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Abstract

The Abstraction Reasoning Corpus (ARC) is a visual analogi-
cal reasoning test designed for humans and machines (Chollet,
2019). We compared human and large language model (LLM)
performance on a new child-friendly set of ARC items. Results
show that both children and adults outperform most LLMs on
these tasks. Error analysis revealed a similar ”fallback” solu-
tion strategy in LLMs and young children, where part of the
analogy is simply copied. In addition, we found two other er-
ror types, one based on seemingly grasping key concepts (e.g.,
Inside-Outside) and the other based on simple combinations of
analogy input matrices. On the whole, ”concept” errors were
more common in humans, and ”matrix” errors were more com-
mon in LLMs. This study sheds new light on LLM reason-
ing ability and the extent to which we can use error analyses
and comparisons with human development to understand how
LLMs solve visual analogies.

Keywords: analogical reasoning; human vs AI cognition;
large language models; abstract visual reasoning

Introduction
Until recently, visual analogy solving (e.g., is to as is
to ?) was considered something that is easy for humans, but
out of reach for AI deep learning models (Mitchell, 2021).
However, large language models (LLMs) such as OpenAI’s
ChatGPT now appear capable of solving a range of anal-
ogy tasks in the text domain, including numeric and text-
based versions of the matrix analogies in the Raven’s Pro-
gressive Matrices (Webb et al., 2023; Hu et al., 2023) and, to
a lesser degree, open-ended visual analogies (Moskvichev et
al., 2023; Mitchell et al., 2023; Xu et al., 2023). The question
then arises of how LLMs solve these visual analogies. Is the
process similar to adult humans that identify abstract relations
and map these to new instances? Or perhaps more similar to
the associative processes young children use? In this study,
we compare human and LLMs visual analogy solving. More
specifically, we use error analysis to understand how LLMs
obtain their solutions: is this through abstraction and anal-
ogy, association, or perhaps an entirely different process?

Visual analogical reasoning can be assessed in both hu-
mans and AI models using the Abstraction Reasoning Cor-
pus (ARC; Chollet, 2019) and the ConceptARC (Moskvichev
et al., 2023). The ARC tasks are preferred above other vi-
sual reasoning tasks such as the Raven’s Progressive Matrices
(Raven & Raven, 2003) because these are open-ended rather
than multiple-choice and can’t easily be solved by chance,
the open format also allows better tracing of human and LLM
problem representations (Johnson et al., 2021) and the task is

designed to assess numerous visual abstractions rather than a
limited set of rules (Chollet, 2019; Moskvichev et al., 2023).
However, current ARC tasks are too challenging for children
as well as LLMs (Moskvichev et al., 2023; Mitchell et al.,
2023; Xu et al., 2023). Therefore we created a small set of
simplified ARC analogies, inspired by children’s visual anal-
ogy tasks (e.g., Siegler & Svetina, 2002; Hosenfeld et al.,
1997), to gain insights into how LLMs’ and children in vari-
ous phases of analogical reasoning development solve visual
analogies.

Young children’s visual analogy solving is characterized
by associative responses where one of the example images is
(partly) duplicated or idiosyncratic responses are given (e.g.,
choosing a favorite shape and color) (Siegler & Svetina, 2002;
Hosenfeld et al., 1997; Stevenson & Hickendorff, 2018).
Generally between six and eight years (and younger with
training), children start transitioning to successful analogy
solving, marked by the appearance of partially correct solu-
tions; here the underlying rule or concept is understood, but
one or two aspects are missing (Stevenson & Hickendorff,
2018; Hosenfeld et al., 1997). From 8-years onwards (or with
more training) non-analogical responses disappear and (par-
tial) analogical solutions take over (Stevenson & Hickendorff,
2018; Hosenfeld et al., 1997). The transition from associative
to analogical reasoning states in visual tasks coincides with
what Gentner (1988) refers to as the relational shift. Interest-
ingly, previous work comparing LLM and children analogical
reasoning showed that LLMs tend to make similar associative
errors as young children(Stevenson et al., 2023).

In the current study we compare LLM and human visual
analogy solving, with a focus on exploring whether LLM er-
rors resemble those of young children, adults or represent a
less human-like process.

Methods
Data and code are available at https://github.com/
cstevenson-uva/kidsARC.

KidsARC-Simple and KidsARC-Concept
We created two 8-item sets based on the ARC (Chollet, 2019)
and ConceptARC (Moskvichev et al., 2023). The Simple ver-
sion is geared at younger children (4–8 years) and the Con-
cept version at older children and adults (8+ years).

The original ARC and ConceptARC require few-shot
learning with several input-output examples to derive the pat-
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Figure 1: Example item and interface from KidsARC-Simple
task (top). Corresponding prompt given to LLMs (bottom),
derived from (Moskvichev et al., 2023).

tern and solve the item. We use only one input-output exam-
ple, thereby mimicking the classical ”A is to B as C is to D”
analogy set-up, thus requiring one-shot learning (see Figure
1). Having fewer input-output examples poses a challenge in
creating unambiguous items, with some items having multi-
ple solutions. However, multiple solutions provide a fruitful
ground for testing distinct strategies used by humans and ma-
chines, which we discuss later.

KidsARC-Simple items consist of 3x3 grids represent-
ing simple concepts such as color and position. KidsARC-
Concept consists of 5x5 matrices encoding concepts from the
ConceptARC, such as, Inside-Outside and Complete Shape.
See Figure 3 for all items.

Figure 2: Examples of different error types. See Figure 1
for the full item. A Copy error (partially) duplicates an input
matrix. A Matrix error combines inputs. Concept errors
apply correct transformations or concepts, but a mistake is
made (here the wrong color). Other represents idiosyncratic
responses.

Human Data Collection
Data collection took place at the NEMO science museum in
Amsterdam. The room had several tables with a tablet that
ran a cognitive task. Visitors, after signing informed consent,
could solve one or more of the five tasks. Two of the tablets
were used for this study. Participants received two examples.
One to get familiarized with the user interface and one in-
volving a simple analogy. Both examples had written verbal
instructions that older children and adults could read and that
we read out loud to younger children. All participants saw
the items in the same order.

Due to the informal nature and noisy surroundings in the
museum, verbal instructions were not always the same across
participants. Also, although parents were requested to let
their children solve tasks independently and participate them-
selves in different tasks, they still sometimes (implicitly)
helped their children.

We collected data separately for the two item sets. Younger
children who wanted to continue after the KidsARC-Simple
were allowed to solve the KidsARC-Concept as well. Chil-
dren solving both tasks were treated as separate participants.
Both datasets had a positively skewed age distribution median
of 8 (IQR = 7, 10) for KidsARC-Simple (n = 155) and me-
dian of 12 (IQR = 9, 35) for the KidsARC-Concept (n = 94).
Overall, the youngest participant was 3, and the oldest 76.
We binned participants into 5 age bins based on theory ex-
pectations: 3-5 (mostly non-analogical), 6-8 (transitioning),
9-11 (mostly analogical), 12+ (successful analogical reason-
ing) (Stevenson & Hickendorff, 2018).

LLM Data Collection
We used all 60 open-source LLMs available in the To-
gether AI collection. 20 of them failed to be called by
the Together AI’s API, leaving us with 40 models. Addi-
tionally, we used three GPT models from OpenAI: GPT-3
(01.03.2023 snapshot), GPT-4 (13.06.2023 snapshot), and the
multimodal GPT-4 Vision (GPT-4V; preview version). Simi-
larly to Moskvichev et al. (2023), we prompted the LLMs by
putting the example matrices in text format and coding col-
ors with numbers 0-9. Before presenting each test item, we
included the same example item human participants saw, but
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KidsARC-Simple KidsARC-Concept

Figure 3: Item-wise comparison of human vs. LLM performance on KidsARC-Simple and KidsARC-Concept. The items are
visualized on the left of the performance bars. On the right we display the three most common responses (models and humans)
along with percentage occurrence. Green ticks indicate correct responses. Note: items can have more than one correct response.

solved. For GPT’s the example item was included in the sys-
tem prompt, and the test items in the user input. In the case of
the LLMs accessed through the Together AI API, the example
item was included in the same prompt as the current test item,
since the API does not offer system prompt inputs. Similarly
to human participants, LLMs were only allowed one attempt
at the items and were given no feedback. The temperature
was set to 0 for reproducible outputs for all LLMs.

To make use of the image processing capabilities of GPT-4
Vision, we also experimented with presenting the items vi-
sually and only requiring text for the output matrix (as with
other LLMs) based on the numerical color codes. GPT-4V
managed to follow the color coding and output format. How-
ever, it performed worse than when using the full text-based
prompt that the other models received. Therefore, GPT-4V
received the same prompt as other models and the item im-
age was also included to further test its multimodal reasoning
capabilities. The temperature setting was not available for
GPT-4V at the time of access (20.01.2024).

Exclusion Criteria
Some exclusion criteria were specific to the LLMs, while
some were shared across humans and models. We noticed
that contrary to GPT models, many LLMs accessed from To-

gether AI produced either incorrectly formatted responses or
responses that were completely irrelevant to our items. Some
of the common incorrect formatting included either duplicat-
ing the same response, providing more than one response, or
providing a correctly formatted response followed by text ir-
relevant to the task. In such cases, we used regular expres-
sions to extract whether a response contained correctly for-
matted output and if so, we treated the first output as the
given response. Otherwise, we classified the responses as a
no-response.

After pre-preprocessing LLM responses, we filtered out ei-
ther human participants or individual LLMs if they had more
than two no-responses in a given dataset. In human partic-
ipants, this simply meant leaving the grid empty, and in the
LLMs either a no-response, as defined above, or also an array
full of black pixels. This left us with 144 human participants
and 26 LLMs in the KidsARC-Simple, and 88 human partic-
ipants and 20 LLMs in the KidsARC-Concept.

Coding Erroneous Responses
To examine differences in response strategies, we coded all
erroneous responses for each item. Based on the literature
on children’s errors and an exploration of GPT-3’s errors,
we devised a taxonomy of three kinds of errors: (1) dupli-
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Figure 4: As with young children, copying is a common error in LLMs. Compared to humans, matrix-based errors are more
common in LLMs, while concept-based errors are less common. Other errors are common in both LLMs and young children.

cation, (2) concept-based and (3) matrix-based. Duplicating
or (mostly1) copying one of the analogy elements is the most
common error response for children on visual matrix analo-
gies (Stevenson & Hickendorff, 2018; Hosenfeld et al., 1997;
Siegler & Svetina, 2002). Concept-based errors are partially
correct solutions where the participant clearly understands the
concept (e.g., position), but makes a mistake in its applica-
tion (e.g., moving a pixel too far or forgetting to change the
color); such errors are often seen in older children and on dif-
ficult items (Stevenson & Hickendorff, 2018; Hosenfeld et al.,
1997). Matrix-based errors are a new error type we encoun-
tered in this dataset; they are a result of simple matrix com-
binations of the analogy elements, e.g., the response includes
all colored pixels from A, B and C. For example, see the third
most common LLM response for item 3 in KidsARC-Simple
(Figure 3). The remaining responses were coded as ”other”
errors. Two independent raters, blinded to whether the re-
sponse was made by humans or LLMs, coded each response
into one of these four categories (initial agreement: 75%), af-
ter which all discrepancies were resolved through discussion.

Results
Aggregate Performance Differences
In Figure 3 we summarize the mean performance of all mod-
els and all human participants on both the KidsARC-Simple
and KidsARC-Concept item sets. On the whole, humans per-
form better than the models with the exception of one item
in the KidsARC-Simple. The difference in performance be-
tween the models and humans is even more pronounced when
item difficulty increases. For example, on KidsARC-Concept
an average LLM does not achieve human performance on any

1Some responses showed slight pixel changes. Nevertheless, ex-
act copies constituted the majority (76%) of the errors classified as
copying.

of the items. Also, quite strikingly, there are three items in
the KidsARC-Concept that no model solves correctly. There
is large variance in how individual LLMs performs, which we
discuss in the next section.

Table 1: Comparison of Average Performance (%) between
children, adults, and LLMs.

Age LLMs3-5 6-8 9-11 12+
KidsARC-Simple 17.2 49.8 73.9 80.4 33.2
KidsARC-Concept NA 56.2 74.0 64.8 11.9

Figure 3 also visualizes the individual items (left) and three
most common responses for both the models and humans
(next to their respective performance bars). Analyzing indi-
vidual errors affords insights into the task-solving strategies
employed by both humans and models. First, we see that both
make the error of literally, or almost literally, copying one of
the input matrices. For example, in KidsARC-Simple items
3 and 7 the most common response for the models and the
second most common response for the humans was to copy
the third input matrix (C-term).

A new strategy we observed is what we call the ’matrix
strategy’, where the response is a result of some sort of
pixel-level merging of the input matrices (see Methods sec-
tion). This occurred far more often in LLMs. This strat-
egy is well-illustrated by the third most common model re-
sponses in items 3 and 7 in the KidsARC-Simple, where the
response can be conceptualized as the result of an element-
wise union of the input matrices. Formally, if A, B, and
C are the input matrices, the response matrix D is given by
D = A∨B∨C, where ∨ denotes the element-wise logical OR
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Figure 5: Comparison of accuracy and error types model-by-model and for humans. We plot models with different training
regimes - Base Models, Fine-tuned Models, Mixture of Experts, GPTs, as well as Human participants.
Note: To reduce clutter we do not plot ’other’, empty, or invalid responses, hence some bars do not sum up to eight.

operation. However, some of the responses that appear to be a
result of a matrix strategy, cannot be easily formalized. E.g.,
in item 6 in the KidsARC-Simple the most common model re-
sponse can be conceptualized as an XOR-like operation over
the three input matrices (black pixels are coded as 0 in the
experiment and all other colors are ≥ 1), except the 2nd pixel
in the 3rd row (which would be red and not black according
to the XOR). Finally, we also observed responses that were

a result of direct matrix arithmetic, where LLMs treated the
color codes as integers, e.g., in task 3 in KidsARC-Simple -
6(purple)−4(teal) = 2(orange).

Errors in LLMs and Humans

In Figure 4 we visualise how often, on average, LLMs and
humans across age-groups produce different errors (copy,
matrix-based, concept-based, empty responses, or other). We
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see that models primarily make copy, matrix, or other errors
on both the KidsARC-Simple and KidsARC-Concept items.
Similarly, for both younger ”pre-analogical” children (3-5
year-olds) and 6-8 year-olds in ”transitioning” phases, copy-
ing is the most common error and rapidly diminishes in older
age-groups. ”Other”/idiosyncratic errors are also common
for the youngest age-group, but disappear in older groups.
Matrix-based errors on the KidsARC-Concept items are more
common in LLMs than humans. Concept errors, however,
occur very rarely in the models compared to human respon-
dents. The abundance of matrix solution strategies, and lack
of concept-based errors shows that LLMs do not generalize
abstract concepts as required by the ARC.

Model Spotlight
While there are general trends in LLM responses, there is still
much variance in both performance and errors which we ex-
plore in Figure 5. Here we plotted the counts of different
error types separately for each model. For easy viewing and
comparison, we only include models that met the inclusion
criteria in the KidsARC-Concept.

We make a couple of preliminary observations. First, there
are models that primarily rely on duplication and/or matrix
strategies, which are also the models that achieve the low-
est performance. The models that perform the best are GPTs
(which notably rarely use copying), Mixture of Experts mod-
els (although performance dropped in the KidsARC-Concept)
and Platypus2-70B-instruct (which was the only model that
performed on par with GPT-4 on KidsARC-Concept) . Inter-
estingly, Platypus2-70B-instruct (Lee et al., 2023) is a Llama-
2 fine-tuned on a dataset involving logical reasoning tasks
which is notable, since the base Llama-2 model performed so
poorly that it did not even meet our inclusion criteria. ARC
tasks were not part of the dataset.

Models that performed well on either of the tasks, gener-
ally had a high parameter count. This is excluding Mixture
of Experts models, both having 7B parameters, 10 times less
than similarly performing models. On the KidsARC-Simple,
however, the smaller 7B parameter Vicuna model (Zheng et
al., 2023) performed better than the bigger 13B version.

Discussion
In this paper, we compared how LLMs and children at differ-
ent stages of analogical reasoning development, perform, and
what kind of solution strategies they employed when solv-
ing ARC-like items. Our main findings show that LLMs are
prone to (partially) copying the input matrices when giving
a response - a fallback strategy that young children in pre-
analogical and transitioning stages exhibit. What is more,
we find that humans and LLMs differ in the types of errors
they make. While humans make errors that are conceptually
close to the correct solution but might miss a couple of pixels,
LLMs often rely on simple combinations of the input matri-
ces. We also found indications of how fine-tuning models on
datasets designed to improve reasoning capabilities in LLMs
might help in solving visual analogy tasks.

In our investigation, we not only gained insights by look-
ing at error patterns but also recognized the value of includ-
ing ambiguous items in our dataset. Specifically, two items
from the KidsARC-Concept (items 1 and 7, shown in Fig-
ure 3) allowed for two valid solutions: applying concep-
tual knowledge related to spatial relationships (specifically,
inside-outside concepts) or through a more straightforward
approach of eliminating specific rows or columns. Notably,
humans chose the conceptual approach 82% (115/141) of the
time, whereas LLMs did so only 14% (1/7) of the time. While
the small number of items and low LLM success rate limit
strong conclusions, these findings highlight the value of de-
signing ambiguous items for future research into AI and hu-
man analogical reasoning capabilities.

Our findings suggest that LLMs, while adept at learning
surface statistics, fail to grasp underlying concepts, echoing
longstanding critiques of connectionist systems by Fodor &
Pylyshyn (1988) and observed in modern AI (Greff et al.,
2020). Specifically, neural networks struggle with composi-
tionality and objectness, particularly in tasks like ARC where
object-based abstractions are needed for robust generalization
(Xu et al., 2024). Similarly, while neural networks are effec-
tive at statistical pattern matching, they fail at utilizing ab-
stract structures, unlike humans (Kumar et al., 2023). Our
results represent a behavioral example of LLMs’ failure to
develop symbol-level abstractions, leading to strategies that
diverge from those used by humans.

There are a few limitations to consider. First, although
we anticipate that measurement errors were mitigated across
participants, replicating the experiment under controlled con-
ditions is essential for confirming the reproducibility of our
findings with human participants. Second, caution must be
exercised when comparing humans to LLMs to avoid pit-
falls such as assessing models under conditions dissimilar
to those experienced by humans, as highlighted by Ivanova
(2023). Despite efforts to standardize item presentation for
both groups, inherent differences remain. For instance, pre-
senting the ARC items as matrices to AI models as this
and previous studies have done (e.g., Johnson et al., 2021;
Moskvichev et al., 2023), may have inadvertently influenced
LLMs to adopt simple matrix arithmetic strategies. However,
this does not explain why GPT-4-Vision produced many ma-
trix errors despite having access to the tasks in a visual for-
mat. Nevertheless, future research should aim to further align
human and LLM task presentation.

Analogical reasoning is a cornerstone of human intelli-
gence and creativity (Gentner & Hoyos, 2017). Embedding
this capability into AI systems is crucial for achieving gener-
alization capabilities required for robust and trustworthy AI-
systems (Mitchell, 2021). In human cognitive development,
children exhibit various solution strategy phases in their jour-
ney towards proficient analogical reasoning. Our results show
that currently LLMs are in the early stages of learning to solve
visual analogies and show some non-human deviations.
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