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Resolving Contested Elections: The Limited
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Abstract

In close elections, the losing side has an incentive to obtain evi-

dence that the election result is incorrect. Sometimes this evidence

comes in the form of court testimony from a sample of invalid vot-

ers, and this testimony is used to adjust vote totals (Borders v King

County, 2005; Belcher v Mayor of Ann Arbor, 1978). However, while

courts may be reluctant to make explicit findings about out-of-sample

data (e.g. invalid voters that do not testify), when samples are used

to adjust vote totals, the court is implicitly making findings about

this out-of-sample data. In this paper, we show that the practice of
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adjusting vote totals on the basis of potentially unrepresentative sam-

ples can lead to incorrectly voided election results. More generally, we

show that given the difficulties of sampling and non-response in this

context, even when frame error is minimal and if voter testimony is

accurate, such testimony has limited power to detect incorrect elec-

tion results without precinct level polarization or the acceptance of

large Type I error rates. Therefore in U.S. election disputes, even

high quality post-vote vote-choice data will often not be sufficient to

resolve contested elections without modeling assumptions (whether or

not these assumptions are acknowledged).

1 Introduction

After the first machine count in the 2004 Washington State Gubernatorial

election, Dino Rossi led Christine Gregoire by 261 votes. Because this mar-

gin represented less than one half of one percent of the total votes cast, the

Secretary of State ordered a mandatory machine recount, after which Rossi’s

lead had shrunk to 42. The Washington State Democratic Central Commit-

tee requested a hand recount, and as a result of this final count, Gregoire

was declared the winner over Rossi by a margin of 129 votes. A number of

parties petitioned the Washington State Superior Court in Chelan County,

attempting to void this election result on the basis of hundreds of discovered

invalid ballots from precincts that voted heavily for Gregoire. The defendants

countered by producing hundreds of invalid ballots from precincts that voted
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heavily for Rossi. In Borders v King County, 2005, the court found that

the petitioners had not presented sufficient evidence to overturn the 2004

gubernatorial election. The basis for this finding was grounded in two facts.

First, the plaintiff’s sample of invalid votes was unscientific and comprised

neither a census, nor a representative sample of all invalid votes. Second,

even if the sample were scientific, the counts for each candidate and for the

number of invalid votes were aggregated to the precinct level, and therefore,

any attempt to estimate the number of invalid votes for a particular candi-

date would be an example of ecological inference. Furthermore, due to the

small percentage of invalid votes in each precinct, it is possible that all of

the invalid votes were cast for Rossi or that all of the invalid votes were cast

for Gregoire (Adolph, 2005). The result in this case therefore hinged on a

debate over the proper way to model the votes of invalid voters (Gill, 2005;

Katz, 2005; Handcock, 2005). However, in addressing the issues raised in

Borders v King County, 2005, the court defined procedures by which suffi-

cient evidence might be obtained to overturn a close election result without

modeling assumptions. In particular, the court ruled that persons who had

cast invalid votes could testify and that their testimony could be used to

adjust vote counts. During the trial, the defendants produced four invalid

voters who testified that they had voted for Rossi and the court ruled that

Rossi’s vote total should be reduced by four. This ruling raises a number of

pressing questions. First, what would have happened if the court had heard

testimony from 130 more invalid Gregoire voters than invalid Rossi voters?
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Second, does the state really want to allow samples of this type? There is

no evidence that the sample of invalid voters in this case was representative,

and one can imagine future scenarios in which the defendants and plaintiffs

race to find invalid voters who are willing to testify that they voted for the

opposing candidate. Alternatively, one could consider obtaining a complete

list of all invalid voters, calling them each to testify on their ballots and ad-

justing the vote totals accordingly. However, as in many sampling problems,

obtaining a census may prove impossible due to time and money constraints.

In Borders v King County, 2005, the plaintiffs and the defendants found a

total of 1, 439 invalid voters, and this combined sample was not a census of

all invalid voters in the state, just a lower bound that was “cherry picked”

from the precincts with high Gregoire margins (found by the plaintiffs) and

high Rossi margins (found by the defendants). In principle, the parties could

have attempted to find all the invalid voters. However, this is of course only

feasible for the classes of invalid voters that we know: felons, the deceased,

non-citizens, etc. Furthermore, even if the plaintiffs and defendants had col-

lected a census at the first stage, the second stage (calling over one thousand

witnesses) would be extremely costly and time consuming. Even if the state

(or possibly the parties) were willing to foot the bill, a governor is elected

for a four year term, and it is not possible to know ahead of time how long

it would take to call all the witnesses (especially when the defendants in the

case have an incentive to delay). Finally, even if the parties could find all

the invalid voters (as we will assume throughout the rest of this paper) and
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call them all as witnesses, the court still faces problems. Some invalid vot-

ers might be deceased, or forget whom they supported, or refuse to testify

(nonresponse) and some invalid voters might lie or misremember (measure-

ment error). The likely magnitude of measurement error is difficult to assess.

An invalid voter may misremember and also has an incentive to lie, because

telling the truth would hurt their preferred candidate. However, an invalid

voter who testifies is sure to be cross examined harshly by the side that is

losing a vote, and the risk of a perjury charge is a large cost in comparison

to the relatively small chance that your lie will get your preferred candidate

elected. In light of this, we will consider situations where the measurement

error can be assumed to be negligible. Nonresponse is likely to be a larger

problem, even in the courtroom setting. The assumed sampling frame is

the list of invalid voters, and some of the classes of invalid voters (e.g. the

deceased) will be unable to testify. Additionally, those invalid voters that

are able to testify (e.g. released felons) may be unavailable, forget their vote

choices, or refuse to testify. (In Belcher v Mayor of Ann Arbor, 1978, some

invalid voters refused to testify and were held in contempt of court, but the

Michigan Supreme Court eventually upheld their right to refuse to testify.)

Nonresponse in samples has been studied extensively. However, most of the

techniques that have been developed for nonresponse involve creating a model

for the nonresponders based on the responders.

In this paper, we explore the limits of design-based inference without

modeling assumptions, and hence avoid the debates over modeling the prob-
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ability of election reversal (Finkelstein and Robbins, 1973; Downs et al., 1978;

Gilliland and Meier, 1986; Robbins, 1986; Harris, 1988) and the traditional

weighting or imputation based approaches to nonresponse (Groves et al.,

2002; Little and Rubin, 1986). Instead we utilize the discrete and finite na-

ture of the problem to form bounds without assuming any similarity between

the responders and the nonresponders. The outline of the paper is as follows.

In Section 2 we describe the court’s decision problem for both simple ran-

dom samples and stratified random samples. Taking into account observed

characteristics of voters, we apply an exact likelihood ratio testing procedure

to address the decision problem, providing power analyses for both types of

samples, with and without nonresponse. Section 3 discusses the implications

of these results for legal challenges to election results.

2 The Decision Problem for Design Based In-

ference

We illustrate the general decision problem using the 2004 gubernatorial case.

The final judgement in Borders v King County, 2005 summarizes the relevant

statute:

RCW 29A.68.110 provides that no election may be set aside on

account of illegal votes unless it appears that an amount of illegal

6



votes has been given to the person whose right is being contested

that, if taken from that person, would reduce the number of the

person’s legal votes below the number of votes given to some other

person for the same office after deducting therefrom the illegal

votes that may be shown to have been given to the other person.

(Borders v King County, 2005, Final Judgement, p. 21)

Following the law as specified in this judgement, we formulate the correspond-

ing decision problem in the Neyman-Pearson framework with the composite

null hypothesis as a tie or a victory for the putative winner in an election

with only the valid ballots considered. It may seem more natural to start

with the explicit definition of a loss function and decision rule based on the

precepts of frequentist decision theory. However, a Neyman-Pearson deci-

sion rule is admissible under 0-1 loss, and while not minimax (Chernoff and

Moses, 1986), it has a lower risk of incorrectly voiding an election result than

does a minimax rule. Hence the Neyman-Pearson rule implicitly protects

against the costly legal remedy of conducting a new election, this being the

only realistic remedy (Harvard Law Review , 1975). One could argue that

such protection should be built into the decision procedure explicitly through

an asymmetric loss function, but it would be difficult for the court to decide

on a particular loss function, and the Neyman-Pearson rule can be easily

related to p-values which more closely reflect the evidentiary nature of court

proceedings.
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In Borders v King County, 2005, the plaintiffs and defendants together

identified 1,439 invalid voters. If we make the working (albeit incorrect)

assumptions that this number represents a census of all the invalid voters

and that there were two candidates (that we call Gregoire and Rossi without

loss of generality), then we can get some insight into the decision problem.

(We also assume each voter cast exactly one ballot, it was for one of these

candidates, and we exclude spoiled ballots.) Since the margin of victory

among all ballots (valid and invalid) for Gregoire was 129 voters, the null

hypothesis of a tie or Gregoire victory among valid ballots corresponds to 784

(or greater) of the invalid voters for Gregoire and 655 (or fewer) of the invalid

voters for Rossi (this of course involves the simplification to two candidates).

Note that 784 is greater than half of the 1,439 invalid voters, hence, if the

invalid voters voted for Gregoire and Rossi in the same proportions as valid

voters, then the null hypothesis is true (i.e. Gregoire was the rightful winner).

Furthermore, this demonstrates that the one sided alternative in the direction

of a Rossi win indicates that Gregoire had a proportion of the support among

the invalid voters larger than 54%. The court would therefore rule to void

the election result only when there was sufficient evidence to reject the null

hypothesis of Gregoire support less than or equal to 54%. (Note that this

test of the composite null hypothesis is equivalent to the test of the simple

null hypothesis of a tie because if we can reject the hypothesis of a tie in the

direction of a Rossi victory, we can also reject any hypothesis of a Gregoire

victory.)
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2.1 The Decision Problem for Simple Random Sam-

pling from a Sampling Frame of Invalid Voters

With a simple random sample, it is relatively straightforward to form decision

rules and conduct exact power calculations based on the hypergeometric

distribution. If we denote the total number of invalid voters as N and we

denote the total number of invalid Gregoire voters as G, we can write the

null and alternative hypotheses as the following:

H0 :
G

N
≤ 784

1439
≈ .545

Ha :
G

N
>

784

1439
≈ .545

Given a simple random sample of size n from this finite population, we

define g to be the sampled number of Gregoire invalid voters and qα to be

the 1 − α quantile from a hypergeometric distribution with N = 1439 and

G = 784. The decision rule that rejects the null for g > qα is a likelihood ratio

test and is uniformly most powerful against all alternatives (see Lehmann

and Romano (2005)). Figure 1 shows the exact power calculations for an

α ≤ .05 level test of this type with sample sizes between 130 and 1400, and

alternative values of G from 784 to 850. We have chosen α ≤ 5% in this

paper, not because we endorse the use of this percentage, but because we

must choose some level of α in order to conduct power analyses, and this is

a standard level. The (− − −) curve in Figure 1 corresponds to a sample
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Figure 1: Exact power calculations for a simple random sample with a null
hypothesis of an election tie (N = 1439 and G = 784), α ≤ .05, and the one
sided alternative of G > 784 corresponding to a Rossi win. The (−−−) curve
corresponds to a sample size of 130. The next highest curve corresponds to
sample size of 200, and each subsequent curve is an additional 100. The (· · ·)
curve corresponds to a sample size of 1000.

size of 130, with the next highest curve corresponding to sample size of 200,

and each subsequent curve represents an additional 100 observations. The

(· · ·) curve corresponds to a sample size of 1000. The sample size of 130

is important, because this is the minimum sample size necessary to change

the election result if the sample consisted of only illegal voters who voted for

Gregoire and a decision rule was employed that merely deducts the sampled

invalid voters from the vote totals (as was done in Borders v King County,

2005). To state this explicitly in the language of hypothesis testing, note that

a selective sample can be viewed as a census in which all those who are not

in the sample did not respond (see the solid curves of Figure 3). Therefore,

a test that rejects the null hypothesis based on an attempt to selectively
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sample 130 invalid Gregoire voters would have 100% power for all alternative

values of G, but unfortunately would also be guaranteed to incorrectly reject

the null when 130 ≤ G ≤ 784 and would therefore have α = 1 (i.e. would be

certain to reject the null even if it were true).

We see from the plot that the most powerful α ≤ .05 level test based on

a simple random sample of 130 invalid voters would have very little power

against mild to moderate alternatives. In fact, the power doesn’t break 50%

until G = 890 or when the true Gregoire proportion of invalids reaches 62%.

Hence, unless we believe that invalid voters heavily favor Gregoire, an exact

level α = 5% likelihood ratio test based on a random sample of this size would

be unlikely to generate enough evidence of a Rossi victory. Additionally, Fig-

ure 1 shows that to achieve high levels of power for reasonable proportions

of Gregoire invalid voters, we need extremely large sample sizes. Even with

a sample size of 1000, we only break 50% on power when the Gregoire pro-

portion of invalid voters breaks 56%. Therefore, anyone contemplating the

implementation of this sampling scheme and decision rule, should acknowl-

edge the possible necessity of sampling nearly all invalid voters.

The power gets worse if we allow for nonresponse. In this scenario, the

current null hypothesis does not provide enough restrictions to allow the ex-

act derivation of the probability of Type I error because under everything

but the most extreme hypotheses for G the non-responders could have all

been Gregoire voters or all Rossi voters. To state this explicitly, let nnr be

the number of nonresponders, and let gr be the number of observed Gregoire
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invalid voters among the responders. Then both of these variables are observ-

able, while the original g (the total number of Gregoire invalid voters in the

sample) is now unobservable. We know that gr ≤ g ≤ gr + nnr, but without

further assumptions or a combination of additional data and assumptions,

we have no means of estimating a distribution over this range. Therefore,

in the absence of such assumptions, the only way to ensure an α ≤ .05 level

test is to treat all invalid non-responders as if they were invalid Rossi re-

sponders when calculating the rejection region, and to reject only when the

number of observed Gregoire responders (gr) exceeds the critical value. Since

max(g − nnr, 0) ≤ gr ≤ min(g, n− nnr), we can determine upper and lower

bounds for the probability that gr will exceed the threshold set by qα. In our

example with a target α of 5%, this effectively means that for large sample

sizes and any substantial proportion of nonresponse, the true probability of

Type I error could be anywhere between .05 and zero. The actual α bounds

are plotted for an example with 1% nonresponse in Figure 2.

The power of this test is also bounded by using the distributions of

max(g − nnr, 0) and min(g, n − nnr). In Figure 3, we present exact power

bounds for sample sizes of 130 (− − −) , 1000 (· · ·) and the whole pop-

ulation (—) against different alternative values and for different levels of

nonresponse. These plots make explicit the following two important points.

First, an α level test in the presence of nonresponse is necessarily quite con-

servative and may have very low power because we must assume that the

nonresponders voted for Rossi if we want to maintain the α level of the test.
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Figure 2: Exact bounds for the actual probability of Type I error in the
presence of 1% nonresponse and various sample sizes. The decision rule
(reject only if the responding Gregoire invalids exceed the critical value) was
chosen to ensure that the probability of Type I error did not exceed 5%.

Second, even if we sample all the invalid voters, the presence of nonresponse

will create the possibility that we will not be able to reject the null for mild

to moderate values of the alternative.

2.2 The Decision Problem for Stratified Random Sam-

pling from a Sampling Frame of Invalid Voters

Stratified random sampling often increases the power of a test, and for this

application, we might hope that stratification would increase power for two

reasons:

First, the plaintiffs and defendants presented ballot counts for both valid

and invalid voters at the precinct level, and therefore, if there were extreme
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Figure 3: Exact bounds for power in the presence of 1%, 5%, 10%, and
20% nonresponse and with n=130 (− − −), n=1000 (· · ·), and n=1439, or
the whole population (—). The decision rule (reject only if the responding
Gregoire invalids exceed the critical value) was chosen to ensure that the
probability of Type I error did not exceed 5%.
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polarization at the precinct level, there would be constraints on the number

of possible invalid Gregoire voters. For example, in a given precinct, if there

were more invalid voters than the total number of valid and invalid Rossi

voters then the remaining invalid voters are Gregoire voters. However, due to

the lack of precinct level polarization in U.S. elections, these extra constraints

do not come into play because the number of invalid ballots will always be

much smaller than the total number of Gregoire ballots or Rossi ballots.

A second reason to think that stratification may increase the power of the

test is that it may reduce the variance of the sampled number of Gregoire

invalid voters within each stratum. Because we are forming a decision rule

based on counts of invalid voters, and the majority of these invalid voters

are felons (who are disproportionately male), an obvious stratification is on

sex. This is possible (for the most part) because we have sex information

on most of the invalid voters. Among the 1,439 invalid voters in Borders v

King County, 2005, there were 1,082 invalid male voters, 356 invalid female

voters, and one invalid voter of unknown sex. To simplify the presentation,

we will assume that the invalid voter of unknown sex was female.

However, if we partition the population into male and female invalid vot-

ers, then the parameter space has two dimensions, and the decision problem

becomes more complicated. The composite null hypothesis (election tie or

Gregoire victory) can still be rejected by considering only the rejection of the

election tie hypothesis. However, with more than one stratum, the election

tie hypothesis does not completely specify the probability distribution. If we
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stratify on sex (male and female), then the parameter space has support de-

scribed by 0 ≤ Gm ≤ Nm = 1, 082 and 0 ≤ Gf ≤ Nf = 357, and the election

tie hypothesis states that Gm + Gf ≤ 784. Clearly a number of (Gm, Gf )

pairs will satisfy even the equality portion of this statement, and in order

to reject the null, we need simultaneous evidence against all of them. We

can formulate an exact test against all (Gm, Gf ) pairs in the null region by

using the likelihood ratio. Figure 4 (a) presents likelihood ratio values for

all points in the sample space where we have sampled 130 individuals and

the within strata sample size ratio is approximately equal to the ratio of the

dimensions of the parameter space (i.e. nm
nf
≈ Nm

Nf
). (It can be shown that

proportional sampling tends to minimize the variability in the total num-

ber of sampled Gregoire invalid voters needed for rejecting the null (across

different combinations of sampled male and female invalid Gregoire voters),

and therefore proportional sampling would likely be more palatable to the

Court and to the general public than a non-proportional sampling scheme.)

The dark regions correspond to the low values of the likelihood ratio, and

the white regions correspond to likelihood ratios of one. In order to form a

rejection region, we include points of the sample space with small likelihood

ratio values and check the probability of this region for every (Gm, Gf ) pair

such that Gm + Gf <= 784. Points are added to the rejection region in the

order of the likelihood ratio values until the maximum probability of rejec-

tion over all null (Gm, Gf ) pairs is as close to .05 as possible without going

over.
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(b) Rejection region for a sample of 130
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Figure 4: Likelihood ratios and rejection region for a sample of 130 individu-
als proportionally stratified on sex, α ≤ .05, and a null of G = Gm+Gf ≤ 784.
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Using proportional sampling, we would like to compare the power of the

stratified random sample test to the power of the simple random sample

test. However, this comparison is made difficult by the extra dimension in

the parameter space for the stratified random sample. Each alternative value

of G for the simple random sample will correspond to many possible (Gm, Gf )

pairs for the stratified random sample. In Figure 5 (a) we show a comparison

of the power curve for the likelihood ratio test based on a simple random

sample of 130 invalid voters (solid curve) and the minimum and maximum

power curves (dashed curves) for the likelihood ratio test based on a stratified

proportional random sample with 98 men and 32 women. It is clear from

the plot that the stratified LR test is at least as powerful as simple random

sample LR test against alternative values of G because the minimum and

maximum stratified power curves are greater than or equal the power curve

for the simple random sample. Furthermore, the difference between upper

and lower bounds on power for fixed G/N in Figure 5 (a) shows that the

power of the stratified test can provide substantially greater power for some

alternative (Gm, Gf ) pairs than others. The benefits of stratification appear

to be maximized when G/N ≈ 0.63 and when Gm/Nm >> Gf/Nf . Hence,

for alternative values of G where the power of the stratified test can provide

substantially greater power over the SRS test, the benefit is maximized when

the true Gregoire percentages are very different within each stratum, and

the power of the stratified test is nearly identical to the power of the simple

random sample test when Gm/Nm ≈ Gf/Nf .
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As shown in Figure 5 (a) the possible benefits from stratification depend

on the heterogeneity between the strata, but they may also depend on the

level of nonresponse. In the previous section, we presented α level power

bounds for the LR test based on a simple random sample with nonresponse.

We can calculate similar power bounds for our test based on a stratified

random sample by using inequalities analogous to those of the last section.

The rejection region in Figure 4 (b) can be represented by the following

decision rule:

Reject if: (gm > q1m and gf > q1f ) or

(gm > q2m and gf > q2f ) or

...
...

...

or

(gm > qkm and gf > qkf ).

where (q1m, q1f ), . . . , (qkm, qkf ) represent points just outside the boundary

of the rejection region. In the presence of nonresponse among the male

and female invalid voters, we know only that gmr ≤ gm ≤ gmr + nmnr and

gfr ≤ gf ≤ gfr + nfnr, where gmr and gfr are the male and female Gregoire

responders and nmnr and nfnr are the number of male and female nonre-

sponders. Since gm and gf can be anywhere within these bounds, we must

use a decision rule which replaces gm and gf with gmr and gfr in order to

maintain the α level of the test. From the above bounds we know that

max(gm − nmnr, 0) ≤ gmr ≤ min(gm, nm − nmnr) and max(gf − nfnr, 0) ≤
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gfr ≤ min(gf , nf − nfnr), and therefore we can obtain bounds for the proba-

bility of rejection by considering the joint distribution of the male and female

lower and upper bounds.

The joint distributions for the lower and upper bounds allow us to com-

pare the probability bounds for a simple random sample and a stratified ran-

dom sample under various levels of nonresponse. In Figure 5 we present power

bounds for the simple random sample and a sample proportionally stratified

on sex with overall sample sizes of 130 and a null of G = Gm+Gf ≤ 784. The

solid curves represent the power bounds from a simple random sample with

differing levels of nonresponse (these bounds collapse to a single curve when

there is no nonresponse). The dashed curves represent the power bounds

from a proportionally stratified random sample with differing levels of non-

response (the nonresponse is assumed to be proportional between males and

females). Figure 5 shows that under a decision rule that bounds α at 5%,

substantial nonresponse can seriously reduce the power of the stratified test

to the point that there is no guarantee that the stratified test will produce

any benefit. For example, with 10% nonresponse, and when G/N = .63

and Gm/Nm >> Gf/Nf , the power benefit from stratification over SRS can

be as great as 0.24 but it can also be as small as 0.01. Hence in the case

were stratification promises to provide the greatest benefit, substantial non-

response may effectively eliminate these gains.
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Figure 5: Exact power calculations under (a) 0% (b) 1%, (c) 5%, and (d) 10%
nonresponse for a simple random sample and a sample proportionally strat-
ified on sex with overall sample sizes of 130, a null of G = Gm + Gf ≤ 784.
Nonresponse is assumed to be independent of sex, but the numbers of Gre-
goire and Rossi nonresponders are allowed to vary within their deterministic
bounds. The solid curves represent the power bounds from a simple random
sample. These bounds collapse to a single curve under 0% non-response. The
dashed curves represent the power bounds from a proportionally stratified
random sample.
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3 Conclusion

As this paper has shown, classical testing within the sampling design-based

framework and a Type I error rate of 5% will not have high power unless

the sample size is a large proportion of the population or the true parameter

value is quite extreme. One can attempt to increase the power through strat-

ification, but the gains are not assured, and will depend on the heterogeneity

between the groups. Furthermore, substantial nonresponse may decrease the

power of either procedure and may eliminate the gains from a stratified test.

In simple terms, in order to maintain the level of the test at α in the presence

of nonresponse, we must treat the nonresponders as if they would have given

evidence for the null hypothesis, and therefore we may not be able to reject

the null for moderate values of the alternative hypothesis, even if we sample

the entire population.

There are three major criticisms that can be leveled against the analy-

sis in this paper. First, the testing framework that bounds the maximum

probability of Type I error at α is conservative, and the choice of α ≤ .05 is

arbitrary. We are not endorsing this testing procedure or a Type I error of

5%, however, we wanted to make explicit the ramifications for a popular sta-

tistical decision procedure when either nonresponse is a concern, or when an

unrepresentative sample is used. The second major criticism can be leveled

at our treatment of nonresponse. Treating all nonresponders as if they would

have provided evidence for the null hypothesis is certainly conservative, but
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it is the only way to maintain the Type I error level of the test at α without

making modeling assumptions. In a particular application, there may be

reasonable modeling assumptions to be made, but this paper presents the

limits of design-based inference for the standard asymmetric testing proce-

dure. Third, in our attempt to produce a model-free statistical analysis, we

have still made a number of assumptions. In particular, we have assumed

only two candidates, we have ignored the possibility of measurement error or

spoiled ballots, and perhaps most importantly the possibility of frame error

(which was almost certainly present in Borders v King County, 2005 frame of

1,439 invalid voters). Relaxing any of these assumptions will either increase

the Type I error level of the test or decrease the power. Hence, the results

presented here represent a form of best case scenario.

The implications of this work for legal challenges to election results are

clear. Given the fact that post-vote vote-choice data will often be plagued

by nonresponse (and other issues assumed away in this paper), there is little

chance of obtaining a representative sample, and court decisions on the basis

of such data will likely depend on strong modeling assumptions (whether or

not these are acknowledged). More broadly speaking, while courts may be

reluctant to make explicit findings about out-of-sample data (e.g. invalid

voters who did not testify), courts should note that when they conduct pro-

cedures (e.g. the adjustment of vote totals) on the basis of a potentially

unrepresentative sample (e.g. invalid voters that testify), they may be im-

plicitly making findings about this out-of-sample data.
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