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Mapping Polymerization and Allostery of Hemoglobin S Using
Point Mutations

Patrick Weinkama,* and Andrej Salia,b,*

aDepartment of Bioengineering and Therapeutic Sciences, University of California, San
Francisco, San Francisco, CA 94158, USA
bDepartment of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences
(QB3), University of California, San Francisco, San Francisco, CA 94158, USA

Abstract
Hemoglobin is a complex system that undergoes conformational changes in response to oxygen,
allosteric effectors, mutations, and environmental changes. Here, we study allostery and
polymerization of hemoglobin and its variants by application of two previously described
methods: (i) AllosMod for simulating allostery dynamics given two allosterically related input
structures and (ii) a machine-learning method for dynamics- and structure-based prediction of the
mutation impact on allostery (Weinkam et al. J. Mol. Biol. 2013), now applicable to systems with
multiple coupled binding sites such as hemoglobin. First, we predict the relative stabilities of
substates and microstates of hemoglobin, which are determined primarily by entropy within our
model. Next, we predict the impact of 866 annotated mutations on hemoglobin’s oxygen binding
equilibrium. We then discuss a subset of 30 mutations that occur in the presence of the sickle cell
mutation and whose effects on polymerization have been measured. Seven of these HbS mutations
occur in three predicted druggable binding pockets that might be exploited to directly inhibit
polymerization; one of these binding pockets is not apparent in the crystal structure but only in
structures generated by AllosMod. For the 30 mutations, we predict that mutation-induced
conformational changes within a single tetramer tend not to significantly impact polymerization;
instead, these mutations more likely impact polymerization by directly perturbing a
polymerization interface. Finally, our analysis of allostery allows us to hypothesize why
hemoglobin evolved to have multiple subunits and a persistent low frequency sickle cell mutation.
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Introduction
For decades, hemoglobin has been a model system for studying proteins. The discovery that
a particular mutated hemoglobin (HbS) plays a role in sickle cell anemia was the first time
that a specific protein was linked to a genetic disease1. Hemoglobin A (HbA) was used in
the first mechanistic descriptions of allostery2,3, which led to the characterization of
hundreds more allosteric proteins4. Since these pioneering studies, there has been much
progress regarding the allosteric mechanism of Hb5–7 and the polymerization mechanism of
HbS8–14. In fact, the two processes are coupled because HbS polymers primarily consist of
deoxygenated hemoglobin. By exploiting this coupling, researchers discovered many ligands
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for hemoglobin that stabilize the oxygenated versus deoxygenated state and in turn can
reduce polymerization15,16, although hematologists disagree on whether or not decreasing
oxygen dissociation is appropriate for treating sickle cell disease. In fact, there are no still
effective therapies for this disease (those that can improve patient health without serious side
effects). One of the problems is that a high concentration of hemoglobin in the blood
presumably requires a high concentration of the modulator. While stem cell transplantation
has yielded promising results17, it is currently prohibitively expensive for many patients.
Instead, treatments focus on stimulating the production of fetal hemoglobin using
hydroxyurea (which has sometimes fatal side effects)18,19, providing supplemental oxygen,
and treating symptoms such as pain. To contribute towards the discovery of HbS
aggregation modulators, we predict which surface sites on HbS could be targeted to inhibit
polymerization, by applying our previously developed allostery model20,21 to many
experimentally characterized hemoglobin variants.

An allosteric transition involves an equilibrium between the effector bound and unbound
states, each of which follows a different energy landscape (Figure 1). An energy landscape
describes the relative stabilities of all conformations for a system in a specific chemical
environment22,23. The effector bound and unbound landscapes have two conformational
substates, one that binds the effector and another that binds the effector less well. A substate
may contain diverse conformations, or microstates, which are separated by energy and/or
entropy barriers. A challenge for any protein dynamics model is to account for how
perturbations, such as point mutations and ligand binding, can affect these complex and
hierarchal energy landscapes24,25.

Our allostery model is a dual basin structure-based Gō model26–29, and can be used to
deconstruct a protein’s energy landscape into relevant substates and microstates. Atomic
contacts from the effector bound and unbound crystal structures are used to define major
minima in the energy landscape, which is then sampled using constant temperature
molecular dynamics. The two major minima in the landscape correspond to conformational
substates whose relative stability can be varied with a single input parameter (rAS). All
atoms within a distance rAS of the effector in the crystal structure are assigned to the
allosteric site. Atomic contacts in the allosteric site have a single energetic minimum
corresponding to the effector bound or unbound structure, while the remaining contacts have
dual minima corresponding to both bound and unbound structures. While rAS is a fully
adjustable parameter, we demonstrated that using a value of 12 Å allows relatively accurate
predictions of the change in ligand binding free energy due to mutation20,21. These
predictions depend on energy landscape features derived from input crystal structures,
including contact density patterns30.

We can create separate landscapes to model conformational changes that occur as a result of
perturbations, including ligands, mutations, and environmental changes. For instance,
different solvent pH and salt concentrations can result in different side chain ionization
states and therefore distinct energy landscapes. A landscape perturbation due to changes in
solvent conditions is also termed chemical frustration31,32. Such perturbations can cause a
protein to experience different allosteric7,33 and folding mechanisms27,32,34,35. For
hemoglobin to efficiently transport oxygen, its energy landscape has evolved to be
influenced by pH36, effector ligands, and polymerization of hemoglobin monomers. For
such complex systems, we may gain insight by monitoring conformational changes resulting
from different energy landscapes.

Phenomenological models of allosteric mechanisms for proteins in general include Monod-
Wyman-Changeux (MWC)2, Koshland-Nemethy-Filmer (KNF)3, population shift37,38, and
induced fit39,40. These mechanisms differ by the degree of cooperativity observed during the
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allosteric transition. A highly cooperative mechanism occurs when effector binding induces
a concerted change in many residues, corresponding to the KNF and induced fit
mechanisms. In our allostery model, we can model such a cooperative mechanism by
creating a landscape with a large allosteric site (i.e., a large rAS). For smaller values of rAS,
our allostery model results in relatively weak coupling between residues, which is consistent
with the MWC and population shift mechanisms.

Here, we analyze HbS allostery and polymerization in the context of point mutations, with
the goal to facilitate prediction of small molecule binding sites that might be used to inhibit
HbS polymerization (Figure 1). To identify such sites, we use experimental annotations of
mutations to probe polymerization. A mutation at a given site can be a useful probe because
it often has effects similar to drug binding, phosphorylation, and other post-translational
modifications at the same site41; in all of these cases, including mutations, the system’s
energy landscape is perturbed by adding, deleting, or modifying a few atoms, which may
covalently or non-covalently interact with the rest of the system. In addition, we predict
conformational substate stabilities, by using our AllosMod model of allostery dynamics20,
followed by relating our findings to phenomenological views of allostery. We then predict
the impact of mutations on the oxygen binding affinity, by using our generalized machine-
learning method21, which in turn allows us to speculate about the evolutionary advantage of
the HbS mutation. Lastly, we explore the coupling between allostery and polymerization,
which occurs because polymers are primarily composed of deoxygenated hemoglobin. A
simplified model of the thermodynamic equilibrium between the R, T, and polymeric states
allows us to relate the predicted impact of a mutation on allostery to its corresponding
impact on polymerization. However, this simplified model turned out not to fit the data
within the estimated experimental and computational errors. Therefore, under the conditions
of the experiments, mutations are more likely to perturb polymerization primarily via a
direct impact on polymerization interfaces rather than on the R to T equilibrium.

Methods
Our approach is described in Figure 1. Briefly, we create energy landscapes for binding of
oxygen and 2,3-diphosphoglycerate (DPG). We then sample the energy landscapes by
constant temperature molecular dynamics simulations. The resulting structural ensembles
are analyzed using machine-learning21 to predict the impact of a mutation on the binding
affinity for either oxygen or DPG. These separate predictions are combined into a single
prediction of the mutation effect on the oxygen binding equilibrium, using “atomic density”
around the effector binding sites. We then focus on a subset of these predictions
corresponding to HbS mutations whose impact on polymerization has been measured by
experiment. We discuss the relationship between allostery and polymerization, by assuming
a simplified equilibrium between oxyhemoglobin, deoxyhemoglobin, and the aggregate
states. Finally, we identify three predicted druggable binding sites that might be exploited to
directly inhibit polymerization. Each step listed above is indicated by an arrow in Figure 1
and explained in detail in the following sections.

Allostery model simulations for oxygen and DPG binding
Simulations of HbA ligand-induced dynamics in vacuo were performed using our web
server at http://salilab.org/allosmod/20,21. These simulations were based on several effector
bound and unbound landscapes with allosteric effectors including the 4 oxygen molecules
and 1 DPG molecule. Constant temperature molecular dynamics simulations were used to
sample the landscapes. 30 simulations were ran for each effector bound and unbound
landscape at 3 different rAS (6, 9, and 12 Å for oxygen and 9, 15, and 18 Å for DPG). In
each simulation, the system was first equilibrated starting from a perturbed structure that is
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an interpolation between the input crystal structures (2DN2 and 2DN1 or 1B86) and then
simulated for 6 nanoseconds using three femtosecond time steps and velocity rescaling
every 200 steps. Appropriate velocity rescaling ensures energy conservation within the
system and is necessary to avoid artifacts from energy dissipation. Artifacts rarely occur
because AllosMod’s smooth energy landscape facilitates rapid equilibration. The
simulations are likely to be effectively longer than 6 nanoseconds of real time, primarily
because of the absence of damping by the solvent and electrostatic interactions occurring in
the real system42.

Assigning substates and microstates: QIdiff

Substates and microstates within the simulation structural ensembles are assigned based on
QIdiff that is calculated over one or more residues. QIdiff is defined as (Qe+ − Qe−)/(1 − ΔQ),
where Q is the overall fold similarity43 to the effector bound (e+) or the unbound (e−)
crystal structure and ΔQ is the structural similarity (Q) between the effector-bound and
unbound crystal structures:

The summation is over all contacting pairs of sequentially non-adjacent residues; two
residues are in contact when the average side chain atom positions are less than 11 Å apart.

N is the number of contacts,  is the distance between average side chain atom positions for
residues i and j in structure t, and σij is 2 Å.

QIdiff(i) is a distance metric that describes the local environment of residue i; it is positive if
a residue configuration is closer to the effector bound structure than to the effector unbound
structure and negative otherwise20. We assign the effector bound or unbound substate with
QIdiff calculated using all residues in all oxygen binding sites. Microstates are assigned with
QIdiff calculated using all residues at each oxygen binding site. The oxygen binding site is
defined as all residues with average side chain atom positions less than 11 Å from any
oxygen atom in the crystal structure.

Machine-learning based on simulation trajectories: allostery mutation effects
Prediction of a mutation effect is made by a machine-learning algorithm that is based on
relating experimentally characterized mutations to structures from our allostery model
simulations21. Each mutation effect prediction reflects 37 features, including those based on
molecular mechanics energy functions, entropy calculations, stereochemical effects,
mutation properties, and predictions of coupling between sites. These features capture local
properties of the mutation and global properties of the entire system. To train the method,
we use a boosted decision tree regression algorithm, available in the “Toolkit for
Multivariate Data Analysis” as part of Root44, to relate a set of experimentally measured
mutation effects to the corresponding 37 features. For hemoglobin, we train the decision tree
on 9 unrelated proteins (152 mutations). While the 9 proteins differ in protein function and
experimental data types, mutation effects are defined for hemoglobin to be the ΔΔG of the
oxygen dissociation reaction: ΔΔG′oxy = ΔGmut − ΔGwt = RT log(Kd

wt/Kd
mut), which

directly measures the equilibrium shift between the oxy and deoxy conformational
substates21. Note that Kd

wt and Kd
mut are measured in the same solvent conditions. For

oxygen binding, Kd is P50n where P50 is the midpoint of the oxygen dissociation reaction
and n is the Hill coefficient, which is set to 2.7. For DPG binding, ΔΔG′DPG = −RT
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log(Kd
wt/Kd

mut) where Kd is the dissociation constant of DPG. The negative sign allows
direct comparison of the effects of DPG (an inhibitor of oxygen binding) and oxygen.

Spatial density calculation: assessing the contribution of each binding site to the overall
impact of mutation on oxygen binding (ΔΔGoxy)

In systems with multiple effector binding sites, mutations may have complicated effects on
the allosteric transition because of the coupling between the sites. The spatial density
calculation allows mutation effects to transmit further in less dense regions of the protein
than in more dense regions. We therefore combine separate predictions (ΔΔG′oxy and ΔΔG
′poly) into a single prediction of a mutation’s effect on the oxygen binding equilibria
(ΔΔGoxy) using a Boltzmann-like average based on the spatial density (SD):

where both summations (i and lig) iterate over the 5 binding sites, MElig is the mutation
effect calculated from the trajectory with the effector lig (ΔΔG′oxy or ΔΔG′DPG), SD is the
spatial density, and 0.0005 allows smooth interpolation between multiple MElig values. SD
is based on the atomic density of the region between the ligand and mutation site, calculated
from the ligand bound crystal structure:

where rligand is the distance between the mutated average side chain’s atom position and the
ligand, Natoms is the number of non-hydrogen atoms in the region defined by the intersection
of the 2 spheres with radius rligand centered on either the mutation site or the ligand, and Rg
is the radius of gyration of the atoms in that region. Heme atoms are counted in Natoms if the
heme is directly in-between the ligand and mutation site, which allows for mutants on the
oxygen-proximal side of the heme to have more of an effect on binding than mutants on the
oxygen-distal side. F is a sigmoidal function that is parameterized to ensure a smooth
transition of the spatial density at long distances to a value of 0.105, which is the maximum
density at 30 Å calculated using 10 representative crystal structures other than hemoglobin.
Residues 30 Å from the binding site are more likely to be affected by intra-protein contacts
than ligand binding, imposing the range on our spatial density calculations.

Relating the impacts of a mutation on allostery (ΔΔGoxy) and polymerization (ΔΔGpoly)
To facilitate a discussion of coupling between allostery and polymerization, we need a
simple model of thermodynamic equilibrium involving all relevant hemoglobin states. The
prediction of a mutation’s impact on the oxygen binding equilibria (ΔΔGoxy) could be used
to hypothesize its corresponding impact on polymerization, based on the following
thermodynamic equilibrium at a given oxygen partial pressure and other conditions: R ⇌ T
⇌ -(T2)- ⇌ -(T3)- ⇌ … ⇌ -(Ti)-, where “R” corresponds to the oxy substate (i.e., the oxy
quaternary structure, with or without oxygen), “T” corresponds to the deoxy substate (i.e.,
the deoxy quaternary structure), and Ti corresponds to an aggregate with i monomers; note
that the stoichiometry is omitted for visual clarity. When concentrations of monomers and
polymers are equal (i.e., at the polymerization critical concentration), we approximate the
equilibrium as R ⇌ T ⇌ -(Tn)-, where n is the size of the effective aggregate. The effective
aggregate represents, as an approximation, a minimal aggregate that forms at the critical
concentration; in principle, the effective aggregate should not be stable below the critical
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concentration, and larger polymers should be stable above the critical concentration. The left
side of the equation can describe a mutation’s impact on the allosteric conformational
equilibrium and right side of the equation can describe a mutation’s impact on the stability
of the effective aggregate, which represents experimental measurement of a shift in the
critical concentration. The effective aggregate size can be as large as the polymerization
nucleus; aggregates smaller than the nucleus are not stable. Given the simplified
equilibrium, a mutation that impacts allostery also impacts polymerization as follows:

. This equation allows us to relate allostery to
polymerization by expressing the concentration of unbound hemoglobin quaternary structure
(T) as a function of the free energy difference between the oxy and deoxy substates for the
wild type (ΔGoxy) and the impact of mutation on the equilibrium between the oxy and deoxy
substates (ΔΔGoxy). The hypothetical impact of allostery on polymerization is plotted for
discrete values of ΔGoxy and for a given value of n:

The estimates of the nucleus size vary from 10 to 100 and can change dramatically in
different solvent conditions, in part due to changes of the polymerization mechanism45,46.
Hemoglobin aggregation is a multistep process that begins with homogeneous
polymerization and is followed by heterogeneous polymerization, which involves new
polymers nucleating from existing polymers5,47. Varying solvent conditions and temperature
can shift the ratio of the polymerization types46.

The ΔΔGpoly equation can be used to create limiting models of the coupling between
allostery and polymerization. These limiting models represent all ways the equation could
possibly fit the data. Therefore, if the deviation between the data and limiting models is
greater than experimental and computational error, there is no set of parameters that would
allow the equation to fit the data. Limiting models are obtained by maximizing the range of
ΔΔGpoly as a function of ΔΔGoxy; we do this by fixing n to an arbitrary value between 10
and a very large number, and selecting discrete values of ΔGoxy. In other words, varying
ΔGoxy has a stronger effect on the ΔΔGpoly equation than varying n. The conclusions
presented here are not affected by changing n so long as we also select discrete values of
ΔGoxy.

Measured impact of mutations on polymerization
Polymerization data were collected from several studies based on 4 techniques. Each
experiment directly or indirectly measures changes in the concentration of HbS critical for
polymerization: 1) solubility midpoint measured by ultracentrifugation (csat)10,11,13, 2)
hemoglobin concentration at which oxygen binding affinity drops rapidly (c*)10,12–14, 3)
solubility at a high ionic strength of 2 M phosphate (s)9, and 4) ionic strength at which the
solubility is 10−5 M (i)8. Based on the simplified equilibria described above, polymerization
mutation effects are defined as ΔΔGpoly = nλRT log(Xwt/Xmut), where X is one of the
experimental data, λ is a correction factor, and n is the effective aggregate size. As discussed
in the previous section, we can vary n to an arbitrary value greater than 10 without affecting
the coarse conclusions presented here. Xwt and Xmut are measured in the same solvent
conditions. The correction factor λ attempts to account for different data types. The factor is
set by minimizing the difference between mutation effects measured for chemically similar
mutations at the same site: 1 for csat, 1 for c*, 0.13 for s, and 1.17 for i. For a given value of
λ, ΔΔGpoly for one experimental method correlates with the ΔΔGpoly for any other
experimental method when comparing chemically similar mutations.
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Prediction error
Experimental error is the difference between a measured value of quantity and its true value
(Oxford Dictionary definition); similarly, computational error is the difference between a
prediction and its true value. These errors must be considered to assess the significance of
the experimental results and predictions. Next, we estimate the experimental and
computational errors, demonstrating that the errors are small enough to justify the
conclusions.

Experimental error in ΔΔGoxy is approximated with the precision of a set of experimental
measurements. To maximize the use of data and thus coverage, for any given ΔΔGoxy

estimate, this set includes measurements at different, uncertain, or even unknown pH values,
temperatures, ionic strengths, and effector concentrations. Of these, temperature and pH can
be the most impactful on hemoglobin oxygen binding and can contribute to experimental
error when not precisely specified, due to systematic changes in hemoglobin structure and
dynamics36. They can each be estimated from the linear relationships between free energy
and either pH or temperature48, respectively. The average difference between experiments is
about 0.3 pH units and 8 °C, which would yield errors in ΔΔGoxy of 0.3 kBT and 0.4 kBT,
respectively. For the other variable conditions, we can estimate experimental error of
ΔΔGoxy using measurements of chemically similar mutations at the same site, which
presumably reflect primarily the varying experimental conditions. We define a pair of
mutants to be chemically similar if they are alike in terms of size (difference in the number
of heavy atoms is two or less) and charge (positive, negative, or neutral); thus, chemically
similar groups are (Asp, Glu), (Arg, His, Lys), (Tyr, Phe, Trp), and (Val, Ala, Ile, Leu, Met,
Ser, Thr, Asn, Gln, Cys). The average unsigned difference between all pairs of ΔΔGoxy for
chemically similar mutations is 0.2 kBT for whole blood samples and 0.9 kBT for purified
hemoglobin. The larger error for purified hemoglobin may reflect the increased sensitivity of
measurements to relevant environmental conditions. An example is the low oxygenation
midpoint (P50) that scales similarly to the Hill coefficient (n), thus potentially resulting in
larger uncertainty in measuring dissociation constants (P50n) for purified HbA [(5 tor)2.9]
than for whole blood HbA [(27 tor)2.7] (ref. 49). Also, purified hemoglobin experiments are
typically performed using phosphate buffer, which is known to affect hemoglobin dynamics
differently than whole blood. Purified hemoglobin data is therefore not used in the analysis.
Similarly, the average unsigned difference between all pairs of ΔΔGpoly for chemically
similar mutations is 1.4 kBT. In summary, the experimental error as defined here may be as
much as 0.9 kBT for ΔΔGoxy and 1.4 kBT for ΔΔGpoly.

Computational error is estimated as the average difference between ΔΔGoxy predictions and
experimentally measured values, which was 1.3 kBT in our previous study of allosteric
proteins in general21 and is 0.8 kBT in the current study. In comparison, the experimentally
measured range of ΔΔG’s for a mutation’s impact on hemoglobin oxygen binding is 6 kBT
(see Results)21. Also, the difference between ΔΔGoxy and the hypothetical curves describing
the relationship between allostery and polymerization is greater than 1 kBT for ΔΔGoxy and
greater than 5 kBT for ΔΔ Gpoly. Thus, experimental measurements and computational
predictions may be sufficiently accurate to be useful.

We calculate the likelihood of accurately predicting mutation effects using an error score
empirically derived from our previous study21. The features that increase error, from least to
most, are: 1) wild type residue is charged, 2) mutation to a charged residue, 3) mutation
increases side chain size by 3 or more atoms, and 4) mutation is less than 8 Å from binding
site. The error score is a sum of factors pertaining to these features: 0.2, 0.5, 1.0, and 2.0. A
score of less than 1.3 implies a mutation effect prediction that should be on average less than
1 kBT from the correct value. Mutations with scores of greater than 1.3 are omitted from
analysis to avoid large outliers.
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Predicting druggable binding pockets
We predict druggable pockets by applying the program FPocket50 to snapshots from the
oxygen bound and unbound AllosMod simulations (600 each). The FPocket druggability
score was obtained by machine-learning optimization against a dataset of holo and apo
crystal structures. Here, we create a residue specific score, di, which is the druggability of
the most druggable pocket that has a vertex, which FPocket uses to identify pockets, within
rcutoff of the residue’s average side chain atom position. rcutoff is 11 Å when identifying
pockets for HbS and 6 Å when monitoring the oxygen binding pocket. We also calculate the

probability that di > 0.5 in the simulation snapshots:  where the
summation occurs over all snapshots with di > 0.5 and Pi is the Boltzmann weighted

probability of each structure. Pi is given by  where σi is the
standard deviation of the energy. This residue-based druggability score can be used to
identify clusters of residues near a highly druggable pocket. Residues flanking a binding
pocket have similar di distributions.

Results
Substates and Microstates in the Oxygen Binding Equilibrium

We model and sample several distinct oxygen bound and unbound landscapes that differ by
the chosen allosteric site radii (rAS). The bound (unbound) landscape involves implicit
modeling of ligand binding by biasing the allosteric site structure with contacts from the
bound (unbound) crystal structure. However, when sampling the unbound landscape, some
oxygen binding sites populate an oxygen bound-like structure. These structural changes
could occur even in the absence of oxygen and may even affect polymerization. We
therefore monitor the possibility of ligand binding using the binding site structure, which is
potentially bound if more similar to the oxygen bound crystal structure than the unbound
crystal structure (using pairwise distance similarity metric QIdiff), and vice versa if not
bound. For hemoglobin, 16 microstates exist based on whether or not oxygen binding occurs
at the 4 binding sites. The populations of microstates calculated from the oxygen bound
(red) and unbound (blue) simulations are sensitive to the input parameter rAS (Figure 2).
With rAS less than 12 Å, the microstates can be grouped into similarly populated oxy and
deoxy substates. Because experiments indicate the relative stability between the oxy and
deoxy substate populations should change upon oxygen binding, the simulations with rAS

less than 12 Å are omitted from further analysis.

The model predicts that the oxy substate is more stable than the deoxy substate. With rAS

equal to 12 Å, the oxy substate is 74% populated in the oxygen bound simulation, while the
deoxy conformational substate is 66% populated in the unbound simulation (substates are
defined in Figure 2). In comparison, low rAS results in similarly populated substates, which
indicates that the unequal populations at high rAS are not an artifact of substate assignment.
The unequal substate populations at high rAS conflict with the equivalent relative
stabilization energy in landscapes with the same rAS, in which the oxy crystal structure
should be favored in the oxygen bound landscape by the same amount as the deoxy crystal
structure in the unbound landscape. In this case, entropy drives the stability of the oxy
substate because there are more ways to satisfy oxygen bound conformations than unbound
conformations. This stability difference is consistent with previous molecular dynamics
studies51,52 and predictions from a Gaussian network model that the carbon monoxide
bound structure (similar to that with oxygen bound) is entropically more stable than the
unbound structure53.
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The simulations also predict varying populations of microstates. The fully oxygen bound
microstate is dominant in the oxygen bound simulation, while the fully unbound microstate
is never dominant (Figure 2). In transition from the unbound (bound) microstate to the
single-oxygen (triple-oxygen) bound microstate, the α subunits are more likely than the β
subunits to be oxygenated (deoxygenated). This result is consistent with a study of the
unbound crystal that found a stronger preference for oxygenation of the α subunits
compared to the β subunits54. The simulations may provide an explanation for this
observation. We find that the α subunit oxygen binding site conformational ensembles differ
only slightly between the oxygen bound and unbound simulations (Figure 3). In contrast, the
β subunit oxygen binding sites populate distinct conformational ensembles in the oxygen
bound and unbound simulations, in agreement with a previous study51. Therefore, the β
subunits may be most important for determining the oxygen binding state while the α
subunits undergo relatively modest changes in conformation and oxygen binding.

Predicting the impact of mutation on oxygen binding: ΔΔGoxy

Allosteric coupling in hemoglobin involves one DPG binding site and four oxygen binding
sites. Allostery occurs because the four oxygen binding sites are coupled to the tertiary/
quaternary structure and therefore oxygen binding at one site positively modulates binding
at another site. This positive cooperativity is broken by a single DPG ligand that has strong
binding affinity to a pocket in the unbound conformation. The DPG binding pocket is more
highly solvated than most binding pockets and contains residues not supported by a dense
network of interactions (Figure 4D), which makes DPG binding relatively susceptible to
perturbations, such as mutations.

We predict impact of mutations on the binding of oxygen or DPG. As described
previously21, we define a mutation effect as the free energy change of ligand binding due to
mutation (ΔΔG′oxy and ΔΔG′poly in Figure 1). Each mutation effect prediction requires
features that either describe the mutation itself or are calculated from the simulations of the
allostery model of HbA (Methods). A given mutation effect is relatively accurately predicted
using either the oxygen binding or DPG binding simulations (Figure 4A–B). The results
show that mutation effects far from the DPG binding site (greater than 20 Å) are well
predicted using the oxygen bound simulations and the remaining effects are well predicted
using the DPG bound simulations (average unsigned error of 0.70 kBT and 0.96 kBT,
respectively). This trend may indicate that a mutation impacts the DPG binding site at
further distances than for an oxygen binding site. If so, there must be a physical explanation
for how mutations affect one binding site more than another. We propose such an
explanation, as follows.

The atomic density surrounding ligand binding sites can be used to assess the contribution of
each binding site to the overall impact of a mutation on oxygen binding. We use a spatial
density calculation, which allows mutation effects to transmit further in less dense regions of
the protein than in more dense regions (Methods), to combine separate predictions (ΔΔG′oxy

and ΔΔG′poly) into a single prediction of a mutation’s impact on the oxygen binding
equilibria (ΔΔGoxy). In support of this approach, we previously analyzed mutation effects on
binding sites from 10 different proteins21. While significant mutation effects on ligand
binding (> 2 kBT) generally occur at sites within 8 Å of the ligand, we observed here that
significant mutation effects on hemoglobin oxygen binding regularly occur at sites much
further than 8 Å from oxygen or DPG. Our spatial density calculation exploits the fact that
the atomic density of the region within 20 Å of the DPG binding site is similar to the density
of the region within 8 Å of a typical binding site (Figure 4D). Using the spatial density
calculation, our combined predictions yield an average unsigned error of 0.84 kBT and a
0.76 Pearson correlation coefficient with experiment (Figure 4C).
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Impact of mutations on allostery and polymerization
Allostery is coupled to polymerization because polymers consist of hemoglobin in the
unbound quaternary structure. We can approximate the equilibria between oxyhemoglobin,
deoxyhemoglobin, and aggregates using a simplified equation (Methods). This approach
effectively provides limiting hypotheses about how the impact of a mutation on allostery
could be coupled to its corresponding impact on polymerization.

However, there is uncertainty regarding the propensity of conformational fluctuations that
occur in the absence of oxygen (i.e., the conditions of some polymerization experiments).
Studies of gel encapsulated hemoglobin in deoxygenated conditions demonstrate carbon
monoxide rebinding kinetics that suggest multiple conformations (not a single T state
structure), including at least one that binds oxygen with a higher affinity than the T state55.
In fact, this state (T-high) is thought to be on pathway between the R and T structures55.
This data is consistent with other results that suggest a transiently stable R-like conformation
in deoxy conditions: 1) the oxy substate is predicted to be more stable than the deoxy
substate in other computational studies51–53 in addition to the work presented here and 2)
the existence of a deoxyhemoglobin crystal structure in the oxygen bound conformation
with a well-structured but empty oxygen binding pocket56. In contrast, a two state model (T
and T aggregate) does fit polymerization data, suggesting that the allosteric transition is
unnecessary to interpret the data57. For polymerization experiments in deoxy conditions, the
conformational changes induced by mutation within a single tetramer are not well
characterized. For example, if adding a small oxygen molecule can shift the equilibrium
between the R and T structures sufficiently to impact polymerization, so could in principle a
single point mutation.

We therefore use the simplified equilibrium outlined in Methods to hypothesize about the
coupling between mutation impacts on allostery and polymerization (hypothetical curves in
Figure 5). The curves are plotted at different relative stabilities between the oxy and deoxy
substates, representing varying oxygen pressure or concentrations of allosteric effectors, for
an arbitrary value of n = 30 (Methods). We also plot a set of experimentally measured HbS
mutations58, using the measured polymerization mutation effects (ΔΔGpoly) and the
predicted allostery mutation effects (ΔΔGoxy). Here, we assume that all HbS mutations are
uncoupled to β-Glu6Val. The difference between the data and the hypothetical curves is
larger than the computational and experimental errors. For example, many mutations are
predicted to decrease hemoglobin oxygen affinity, while the corresponding experiments
indicate the mutations inhibit polymerization. Thus, our simplified equilibrium cannot fit the
data for most mutations, suggesting that (i) most of the mutations disrupt a polymerization
interface directly without an impact on oxygen binding and/or (ii) the population of the oxy
substate of the mutant is small because most of the experiments are performed in
deoxygenated conditions. The first suggestion is supported by the location of many
mutations on the protein surface near interfaces between tetramers in the crystal structure.
The second suggestion is supported by the dominance of the deoxy substate of the native
hemoglobin under the conditions of experiment. However, a clear picture requires additional
thermodynamic and structural data for the mutants under a broader set of experimental
conditions.

Druggable binding pockets that can be used to affect polymerization
We can identify sites of mutations that perturb polymerization and then predict potentially
druggable binding pockets near these sites, many of which are close to a protein-protein
interface in the HbS crystal59. We predict druggable pockets by applying the program
FPocket50 to the structures from our allostery model simulations. Due to structural changes,
pockets grow and disappear during the simulation trajectories, thereby making pocket
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identification non-trivial. We therefore create a residue specific score di, which is the
druggability of the most druggable pocket within a cutoff distance of residue i (Methods).
We can predict druggable pockets using di distributions calculated from simulation
trajectories.

We identify three druggable pockets near mutations that perturb polymerization. These
pockets are also near tetramer-tetramer interfaces in the HbS crystal structure (Figure 6).
Pocket 3 has a bimodal di distribution indicating distinct conformations sampled in the
simulation (Figure 7A). In comparison, pockets 1 and 2 have unimodal distributions and are
more likely to form druggable pockets. Pockets 1 and 2, however, may not be better targets
than pocket 3, which is (i) more druggable in deoxyhemoglobin than oxyhemoglobin, (ii)
adjacent to sites of mutations predicted to decrease oxygenation, and (iii) adjacent to sites of
mutations predicted to significantly decrease polymerization. Therefore, a ligand may bind
specifically to pocket 3 in deoxyhemoglobin and inhibit a polymerization interface.

Pocket prediction using simulation trajectories can be advantageous in the case of dynamic
proteins such as hemoglobin. For instance, ligand binding pockets can form transiently even
if no pockets exist in the crystal structure60. Even in the absence of significant structural
change, ligand binding prediction based on structural ensembles can be more accurate than
predictions based on a single structure61,62. In hemoglobin, pockets populate slightly
expanded conformations in the simulation trajectories compared to the crystal structure
(Figure 6). These expanded conformations could be favored upon ligand binding and in turn
perturb an interface in the HbS polymer. In the simulation trajectories, pocket 3 occurs in
such an expanded conformation and is predicted to be much more druggable than the
corresponding location in the crystal structure (Figure 7B). In contrast, pockets 1 and 2
maintain druggability in the simulation trajectories and the crystal structures.

Discussion
The original descriptions of allostery in general as well as hemoglobin in particular were
phenomenological and rooted in experimental data. The dominant states of hemoglobin,
favored with and without oxygen (R and T, respectively), were determined by X-ray
crystallography. The KNF mechanism, shown to be inadequate for hemoglobin,
hypothesized that oxygen binding induces a concerted change from T to R3. The MWC
mechanism hypothesized that there is a structural equilibrium between R and T, and that
oxygen binding promotes the R state, effectively allowing oxygen binding in both the
oxygen bound and unbound structures. Subsequent more intricate models accounted for
structural details such as salt bridges that contribute to pH dependence of hemoglobin
oxygen binding (known as the Bohr effect)63–65.

More recent descriptions of allostery rely not only on the crystal structures but also broader
conformational ensembles37–40. In fact, several structural states of hemoglobin other than R
and T have been identified66. While the MWC and KNF mechanisms do not explicitly
describe structural ensembles, they are generally consistent with the population shift and
induced fit mechanisms, respectively. A clear divergence from the purely structural view of
allostery is entropy driven allostery67. This mechanism describes dynamic coupling between
sites in which the average structure remains unchanged, but includes different excursions
from the average structure in the bound and unbound states.

Phenomenological mechanisms explicitly relate structural details to experimental
observables. For instance, the MWC and related mechanisms2,64,65 explain measured
subunit oxygen binding affinities using the quaternary structure. Another mechanism, called
TTS, decouples subunit tertiary structure from the quaternary structure5, thereby allowing
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subunits to adopt the R or T conformations without a quaternary structure change. The TTS
mechanism is consistent with our approach of assigning one of two substates to the binding
site structure, which in our model moderately correlates with the subunit tertiary structure
(correlation coefficient of 0.5 if using QIdiff).

Here, we rely on a model of hemoglobin allostery defined by its energy landscape rather
than a phenomenological mechanism. The inputs to our model are the effector bound and
unbound crystal structures and the parameter rAS that controls how strongly effector binding
influences the energy landscape. The output is a set of energy landscapes with minima
corresponding to the effector bound and bound crystal structures as well as the
corresponding simulated trajectories. These trajectories describe the transition between the
input structures and can describe new conformations that are distinct from the input
structures. The trajectories are then used to predict (i) the impact of a mutation on oxygen or
DPG binding, (ii) the relative populations of substates and microstates, and (iii) the
magnitude of coupling between sites.

Our simulations describe weak coupling between hemoglobin’s oxygen binding sites. Such
behavior has also been reported in molecular dynamics simulations51,52,68–70, elastic
network models53,71, and an experimental study of gel encapsulated hemoglobin that
separately mapped tertiary and quaternary structure changes72. Weak coupling involves
oxygen binding at one site triggering both tertiary and quaternary structural changes, which
in turn result in changes of the size and shape of the other oxygen binding pockets. Binding
site dynamics is not homogeneous, however, as indicated by the stronger coupling of the
quaternary structure with the oxygen binding sites in the β subunits than in the α subunits
(Figure 3). This result is consistent with experiments that report a larger impact on oxygen
binding for mutations in the β subunits than for mutations in the α subunits (average
magnitude of 1.5 ± 0.6 kBT and 0.5 ± 0.5 kBT, respectively). Therefore, modulation of
hemoglobin’s allosteric transition may well be achieved by perturbing the interface between
the two β subunits. Interestingly, such a perturbation has resulted from evolution that
positioned the DPG binding pocket at the β subunit interface.

Hemoglobin has evolved to have a complex allosteric mechanism, yet also permits point
mutations at many sites. Our predictions suggest that naturally occurring mutations58 can be
tolerated due to hemoglobin’s structural symmetry (Figure 8). We predict α subunit
mutations to typically inhibit oxygen binding, which can counteract β subunit mutations that
we predict to typically promote oxygen binding (Figure 8A). Natural HbS mutations (those
that occur in patients with β-Glu6Val)58 display an even stronger predicted trend of
increased oxygen binding than the β subunit mutations (Figure 8A). These HbS mutations
may improve hemoglobin’s oxygen delivery if they shift the equilibrium to the oxy state,
thus sufficiently reducing polymerization, but do not increase oxygen affinity too much so
that sufficient oxygen is still released.

One might expect the sickle cell mutation to be selected out of the human population, but the
HbS allele persists, possibly at least in part because it allows malaria resistance73. In fact,
the HbS allele occurs in 18% of some populations that suffer from a high frequency of
malaria. Unfortunately, the detailed mechanism of resistance is not known. Some insight is
gained by considering the impact of 5 naturally occurring HbS mutations on polymerization.
These 5 mutants tend to increase polymerization even though most HbS mutants decrease
polymerization (Figure 8B). If caused by selective pressure, this result suggests that malaria
resistance is a direct result of polymerization, which either promotes red blood cell
destruction or kills parasites more directly74,75. Because we predict two of these HbS
mutations to also recover oxygen binding inhibited by polymerization (Figure 5), evolution
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may be improving hemoglobin’s ability to transport oxygen while simultaneously increasing
hemoglobin’s tendency for polymerization.

Interpreting the role of a mutation on hemoglobin dynamics is a challenge because so many
processes can occur simultaneously and inter-dependently. A mutation may impact (i)
oxygen binding, (ii) binding of DPG or other effectors, (iii) the allosteric conformational
equilibrium between oxy and deoxy substates, (iv) pH or temperature induced
conformational changes, and (v) polymerization. Here, we use a model that describes the
allosteric conformational transition, yet without an atomic structural modeling of
interactions between hemoglobin and any of its ligands. Nevertheless, the relative accuracy
of our predictions (Figure 4C) supports the model; moreover, most naturally occurring
mutations are unlikely to affect oxygen binding without affecting the allosteric transition,
because they are located far from the oxygen binding sites (98 % greater than 5 Å and 92 %
greater than 8 Å). A more detailed model is, however, necessary to predict a mutation’s
impact on the binding affinity within the oxy substate. Similarly, a detailed model of
polymerization is necessary to characterize the role of any mutation in aggregation. Thus,
our model of allostery may be a convenient stepping stone to these more explicit models.

Conclusion
Hemoglobin exists in a conformational equilibrium, involving allostery and polymerization,
that is affected by mutations and conditions such as oxygen and DPG concentration, pH, and
temperature48. Using separate landscapes for each ligand-induced conformational change,
the prediction allows us to further interpret experimental data. In particular, we identify 3
binding sites that can potentially be used to inhibit HbS aggregation by destabilizing a
polymerization interface. These sites might be more effective than sites that are distant to
polymerization interfaces because ligand binding effects tend to dissipate at long distances.
In conclusion, mutations can serve as natural probes of function and may help identify
ligand binding pockets that can be used to perturb allosteric proteins such as hemoglobin.
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Figure 1.
An overview of the current work. Each arrow represents a different Methods section.
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Figure 2.
Probability distributions of hemoglobin’s 16 microstates. Each line represents the
probability distribution calculated from sampling of different energy landscapes, which have
different allosteric site radii (rAS) and ligand binding states (oxygen bound are shades of red
and unbound are shades of blue). Microstates are defined by the conformations of the
oxygen binding sites using QIdiff. Microstates are labeled ABAB corresponding to α1β1α2β2
where capital or lowercase letters imply oxygen bound (QIdiff > 0) or unbound (QIdiff < 0),
respectively. The 5 left most and 5 right most microstates indicate the oxy and deoxy
conformational substates, respectively.
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Figure 3.
Probability distributions of QIdiff for the 4 oxygen binding sites calculated from the oxygen
bound (red) and unbound (blue) simulations (rAS = 12 Å). QIdiff is 1 if the oxygen binding
site is more similar to the oxygen bound crystal structure than the unbound crystal structure
and vice versa for QIdiff equal to −1. The probability overlap of the bound to unbound
distributions is 86% for the α subunits and 41% for the β subunits, which suggests the β
subunit binding sites are more highly coupled to the quaternary structure than the α subunit
binding sites.
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Figure 4.
We predict the impact of mutations (in units of kBT) on: A) oxygen binding (ΔΔG′oxy) and
B) DPG binding (ΔΔG′DPG). Mutations further than 20 Å from the DPG binding site (red
squares) are well predicted using the simulations with oxygen binding and the remaining
mutations (blue triangles) are well predicted using the simulations with DPG binding. C)
The predictions in A and B are combined into a single prediction of ΔΔGoxy using a spatial
density calculation (Methods). D) Atomic density of the non-hydrogen atoms around ligand
binding sites in several proteins. Red squares and blue triangles represent densities around
hemoglobin’s oxygen binding sites and DPG binding site, respectively. Dashed lines are for
other protein’s binding sites21.
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Figure 5.
We characterize hemoglobin polymerization by comparing a mutation’s impact on allostery
and polymerization. We plot a mutation’s measured impact on polymerization (ΔΔGpoly)
and the corresponding predicted impact on allostery (ΔΔGoxy) as well as hypothetical curves
that approximate how allostery could be coupled to polymerization (in units of kBT). The
point radius is inversely proportional to the predicted error (Methods) and the color
represents different measurements of polymerization: red is csat, blue is c*, green is i, and
magenta is s (Methods). The hypothetical curves (shades of blue to red) correspond to
different ratios between the oxy and deoxy substates: dark blue from 95% deoxy to 88%
deoxy, then to 73% deoxy, then to 62% deoxy, then to 50% deoxy, and light red to 38%
deoxy.
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Figure 6.
Pockets are identified with large, orange arrows: A) pocket 1 near αLys11, αAsn68, and
αGlu116, B) pocket 2 near βGlu26 and βLeu88, and C) pocket 3 near αAsp47 and αGlu54.
These residues (small, red arrows) are sites of mutation predicted to directly interfere with
polymerization. Most of the protein is shown in surface representation with hydrophobic
residues in white, polar residues in green, negatively charged residues in red, and positively
charged residues in blue. The remaining protein is shown as cyan sticks (unbound crystal
structure) and yellow sticks (simulation snapshot). D) The pockets are shown in the HbS
crystal structure (2HBS)59. Pocket 2 (green) is located directly at a polymer interface while
pocket 1 (red) and pocket 3 (blue) are located adjacent to polymer interfaces. Note that
pocket 2 is on the β subunits while pockets 1 and 3 are on the α subunits.
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Figure 7.
A residue specific druggability score (di) is calculated using the crystal structure and
simulation snapshots. A) Each curve is the probability distribution of di calculated using
snapshots from the oxygen bound simulation. At least one other residue in each pocket has a
similar distribution B) The di calculated using the crystal structure is compared to the
probability that a simulation snapshot will have a di greater than 0.5. Red bars indicate
oxygen bound structures and blue bars indicate unbound structures.
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Figure 8.
A) We predict the impact of all naturally occurring (non-engineered) hemoglobin mutations
in the HbVar database58 on oxygen binding (ΔΔGoxy in kBT): 319 HbA mutations in the α
subunits (red), 423 HbA mutations in the β subunits (yellow), and 13 HbS mutations (blue).
B) We report the measured impact of HbS mutations on polymerization (ΔΔGpoly in kBT): 5
data points for naturally occurring mutations (blue) and 41 data points for engineered
mutations (green).
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