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ARTICLE

Deep phenotyping of Alzheimer’s disease
leveraging electronic medical records identifies
sex-specific clinical associations
Alice S. Tang 1,2,3✉, Tomiko Oskotsky 1,4, Shreyas Havaldar5, William G. Mantyh6, Mesude Bicak5,7,

Caroline Warly Solsberg 8,9,10, Sarah Woldemariam 1, Billy Zeng3, Zicheng Hu 1, Boris Oskotsky 1,

Dena Dubal 9, Isabel E. Allen11, Benjamin S. Glicksberg 5,7 & Marina Sirota 1,4✉

Alzheimer’s Disease (AD) is a neurodegenerative disorder that is still not fully understood.

Sex modifies AD vulnerability, but the reasons for this are largely unknown. We utilize two

independent electronic medical record (EMR) systems across 44,288 patients to perform

deep clinical phenotyping and network analysis to gain insight into clinical characteristics and

sex-specific clinical associations in AD. Embeddings and network representation of patient

diagnoses demonstrate greater comorbidity interactions in AD in comparison to matched

controls. Enrichment analysis identifies multiple known and new diagnostic, medication, and

lab result associations across the whole cohort and in a sex-stratified analysis. With this data-

driven method of phenotyping, we can represent AD complexity and generate hypotheses of

clinical factors that can be followed-up for further diagnostic and predictive analyses,

mechanistic understanding, or drug repurposing and therapeutic approaches.
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A lzheimer’s disease (AD) is the most common cause of
dementia, making up 60–80% of cases, with a large and
increasing burden on patients, caregivers, and society1.

AD is characterized by brain atrophy and accumulation of beta-
amyloid plaques and tau tangles seen on brain pathology after
death. The disease erodes memory and cognitive functions,
causing interference with daily activities and contributing to
emotional, social, and economic burden on patients and their
families. AD is incurable and challenging to understand and
diagnose. One reason AD is difficult to study is because it is a
complex, heterogeneous, and multifactorial disease that takes
many years to manifest2. This complexity, along with the slow
insidious progression of the disease, makes it difficult to fully
characterize disease phenotypes and associations.

Sex is one factor that has been shown to be important in AD,
with a higher prevalence in women afflicted by the disease at a 2:1
ratio compared to men1. While women have an increased esti-
mated lifetime risk of AD, there is mixed evidence of risk between
men and women of the same age3,4. Recent findings show that sex
contributes to differing vulnerabilities or resilience to AD, as men
with AD progress to death quicker5,6 while women with this
disease show higher cognitive resilience despite increased tau
pathology5,7,8. How sex contributes to these differences in pre-
valence and vulnerability is a question of fervent interest among
researchers in the AD field9. Recent studies in mice demonstrate
that a second X chromosome may contribute to AD resilience6.
Further sex-specific human studies in Alzheimer’s disease also
show sex modification of AD risk10, progression11, and molecular
phenotype11–15. As such, sex is an important factor to consider in
studying and phenotyping AD.

While many efforts have evaluated the association of individual
risk factors with AD, unbiased approaches to these associations
are limited. Prior work, largely hypothesis-driven, focused on
select comorbidities associated with AD, such as hypertension16,
vascular disorders17, diabetes18, obesity19, and others20–22.
However, how sex modulates AD complexity and heterogeneity
has still not been fully explored. Prior big data approaches to AD
have examined genotype-phenotype associations23,24 and mole-
cular analyses14,25–27 to characterize AD and sex differences12,13.
Other work on phenotyping patients with AD using clinical data
has examined neuroimaging28, neuropsychiatric phenotype29,
chart reviews30, and billing records independently. Thus, an
unbiased comprehensive approach to phenotype AD and identify
sex associations using full clinical records is needed.

With the rise in electronic medical record (EMR) use over the
past decade31, there is abundant underutilized clinical data on
patients covering comorbidities, medications, and lab values. This
type of data set provides a great opportunity to deeply investigate
diseases and identify associations to facilitate understanding dis-
ease prevention and progression. Recently, EMR has been utilized
for other diseases for creating comorbidity networks32, identifying
disease subtypes33 and predicting disease outcomes34,35 high-
lighting the potential of utilizing EMR data to extract insight and
utility for complex and heterogeneous diseases36, but a big data
integrative analysis with EMR data has not yet been applied to
characterize AD.

Deep phenotyping is a data-driven approach that has been used to
provide more detailed stratification and representation of a disease in
the era of precision medicine37,38. Here, we take an integrative
approach through deep clinical phenotyping and network analysis to
provide insight into AD clinical characteristics with a focus on sex
differences. For the first time to our awareness, integrative pheno-
typing and association analysis is used to identify, in an unbiased
manner, unique clinical features associated with AD itself—and
reveals potential previously unknown sex-specific associations in the
context of diagnoses, medications, and lab test results.

Results
From the UCSF EMR database (~5 million patients), we identi-
fied 8804 patients with AD (5558 female, 86.5 mean age
(6.4 standard deviation)) and 17,608 propensity score (PS)-mat-
ched control patients (11,117 females, 86.5 mean age (6.4 stan-
dard deviation)). From the Mount Sinai EMR (~4 million
patients), 5958 patients with AD (4138 females, 88.3 mean age
(8.7 standard deviation)) and 11,916 PS-matched controls (8446
females, 88.7 mean age (11.4 standard deviation)) were identified
(Fig. 1). Male and female groups were identified by the most
recent sex assignment in the EMR, and race/ethnicity information
was extracted from the EMR as reported by the patient. Post-
matching analysis demonstrated the adequate balance in covari-
ates with standardized mean differences in age and categorical
distributions below 0.1 (or below 0.2 between matched sex
groups). Demographic characteristics of patients with AD and
matched control patients are shown in Table 1 and Supplemen-
tary Table 1.

Embedding with diagnosis shows separation between AD and
controls. Due to the size of our cohort, we first performed low-
dimensional visualizations using diagnoses as features to visualize
patient separation. Low-dimensional UMAP visualizations of
non-AD diagnoses (47,439 features, ICD-10-CM codes) show
that distributions for patients with AD and controls are sig-
nificantly different among the first two UMAP components (two-
sided Mann–Whitney U-test, p-value < 1e−5, Fig. 2a, b) at both
UCSF and Mount Sinai, with a progressive separation between
groups. For the UCSF data, sex, and death status show significant
correlations with the first component, while age is significantly
correlated with both components (two-sided Mann–Whitney U-
test p-value < 0.01, Fig. 2a, Supplementary Fig. 1). Sex, death
status, and age are significantly correlated with both components
at Mount Sinai (two-sided Mann–Whitney U-test p-value < 0.01,
Fig. 2b, Supplementary Fig. 1).

Association analysis identifies associated comorbidities in AD.
Among each diagnostic hierarchical level (Level 2 categories, Level
3 categories, and full diagnosis names), the majority of AD disease
networks contain more nodes and edges compared with control
networks (Supplementary Table 3). In UCSF Level 3 diagnosis
networks, more nodes and edges occur in AD vs control networks.
As shown in Fig. 3a, when thresholding Level 3 diagnosis cate-
gories by >10% of patients, there are 144 diagnosis pairs among
patients with AD compared to one pair in controls. When com-
paring node-level network metrics between groups, thresholded by
>1% of patients within a group, AD and control networks are
significantly different when compared on closeness centrality,
degree, neighborhood connectivity, and stress centrality indicating
a higher degree of connectivity among AD networks across all
levels (two-sided Mann–Whitney U-test, p-value < 0.01, Fig. 3c).
In Mount Sinai Level 3 diagnostic networks, more edges occur in
AD networks compared to control networks, with significantly
different distributions across AD and control networks on degree,
neighborhood connectivity, and stress centrality (two-sided
Mann–Whitney U-test, p-value < 0.01, Supplementary Table 3).
Across the board, network metrics normalized by the metric are
significantly correlated between UCSF and Mount Sinai (Spear-
man’s ρ= 0.44, p-value < 1e−4, Fig. 3e).

Within Level 2 diagnosis categories, there are 166 significant
diagnosis categories (two-sided Fisher’s exact or Chi-squared test,
Bonferroni-corrected p-value < 0.05), with 120 diagnosis categories
significantly enriched (odds ratio (OR) > 2) uniquely in the AD
group and no significantly enriched diagnosis categories uniquely in
the control group (Fig. 4a, top). Within Level 3 diagnosis categories,
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there are 501 significant categories, with 391 and 4 categories
significantly enriched in AD and control groups, respectively (two-
sided Fisher exact or Chi-squared test, Bonferroni-corrected p-
value < 0.05, Supplementary Table 2). Within full diagnosis names,
there are 1627 significant diagnoses, with 1491 and 7 diagnoses
enriched uniquely in AD and control groups, respectively. Top
significant diagnoses in AD include vascular dementia, hyperten-
sion, hyperlipidemia, urinary tract infection, syncope, hypothyroid-
ism, and osteoporosis, while top significant diagnoses in controls
include neoplasms of liver and brain (two-sided Fisher exact or
Chi-squared test, Bonferroni-corrected p-value < 0.05, Fig. 4a,
bottom,Supplementary Data 1). Top ICD diagnostic blocks in
AD include mental health and behavioral diseases, genitourinary
diseases, endocrine and metabolic diseases, and circulatory system
diseases (Fig. 4b). In the validation cohort, 1495 of 1627 significant
UCSF diagnoses mapped to Mount Sinai EMR codes, of which 889

(60.13%) are significant (two-sided Fisher’s exact or Chi-squared
test, Bonferroni p-value < 0.05). Overall comorbidity odds ratios at
UCSF are significantly correlated with those of the validation cohort
at Mount Sinai (Spearman ρ= 0.65, p-value < 1e−5, Fig. 4c).

Sex-stratified AD vs. control association analysis identifies
vascular and musculoskeletal disorders in females with AD and
behavioral/neurological disorders in male AD. When stratifying
diagnoses by sex (see “Methods” section), AD disease networks are
significantly different on metrics of degree and neighborhood
connectivity in both males and females compared to their
respective controls among all diagnostic hierarchical levels
(p-value < 0.001). Comparison of sex-specific AD network for
diagnosis name shows significantly greater neighborhood con-
nectivity, and lower eccentricity in female networks (two-sided

UCSF EMR
>5 million records
deidentified
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On all other patients in EMR
Estimated Age >64

Matchit (R package)
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Diagnosis/Medication Differential Analysis
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Fig. 1 Workflow visualization. Visualization of patient cohort identification from the UCSF EMR and methods for deep phenotyping and enrichment
analysis. Validation analysis is done with Mount Sinai EMR to assess correlations.
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Mann–Whitney U-test, p-value < 0.01 both metrics, Fig. 3d, Sup-
plementary Table 3). Within the validation cohort, similarly,
female AD networks show significantly greater neighborhood
connectivity compared to male AD networks (two-sided
Mann–Whitney U-test, p-value < 0.01, Supplementary Table 3).

When thresholding full diagnosis names by >10% of patients
within a sex group, female patients with AD have 58 shared co-
diagnosis pairs compared to 38 in male patients with AD (Fig. 3b
and Supplementary Table 3), and 3 shared co-diagnosis pairs were
identified for both control sex groups.

Table 1 Patient demographics.

UCSF Mount Sinai

Overall AD Control SMD Overall AD Control SMD

n 26,412 8804 17,608 17,874 5958 11,916
Sex, n (%)

Female 16,675 (63.1) 5558 (63.1) 11,117 (63.1) <0.001 12,584 (70.4) 4138 (69.5) 8446 (70.9) 0.031
Male 9659 (36.6) 3220 (36.6) 6439 (36.6) 5290 (29.6) 1820 (30.5) 3470 (29.1)
Unknown 78 (0.3) 26 (0.3) 52 (0.3)

Estimated age,
mean (SD)

86.5 (6.4) 86.5 (6.4) 86.5 (6.4) <0.001 88.6 (10.6) 88.3 (8.7) 88.7 (11.4) −0.039

Race, n (%)
American Indian/

Alaska Native
27 (0.1) 9 (0.1) 18 (0.1) <0.001 20 (0.1) 8 (0.1) 12 (0.1) 0.129

Asian 2638 (10.3) 879 (10.3) 1759 (10.3) 177 (1.0) 78 (1.3) 99 (0.8)
Black/African

American
1758 (6.9) 586 (6.9) 1172 (6.9) 3732 (20.9) 1214 (20.4) 2518 (21.1)

Native Hawaiian/
Pacific Islander

1356 (5.3) 452 (5.3) 904 (5.3) 9 (0.1) 5 (0.1) 4 (0.0)

Other 2230 (8.7) 743 (8.7) 1487 (8.7) 3922 (21.9) 1496 (25.1) 2426 (20.4)
Unknown 2017 (7.6) 673 (7.6) 1344 (7.6) 786 (4.4) 253 (4.2) 533 (4.5)
White/Caucasian 16,386 (64.0) 5462 (64.0) 10,924 (64.0) 9228 (51.6) 2904 (48.7) 6324 (53.1)

Death status, n (%)
Alive 20,146 (76.3) 6714 (76.3) 13,432 (76.3) 0.001 9371 (52.4) 3264 (54.8) 6107 (51.3) 0.078
Deceased 6266 (23.7) 2090 (23.7) 4176 (23.7) 882 (4.9) 306 (5.1) 576 (4.8)
Unknown 7621 (42.6) 2388 (40.1) 5233 (43.9)

Summary table of sex, estimated age, death status, and first race among Alzheimer’s and control cohorts at UCSF and Mount Sinai. Patients are propensity score-matched at a 1:2 Alzheimer to control
ratio with the demographics shown in the table.
SD standard deviation, SMD standardized mean difference.
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Fig. 3 Comorbidity networks show greater co-diagnosis in patients with AD vs. controls, and in females with AD vs males with AD. a, b Network
diagrams: For each network, the node size, text size, edge size, and edge color represent the number of patients sharing a diagnosis or diagnosis pair. Node
colors are based on ICD-10-CM category. A threshold of 10% sharing was applied. a Network for Level 3 diagnosis categories in patients with AD vs.
controls. Nodes and edges represent >10% of diagnosis or diagnosis pairs shared in each cohort, respectively. b Female and male network of Level 3
diagnosis categories for patients with AD and controls. Each node and edge represent a diagnosis or diagnosis pairs shared by >10% of males or females in
the AD or control group. c Comparison of Level 3 diagnosis category network metrics between patients with AD and controls. Statistical tests are
performed with a two-sided Mann–Whitney U-test. Significant metrics with p-value < 0.01: degree (9.4e−13), neighborhood connectivity (4.0e−69),
stress centrality (5.0e−5), and topological coefficient (2.5e−8). d Comparison of network metrics between male and female Alzheimer’s disease full
diagnostic name networks. Statistical tests are performed with a two-sided Mann–Whitney U-test. Significant metrics with p-value < 0.01: eccentricity (1.1e
−73) and neighborhood connectivity (1.0e−7). e Correlation of network metrics compared with validation EMR network metrics, normalized by the metric.
Colors represent comparison type (left) or the specific network metric (right), Spearman’s ρ= 0.55, p-value < 1e−4.
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For both males and females, there are 136, 338, and 714 shared
significant diagnostic categories or diagnoses for Level 2, Level 3,
and full diagnosis names, respectively. In a sex-stratified analysis,
there were 29, 164, and 699 female-only significant hits and 5, 18,
and 91 male-only significant hits for Level 2, Level 3, and full
diagnosis names (two-sided Fisher’s exact or Chi-squared test,
Bonferroni-corrected p-value < 0.05, Fig. 5a, Supplementary
Data 1). Compared to males among Level 2 diagnostic categories,
females have a greater percent of significant diagnoses in blood-
related disorders (e.g., nutritional anemia, coagulation defects)
and congenital disorders and also have greater enrichment of
pervasive and specific developmental disorders, musculoskeletal
disorders (e.g., chondropathies, other osteopathies), injuries (e.g.,
injuries to the hip and thigh, injuries to the ankle and foot),
infections with a predominantly sexual mode of transmission,
and metabolic disorders (Supplementary Data 1). When compar-
ing Level 2 categories in the validation cohort, among females,
153 out of 165 mapped with 60 (30.22%) significant, and among

males, 133 out of 141 mapped with 64 (48.12%) significant
(two-sided Fisher’s exact or Chi-squared test, Bonferroni-
corrected p-value < 0.05 based on the number of significant
UCSF diagnoses). In general, Level 2 category sex-specific odds
ratios are correlated between institutions (Females: Spearman’s
ρ= 0.77, p-value < 1e−5; males: Spearman’s ρ= 0.83, p-value <
1e−5). In the validation cohort, females have similar enrichment
of blood-related disorders (e.g., nutritional anemia) and injuries
(e.g., injuries to the hip and thigh), while males have enrichment
of behavioral/emotional disorders.

Within full diagnosis names, unique significant diagnoses of
female patients with AD include asthma, atrial fibrillation,
arthritis, fractures, and accidents while unique significant
diagnoses of male patients with AD include parkinsonism, sleep
apnea, hypersomnia, neuropathy, irritability, and imbalance
(two-sided Fisher’s Exact or Chi-squared test, Bonferroni-
corrected p-value < 0.05, Fig. 5a, b, Supplementary Data 1).
Among full diagnosis names significant in both males and
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Fig. 4 Comorbidity enrichment analysis identifies enriched diagnosis in AD vs. control cohorts. a Volcano plot for Level 2 categories (top) and full
diagnosis names (bottom) compared between AD and control cohorts using two-sided Fisher’s exact or Chi-squared test. p-value cutoff is Bonferroni-
corrected (p-value < 2e−8 and 1e−6) with log2 odds ratio cutoff of 1 for AD-enriched (pink) or log2 odds ratio cutoff of −1 for control-enriched (green)
and remaining significant diagnoses in blue. Some of the top significant diagnoses are labeled. b Top, a Manhattan plot with full diagnosis names colored by
ICD-10-CM categories with significance determined by two-sided Fisher’s exact or Chi-squared test with Bonferroni-corrected p-value threshold of 0.05.
Some of the top diagnoses in each category are labeled. Bottom, the percentage of diagnosis in each ICD-10-CM category is significant. c Diagnosis AD vs.
control odds ratio correlation plots between UCSF and Mount Sinai for Level 2 diagnosis categories and full diagnosis names that are significant at UCSF
(two-sided Fisher’s exact or Chi-squared test, Bonferroni-corrected p-value threshold of 0.05). Each dot represents a category or diagnosis, and dots in
orange are significant at Mount Sinai with (two-sided Fisher’s exact or Chi-squared test with Bonferroni-corrected p-value threshold of 0.05 based on the
number of significant UCSF diagnoses).
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females, female patients with AD have a greater association in
depression, hypertension, hyperlipidemia, urinary tract infections,
upper respiratory infections, anemia, osteoporosis, and pneumo-
nia, while male patients with AD have greater effect size with
behavioral phenotypes, hearing loss, and agitation (Supplementary
Data 1). Among the full diagnosis names in the validation cohort,
for females, 1149 out of 1383 significant diagnoses mapped, of
which 240 (20.89%) were significant, and for males, 702 out of
805 significant diagnoses mapped, of which 216 (30.77%) were
significant. In general, sex-specific diagnosis odds ratios were
correlated for both females (Spearman’s ρ= 0.77, p-value < 1e−4)
and males (Spearman’s ρ= 0.83, p-value < 1e−4, Fig. 5c). In the
validation cohort, similarly, female patients with AD have a
greater association in depression, hypertension, and osteoporosis
while male patients with AD have a greater association in hearing
loss and agitation (Supplementary Data 1).

Few comorbidities change with sensitivity analysis on
encounters. For our sensitivity analysis that included only
patients with ≥10 encounters (i.e., recorded outpatient, inpatient,
or emergency room visits to UCSF Health) in EMR and with
visits spanning >1 year, there were 6612 patients with AD (2382
males, 4223 females) and 13,224 control patients (4674 males,

8539 females) identified by PS-matching on the number and
timespan of encounters in addition to demographic character-
istics and death status. A summary of the demographic char-
acteristics of these cohorts is shown in Supplementary Table 1.
We identified 100, 222, and 561 significant Level 2, Level 3, and
full diagnosis names respectively (two-sided Fisher’s exact or Chi-
squared test, Bonferroni-corrected p-value threshold of 0.05), and
an increase in the odds ratio for chromosomal abnormalities and
cerebrovascular disorders in patients with AD (Supplementary
Data 2). With sex-stratified enrichment analysis, encounter con-
trolling increased enrichment of cerebrovascular disease in
females, and increased significant enrichment of behavioral dis-
orders, vision problems, and vascular dementia in males (Sup-
plementary Data 2). An interactive visualization of Figs. 3 and 4 is
made available in an Rshiny app vizad.org.

Medication association analysis identifies dexamethasone as
enriched in controls. In addition to comorbidities, we performed
medication enrichment analysis in order to phenotype patients
and investigate medication prescriptions enriched in patients with
AD and controls. Medications found enriched (two-sided Fisher’s
exact or Chi-squared test, Bonferroni-corrected p-value < 0.05,
OR > 2 or < 0.5) in patients with AD include current treatments
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Fig. 5 Comorbidity enrichment analysis identifies sex-specific enriched diagnoses in AD vs. control cohorts. a Full diagnosis names compared between
patients with AD and controls within each sex. The log2 of the odds ratio for each sex is plotted on the axis, and points are colored by significance
(Bonferroni-corrected, p-value cutoff > 3e−6). b Miami plot of the diagnosis names grouped by sex and ICD-10-CM categories. Select top diagnoses are
labeled, with diagnosis names colored by significance as female-only (red), male-only (blue), or significant in both sexes (black). c Correlation plots of AD
vs. control odds ratios between UCSF and Mount Sinai for diagnoses that are significant at UCSF for each sex group (two-sided Fisher’s exact or Chi-
squared test, Bonferroni-corrected p-value threshold of 0.05). Each dot represents a diagnosis, and dots in orange are significant at Mount Sinai (two-sided
Fisher’s exact or Chi-squared test with Bonferroni-corrected p-value threshold of 0.05 based on the number of significant UCSF diagnoses for each sex
group).
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like donepezil and memantine, but also vitamin B12, anti-
depressants (escitalopram, citalopram, sertraline, mirtazapine,
trazodone), antipsychotics (quetiapine, risperidone, olanzapine),
carbidopa/levodopa, vitamin D3, and melatonin. Medications
found enriched in control patients include dexamethasone,
ondansetron, and alteplase. Significant medications in controls
with lesser effect size (two-sided Fisher’s exact or Chi-squared
test, Bonferroni-corrected p-value < 0.05, 0.5 < OR < 1) include
midazolam, propofol, opioids (oxycodone, fentanyl citrate), and
furosemide (Fig. 6a). From the validation cohort, 116 out of 121
medications mapped, of which 66 (56.90%) were significant (two-
sided Fisher’s Exact or Chi-Squared test, Bonferroni-corrected p-
value < 0.05 based upon significant medications at UCSF). In
general, odds ratios of medications are significantly correlated
(Spearman’s ρ= 0.85, p-value < 1e−4, Fig. 6c). Dexamethasone is
significant among controls in both institutions, and multiple
medications including vitamin B12, antidepressants, and anti-
psychotics are significant in patients with AD among both
institutions.

In a sex-stratified analysis, medications enriched in males with
AD include Tdap vaccine, melatonin, and carbidopa/levodopa
while methylprednisolone and phenylephrine are enriched in
control males. Female patients with AD have enrichments in
diazepam, antipsychotics (risperidone, aripiprazole), buspirone,
antidepressants (sertraline, mirtazapine, trazodone, bupropion),
vitamin D2, and levothyroxine while control females are enriched
in norepinephrine bitartrate and fentanyl citrate (Fig. 6b). In the
validation EMR, 18 of 23 (78.25%) significant medications found
at UCSF are significant in females at Mount Sinai, and 13 of 16
(81.25%) in males (two-sided Fisher’s exact or Chi-squared test,
Bonferroni-corrected p-value < 0.05 based upon significant med-
ications at UCSF within a group). Overall, there is significant
correlation of sex-specific medication odds ratios in females
(Spearman’s ρ= 0.7, p-value= 0.001) and males (Spearman’s
ρ= 0.62, p-value= 0.001, Fig. 6c). Among both institutions,
carbidopa/levodopa is significant in males with AD only.

Comparing labs between sex-specific AD and control groups
identifies clusters of lab value differences. We also performed an
unbiased analysis of laboratory test result differences between
patients with AD and controls to phenotype patient groups.
Among significantly different median lab values in both UCSF
and Mount Sinai, patients with AD have higher levels of hema-
tocrit, serum calcium, RBC count, serum albumin, and choles-
terol and lower levels of glucose, activated partial thromboplastin
time (aPTT), alanine transaminase (ALT), and aspartate transa-
minase (AST) compared to controls (two-sided Mann–Whitney
U-test, Bonferroni-corrected p-value threshold of 0.05, Fig. 6d,
Supplementary Fig. 4A).

Average significant median lab values across sex-stratified
groups (females with AD, males with AD, control females, control
males) and across institutions were clustered into 7 significant
clusters (Family-wise Error Rate (FWER) corrected p-value 0.05
cutoff, Fig. 6d). Clusters 1, 4, and 7 show discordant results
between UCSF and Mount Sinai. Cluster 2 represents groups of
significant median lab values lowest in control males, and highest
either in all patients with AD (e.g., albumin, sodium, and carbon
dioxide) or highest in females with AD (e.g., HDL cholesterol,
lymphocytes, calcium). Cluster 3 represents significant labs with
greater median values in females and in controls (e.g., Free T4,
sedimentation rate). Cluster 5 represents labs with lower
significant median values in patients with AD than controls for
either the whole group (e.g., B-Type Natriuretic Peptide, AST) or
in a sex-specific way where significant median lab values for

males are greater than for females (e.g., aPTT, ALT, ferritin).
Cluster 6 shows labs greater in AD compared to controls in a sex-
specific way where overall males have greater significant median
lab values than females (e.g., hemoglobin, RBC count). Across the
board, the normalized lab values are correlated between the
institutions (Female control: Spearman’s ρ= 0.45, p-value <
0.001; male control: 0.46, p-value < 0.001; female AD: 0.59,
p-value < 1e−5; Male AD: 0.64, p-value < 1e−5; Supplementary
Fig. 4B).

Discussion
In this work, we demonstrate the capability of utilizing data from
EMRs in order to perform deep phenotyping of a complex and
heterogeneous disease, Alzheimer’s Disease (AD), and derive
insights into associations with AD in a combined and sex-
stratified analysis.

First, we performed low-dimensional topographical embedding
of patients using diagnoses as features in order to visualize
patients spatially. We see that AD status is significantly correlated
with the first two UMAP components at both institutions, sug-
gesting that phenotypic representation of patients using diagnosis
data can demonstrate separation of patients with AD and control
patients. The UMAP representation demonstrates a progressive
spectrum between control patients and patients with AD, as well
as representing variance and heterogeneity at individual patient
resolution. Furthermore, with the UMAP representation, we can
visualize topographically the distribution of age, sex, and other
variables among patients.

We then generated comorbidity networks between patients
with AD and control patients which provide a phenotypic
representation of disease interactions among patient groups and a
difference in connectivity between diseases in patients with AD
and control patients. AD networks contain a greater number of
edges and network metrics that point to higher rates of comorbid
conditions among patients with AD at both institutions, parti-
cularly with stronger links of hypertension (HTN)—lipidemias
and HTN—urinary disorders. Indeed, other studies have found
multimorbidities (such as neuropsychiatric and cardiovascular
patterns) to increase the risk for dementia39, and to contribute to
AD pathological heterogeneity40,41 displaying the larger com-
plexity and heterogeneous nature of AD.

With enrichment analysis, we applied an integrative, unbiased, big
data approach to EMR and identified previously known associations
and possible novel connections with AD. Some diagnoses found
enriched in patients with AD compared to control patients from our
analysis at both institutions that have been previously identified
as linked with AD include midlife hypertension16,42, diabetes
mellitus18,43, anemia44,45, vascular pathology17,46, osteoporosis47,48,
and urinary tract infections (UTI)49. Enrichment of hypertension and
vascular risk factors supports many current hypotheses of potential
vascular pathologies and inflammatory factors that may lead to
AD17,50–52 or “unmask” the symptoms of AD by decreasing cogni-
tive reserve by causing vascular brain disease. Enrichment of diabetes
and dyslipidemia supports existing literature that found links with
diabetes mellitus and dyslipidemia53, with proposed hypotheses
involving energy metabolism54–56, inflammation57–59, or the integrity
of the blood–brain barrier60–62. Enrichment of degenerative diseases
of age, such as osteoporosis, osteoarthritis, urinary issues, and sensory
issues may align with theories of AD as being a disease linked with
frailty63–65. This analysis, therefore, provides an unbiased integrative
way to identify multifactorial associations with AD. Our enrichment
analysis also identified neoplasms as enriched in controls at UCSF,
especially cancer of the brain and liver. While this is an associative
finding, this supports ideas that cancer and AD co-occur less
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Fig. 6 Medication and lab analysis shows medication enrichments and median lab value differences between AD and control cohorts. a Volcano plot for
generic medication names compared between AD and control cohorts using two-sided Fisher’s exact or Chi-squared test. p-value cutoff is Bonferroni-
corrected (p-value < 2e−5) with odds ratio cutoff at 2 for AD-enriched (pink) or 1/2 for control-enriched (green). Remaining significant diagnoses are in
blue. b Log–log plot of generic medication names compared between AD and control cohorts within each sex. The log of the odds ratio for each sex is
plotted on the axis, with points colored by significance based upon two-sided Fisher’s exact or Chi-squared test with Bonferroni-corrected threshold of
0.05 if female-only (red), male-only (blue), or both (black). c AD vs control (top) and sex-specific (bottom) odds ratio correlation plots between UCSF and
Mount Sinai for medications significant at UCSF (two-sided Fisher’s exact or Chi-squared test with Bonferroni-corrected p-value threshold of 0.05). Each
dot represents a medication, and the dots in orange are significant at Mount Sinai (two-sided Fisher’s exact or Chi-squared test with Bonferroni-corrected
p-value threshold of 0.05 based on the number of significant UCSF diagnoses in each group). d Heatmap of lab values filtered on significance at UCSF in
AD vs control comparison across sex-specific groups at UCSF and Mount Sinai. Labs are clustered with light blue lines representing significant cluster
breaks (family-wise error rate (FWER)-corrected p-value 0.05). Text color represents significant labs at both institutions (purple), significant among
females only at UCSF (red), or significant between AD vs controls at UCSF only (black). Heatmap colors represent z-score of the average median value
across the 4 groups at each institution.
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frequently than the general population66,67. Some theories propose
that AD and cancer have similar mechanisms and molecular path-
ways, but are dysregulated in different directions68,69.

Next, we generated sex-specific comorbidity networks to pro-
vide insight into sex differences in the complexity of the disease.
In both EMRs, female AD networks contain more nodes with
network metrics suggesting greater connectivity than female
controls or male AD networks. This may support the association
with greater combined diagnoses and multimorbidity in female
patients with AD compared to males70. These associations would
be consistent with theories of greater risk of dementia in females
as a result of multiple diseases or the theory of greater cognitive
and pathological resilience to AD in females due to the burden of
more comorbidities. Furthermore, sex-stratified networks show
secondary interactions between comorbidities and AD, such as
links of HTN-UTI and HTN-chest pain among female AD
populations, but not in male patients with AD. These findings
give higher-order comorbidity interactions associated with AD
that have not been examined previously.

When performing enrichment analysis, we identify sex-specific
enrichments that may be linked to AD that have not been pre-
viously explored in depth. Male patients with AD show enrich-
ment of neurological and sensory disorders (sleep disorder,
parkinsonism, and irritability), and among diagnoses significant
in both sexes, males with AD have a stronger effect size with
behavioral diagnoses, agitation, and hearing loss. These disorders
are also mostly shown to be significant and associated with
greater effect size compared to females in our validation cohort.
Prior studies have found hearing loss to increase risk of dementia
diagnosis71,72 or cognitive decline73,74 in men. The enrichment of
behavioral and neurological disorders found in male patients with
AD may indicate lessened resilience or higher occurrence of co-
pathology. Furthermore, this analysis found the psychiatric phe-
notype associated with AD to be related to behavioral phenotypes
in males compared to females, which is consistent with prior
studies75,76.

Female patients with AD have enrichment of unique significant
diagnoses in musculoskeletal categories (arthritis, fractures), atrial
fibrillation, and accidents, and among diagnoses significant in
both sexes, females with AD show stronger effect size with
depression, hypertension, urinary tract infections, and osteo-
porosis. Some of these disorders are similarly significant and
associated with greater effect sizes compared to males in our
validation cohort. The diagnoses of hypertension and atrial
fibrillation would be in line with the hypothesis of potential
cardiovascular risk factors and pathology that may affect females
more. Indeed, there is evidence supporting cardiovascular fitness
to be protective or vascular risk factors to be harmful towards
cognitive decline and dementia in women42,77–79. Furthermore,
these diagnoses suggest a phenotype for females with AD along
with other degenerative diseases of aging and frailty. In particular,
the increase in musculoskeletal and bone disorders in females
with AD, as well as high calcium and vitamin D deficiency, may
point to a potential bone metabolism pathology or aberrant cal-
cium metabolism in females with AD. From a psychiatric
standpoint, the female AD phenotype is more associated with
depression compared to males as supported by studies that found
depression associated with greater hippocampal volume loss in
women80, and is more likely to be a manifestation of mild cog-
nitive impairment or AD in females81,82.

We performed sensitivity analysis by taking the number of
encounters for each group into account. In general, we see a
decrease in statistical significance in our enrichment analysis
consistently across all diagnoses. This is likely due to decreased
power from a lower sample size, and a bias toward the selection of
patients with more severe disease due to encounter thresholding.

Overall, enriched diagnoses are relatively similar, with an increase
in cerebrovascular disorders observed in AD, and particularly
females with AD. Neuroimaging studies have identified differ-
ences in AD phenotypes and brain networks depending on the
presence of cerebrovascular disease83,84, which may support
cerebrovascular events as an associated phenotype for a different
or severe phenotype of AD.

Medication enrichments show expected associations with AD,
as the top medication hits are current therapies used to modify
symptoms of AD (e.g., memantine, donepezil), or are associated
with diagnoses found in comorbidity analysis (e.g., anti-
depressants for depression).

These medications are also identified as AD-enriched in our
validation cohort, although many of these medications are
expected as they are associated with conditions of aging. Medi-
cations enriched in controls provide a more interesting story, as
they not only suggest an ‘opposite AD’ phenotype, but control-
enriched hits may provide a way to hypothesize potential targets
for further exploration of protective drug effects or drug repur-
posing. From our medication analysis, we see control enrich-
ments of opioids, sedatives, dexamethasone, and furosemide, with
dexamethasone, also found significant in our validation cohort.
The negative association with opioids is inconsistent with prior
studies that found associations between prescription opioid use
and AD risk85, although control enrichment of opioids could
possibly be due in part to decreased ability to communicate pain
and decreased opioid prescriptions after AD86. Nevertheless,
studies have implicated the role of opioid system dysregulation in
tau hyperphosphorylation and AD87. Dexamethasone is a corti-
costeroid that has been suggested to help reduce inflammation in
AD88,89, although the data on efficacy is still uncertain and may
depend upon the need for combination therapy90 or control of
other factors that complicate the relationship between hormonal
levels and the brain91,92. Furosemide is a diuretic drug used to
treat hypertension and may confer a protective effect through the
control of comorbid conditions that contribute to cardiovascular
risk factors. Furosemide also reduces the production of CSF by
inhibiting carbonic anhydrase, which may impact CSF dynamics
and help decrease the risk of AD93. Prior studies have shown
possible protective effects from diuretic drugs and AD94–97, and
one study identified furosemide as a potential probe molecule for
reducing neuroinflammation98.

Characterizing patients by lab values provides another way to
phenotype patient groups. Through our analysis, greater calcium
levels were identified, especially in females with AD. A small
observational study found calcium supplementation to increase
the risk of dementia in women with cerebrovascular disease99.
Calcium dysregulation and homeostasis have been implicated in
AD neuronal signaling pathology, and identified as a target for
drug development99,100. Control-enriched labs may also be related
to gastrointestinal cancers or liver/pancreatic dysfunction, as we
observe increased AST, ALT, and glucose levels in controls and
particularly among males. This result is not consistent with a
study observing greater glucose levels to increase dementia risk101,
although one study did find low ALT102 to be associated with AD,
and some publications implicate altered glucose metabolism103,104

and liver dysfunction in AD pathology102,105,106. Furthermore,
since our control cohort has been matched on age and death
status, control patients may encompass a population with a
terminal disease. Lab clusters also demonstrate phenotypes spe-
cific to a sex group. A lower clotting time (aPTT, PT) and greater
platelet count, prealbumin, lymphocytes, and cholesterol levels in
females with AD may provide a multivariate way to identify
potential AD phenotype in females. Prior studies have shown high
thrombin107,108, abnormalities of hemostasis109,110, and abnormal
platelet activation111–113 in patients with AD that may contribute
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to a pro-thrombotic state in AD114, leading to microinfarcts and
cerebrovascular dysfunction115,116, although sex-specific associa-
tions have not been studied previously. Furthermore, control sex
phenotype may demonstrate protective labs or biomarkers that
decrease the risk of AD. We see lower free T3 in control males,
and greater free T4 in control females. Indeed, studies on AD
populations have shown high TSH and low free T4 to be asso-
ciated with the disease117–119, although sex-specific associations
have not been explored in depth.

Some limitations do exist in our study. First, AD is an insidious
and heterogeneous disorder, and is frequently misdiagnosed even
in specialized dementia centers. Clinically, Alzheimer’s dementia
is suspected when disease biomarker status is unknown, whereas
Alzheimer’s disease is diagnosed when biomarker status is con-
firmed. Our current study did not rely on biomarker-positive
cases of Alzheimer’s disease, and we did not exclude patients with
other pathologies that can also impact brain health through dif-
ferent pathways, such as Parkinson’s disease. Nevertheless, Alz-
heimer’s disease often co-occurs with other dementias120,121.
Second, EMRs, while a rich data source, is a very sparse data set
with a lot of missing data, such as sociological factors (e.g.,
income, education, etc). Nevertheless, the number of patients
represented in the EMR is exceptionally large and provides robust
opportunities for deriving meaningful insights or hypotheses.
This limitation also applies to our validation EMR. Additionally,
some associations may be different across the two systems due to
differences in the underlying patient populations or standards of
care. Therefore, it is possible that the UCSF EMR does not cap-
ture an association that may be more prevalent in a different
population in New York, and vice versa. How other covariates
including socioeconomic factors modify specific AD associations
is a question that can be followed up in future work. Third, our
definition of controls comes with limitations, as it is difficult to
identify “healthy” controls in the EMR. The institutions repre-
sented in our data include both primary and tertiary care, which
includes patients that seek hospital care for a variety of reasons.
As such, there may be bias in the underlying patient population
who chooses to seek medical care at a metropolitan medical
center. Regardless, the power in utilizing EMR allows us to
generate hypotheses with a large number of patients and versa-
tility in choice of controls compared to many current AD studies.
Lastly, our analysis only identifies associations with AD and does
not take temporal factors into consideration, therefore causal
relationships cannot be concluded. This will be the main focus of
future work, as the temporal association can categorize an asso-
ciation as a risk/protective factor (if early in age), a diagnostic clue
(if during AD diagnosis), or as a manifestation of AD progression
or severity (if after AD diagnosis). Nevertheless, given AD is an
insidious disorder, there can be brain perturbations a decade or
more before a diagnosis is determined and documented in clinical
records. While we made the assumption of independence in our
statistical methods to identify significant associations, this
method can be further extended to alternative statistical models
that take covariates into account. Our current work allows the
unbiased identification of associations and phenotyping, which
can then be used to generate hypotheses for guiding follow-up
studies.

Overall, our analyses leveraged an extensive clinical data set to
(1) phenotype and represent AD and (2) perform enrichment
analysis to identify known or suggested novel associations with
AD, as well as elicit sex-specific differences. We were therefore
able to apply an integrative, unbiased, big data approach to
identify associations with AD and provide phenotypic repre-
sentations of an otherwise complex disease. With this approach,

we can generate many new hypotheses to better motivate future
work to understand AD complexity and develop diagnostic
strategies and therapeutic interventions. Future work will include
temporal analysis in order to identify longitudinal relationships
and predictive modeling for AD risk, diagnosis, or progression.
More extensive analysis of medication and lab values, especially
among opposite phenotypes in controls, may lead to better
strategies for the prevention or treatment of AD. Besides eluci-
dating sex differences, the next steps for phenotyping can include
investigating race/ethnicity differences or differences based upon
other covariates to better characterize Alzheimer’s Disease het-
erogeneity. Furthermore, the incorporation of molecular or
genetic data with clinical data can help better elucidate potential
mechanisms underlying identified associations.

Methods
All analysis of UCSF and Mount Sinai EMR data was performed under the
approval of respective Institutional Review Boards. All clinical data were de-
identified and written informed consent was waived by the institutions.

In this study, we performed deep phenotyping and association analysis of
patients with AD and controls. First, AD and control cohorts were identified from
the UCSF EMR and topographically visualized via a low-dimensional projection of
comorbidities. Comorbidity networks were created, and association and enrich-
ment analyses were performed on all diagnoses, medications, and lab values. These
analyses were further performed in a sex-stratified manner to identify sex-specific
associations, and validation was performed on the Mount Sinai EMR. An overview
of the workflow is shown in Fig. 1.

Patient cohort identification. Patient cohorts were identified from over five
million patients in the UCSF EMR database, which includes clinical data from 1982
to 2020. Due to the de-identification process, dates are shifted by at most a year
(with relative dates preserved) and all birth dates before 1930 (=estimated age 90)
are shifted to be no earlier than 1930. Patients with AD were identified by inclusion
criteria of estimated age >64 years, and ICD-10-CM codes G30.1, G30.8, or G30.9,
where estimated age is determined from the birth date. Male and female groups
were identified by the most recent sex assignment in the EMR. To identify a control
group, we used propensity score (PS) matching method (matchit R package115) by
a logistic regression model to match controls to patients with AD. The control
group was selected from patients >64 years old without AD diagnosis, matched on
sex, estimated age, race, and death status at a 1:2 AD:control ratio using a nearest
neighbors method. The validation cohort was identified similarly in the Mount
Sinai EMR database, which includes clinical data from 2003 to 2020. The demo-
graphic properties of the UCSF and Mount Sinai cohorts are shown in Table 1.

Dimensionality reduction patient visualization. All identified patients were
represented using one-hot encoding of diagnoses, excluding encoding of diagnoses
with Alzheimer’s in the name (list in Supplementary Table 2 and Fig. 2). Patients
were then visualized in a lower dimension using Uniform Manifold Approximation
and Projection122 (UMAP) with the umap-learn package from Python. Correla-
tions between variables and UMAP coordinates were analyzed using
Mann–Whitney U-test for categorical variables, and Pearson’s correlation coeffi-
cient for continuous variables.

AD vs. control enrichment analysis of comorbidities. To evaluate comorbidities,
all diagnoses recorded from patient cohorts were identified with the earliest entry
of every diagnosis. Comparisons were made at different ICD-10-CM hierarchical
levels, specifically Level 2 categories (e.g., G30-G32: Other degenerative diseases of
the nervous system), Level 3 categories (e.g., G30: Alzheimer’s Disease), or full
diagnosis names (e.g., G30.9 Alzheimer’s disease, unspecified). Level 2, Level 3, and
full diagnosis names are also grouped by ICD-10-CM blocks (e.g., G00-G99:
Diseases of the Nervous System). More information on ICD-10-CM codes can be
found here: https://www.cms.gov/Medicare/Coding/ICD10/ICD-10Resources.

Diagnosis networks were created based upon a diagnosis category or diagnosis
shared by >1% patients in a group (node) or pair of diagnosis categories or
diagnoses shared by >1% of patients in a group (edge). Network metrics were
computed using Cytoscape app Network Analyzer123. Metrics were then compared
between AD and control networks using Mann–Whitney U-test, with and without
singleton nodes removed. Nodes and edges were thresholded by 5% of patients in a
group for visualization purposes.

Enrichment analysis of diagnosis was compared between AD and control
cohorts. For each diagnosis, the proportions of patients in each group were
compared using Fisher’s exact (if <5 patients in a category) or Chi-squared
test. Significant diagnoses were determined by a Bonferroni-corrected threshold
of p-value < 0.05, and directionality determined with odds ratio (OR). With
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inspiration from genetic and molecular approaches, the results were visualized
using Manhattan plots by categorizing diagnoses in ICD-10-CM blocks.

Sex-stratified AD vs. control enrichment analysis of comorbidities. Diagnostic
networks were created for each sex, with diagnosis categories or diagnoses shared
by >1% of patients in a group (node), and diagnosis category/diagnosis pair shared
by >1% of patients in a group (edge). Network metrics were then computed using
Cytoscape Network Analyzer app, and compared between sex-stratified patients
with AD and controls, and between males and females for both AD and control
cohorts separately with a Mann–Whitney U-test. Nodes and edges were thre-
sholded by 5% of patients in a group for visualization.

Sex-specific enrichment analysis of diagnoses between AD and control cohorts
were compared with a subset of equal numbers of patients with AD and controls
within each sex. For each diagnosis, the proportions of patients in each group were
compared using the Fisher’s exact (if <5 patients in a category) or Chi-squared test.
Significance was determined by applying a threshold of 0.05 for Bonferroni-
corrected p-values. Log–log plots were generated from odds ratios between females
and males with AD and controls, and Miami plots were created by categorizing
diagnoses in ICD-10-CM blocks.

Sensitivity analysis taking encounters into account. Sensitivity analysis of
diagnosis enrichment analysis was performed with a subgroup of patients with AD
and a second control cohort to account for variability in the number of visits for
each patient. AD cohorts were subgrouped by identifying patients with over 10
encounters in the EMR and records spanning over a year. The encounter-filtered
control cohort was identified by additionally matching the number of encounters
and years between the first and last record in the EMR. Diagnosis enrichment
analysis was carried out as described above for general comorbidities and sex-
specific analysis.

AD vs. control enrichment analysis of medications. All medications ordered for
patients with AD and controls were extracted and grouped based upon the generic
medication name, with route and dosage information removed. The proportions of
patients with AD and controls prescribed each medication were compared using
Fisher’s exact (if <5 patients in a category) or Chi-squared tests. Significantly enriched
medications were identified by a Bonferroni-corrected threshold of p-value 0.05, and
directionality was determined with an odds ratio. Sex-specific medication comparisons
were also performed within a subset of equal numbers of patients with AD and controls
for each sex and plotted with cutoffs based upon a Bonferroni-corrected p-value
threshold of 0.05 and odds ratios threshold of <0.5 or >2.

AD vs. control comparisons of lab values. For laboratory values, median values
for all numerical lab test results for each patient were identified. Lab tests missing
data among 95% or more patients were removed. Lab value distributions were
compared using Mann–Whitney U-test across three comparisons (AD vs. controls,
females with AD vs. female controls, and males with AD vs. male controls) in order
to identify significantly different lab values.

For clustering analysis, significant lab tests above a threshold of 0.05 for
Bonferroni-corrected p-value were isolated, and mean values were then identified
for each group (females with AD, males with AD, control females, control males)
and normalized across groups as a Z-score. Clustering was then performed using
the sigclust2 R package124 to determine the significance of each cluster break using
permutations (Euclidean distance metric and average linkage).

Validation in external EMR. AD and PS-matched control patients were identified
in the Mount Sinai EMR in the same fashion as described in [Patient Identification]
in the UCSF EMR. All aforementioned analyses with dimensionality reduction,
comorbidity networks, diagnosis/medication enrichments, sex-specific enrich-
ments, and lab value comparisons were performed in the Mount Sinai data set as
they have been in the UCSF EMR data set.

For network comparisons, network metrics were standard normalized across the 12
networks (6 at UCSF, 6 at Mount Sinai) by the metric and Spearman-rank correlation
coefficient and significance determined. For diagnosis comparison, Level 2, Level 3, and
full diagnosis names were mapped and compared by the sub-chapter, three-digit codes,
and full code of the ICD-10-CM hierarchy, respectively. Significant diagnosis in the
validation cohort was determined by a Bonferroni-corrected threshold of 0.05 based
upon the number of mapped UCSF-significant diagnoses. Correlations between odds
ratios were determined by a Spearman-rank correlation coefficient and significance.
Medications were mapped based upon the generic name, and correlations between odds
ratios determined with the Spearman-rank correlation coefficient.

For comparison of labs, the normalized lab values for each institution were
combined, and clustering was performed using Euclidean distance and average
linkage to identify groups of labs with similar trends between AD/sex/institution
stratified patient groups. The R package sigclust2 was used to determine significant
clusters of labs.

Data visualization using RShiny. An interactive visualization of comorbidity
enrichments and networks between AD and control groups and with sex stratifi-
cation was implemented in an Rshiny125 app: vizad.org.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The UCSF EHR database is available to individuals affiliated with UCSF who can contact the
UCSF’s Clinical and Translational Science Institute (CTSI) (ctsi@ucsf.edu) or the UCSF’s
Information Commons team for more information (Info.Commons@ucsf.edu). The
Mount Sinai EHR database is available to individuals affiliated with Mount Sinai who
can contact the Mount Sinai Intellectual Partners (MSIP) for more information
(MSIPInfo@mssm.edu). If the reader is not affiliated with the aforementioned institutions,
they can set up an official collaboration with an investigator affiliated with the target
institution(s) by contacting the PIs Marina Sirota (marina.sirota@ucsf.edu) and Benjamin
Glicksberg (benjamin.glicksberg@mssm.edu). Requests should be processed within a couple of
weeks. Summary data is available in supplementary files and, for UCSF, can be explored at
https://vizad.org.

Code availability
The code is available at https://github.com/al1563/adehr_phenotype.
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