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—— Abstract

We identify automated landmark salience assessment in indoor environments as a problem related
to pedestrian navigation systems that has not yet received much attention but is nevertheless of
practical relevance. We therefore evaluate an approach based on visual information using images
to capture the landmarks’ outward appearance. In this context we introduce the largest landmark
image and salience value data set in the domain so far. We train various classifiers on domain
agnostic visual features to predict the salience of landmarks. As a result, we are able to clarify the
role of visual object features regarding perception of landmarks. Our results demonstrate that visual
information has only limited expressiveness with respect to salience.

Supplementary Material https://github.com/doGregor/landmark-salience-prediction

1 Introduction

Pedestrians are often facing problems of self-orientation and wayfinding in environments
they are not familiar with [7]. This challenge causes problems with route planning and
decision making during navigation [17]. To support pedestrians in such situations they are
increasingly provided digital assistance, e.g. Google Maps® on their smartphones [23].

Several studies highlight the need of landmarks for an adequate description of routes and
to improve human orientation, e.g. [24, 27]. In general landmarks are conspicuous objects
in space. Depending on varying semantic, structural and visual characteristics they can be
perceived as differently salient reference points [25]. In the context of pedestrian navigation
systems the question on how to identify suitable objects arises. Frequently, controlled field
studies are conducted to let participants name relevant landmarks, e.g. [15]. This approach
is not applicable in large-scale, unsupervised manner. Furthermore, it can be biased and
does not allow to consistently identify appropriate objects [14].

From these observations we note a need for automated landmark identification and
rating techniques. Research in this area so far has recommended to use crowd sourcing via
OpenStreetMap? [22]. [2] suggest predicting landmark salience based on image data that
moreover can be used to provide visual cues to pedestrians. Yet it is unclear which proportion
of semantic, structural, and visual information is necessary to confidently deduce the salience
score of an object. In prior research, the role of solely visual data so far has been rarely
analyzed [21] leaving a research gap in operationalizing the approach in [2].

L https://www.google.com /maps,/
2 https://www.openstreetmap.org/
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In this paper, we address this gap for image data of indoor environments. To the best of
our knowledge, only [13, 9, 30] provide approaches to automated indoor landmark salience
prediction. This contrasts to the urgent need for appropriate reference objects in indoor
navigation instructions that is caused by a higher complexity of the environment [11]. Since
navigation and related perception of objects for orientation are tasks non-trivial to model it
will be interesting to see how much of salience visual information can encode.

To investigate this question, we introduce the largest dataset in this domain so far and
try to draw conclusions using methods of machine learning. To foster reproducibility in the
geographical information science [14] we provide our dataset and implementation via GitHub.

2 Related Work

Automated identification of landmarks for pedestrian navigation systems has attracted little
attention in previous research, particularly in context of indoor environments. Yet some
approaches have been proposed and we are briefly discussing them below.

We start with a look at techniques for outdoor areas: Some methods for example rely on
external information sources like cartographical material or content in geographical databases
[8, 6]. The data can be used to extract object related features that allow to deduce salience
scores and thus suitable landmarks. Another study suggests data mining methods applied to
online texts with spatial context [26]. This content, mainly originating from geographical
information systems, can help identifying relevant objects. All three approaches rely on
large-scale external information sources which usually are not publicly available for indoor
environments. Additionally, they only consider data of structural and semantic nature.

[18] try to identify conspicuous buildings serving as landmarks based on the visual
appearance of their facades. [19] also take into account the visual characteristics of building
facades for salience determination in context of navigation through a virtual downtown
environment. Both studies combine visual and semantic information within their approach
making it difficult to assess the role of visual features. Either are reporting correlations
between facades’ colors and salience values. In [28] saliency maps are computed using
DeepGaze to identify landmarks in images of virtual scenes. The authors report highly salient
regions not to correlate with objects that attracted visual attention of test persons.

For indoor environments, [13] propose data mining methods specifically for the interior of
buildings, but do not compare their findings with a ground truth of human salience ratings.
Lastly, [9] consider 200 indoor-scene images that are used to let participants rank potential
landmarks. Visual and semantic information are considered to train a genetic programming
algorithm on the collected data to predict the objects’ salience values. The authors were
able to correctly identify the most salient landmark in 76% of scenes. In contrast to these
studies that purely or partly rely on semantic and structural data, we focus on the influence
of visual information on indoor-landmark salience. Most similar to our work is the study by
[30]. The authors also consider visual salience, but apply features that we did not consider.

3 Data and Methodology

3.1 Dataset

The landmark dataset is adopted from previous work [1]: 74 participants conducted a
navigational experiment through an indoor environment on a route consisting of multiple
segments. At each segment the subjects had to name four objects they would use to describe
the current route section. In a follow-up questionnaire the salience values of the identified
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landmarks are measured according to [10]. We take three isolated images (masked scene
information) from different angles of all identified objects in [1]. By that we can ensure
capturing the landmarks’ visual characteristics from multiple perspectives.

The final dataset consists of 1266 images X,VX € X: X € R2%8%224 related to 422
distinct landmark objects and their salience values Y,Vy € Y: y € R. The data are split in
0.8:0.2 ratio. We use 5-fold cross-validation and a shared evaluation/test set due to the size
of our dataset. To test whether objects can confidently be grouped in high- and low-quality
landmarks we also provide binary labels. The threshold for the split is calculated using
k-means clustering and expectation maximization density estimation.

3.2 Landmark Salience Prediction

We subdivide our analysis into three steps. (1) we try to predict landmark salience directly
on the image data using transfer learning based on a convolutional neural network and
evaluate the results utilizing methods of explainable artificial intelligence (2) afterwards, we
extract a set of different image features and evaluate them regarding significant differences
compared to a random baseline (3) promising features are finally combined and treated as
landmark representations that are used to train multilayer perceptrons.

Random baseline: since the distribution of salience values is similar to a Gaussian, we
sample values according to mean and standard deviation of the train set in quantity of values
in the respective test set. For binary classification we sample random values of 0 and 1 with
0.5 probability since both classes are approximately equally distributed.

(1) Transfer learning and XAI: We choose the well-known VGG19 CNN architecture
as a frozen convolutional base, pretrained on the ImageNet dataset and stack further dense
layers for salience value (linear, regression head) or binary label (sigmoid, classification head)
prediction on top of it. For parametrization we refer to our GitHub resources. For evaluation,
we use mean absolute error (MAE), mean squared error (MSE) and mean percentual error
(MAPE). For simplicity we will only report the latter metric further on. Classification is
evaluated using the accuracy metric.

We visualize pivotal pixels in the input data of the most and least precise predictions
using deep taylor decomposition and layer-wise relevance propagation. The insights can foster
interpretability of crucial image content, for example to select better features for step (2).

(2) Feature Evaluation: All features are evaluated regarding a confident prediction of
salience values and landmark group labels, respectively. We adopt them from previous work
in domain of semantic information mapping, like image classification and image retrieval.
We fit random forest estimators on the data and compare the results against the random
baseline using paired t-test. Only features that allow significant improvements in landmark
salience prediction (p < 0.01 w.r.t. MAPE and Accuracy) are considered for the final MLP
training. We are briefly introducing all utilized attributes below.

(a) High level style: We process the feature map output of the conv5_wv1 hidden layer of the
pretrained VGG19 CNN to obtain high level landmark style representations. Correlations
are calculated via gram matrices G! through Gij = >, FLF ;k where Géj is the dot
product of the vectorized feature maps ¢ and j in layer [. Subsequently, we reduce their
dimensionality by applying a principal components analysis. [4, 3]

(b) High level content: To obtain high level content representations we adapt the same
processing as with feature (a). Other than previously, we use VGG’s convj_v2 layer to
extract feature maps. [4, 3]

(c) Complexity: The application of XAI methods seems to reveal that complexity might
be a useful landmark characteristic. We calculate spatial information for a grid of 18
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sub-fields of each object-image by SI, = \/s3 + s2 per sub-field, where s, and s, are
vertically and horizontally filtered Sobel-images. [29]

(d) Colors, contrast and brightness: Those features are popular, easy to compute image char-
acteristics and yield basic information on the landmarks’ visual appearance. Furthermore,
they have been proposed as correlating with facade salience in [4, 13, 18, 19].

(e) Scale-invariant feature transform (SIFT): SIFT is popular in context of image retrieval,
e.g. [16], and allows to obtain robust content representations independent of perspective.
We extract the |[N| = 10 most prominent features, where Vn € N: n € R?® and reduce
their dimension with PCA.

(f) PCA, ICA, NMF, Dictionary Learning: These methods are frequently used to extract
meaningful features for face detection, e.g. [20, 5]. They represent details similar to
information in primary visual cortex. We use n = 50 components.

(3) MLP Classifier: It turned out that only features (a), (b) and (c) provide significant
improvements over our random baseline. We therefore concatenate those features and create
landmark representation vectors from it. Those are used to train multilayer perceptrons for
prediction of salience values (linear, regression head) and binary labels (sigmoid, classification
head). For architecture and parametrization we refer to our GitHub repository.

4 Results

We start introducing the random baseline scores which amount to 25.29 (MAPE) and 0.507
(Accuracy). Metrics are reported as average of all five cross validation sets.

Through transfer learning we are able to improve MAPE to 18.09 and accuracy to 0.629.
In table 1 below, we are reporting MAPE and accuracy for the individual features based on
random forest estimators. All characteristics significantly better than the random baseline at
p < 0.01 regarding both metrics are combined for the final landmark representations.

@* @®m* (o)* (d.1) (d.2) (d.3) (e) (f1) (£2) (£3) (f4)

2250 22.26 22.18 2287 23.00 22.06 23.35 22.30 22.29 23.08 22.99

0.611 0.624 0.594 0.564 0.561 0.550 0.543 0.572 0.551 0.576 0.589
Table 1 Features, MAPE and Accuracy for landmark salience prediction; *significant at p < 0.01

We obtain the most meaningful visual characteristics of the landmarks using (a), (b) and
(c) as features. Training MLPs on that data yields a MAPE of 17.80 and an accuracy score
of 0.608. Overall, the results demonstrate that visual features of indoor-objects have limited
expressiveness when speaking about perception of potential landmarks.

5 Discussion and Conclusion

Considering the remaining prediction error, we evaluated our data regarding correlations
between true and estimated landmark perception as well as structural and semantic informa-
tion. The results show negative correlations (Pearson’s: —0.467, p-value: 2.97¢~2%) between
MAPE and salience rating. A qualitative analysis reveals that especially low rated objects
are highly influenced by non-visual characteristics. While we are able to make confident
predictions for well rated objects, arguably also due to high visual expressiveness, we need
further knowledge on the structural layout between landmarks to more confidently identify
unsuitable reference points. As [12] state: "For instance, a red facade in an area where all
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facades are red will not stand out. But the same facade in a grey neighborhood stands out".
Additionally, other factors influence the perception of landmarks, for example the position
of an object in context of route directions. This validates findings of [28] who assume that
image data represent too little of context to allow ideally identifying suitable objects.
Identifying salient objects to support human orientation in unfamiliar environments is
not trivial to model. As we used domain agnostic features only, our results should generalize
to other indoor environments. Unfortunately, for selecting appropriate landmarks it is not
sufficient to extract these features from images: we could estimate the salience of landmarks
in 62.9% of cases. For the remaining 37.1%, we conclude that the visual context of landmarks
as well as additional semantic and structural knowledge is necessary to further improve
prediction accuracy. This result is in line with the observation in [30]: visual information
helps wayfinders if they are not familiar with the environment while structural and semantic
information renders landmarks salient for wayfinders with good knowledge of the environment.
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