of this chapter, our joint piloting-encoding scheme

will consider the set P∗ of pilot symbol positions, where

P∗ ≜ PS =
{
kS : 1 ≤ k ≤ Np

}
. (7.14)

This particular pilot set is considered since it allows for a lower-complexity design of the polar de-

coder, particularly when the channel state process is a first-order Markov process (e.g., the Gauss-

Markov successive cancellation decoder of Section 7.4.1). The following lemma and corollary high-

light the effect of this choice of P∗ on polar encoding.

Lemma 7.5.1. GP∗cGP∗ = 0.

Proof. Notice that the last column of Gs has a weight of 1, and GS,S = 1 (i.e., the 1 appears in the

Sth row). Since Gn can be written as the concatenation of Gs matrices and all-zero matrices (take

(7.13) as an example), then GP∗cGP∗ = 0.

Corollary 2. If P∗ is the set of pilot positions, i.e., if xP∗ = 0, then uP∗ = 0.

Proof. Notice that xP∗ = 0 = uP∗GP∗P∗ +uP∗cGP∗cP∗ . Since GP∗cP∗ = 0, then uP∗ belongs to the

null space of (GP∗P∗)T . Since GP∗P∗ is a lower triangular matrix with all diagonal entries being

nonzero, then it is full-rank and the null space of (GP∗P∗)T includes only the all-zero vector. Thus,

uP∗ = 0.

This suggests the following shortened polar code design. Since uP∗ = 0 whenever xP∗ = 0,

then the indices in P∗ can be incorporated into the frozen set of the polar code. That is, the

information set A of the polar code is chosen to be the indices of the bit-channels with the highest

symmetric capacity, excluding the ones associated with P∗. Thus, the rate of the underlying polar

code is unaltered due to this scheme.

At the decoder side, the knowledge of the pilot bit positions within the codeword can be

exploited. More precisely, the introduction of code bits that are known to the decoder creates bits

in the polar transformation with conceptually infinite reliability. When used in conjunction with the

estimation-aware decoder described in Section 7.4.1, the proposed piloting-encoding scheme can be

leveraged by the decoder. In particular, the decoder for finite-state Markov channels would apply a
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further modification to the base condition (7.8) as follows.

W
(1,β)
0 (yβ , hβ |xβ , hβ−1

β−M , ĥP∗) =



0 if β ∈ P∗, xβ = 1,

0 if β ∈ P∗, hβ ̸= ĥβ ,

W (yβ |xβ , hβ) if β ∈ P∗, hβ = ĥβ ,

p(hβ |hβ−1
β−M , ĥP∗)W (yβ |xβ , hβ) otherwise.

(7.15)

In principle, this is equivalent to setting an infinite reliability to the measurement received at position

β ∈ P∗. On the other hand, when the proposed piloting scheme is used over a Gauss-Markov channel,

the Gauss-Markov successive cancellation decoder modifies line 10 of Algorithm 5 by adding the

condition uS = 0 in the summation. This exploits the known fact that the last bit within the branch

is a pilot bit.

7.6 Simulation Results

7.6.1 Comparison Setup with Separate Estimation and Coding

In this section, the proposed schemes will be compared with a baseline solution of separate

estimation and coding, adapted to each of the channel models of Section 7.1. At the transmitter

side, this solution consists of inserting pilot symbols periodically between coded symbols to assist

in channel estimation. At the receiver end, channel estimation is performed at the pilot symbol

positions first; then, an interpolator is utilized to get channel estimates at the data symbol positions,

and, finally, conventional successive cancellation decoding of polar codes follows assuming the channel

estimates are correct (Figure 1.4a).

Notice that the joint estimation and decoding scheme of Sections 7.4 is independent from

the joint piloting and encoding scheme presented in Section 7.5. That is, one can use each of

the two schemes alongside their corresponding counterpart from the baseline solution of separate

estimation and coding, outlined in the previous paragraph. This gives rise to four possible piloting-

coding schemes, as shown in Table 7.1. For example, when the joint piloting-encoding scheme

is used alongside a separate estimator-decoder, this means that the pilot arrangement pattern of

Section 7.5 based on shortened polar codes is used to embed pilot symbols within a codeword,

whereas channel estimation, interpolation, and conventional successive cancellation decoding are

performed successively at the receiver end.

In the following, the schemes will be compared for the same overall communication rate,

which is defined as the ratio of the number of information bits to the total number of channel uses.

Notice that when the separate piloting-encoding scheme is used (i.e., when pilot symbols are inserted

in between coded bits), the communication rate is

Rcomm =
Ksep

N +Np
, (7.16)
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Table 7.1 Table that shows the considered encoder-decoder pairs, along with the section number

where the proposed joint scheme is described.

Estimation-Decoding

Separate Joint

Piloting-

Encoding

Separate None (Baseline) Section 7.4

Joint Section 7.5 Section 7.4 +

Section 7.5

where Np is total number of pilot symbols transmitted. On the other hand, when the joint piloting-

encoding scheme is used (Section 7.5), the communication rate is

Rcomm =
Kjoint

N
, (7.17)

since pilot symbols are embedded within a polar codeword. Furthermore, the different schemes

will be simulated for various pilot densities, and the results will be shown for the pilot spacing that

achieves the best block error rate performance for each scheme (and at each SNR value). This allows

to compare the whole end-to-end communication schemes for the same overall communication rate.

Finally, we point out that for the construction of the polar codes (i.e., the choice of the information

set A), we use the construction based on the Gaussian approximation [125], assuming the underlying

channel is a binary-input AWGN channel.

For brevity of exposition, we will refer in the sequel to the joint piloting and encoding

scheme of Section 7.5 as simply the “joint encoding” scheme, and to the joint estimation and decoding

scheme of Section 7.4 as the “joint decoding” scheme. Similar reference will be made to the separate

piloting and coding schemes.

7.6.2 Finite-State Markov Channels

The different piloting-coding schemes are simulated over the finite-state Markov channel

model described in Section 7.1.1. We consider a second-order Markov channel (M = 2), with

H = {−1,+1}, given by the following input-output relation

Yi = His(Xi) + Zi, i = 1, . . . , N,

where s and Zi are as defined in Section 7.1.2, and Hi ∈ H is the channel state and follows a

second-order Markov chain (i.e., M = 2) with transition probabilities

θ1 = P(Hi = +1 |Hi−1 = −1, Hi−2 = −1)

= P(Hi = −1 |Hi−1 = +1, Hi−2 = +1) = 1/64,

θ2 = P(Hi = +1 |Hi−1 = −1, Hi−2 = +1)

= P(Hi = −1 |Hi−1 = +1, Hi−2 = −1) = 1/2.
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Figure 7.4: Comparison of block error probability performance of the different encoding and decoding

schemes using a polar code of blocklength N = 1024 over a finite-state second-order Markov channel.

The numbers on the plots correspond to the pilot spacing at which the performance was achieved.

The initial state HM
i = (H−1, H0) of the Markov chain is chosen according to the stationary distri-

bution of the Markov chain.

Channel estimation at the pilot symbol positions is done through an application of the

Viterbi algorithm [126], using the stationary first-order distribution of the Markov chain. For the

separate estimator-decoder, channel estimation is followed by interpolation to get estimates at the

data symbol positions, which can be done by computing, for i /∈ P,

ĥi = argmax
hi∈H

p(hi |ĥP),

where ĥP is the vector of channel estimates at the pilot symbol positions, and p(hi|ĥP) can be

efficiently computed using the Markovity of the channel state process.

Figure 7.4 shows the block error rate performance of the different schemes over this channel

model for an overall communication rate Rcomm = 1
2 . The polar code has a block length N = 1024,

and the decoder uses a list size L = 32. The iterative estimation and decoding approach described

in Section 7.4.2 uses a threshold parameter δ = 1, and the block error rate performance in the first

and second iteration is plotted7. At each SNR value, the pilot spacing at which the block error rate

7It has been verified through simulations that the performance gain of the iterative approach is negligible beyond
the second iteration.
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is achieved is shown on the plot of each scheme. Note that this would be the pilot spacing at which

the best performance of the scheme is achieved.

In addition to the previously described schemes, Figure 7.4 shows also the performance of a

joint decoding scheme that assumes that the channel’s underlying Markov chain is its stationary first-

order approximation (brown curves), i.e., the decoder in this case only uses the first-order memory

in the Markov channel. This essentially reduces the decoding complexity of the joint decoder from

O(|H|6LN logN) to O(|H|3LN logN). In constrast, the separate estimator and decoder require

an application of the Viterbi algorithm for channel estimation and interpolation, followed by an

application of the successive cancellation list decoder of polar codes, the total complexity of which

becomes O(|H|2N + LN logN). The small additional complexity incurred by the decoder that

considers the first-order approximation of the channel is compensated by a significant performance

gain over the separate estimator and decoder (magenta curve). Along the same lines, the comparison

with the joint decoder that considers the “true” second-order Markov distribution of the channel

state (red curves) highlights the significance of a joint decoder that takes into account the inherent

(second-order) memory in the channel, even for the same encoding scheme at the transmitter side.

A similar conclusion can be made when comparing the separate and joint decoders for the same

separate encoding scheme at the transmitter side (black and blue curves).

On a separate note, the gain from joint decoding is achieved at a larger pilot spacing

compared to the schemes of separate decoding. That is, an improved performance can be achieved

while sending a smaller number of pilot symbols. As this might seem counter-intuitive at first notice,

the reasons are attributed to the following:

• For the joint encoding scheme based on shortened polar codes, the choice of the information

set A is not only based on the bit-channels with the highest symmetric capacities, but also on

the set P∗ of shortened bit positions. This significantly affects the performance of the polar

code when the pilot spacing is small, where the number of shortened bits is large.

• For the separate encoding scheme on the other hand, a small pilot spacing means a larger

number of pilot symbols are transmitted, and thus a larger code rate. Recall that the schemes

are compared for the same overall communication rate (equations (7.16) and (7.17)).

Finally, by comparing the piloting-encoding schemes for the same decoding strategy (red and blue

curves or the magenta and black ones), one can notice that the gain from joint piloting and encoding

seems to be small in this case.

7.6.3 Gauss-Markov Channel

The different schemes are simulated for the Gauss-Markov channel model of Section 7.1.2

and compared for an overall communication rate Rcomm = 1
3 . The polar code has a block length

N = 1024, and the decoder uses a list size L = 32. The parameters of the Gauss-Markov channel are

119



7 7.5 8 8.5 9 9.5 10 10.5 11

SNR (dB)

10
-4

10
-3

10
-2

10
-1

10
0

B
lo

c
k

 e
rr

o
r 

p
ro

b
a

b
il

it
y

4 4
4

4

4
4

4

4

4

4

4

4

4

4

4

8

8

8

8

8

8

8

8

8

8

Figure 7.5: Comparison of block error probability performance of the different encoding and decoding

schemes over a Gauss-Markov channel with parameters η = 0.99 and σ2
w = 0.0199. The numbers on

the plots correspond to the pilot spacing at which the performance was achieved.

η = 0.99 and σ2
w = 0.0199. This corresponds to a channel state process whose stationary distribution

is N (0, 1). Figure 7.5 shows the simulation results, where, as before, the number above the plot of

each scheme corresponds to the pilot spacing over which the best block error rate performance of

the scheme was achieved. Note that for joint decoding, the Gauss-Markov successive cancellation

decoder described in Section 7.4.1 is used.

For channel estimation, minimum mean square error (MMSE) estimation is considered.

If P is the set of pilot positions, it is well known that the MMSE estimate of HP given YP is

ĤP = E[HP |YP ]. Using the Gaussian assumption of the channel state process, it can be shown that

(HP , YP) is jointly Gaussian, and ĤP can be calculated in closed form by

ĤP = ΣHP (ΣHP + σ2
zI)

−1YP ,

where (ΣHP )ij =
( σ2

w

1−η2
)
η|i−j|S , 1 ≤ i, j ≤ |P|, is the covariance matrix of HP , and S is the pilot

spacing.

For the separate decoding scheme, interpolation follows after channel estimation. At the

ith data symbol position, the interpolator minimizes the mean square error of the channel states at

the data symbol positions, given the channel estimates at the pilot positions. That is, for i /∈ P, the
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interpolator computes

ĥi = E[Hi |ĤP = ĥP ]

(a)
= E[Hi |Hprev = ĥprev, Hnext = ĥnext],

where ĥprev and ĥnext are the channel estimates at the previous and next pilot positions, respectively,

and (a) follows by the first-order Markovity of the process. Using the Gaussianity of channel states,

it is not difficult to show that

ĥi =
ηd1(1− η2d2)ĥnext + ηd2(1− η2d1)ĥprev

1− η2S
,

where d1 = next− i and d2 = i− prev.

The results in Figure 7.5 clearly show the improvement that both the joint encoding and

joint decoding schemes achieve. Note that similar results have been seen for a wide range of other

parameters of the Gauss-Markov channel. The superiortiy of the joint encoding scheme compared to

the separate scheme is attributed to the smaller code rate (due to embedding pilot symbols within

the codeword), as well as the decoder’s prior knowledge of the bit values at the shortened positions,

which is utilized during decoding (Section 7.5).

Notice that the performance of the joint decoding scheme is achieved at a pilot spacing

S = 8. Since the complexity of the proposed decoder might be large for this pilot spacing (recall that

the complexity of the Gauss-Markov successive cancellation decoder is O(2SLN logN)), we present

here a simple complexity reduction method that can reduce the decoding complexity. The idea

is to use interpolation to get channel estimates at certain intermediate positions between the pilot

symbols, and then utilize the proposed decoder given the interpolated estimates. This can be viewed

as a middle solution between the separate decoder which uses interpolation to get estimates at all

data symbol positions, and the proposed decoder which does not perform any interpolation between

the channel estimates. For example, for a pilot spacing of S = 8 and a set of pilot symbol positions

P = {8, 16, 24, 32, . . .}, one can use the interpolation technique outlined earlier to get estimates of

the channel at the positions {4, 12, 20, 28, . . .}. Since estimates would be now available at a spacing

of B = 4, the Gauss-Markov successive cancellation decoder can be utilized, the complexity of which

becomes O(2BLN logN). For a small B (e.g., B = 4), this complexity is very reasonable and close

to that of the successive cancellation list decoder of polar codes. Figure 7.5 shows the performance of

this complexity reduction method. Clearly, it still significantly outperforms the separate estimator

and decoder, with a comparable decoding complexity.

7.6.4 Fading Channels

The piloting-coding schemes are now applied to the fading channel model described in

Section 7.1.3. Figures 7.6, 7.7, and 7.8 show the simulation results for the different coding schemes

over a Rayleigh fading channel with normalized Doppler frequency fm = 0.06 (shape parameter

ρ = 0 and scale parameter Ω = 1), a Rayleigh fading channel with fm = 0.1 (shape parameter ρ = 0
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Figure 7.6: Comparison of block error probability performance of the different encoding and decoding

schemes over a Rayleigh fading channel with normalized Doppler frequency fm = 0.06. The numbers

on the plots correspond to the pilot spacing at which the performance was achieved.

and scale parameter Ω = 1), and a Rician fading channel with fm = 0.06 (shape parameter ρ = 1

and scale parameter Ω = 1), respectively. The schemes are compared for an overall communication

rate Rcomm = 1
2 using a polar code of block length N = 1024 and a decoder with list size L = 32.

Linear MMSE (LMMSE) is used for channel estimation at the pilot symbol positions. If P
is the set of pilot positions, the LMMSE estimator of the channel states, given the channel outputs,

is

ĤP = Σ̃HP (Σ̃HP + σ2
zI)

−1YP ,

where (Σ̃HP )ij = 2RI [|i − j|S], 1 ≤ i, j ≤ |P|, is the covariance matrix of HP , S is the pilot

spacing, and RI [.] is the autocovariance function of the underlying Gaussian processes, as defined

in (7.1).

For the separate decoding scheme, interpolation between channel estimates is done through

a cubic spline interpolator, which is shown to have a better performance than other interpolators in

the literature over the Rayleigh and Rician fading channels (see [127, 128] as examples).

Several observations can be made from the simulation results:

• For the same encoding scheme, the joint estimator-decoder always has a superior block er-

ror rate performance compared to the separate estimator-decoder. This highlights again the

significance of a decoder that takes into account the inherent channel memory while decoding.
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Figure 7.7: Comparison of block error probability performance of the different encoding and decoding

schemes over a Rayleigh fading channel with normalized Doppler frequency fm = 0.1. The numbers

on the plots correspond to the pilot spacing at which the performance was achieved.

• For the same decoding scheme, comparing the separate and joint encoders reveals that the

joint encoding scheme improves the block error rate performance when the normalized Doppler

frequency is fm = 0.06 (Figure 7.6 and Figure 7.8), whereas it falls behind for the faster-varying

channel (Figure 7.7) with fm = 0.1. We believe that this is the case because fast-varying

channels require a small pilot spacing; however, as pointed out before, this limits the design

of the shortened polar code of the joint encoding scheme.

• The iterative estimation and decoding scheme of Section 7.4.2 has recorded performance gains

in the second iteration of all simulation results of the joint decoding scheme8.

7.7 Concluding Remarks

The simulation results presented in this chapter are promising and open the door for further

study of polar decoding algorithms that take into account the inherent memory in the channel state

process. The decoding methods we developed still utilize pilot symbols to track the variations of the

channel at the pilot symbol positions, but avoid the naive scheme of interpolation to get channel

8Note that even larger gains in the second iteration have been recorded when a smaller overall communication rate
was considered. Refer to [129] for a simulation result for Rcomm = 1

4
over a finite-state first-order Markov channel.
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Figure 7.8: Comparison of block error probability performance of the different encoding and decoding

schemes over a Rician fading channel with normalized Doppler frequency fm = 0.06. The numbers

on the plots correspond to the pilot spacing at which the performance was achieved.

estimates at the data symbol positions prior to decoding. Further, a piloting scheme based on

shortened polar codes has shown to improve the decoding performance over several channel models.

As future work, it is of particular interest to reduce the complexity of the proposed decoding

algorithms. In this chapter, we have proposed two methods that would allow for such complexity

reduction (the first-order approximation for finite-state Markov channels, and the interpolation-

based method for the Gauss-Markov successive cancellation decoder). It would be interesting to

further improve the decoding complexities, especially for the finite-state Markov channel. Another

direction that would be worth exploring is the potential application of the proposed joint estimation

and coding scheme to other channel models with memory. For example, an important application

is channels with a state that is statistically dependent on the channel input (e.g., the intersymbol

interference channel).
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Chapter 8

Polar Codes for Multiple

Description Coding

In this chapter, we consider the multiple description coding problem. We describe a polar

coding scheme that can achieve the entire El Gamal–Cover inner bound for this problem without

any time-sharing. In Section 8.1, we give an overview of the literature on polar coding for the

multiple description coding problem. In Section 8.2, we describe some polarization results over the

multiple access channel. Specifically, we briefly describe the joint polarization technique introduced

in [130] and the polarization based on monotone chain rule expansions [131]. Our coding scheme that

achieves all points on the dominant face of the El Gamal–Cover rate region without time-sharing is

described in Section 8.3. Finally, we conclude in Section 8.4.

8.1 Introduction

Recall the multiple description coding (MDC) problem that was described in Section 3.5.

As mentioned before, the optimal rate-distortion region for this problem is not known in general. A

number of random-coding-based achievability results have been proposed in the literature [79, 80, 81].

A primitive component in these coding schemes is a joint typicality encoding that generates two

descriptions from which we can obtain arbitrarily correlated reconstructions. While producing the

best known achievability results, joint typicality encoding is nontrivial to implement in a time/space

efficient manner, as it involves multiple codeword-sequence detection at the core of its operation.

In this chapter, we look into implementing joint typicality encoding at low-complexity using polar

codes [6].

Using polar codes to implement joint typicality encoding was previously considered by [132]

for the MDC problem. The coding scheme in [132] targets a corner point of the El Gamal–Cover
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Figure 8.1: El Gamal–Cover inner bound for a fixed pmf p(y, z |x). The dominant face of this region

is highlighted in red.

rate region [79] for this problem (see equation (3.8)) and is based on the joint polarization technique,

which was initially proposed in [130] in the context of multiple access channels (MAC’s). The polar

coding scheme in [132] is insufficient to achieve the entire El Gamal–Cover inner bound for the MDC

problem without time-sharing. Therefore, in this chapter, we explore polar coding schemes that can

implement joint typicality encoding in full generality. By exploring Arıkan’s polarization technique

based on chain rule expansions of the mutual information [131], which was initially proposed in the

context of Slepian–Wolf coding, we show that the proposed polar coding scheme can achieve the

entire EGC inner bound without any time-sharing.

To this end, we will focus on the El Gamal–Cover (EGC) inner bound for the MDC problem.

An equivalent form of this bound is given as follows [133].

Theorem 3 (El Gamal–Cover inner bound [79, 133]). A rate pair (R1, R2) is achievable for the

multiple description problem with distortion triple (D0, D1, D2) if

R1 ≥ I(X;Y ),

R2 ≥ I(X;Z),

R1 +R2 ≥ I(X;Y,Z) + I(Y ;Z)

(8.1)

for some conditional pmf p(y, z|x) and some deterministic mappings ϕ0 : Y ×Z → X̂0, ϕ1 : Y → X̂1,

and ϕ2 : Z → X̂2 such that D0 ≥ E[d0(X,ϕ0(Y, Z))], D1 ≥ E[d1(X,ϕ1(Y ))], and D2 ≥ E[d2(X,ϕ2(Z))].

Here Y and Z can be seen as the two descriptions representing the source X, and functions

ϕj , j = 0, 1, 2, are the reconstruction functions based on the available descriptions at each decoder.

For a fixed p(y, z|x) and functions ϕj , j = 0, 1, 2, the subset of achievable rate pairs (R1, R2) that

satisfy R1 + R2 = I(X;Y,Z) + I(Y ;Z) is called the dominant face of rate–distortion region, as

illustrated in the red line of Figure 8.1.
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8.2 Polarization over Multiple Access Channels

8.2.1 Joint Polarization Technique

In this section, we review the joint polarization technique introduced in [130]. Consider a

two-user MAC p(y|x1, x2), as defined previously in Section 4.3, and recall the achievable MAC rate

region (equation (4.8)),

R1 ≤ I(X1;Y |X2),

R2 ≤ I(X2;Y |X1),

R1 +R2 ≤ I(X1, X2;Y ).

for some fixed input pmf p(x1)p(x2). Similar to the MDC region, the rate pairs (R1, R2) that satisfy

R1 +R2 = I(X1, X2;Y ) in the above region is called the dominant face of the MAC region.

In [130], a technique, termed joint polarization, is proposed. For N = 2n, define the polar

transform: let UN = XN
1 GN and V N = XN

2 GN for GN = BNFN , where BN is the bit-reversal

matrix defined in [6] and FN = F⊗n
1 is the n-th power Kronecker product of the matrix

F1
∆
=

[
1 0

1 1

]
.

Similar to the single-user case, two independent uses of W are transformed into two MACs W− and

W+, as depicted in Figure 8.2. Consecutively, by applying n levels of this transformation, N = 2n

different MAC channels are created. For i ∈ [N ], consider the mutual information triple(
I(Ui;Y

N |U i−1, V i),

I(Vi;Y
N |U i, V i−1),

I(Ui, Vi;Y
N |U i−1, V i−1)

)
.

It is shown in [130] that, as n goes to infinity, the mutual information triple approaches one of the

five points in following set with high probability

(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1), (1, 1, 2).

In other words, five extremal channels are approached for a two-user MAC, as compared to two

in the single-user case (either noise-free or pure noise channels). The point (0,0,0) correspond to

the case when the output provides no information about any of the two inputs. The points (1,0,1)

and (0,1,1) correspond to the cases when the output provides full information about one of the

inputs but provides no information about the other input. The point (1,1,2) corresponds to the case

when the output provides full information about both inputs. Finally, the point (1,1,1) is a pure

contention channel: if any of the two users communicates at zero rate, then the output will provide

full information about the other user’s input.
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Figure 8.2: Channel splitting operation for two uses of a two-user MAC under the technique of joint

polarization
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Figure 8.3: Five extremal channels for MAC.

Coding over these extremal channels is simple: either send an information bit or freeze the

bit to some known value by the decoder, depending on the corresponding extremal channel. For the

(1,1,1) channel, simply assign an information bit to one of the users arbitrarily while freezing the

other user’s input. It is shown in [130] that the constructed polar code can achieve some rate point

on the dominant face of the MAC region.

Note however that the above joint polarization technique does not achieve any rate point

in the MAC region. This is because joint polarization only considers a single order in expanding

(UN , V N ) in the mutual information term, namely

I(UN , V N ;Y N ) =

N∑
i=1

I(Ui, Vi;Y
N |U i−1, V i−1).

Thus, the symbols are decoded successively in the order (U1, V1), (U2, V2), · · · , (UN , VN ). By ex-

ploiting different decoding orders, one can achieve different points on the dominant face of the MAC

region. This motivates the next part.
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8.2.2 Polarization Based on Monotone Chain Rules

Now we give an overview of the scheme proposed by Arıkan in [131] which achieves any point

on the dominant face of the MAC region. The scheme is based on exploiting all possible expansions

of the joint mutual information between the channel inputs and outputs. Let UN = XN
1 GN and

V N = XN
2 GN be the random variables induced by the polar transform of XN

1 and XN
2 respectively.

Consider now the expansions of the form

2N∑
i=1

I(Si;Y
N |Si−1),

where S2N = (S1, . . . , S2N ) is a monotone permutation of (UN , V N ), i.e., S2N is a permuta-

tion where the relative order of the elements of both UN and V N is preserved. For example,

(U1, U2, U3, U4, V1, V2, V3, V4) and (U1, V1, U2, V2, U3, V3, U4, V4) are monotone permutations of (U4, V 4),

but (U1, U2, U3, U4, V1, V4, V3, V2) is not because the order on (V1, V2, V3, V4) is not preserved. S2N

is assumed to be known by both transmitters and the receiver. Also, let SU and SV denote the set

of indices of S2N such that Si = Uk and Si = Vk respectively and define the rates

R1 =
1

N

∑
i∈SU

I(Si;Y
N |Si−1),

R2 =
1

N

∑
i∈SV

I(Si;Y
N |Si−1).

The main contribution of [131] is that the pair (R1, R2) can approach any rate pair on

the dominant face of the capacity region by selecting a valid permutation S2N and that the mutual

informations I(Si;Y
N |Si−1) become polarized with increasing N (i.e., asymptotically approach ei-

ther 0 or 1). Also, it is shown that permutations of the form S2N = (U i, V N , UNi+1) are sufficient to

guarantee this result. Namely, the following theorem holds:

Theorem 4 ([131]). For each ϵ > 0 and β < 1/2, and rate pair (Rx, Ry) on the dominant face of

the MAC region, there exists an N and a permutation S2N = (U i, V N , UNi+1) for some i where

(i) |R1 −Rx| < ϵ and |R2 −Ry| < ϵ

(ii)
N − |F1|

N
> R1 − ϵ and

N − |F2|
N

> R2 − ϵ,

where

F1 = {1 ≤ i ≤ 2N : i ∈ SU , I(Si;Y N |Si−1) < 2−N
β

},

F2 = {1 ≤ i ≤ 2N : i ∈ SV , I(Si;Y N |Si−1) < 2−N
β

}.
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8.3 Polar Codes for the MDC problem

8.3.1 MDC-MAC Duality

Polar codes have been considered in [132] for the multiple description coding problem.

Based on a joint polarization technique similar to [130], a polar coding scheme is shown to achieve

one point on the dominant face of the EGC inner bound. The key point in this result is an MDC-

MAC duality, that we outline in this section. Consider again the MDC problem described with source

X and descriptions (Y, Z). Let the random variables (X,Y, Z) be defined over Fq, where Y and Z

are each uniformly distributed over Fq. Such an assumption is justified since any random variable

can be approximated arbitrarily well by another that is uniformly distributed over a sufficiently large

alphabet size q through a deterministic mapping. Given a probability mass function p(x, y, z) for the

MDC problem, the induced conditional distribution p(x|y, z) can be viewed as a MAC with inputs

(Y,Z) and outputX. Recall that for fixed MAC distribution p(x|y, z) where pY,Z(y, z) = pY (y)pZ(z),

the rate region is the set of non-negative rate pairs (R1, R2) such that

R1 ≤ I(X,Z;Y ),

R2 ≤ I(X,Y ;Z),

R1 +R2 ≤ I(X;Y, Z).

In comparison with the MDC rate region in (8.1), it can be seen that the two regions will have the

same sum-rate if Y and Z are independent. Figure 8.4 shows the two regions in the case that Y and

Z are independent. This is not necessarily true for the MDC problem in general, where Y and Z

are the two descriptions of the source. Nevertheless, the independence of the two descriptions can

be achieved via a “dithering step” [132]: Let Z
′
be a random variable uniformly distributed over Fq

and independent of (X,Y, Z). Define X̃ = (X,Z ′), Ỹ = Y and Z̃ = Z ⊕ Z ′. Then clearly Ỹ and Z̃

are independent and the following holds:

I(X̃; Ỹ ) = I(X;Y ),

I(X̃, Z̃; Ỹ ) = I(X,Z;Y ),

I(X̃; Z̃) = I(X;Z),

I(X̃, Ỹ ; Z̃) = I(X,Y ;Z).

(8.2)

Also, we have that

I(X̃; Ỹ , Z̃) + I(Ỹ ; Z̃) = I(X̃; Ỹ , Z̃)

= I(X̃; Ỹ ) + I(X̃; Z̃ |Ỹ ) + I(Ỹ ; Z̃)

= I(X̃; Ỹ ) + I(X̃, Ỹ ; Z̃)

= I(X;Y ) + I(X,Y ;Z)

= I(X;Y, Z) + I(Y ;Z).
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Hence, the EGC rate region does not change under this transformation.

Following this, it can be shown that, similar to a MAC, the sum-rate on the dominant face

of the EGC region is preserved under the polar transformation. Also, we have that

I(X̃; Ỹ , Z̃) = I(X;Y, Z) + I(Y ;Z)

= I(X;Y ) + I(X,Y ;Z)

= I(X̃; Ỹ ) + I(X,Y ;Z)

(8.3)

and, similarly,

I(X̃; Ỹ , Z̃) = I(X̃; Z̃) + I(X,Z;Y ). (8.4)

Hence, it follows from the results of [130] for the polarization of I(X,Z;Y ) and I(X,Y ;Z) that

I(X̃; Ỹ ) and I(X̃; Z̃) also polarize. Hence, five extremal regions are approached asymptotically for

the MDC problem as well. On each of these regions, encoding follows naturally from the MAC case.

Figure 8.5 shows the extremal regions for the MDC problem, where ∆ = log2 q.

It is also shown in [132] that the induced distribution from the polar transformation satisfies

the distortion constraints, and consequently one rate pair on the dominant face of the EGC region

can be achieved asymptotically using this scheme.

In what follows, we argue that the whole dominant face of the EGC region can be achieved,

if we consider different monotone chain rule expansions of the mutual information (i.e. similar to

the approach of [131]), while still satisfying the distortion constraints imposed by the problem.

8.3.2 Proposed Scheme

We now describe the proposed polar coding scheme for the MDC problem. Let (Xi, Yi, Zi)

be N i.i.d. copies of (X,Y, Z), i = 1, . . . , N distributed according to pX,Y,Z(x, y, z) where N = 2k is
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the code block length. As indicated before, we assume that random variables Y and Z are uniformly

distributed over Fq. The induced distribution from the polar transformation PXN ,UN ,V N is

pXN ,UN ,V N (x
N , uN , vN )

=
∑
yN

∑
zN

N∏
i=1

pX,Y,Z(xi, yi, zi)p(u
N |yN )p(vN |zN ),

where

p(uN |yN ) = 1{uN=yNGN},

p(vN |zN ) = 1{vN=zNGN}.

The polar coding scheme is defined by two parameters (S2N , β), where S2N is a monotone chain

rule for UNV N , as defined in [131], and β is a threshold parameter where 0 < β < 1/2. We also

consider two subsets F1 and F2 of {1, 2, . . . , 2N}, defined as follows:

F1 = {1 ≤ i ≤ 2N : i ∈ SU , I(Si;Y N |Si−1) < 2−N
β

},

F2 = {1 ≤ i ≤ 2N : i ∈ SV , I(Si;Y N |Si−1) < 2−N
β

}.
(8.5)

Encoding: For each i ∈ F1 or i ∈ F2, generate si at random over Fq. The frozen symbols are

generated once and informed to both the encoder and the decoder, and are fixed throughout the

communication. If i /∈ F1 and i /∈ F2, then si will take value a ∈ Fq with probability given by
PXN,Si (x

N ,(si−1,a))

PXN,Si−1 (xN ,si−1)
. So description 1 will be sFC1 = {si : i /∈ F1, i ∈ SU} and description 2 will be

sFC2 = {si : i /∈ F2, i ∈ SV }.

Decoding: Decoder 1 will form uN using the first description and the known frozen symbols of

u. Then it will generate yN = uNBNGN and apply ϕ1 to each symbol of yN and the output will

be the reconstruction X̂N
1 . Similarly decoder 2 will form vN using the first description and the

known frozen symbols of v. Then it will generate zN = vNBNGN , and apply ϕ2 to each symbol
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of zN as reconstruction X̂N
2 . Decoder 0 forms uN and vN , generates yN and zN and applies ϕ0 to

(yi, zi), i = 1, 2, · · · , N and gets reconstruction X̂N
0 .

Analysis of average distortion: Now we show that this scheme satisfies the distortion constraints.

Note that the encoding procedure described above only approximates p(xN , s2N ). We want to show

that the excess distortion due to this approximation is bounded. First define the distribution p̂ to

be the distribution induced by our encoding procedure. It follows that

p̂(si |si−1, xN ) =

{
1
q if i ∈ F1 or i ∈ F2

p(si|si−1, xN ) otherwise.

Let D̂j , j = 0, 1, 2 be the expected distortions under distribution p̂, while D∗
j , j = 0, 1, 2 be the

expected distortions under p. The following theorem states that the difference between the two

distortions can be made arbitrarily small.

Theorem 5. For any ϵ > 0, there exists a large enough blocklength N such that |D̂j −D∗
j | < ϵ, j =

0, 1, 2.

Proof. First note that

|D̂1 −D∗
1 | =

∣∣∣Ep̂[d(N)
1 (XN , ϕ

(N)
1 (UNBNGN ))]− Ep[d(N)

1 (XN , ϕ
(N)
1 (UNBNGN ))]

∣∣∣
≤ dmax

∑
xN ,s2N

∣∣p̂(xN , s2N )− p(xN , s2N )
∣∣.

Similarly,

|D̂2 −D∗
2 | ≤ dmax

∑
xN ,s2N

∣∣p̂(xN , s2N )− p(xN , s2N )
∣∣,

|D̂0 −D∗
0 | ≤ dmax

∑
xN ,s2N

∣∣p̂(xN , s2N )− p(xN , s2N )
∣∣.

Now we have∑
xN ,s2N

∣∣p̂(xN , s2N )− p(xN , s2N )
∣∣ = ∑

xN ,s2N

p(xN )
∣∣p̂(s2N |xN )− p(s2N |xN )

∣∣
=

∑
xN ,s2N

p(xN )
∣∣ 2N∏
i=1

p̂(si |xN , si−1)−
2N∏
i=1

p(si |xN , si−1)
∣∣

(a)
=

∑
xN ,s2N

p(xN )

∣∣∣∣∣
2N∑
i=1

(p(si |xN , si−1)− p̂(si |xN , si−1))
( i−1∏
j=1

p(sj |xN , sj−1)

N∏
j=i+1

p̂(sjix
N , sji−)

)∣∣∣∣∣
≤

2N∑
i=1

∑
xN ,s2N

p(xN )

∣∣∣∣∣(p(si |xN , si−1)− p̂(si |xN , si−1))
( i−1∏
j=1

p(sj |xN , sj−1)

N∏
j=i+1

p̂(sjix
N , sji−)

)∣∣∣∣∣
=

2N∑
i=1

∑
xN ,si

p(si−1, xN )
∣∣(p(si |xN , si−1)− p̂(si |xN , si−1))

∣∣,
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where (a) follows since

K∏
i=1

Ai −
K∏
i=1

Bi =

K∑
i=1

(Ai −Bi)
i−1∏
j=1

Aj

K∏
j=i+1

Bj .

Therefore we have for j = 0, 1, 2,

|D̂j −D∗
j | ≤ dmax

2N∑
i=1

Ei,

where Ei =
∑q−1
si=0 Ep[

∣∣p(si|XN , Si−1)− p̂(si|XN , Si−1)
∣∣]. We have two cases:

1) Case 1: i ∈ F1 or i ∈ F2

Ei =

q−1∑
si=0

Ep
[
|p(si |XN , Si−1)− 1

q
|
]

(a)

≤
√
(2 log−1 e)I(XN , Si−1;Si)

≤
√
(2 log−1 e)δ,

where (a) follows from Pinsker’s inequality and δ is a threshold parameter such that δ = O(2−Nβ ).

2) Case 2: i /∈ F1 and i /∈ F2. In this case, clearly Ei = 0.

Combining these two cases, we get that for j = 0, 1, 2,

|D̂j −D∗
j | ≤ dmax(2N)

√
(2 log−1 e)δ

= O(2−N
β
′

),

for any β
′ ∈ (0, β).

Achieving the entire EGC rate region: We will now show that our scheme can approach any

point on the dominant face of the EGC region arbitrarily closely. First, define the rate pairs:

R1 =
1

N

∑
i∈SU

I(Si;X
N |Si−1),

R2 =
1

N

∑
i∈SV

I(Si;X
N |Si−1).

In an approach similar to Theorem 2 in [131], we can show that the terms I(Si;X
N |Si−1) asymp-

totically approach 0 or 1, and that

N − |F1|
N

→ R1 and
N − |F2|

N
→ R2

where F1 and F2 are as defined in (8.5). Also, adapting an analysis similar to [131], we can directly

see that if (UN , V N ) is a pair obtained from (Y N , ZN ) via the polar transformation defined in
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Section 8.2.1, then any monotone chain rule expansion on UN , V N should satisfy

R1 ≥ I(X;Y ),

R2 ≥ I(X;Z),

R1 +R2 = I(X;Y,Z).

In general, corner points of this region are not necessarily the corner points of the EGC rate region.

However, following the “dithering step” defined in section 8.3.1, we know that:

I(X̃; Ỹ , Z̃) = I(X;Y,Z) + I(Y ;Z).

Therefore, obtaining (UN , V N ) from Ỹ N , Z̃N via the polar transformation, it follows that any mono-

tone chain rule expansion on UN , V N should satisfy

R1 ≥ I(X̃; Ỹ ) = I(X;Y ),

R2 ≥ I(X̃; Z̃) = I(X;Z),

R1 +R2 = I(X̃; Ỹ , Z̃) = I(X;Y,Z) + I(Y ;Z),

with equality for the first inequality if S2N = (UN , V N ) and equality for the second inequality if

S2N = (V N , UN ). Thus, the corner points can be achieved, and achieving any other point on the

dominant face follows directly from Theorem 4. This completes the proof.

8.4 Concluding Remarks

We have presented in this chapter a polar coding scheme that achieves the entire El Gamal–

Cover inner bound for the multiple description coding problem. We have seen that choosing different

decoding orders can achieve different points on the dominant face of the rate region. Also, a crucial

step in the proof is the independence of the two descriptions which can be ensured through a dithering

argument.
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