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Probing quantumfloating phases in Rydberg
atom arrays

Jin Zhang 1,2,3,6 , Sergio H. Cantú4,6 , Fangli Liu 4 , Alexei Bylinskii4,
Boris Braverman 4, Florian Huber4, Jesse Amato-Grill4, Alexander Lukin4,
Nathan Gemelke4, Alexander Keesling4, Sheng-Tao Wang 4,
Yannick Meurice 1 & Shan-Wen Tsai 5

The floating phase, a critical incommensurate phase, has been theoretically
predicted as a potential intermediate phase between crystalline ordered and
disordered phases. In this study, we investigate the different quantum phases
that arise in ladder arrays comprising up to 92 neutral-atom qubits and
experimentally observe the emergence of the quantum floating phase. We
analyze the site-resolved Rydberg state densities and the distribution of state
occurrences. The site-resolved measurement reveals the formation of domain
walls within the commensurate ordered phase, which subsequently proliferate
and give rise to the floating phase with incommensurate quasi-long-range
order. By analyzing the Fourier spectra of the Rydberg density-density corre-
lations, we observe clear signatures of the incommensurate wave order of the
floating phase. Furthermore, as the experimental system sizes increase, we
show that the wave vectors approach a continuum of values incommensurate
with the lattice. Our work motivates future studies to further explore the
nature of commensurate-incommensurate phase transitions and their non-
equilibrium physics.

The study of quantum phases and quantum phase transitions is one of
the central topics in condensed matter, atomic, and high energy
physics. Among these, commensurate to incommensurate phase
transitions have been actively investigated since the 1980s1–6 and have
attracted renewed attention recently7–12. A pivotal question revolves
around the extent of the intermediate incommensurate phase and the
potential for a direct chiral transition within the Huse-Fisher uni-
versality class1 as a commensurate solid melts into the disordered
phase. In the context of spontaneous symmetry breaking, commen-
surate crystalline states in lattice systems often give hints to the
underlying universality class of the phase transitions, such as the Ising
and Potts classes13. Nonetheless, Huse and Fisher1 proposed that when
different kinds of domain walls exist in commensurate phases, they
can introducechiral perturbations,where the sequenceof thedomains

matters. In such cases, several other possibilities could arise for the
phase transition between the disordered and the commensurate
ordered phases. These include a direct chiral transition1, a direct first-
order transition5, or an intriguing two-step transition across an
incommensurate density-wave phase, i.e., the quantum floating
phase5,14.

Early efforts in this field focused on probing classical floating
phases in the melting of two-dimensional (2D) solids on periodic
substrates15–17. Later on, Fendley et al.18 proposed a one-dimensional
(1D) constrained hard-boson model that hosts a critical quantum
floating phase. The constrainedmodel is of particular relevance to the
Rydberg atom array quantum simulation platform, which has made
significant advancements in recent years19–24. Strong blockade inter-
actions between nearby Rydberg atoms directly mimic the constraint
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in the hard-boson model. Theoretical calculations predict that critical
quantum floating phases should exist in the 1D Rydberg atom array
system7–10,25. However, probing the floating phase in the 1D Rydberg
system has been proven to be challenging due to the fact that the
atoms cannotbeplaced arbitrarily close to eachothers, only a very thin
sliver of the floating phaseon top of theZ3 phase of the Rydberg chain
is accessible experimentally.

In this study, we construct a quasi-1D array of 87Rb atoms arranged
in a two-leg ladder and experimentally probe the quantum floating
phase. The Rydberg interactions between the two legs of the ladder
array in the chosen geometric aspect ratio introduce stronger chiral
perturbations (Supplementary Note 4) that yield broad regions of the
floating phase in experimentally accessible parameter regimes
(Fig. 1b), which greatly facilitate our experimental observations. We
provide supporting numerical calculations for the full phase diagram
of the ladder system and experimentally measure the various phase
regimes. By taking snapshots of the prepared states,we obtain the site-
resolved Rydberg density and correlation functions. The dominant
wave vectors for the measured correlation functions, extracted
through Fourier analysis, offer a clear distinction between

commensurate and incommensurate phases. An important feature of
the floating phase is that, in the thermodynamic limit, the incom-
mensurate wave vectors continuously depend on the physical
parameters14. We experimentally observe that, as system sizes
increase, the incommensuratewave vectors tend towards a continuum
of values.

Results
Implementation of the Rydberg ladder
In order toprepare this geometryof atomarrangement, 87Rb atoms are
loaded from amagneto-optical trap into a 2D array of optical tweezers
generatedusing a spatial lightmodulator (SLM).We then rearrange the
initially loaded atoms into a defect-free two-legged pattern using a
second set of optical tweezers generated by a pair of crossed acousto-
optical deflectors (AODs)26. In our system, qubits are encoded in
the electronic ground state ∣gi= ∣5S1=2i and the Rydberg state
∣ri= ∣70S1=2i. The transition between the two states is driven by a two-
photon process with two counter-propagating laser beams at 420 nm
and 1013 nm shaped into light sheets (Fig. 1a). The coupling between
the states and vanderWaals interaction between Rydberg states result

Fig. 1 | Quantumphases ofRydberg atomsarranged in a two-leg ladder. aAtoms
are loaded into a two-leg ladder of optical tweezer traps generated using a spatial
light modulator (SLM) and rearranged into defect-free patterns by a second set of
moving tweezers using a pair of crossed acousto-optical deflectors (AODs).
Coherent transitions are driven between the ground state ∣gi = ∣5S1=2i and the
Rydberg state ∣ri= ∣70S1=2i in each atom with a two-photon transition induced by
lasers at 420nm and 1013 nm. The inset shows a linear detuning sweep Δ(t) at a
constant Rabi frequency Ωmax = 2π × 2:5 MHz for preparing the ground states of
the phase diagram via adiabatic evolution. Projection of the many-body quantum
state into bitstrings of ∣g

�
and ∣ri for each atom can be detected on an Electron

Multiplying Charge-Coupled Device (EMCCD) camera with the Rydberg state ∣ri
detected as loss of atom. b The ground-state phase diagram for the Rydberg

Hamiltonian [Eq. (1)] in a two-leg ladder is shown with lattice spacings ax = a and
ay = 2a. Structure factors S(k) are numerically computed for 1 ≤Rb/a ≤ 3.5 using
DMRG (Supplementary Note 2). The color map depicts the peak height S(ko) at
ko = 2π/p with p being the wavelength in units of the lattice constant a, while con-
tour lines show the constant-p lines. TheZp orders have constant values of integer
p, while the floating phase exhibits a continuously varying p. The black line cut
corresponds to experimental parameters chosen in subsequent figures.
c Experimentally measured Rydberg densities illustrate the Zp orders and the
floating phase. The radius of the dashed circle illustrates the Rydberg blockade
radius Rb. The Z3 ×Z2 and Z4 orders exhibit Rydberg density oscillations with
periods of p = 3 and p = 4 lattice spacings, respectively. The incommensurate
floating phase displays no discernible periodicity in density oscillations.
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in the Hamiltonian
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where i= 1, 2, …, L and j=0, 1 are the rung index and the leg index,
respectively, Ω is the effective two-photon Rabi frequency, Δ is the two-
photon detuning, n̂i, j = ∣ri, jihri, j ∣ is the Rydberg density operator, and
V r, r0 =C6=∣r� r0∣6 is the van der Waals interaction where
C6 = 2π×862690MHzμm6 and r= iaxex+ jayey. In this work, we set the
lattice spacings ax=a and ay=2a (Fig. 1c). The interactions are
parameterized by the Rydberg blockade radius Rb = ðC6=ΩÞ1=6, within
which the interaction is much larger than the Rabi frequency, and it is
thusenergeticallyunfavorable tohavemore thanoneRydbergexcitation.

Complex many-body ground states emerge from the interplay
between the detuning and the Rydberg interactions (Fig. 1b). For small
positive values of detuning Δ/Ω, the system has a low Rydberg state
occupancy and displays a featureless disordered ground state. When
the detuning becomes large, the Rydberg excitations can occupy one
of every p consecutive sites, with p being an integer number and its
value determined by Rb/a. Such ordered Zp density wave states have
been observed experimentally both in 1D and 2D Rydberg arrays19,20,23.
In the intermediate values of Rb/a between two different crystalline
orders, the proliferation of different types of domain-wall excitations
destroys the crystalline orders, but it can still stabilize an algebraically
decaying quasi-long-range order that is incommensurate with the lat-
tice spacing a1,9, giving rise to the quantum floating phase (Supple-
mentary Notes 6 and 7). Those density wave states have degeneracies
related by translation and mirror symmetries. To facilitate experi-
mental observations, we apply special boundary conditions to add two
extra sites on the edges of the ladder array as shown in Fig. 1c, which
break the aforementioned symmetries (Supplementary Note 4).

Phase diagram via structure factor
The Rydberg density-density correlation functions can reflect (quasi)
long-range orders in density-wave states and the Fourier analysis can
extract the dominant wave vectors of these orders. To quantitatively
map out the phase diagram, we use the following structure factor:

SðkÞ= p2

L2
X
i, i0

eik i�i0ð Þ mimi0
� �

, ð2Þ

wheremi = ni,1 − ni,0 is the difference between the Rydberg density on
the two sites in the ith rung and p2/L2 is an overall normalization factor.
Here, p is determined by p = 2π/ko, where L2S(k) peaks at ko. The
orderedZp phase and the incommensurate floating phase correspond
to p being integer and non-integer values, respectively, and S(ko)
converges to non-zero constant values as the system sizes increase. On
the other hand, S(ko) goes to zero in the thermodynamic limit for the
disorderedphase. Thephasediagramfor our ladder system is shown in
Fig. 1b by numerical calculations via density matrix renormalization
group (DMRG)27–30. Themaximumvalue S(ko) is plotted as a function of
the physical parameters Δ/Ω and Rb/a. The colormap shows clear
differences among commensurate Zp ordered phases, incommensu-
rate floating phases, and the disordered phase. Lines of constant p are
superimposed to the phase diagram in Fig. 1b. They reveal the
wavelength of the density oscillations and thus whether it is
commensurate or incommensurate (the validity of using S(k) to
extract wave vectors in different phases is demonstrated in Supple-
mentary Note 5). As illustrated, we can see the clear differences
between commensurateZp ordered phases (with p = 2, 3, 4, 6) and the
incommensurate floating phase that lies between Z3 ×Z2 and Z4

orders or between Z4 and Z6 orders. The Z5 order and in fact Zp

orders for any odd p ≥ 5 do not exist due to strong inter-leg Rydberg
blockade interactions (Supplementary Note 4). We emphasize that
determining the phase diagram by mapping out the structure factors,
as demonstrated here, has the desirable benefit of being directly
measurable in our experiments, in contrast to using the entanglement
entropy (Supplementary Note 4).

Characterizing phases via bitstring distributions
Our experimental setup allows many repetitions of the adiabatic pre-
paration process, giving us direct access to snapshots of bitstrings of
each atom in ∣gi and ∣ri in each observation. We plot the experimentally
measured density profiles forZ3 ×Z2,Z4, and floating phases in Fig. 1c.
In each experimental run, the corresponding many-body ground state is
preparedbyanadiabatic evolution starting fromall atoms in the ∣gi state,
followed by an adiabatic sweep similar to the one shown in the inset of
Fig. 1a. One can see that the Zp order has large occupation of Rydberg
states everyp-th siteoneach leg,while theRydbergdensity in thefloating
phasedoesnothave the same repetitive structure in the array. Analysis of
the statistical distributions of the read-out configurations provides clear
indications of the different many-body phases prepared (Fig. 2). In the
case of the disordered state with Δ/Ω=0, the measured bitstring con-
figurations are likely to be all different, i.e., all the bitstrings occur only
once (see Fig. 2a, with a total of 573 samples taken in our experiments). A
typical measurement read-out shows no order along the ladder, where a
representative snapshot is shown in the florescence image above the
histogramplot. In contrast, for the commensurateZ3 ×Z2 (588 samples)
and Z4 (599 samples) phases, there is only one particular configuration
that occurs much more frequently than all the other configurations
(Fig. 2b, d), corresponding to the classical density-wave state with peri-
odicitiesp=3 andp=4, respectively, as shown in theflorescence images.

More interestingly, within the floating phase situated between the
Z3 ×Z2 and Z4 phase regimes, the most frequently observed bitstring
out of 600 samples does not exhibit Z3 ×Z2 or Z4 periodicity. Instead,
there are always smaller regions with Z3 ×Z2 or Z4 order appearing
alternately, as shown by the alternate orange and blue boxes in the
florescence image in Fig. 2c. This observation reveals that the floating
phase is not simply a macroscopic superposition of Z3 ×Z2 and Z4

orders. If themelting of theZ4 order is considered, thedomainwalls can
be identified by observing where the Z4 domain changes sublattices
(Supplementary Note 3). These domain walls, as indicated by the right
arrows, are essential for the incommensurate nature of the quantum
floating phase (Fig. 1c). In principle, the domain walls should be dis-
tributed at equal distances across the entire system for the ground state.
However, changing the position of the domain walls incurs only small
energy cost in the floating phase, which results in a nearly continuous
distribution of states with high occurrences (In the thermodynamic
limit, a continuum limit can be defined and continuous translations can
be performed on each configuration without any cost in energy. This
translation corresponds to an overall phase shift of the incommensurate
density wave, and the degeneracy is a manifestation of an emergent
global U(1) symmetry.). We observe such a feature in the bitstring dis-
tribution in Fig. 2c. This behavior stands in contrast to the commensu-
rate ordered phases, where only one bitstring occurs dominantly. These
experimental results are fully consistent with theoretical calculations
(see the Supplementary Note 3 for numerical results).

Density-density correlations
The Z3 ×Z2, Z4, and intermediate quantum floating phases can be
further elucidated through a quantitative analysis of the Rydberg
density correlations. In Fig. 3a, we present the correlation matrix
hmimi0 i between rungs i and i0. In the disordered phase, the diagonal
elements of the correlationmatrix are non-zero, while the off-diagonal
elements quickly decay to zero, accompanied by weak site-dependent
fluctuations. This behavior indicates that the correlation length is short
in this case. Quantitatively, by averaging the correlation functions over
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Fig. 3 | Correlation functions and structure factors for different phases. a The
experimental correlation matrix hmimi0 i employing the order parameter
mi =ni,1− ni,0 for a system size of L = 21. The presented results correspond to
(Δ/Ω, Rb/a) = (0, 2.4) in the disordered phase, (3.5, 2.1) in the Z3 ×Z2 phase,
(3.5, 2.45) in the floating phase, and (3.5, 2.7) in theZ4 phase. Black boxes indicate
examples of minimal repeating patterns for Z3 ×Z2 and Z4 orders, which repeat
every three or four sites, respectively. The floating phase lacks a repeating pattern
due to an incommensurate wavelength. b The mean correlator C(r) is determined

by averaging correlation functions hmimi0 i over the same relative distance r = i� i0.
Both numerical and experimental results are presented, showing nearly identical
oscillationperiods. cThe structure factor S(k) is derived from the Fourier transform
of hmimi0 i with respect to i� i0. While weak signals are observed in the disordered
phase, both numerical and experimental results display robustmatching signals for
Z3 ×Z2, floating, andZ4 phases. Some detailed features of the figures such as beat
patterns and peak asymmetries are discussed extensively in Supplementary Note 1.

Fig. 2 | Histogramof themeasuredbitstring occurrence frequency.Bottom row:
In each of theZ3 ×Z2, floating, andZ4 phases, the histograms of many-body state
occurrence frequency are shown. Top row shows fluorescence images of the ∣g

�
and ∣ri bitstrings with the largest occurrence for (b, c, d), and a typical bitstring for
(a), where atoms excited to ∣ri are detected as atom loss and marked with red
circles. The experimental parameters for these phases are along the black line
shown in Fig. 1b with Δ/Ω = 3.5. The atoms are arranged in a (2 × 21 + 2) ladder array
for all phases with L = 21. a The disordered phase at Δ/Ω =0, Rb/a = 2.4 is sampled
573 times,with eachmeasured bitstring occurringonly once.bTheZ3 ×Z2 order at

Rb/a = 2.1 exhibits a perfect Z3 ×Z2 state occurring 24 times out of 588 samples,
significantly more frequent than all other states. Blue boxes encircle the Z3 ×Z2

unit cells. c The floating phase at Rb/a = 2.35 is measured 600 times, with Z4

(orange boxes) and Z3 ×Z2 (blue boxes) cells appearing alternatively in the most
frequent state. Right arrows point to the domain walls where the Z4 domain
changes sublattices (the index i modulo 4 changes for the rungs containing Ryd-
berg states). d The Z4 phase at Rb/a = 2.7 is sampled 599 times, with perfect Z4

states occurring most frequently at 33 times. Orange boxes encircle the Z4

unit cells.
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sites with a fixed relative distance i� i0, we show that the mean cor-
relation function CðrÞ= 1=Nr

P
i�i0 = rhmimi0 i (Nr is the number of ði, i0Þ

pairs satisfying i� i0 = r) decays to zero immediately for ji� i0j>0 (first
column of Fig. 3b). The numerical results are in good agreement with
experimental measurements. Both experimental and numerical
structure factors S(k) show a weak signal for density fluctuations, as
shown in the first column of Fig. 3c.

The sameanalysis is performed forZ3 ×Z2,floating, andZ4 phases.
The integer-periodoscillation patterns forZ3 ×Z2 andZ4 phases can be
easily read from the correlation matrix, where the correlations oscillate
with periodicities of p = 3 and p=4, respectively. On top of the periodic
oscillations, there also exists some amplitude decay for the correlations
as the distance increases. The black boxes in Fig. 3a indicate the smallest
repeating units: 3 × 3 and 4×4 squares for Z3 ×Z2 and Z4 orders,
respectively. There is no such repeating unit in the correlationmatrix for
the quantum floating phase, indicating that its periodicity is not com-
mensurate with the lattice spacing. The mean correlation function in
Fig. 3b also shows perfect Z3 ×Z2 and Z4 oscillations for the commen-
surate phases, while it presents an incommensurate oscillation pattern
for the floating phase. The plots of C(r) exhibit excellent agreement with
numerical results in the short range, albeit with amplitude decay due to
the finite correlation length in our experiments. The experimental data
for the three density-wave phases show strong signals of oscillations,
which are absent in the disordered phase.

Structure factor analysis across phases
The structure factor in Fig. 3c has peaks at 2π × 8/24, 2π × 7/24, and
2π × 6/24 for the Z3 ×Z2, the incommensurate floating, and the Z4

phases, respectively, in agreement with numerical results. These
particular values for the peak positions can be explained by the finite
size of the ladder and our choice of boundary conditions. With finite
detuning, a Rydberg excitation is pinned at each of the two edge sites
of the ladder since that minimizes the Rydberg blockade energy, as
illustrated in Fig. 1c. Under this boundary condition, the Rydberg
density waves for Z3 ×Z2 and Z4 orders are both compatible with
system sizes satisfying L = 12l − 3, with l being any positive integer
number. Because of the Rydberg interactions, the pinning of the
Rydberg density wave at the edge sites on a finite lattice restricts
arbitrary continuous variation of the wavelength in the floating
phase, allowing only l − 1 fractional values of wavelength between the
Z3 ×Z2 and the Z4 orders. For example, in the Z3 ×Z2 phase (p = 24/
8) with a system size of L = 21, the most frequently occurring state
contains 8 excitations in each leg, while in the Z4 phase (p = 24/6), it
comprises 6 excitations in each leg. In the floating phase between the
Z3 ×Z2 and Z4 phases, the most common state consists of 7

excitations in each leg, resulting in a fractional p = 24/7, as confirmed
by the results in Fig. 2c. In the large L limit, this series of l − 1 waves
with fractional wavelengths continuously interpolates between two
crystalline orders with integer values p = 3 and p = 4. In the following,
we experimentally explore this trend by constructing ladder arrays of
different sizes.

Scaling of structure factors with system size
We vary Rb/a in small steps by changing the lattice constant a and
examine the changes in the structure factor S(k) for various system
sizes. This experimental cut is indicated by the black line in Fig. 1b at
Δ/Ω = 3.5 and Rb/a ranges from 2.1 to 2.8. S(k) is measured for different
system sizes L = 21, 33, 45, with its dependence onRb/a and kpresented
in Fig. 4a–c. We note that at each value of Rb/a, the corresponding
many-body ground state is prepared by an adiabatic sweep starting
from all atoms in the ∣gi state. As we can see, the structure factor
exhibits k/2π = 1/3 and 1/4 peak plateaus independent of system sizes,
signifying the existence of Z3 ×Z2 and Z4 orders. More importantly,
we experimentally observe, in the floating phase, 1, 2, and 3 peak steps
for L = 21, 33, and 45, respectively, which are fully consistent with our
theoretical expectations. Furthermore, the step locations are observed
at the corresponding incommensurate values, also in agreement with
theory results. In particular, we observe k/2π = 7/24 for L = 21, k/
2π = 10/36, 11/36 for L = 33, and k = 13/48, 14/48, 15/48 for L = 45. As
experimental imperfections favor domain wall excitations, incom-
mensurate regimes become wider than numerical results. Our
experiments demonstrate that the number of incommensurate steps
between crystalline orders increaseswith the systemsize, whichagrees
with the theoretical expectation of its tending towards infinity as the
system approaches the thermodynamic limit. Consequently, the
dominant wave vector of the quantum floating phase would change
continuously with the physical parameters. An example of the struc-
ture factor in the large L limit is shown in Fig. 4d using DMRG calcu-
lations for L = 141. In this case, the dominant wave vector in the floating
phase takes a series of values, nearly forming a continuous curve
within a small window between Rb/a = 2.34 and Rb/a = 2.51. In addition,
we conducted measurements in the same Rb/a range with fixed
Δ/Ω =0, where the system is always in the disordered phase. The
results show very weak peaks in the structure factor, and the signals
diminish with increasing system sizes (Supplementary Note 1). These
vanishing signals for the disordered phase confirm that the boundary
effects do not induce artificial signatures for the existence of density-
wave orders in our experiments, and, in particular, the observed peaks
in the incommensurate wave vectors are genuine features of the
quantum floating phase.

Fig. 4 | The structure factor S(k) for different system sizes. a–c Experimental
measurements of S(k) are taken along the Δ/Ω = 3.5 line, as labeled by the black line
in Fig. 1b, for system sizes L = 21, 33, 45. The data points cover Rb/a values ranging
from 2.1 to 2.8 with a step size of 0.05. The magenta curves represent the peak

positions of S(k) obtained from numerical calculations. The experimental data
show that the number of peak plateaus allowed in the quantum floating phase
increases with system sizes. d Numerical results for L = 141 demonstrate a con-
tinuous change in thewave vector of the quantumfloatingphase in the large L limit.
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Discussion
In summary, our utilization of Rydberg-atom ladder arrays has enabled
the experimental observation of an incommensurate density wave—
the quantum floating phase. Distinct Rydberg density fluctuations are
observed in different density-wave states, and the structure factor
exhibits strong signatures for the existence of the floating phase.
Through systematic tuning of the lattice constant, discrete wave vec-
tors allowed in the quantum floating phase for different system sizes
are observed, indicating their convergence to a continuum of incom-
mensurate values in the thermodynamic limit. This experiment
underscores the versatility of Rydberg atoms in ladder arrays as highly
programmable quantum simulators, facilitating the exploration across
various quantum many-body phases. The constructed Rydberg arrays
house a broad spectrum of critical lines and points in experimentally
accessible regimes, including Ising, Potts, Ashkin-Teller, chiral,
Berezinskii-Kosterlitz-Thouless31, Pokrovsky-Talapov32, and Lifshitz
critical points33 (see Supplementary Note 8 for details). TheZ4 regime
in our systemestablishes an ideal platform for investigating theKibble-
Zurek mechanism of chiral phase transitions. Our work paves the way
for future experimental inquiries into these critical phenomena, and it
offers potential applications in diverse contexts, such as quantum
simulation of lattice gauge theories34–38, inhomogeneous phases, the
Lifshitz regime of lattice quantum chromodynamics39,40, and “chiral
spiral-” condensation in interacting fermionic systems41.

Methods
Creation of atom array
In this experiment, we utilize 87Rb atoms captured from a magneto
optical trap. The atoms are loaded with 59% probability into optical
tweezers generated using 840nm light, which are created through a
phase-only spatial light modulator (SLM, Hamamatsu X15213 series) to
generate the trapping potentials with a depth of 10MHz, as deter-
mined by the Stark shift associated with the ∣5S1=2, F =2,mF = � 2i to
∣5P3=2, F =3,mF = � 3i transition. Subsequently, we image atoms for
15ms using near resonant 780nm light, which is captured through a
microscope objective of NA=0.65 to image onto an EMCCD camera
(Andor iXon Ultra) to capture the occupation of each site with 99.5%
fidelity. From the atom detection results, atoms are moved using
acousto-optic deflectors (AODs) to sort atoms onto the target two-
legged pattern with 99.5% sorting fidelity. Following imaging, the
atoms are cooled to a temperature of 10μK and polarized into
the ∣5S1=2, F =2,mF = � 2i state.

Rydberg system
The atomic levels we use in our qubit system are ∣gi= ∣5S1=2,
F =2,mF = � 2i and ∣ri= ∣70S1=2,mj = � 1=2,mI = � 3=2i, which are
coherently driven by a two-photon transition induced by lasers at
420 nm and 1013 nm. The 420 nm laser is a frequency-doubled Ti:
Sapphire laser (M Squared).We frequency stabilize the laser by locking
a frequency sideband generated by an electro-optic modulator to an
ultra-low-expansion reference cavity (notched cylinder design, Stable
Laser Systems), with finesse F =30,000 at 840nm. The 1013 nm laser
source is a whispering-gallerymode laser (OEwaves—OE3745), which is
locked to the same reference cavity with a finesse of F = 50, 000. The
1013-nm laser is amplified by an fiber amplifier (IPG YAM-100-1013-
LP-SF).

We place the Rydberg two-photon transition at a single-photon
detuning of δ ≈ 2π × 1GHz blue detuned from the intermediate state
∣6P3=2i with Rabi frequencies Ω420,Ω1013

� �
=2π × ð114, 44Þ MHz, and a

two-photon Rabi frequency of Ω =Ω420Ω1013/2δ ≈ 2π × 2.5MHz.

Rydberg pulses
Atoms are adiabatically released from the tweezer traps after initializing
them into the ground state ∣g

�
. The total timewith the traps off is 7μs. It

is during the trap-off time that we apply a Rydberg pulse. The pulse is

described by a time-dependent Rabi frequency Ω tð Þ, time-dependent
detuning Δ tð Þ, and instantaneous phase ϕ tð Þ. This is implemented by
controlling the amplitude, frequency, and phase of the 420-nm laser
using a double-pass acousto-optic modulator configuration.

Rydberg beam shape
We shape both Rydberg excitation beams into 1D top-hats (light
sheets) to homogeneously illuminate the plane of atoms. This is done
by placing a SLM in the Fourier plane of each Rydberg beam. This
allows us to control both phase and intensity on the atoms at the cost
of efficiency. The tophat geometry is 75μm wide in the plane of the
atom array and has a waist of 35μm along the axis normal to the atom
array plane.

Data availability
The experimental data generated in this study are provided in the
Supplementary Source Data file. Additional data are available from the
corresponding author upon request. Source data are provided with
this paper.
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