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Reverse-engineering and understanding the regulatory dynamics of genes is key to gaining

insights into many biological processes on molecular level. Advances in genomics technologies

and decreasing costs of DNA sequencing enabled interrogating relevant properties of the

genome, collectively referred to as epigenetics, on very large scale. This work presents

results from two collaborative projects with experimental biologists and two new general

computational methods for analysis of high-throughput epigenomic data.

The first collaborative project is joint work with Dr. Kathrin Plath and members of

her lab at UCLA on studying the epigenetics of somatic cell reprogramming in mouse. By

generating and analyzing a large compendium of genomics datasets at four distinct stages

during reprogramming, we discovered key properties of the regulatory dynamics during this

process and proposed new ways to improve its efficiency.

The first computational method in this work, ChromTime, presents a novel framework

for modeling spatio-temporal dynamics of chromatin marks. ChromTime detects expanding,

contracting and steady domains of chromatin marks from time course epigenomics data.

Applications of the method to a diverse set of biological systems show that predicted dynamic

domains likely mark important regulatory regions as they associate with changes in gene

expression and transcription factor binding. Furthermore, ChromTime enables analyses of
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the directionality of spatio-temporal dynamics of epigenetic domains, which is a previously

understudied aspect of chromatin dynamics. Our results uncover associations between the

direction of expanding and contracting domains of several chromatin marks and the direction

of transcription of nearby genes.

The second collaborative project is joint work with cancer researchers, Dr. Lynda Chin

and Dr. Kunal Rai and members of their labs at MD Anderson Cancer Center in Houston,

TX. Within this project we studied the epigenetics of melanoma cancer progression. Our

collaborators generated genome-wide maps for a large number of histone modifications, DNA

methylation and gene expression in tumorigenic and non-tumorigenic human melanocytes.

By comparing these maps we discovered that loss of acetylation marks at regulatory regions is

characteristic of tumorigenic melanocytes and that modulating acetylation levels can impact

tumorigenic potential of cells. In addition, we developed a novel nanostring assay for inter-

rogating the chromatin state at a small subset of genomic locations, which can potentially

be used for diagnostic or prognostic purposes in future.

The second computational method presented in this work, CSDELTA, is designed to de-

tect differential chromatin sites from genome-wide chromatin state maps in groups with mul-

tiple samples. Biological relevance of detected differential sites is supported by associations

with changes in gene expression and transcription factor binding. Furthermore, CSDELTA

models the functional similarity between chromatin states and improves upon the resolu-

tion of detection compared to existing methods, which enables more accurate downstream

analyses to gain insights into the regulatory dynamics of biological systems.
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CHAPTER 1

Introduction
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How genes are regulated in living cells is one of the most fundamental questions in molecular 

biology. In this process, the aggregate of DNA and proteins, collectively referred to as chromatin, 

acts as a complex and dynamic control system for the expression of genes. The chromatin 

consists of protein complexes, termed nucleosomes, around which DNA is wrapped. 

Nucleosomes, in turn, are made of proteins called histones, the tails of which can be modified 

by enzymes at specific sites in a multitude of ways. The joint presence or absence of such 

chemical marks can be associated with different regulatory elements that correlate with 

expression of genes[1]. In addition, DNA marks such as methylation[2] and 

hydroxymethylation[3] of cytosines in the genome can also play role in this regulatory process. 

By complex interactions with different chromatin regions in the genome, DNA binding proteins 

termed transcription factors control the expression of genes[4]. In general, the chemical 

modifications that encode relevant information for the organization of the genome are called 

epigenetic marks, and the field of study of all such marks across the genome is called 

epigenomics. 

 

A number of high-throughput experimental protocols have been developed in the past decade to 

map genomic locations of different epigenetic marks. For example, chromatin 

immunoprecipitation followed by high-throughput sequencing (ChIP-seq) has been widely used 

to map histone modifications and transcription factor binding in many cell lines, primary tissues 

and conditions[5–7]. Bisulfite sequencing has enabled genome-wide mapping of cytosine 

methylation[8, 9]. Assays for transposase-accessible chromatin[10] (ATAC-seq) and DNaseI 

hypersensitivity[11] (DNase-seq) coupled with DNA sequencing have been utilized to map 
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transcription factor binding in more unbiased ways. In conjunction with protocols for measuring 

transcriptome-wide gene expression such as RNA-seq[12], these genomics technologies have 

enabled researchers to investigate on large scale the dynamics of gene regulation in many 

biological systems. However, genomics experiments typically yield tens to hundreds of 

gigabytes of raw data, which can be difficult to process in order to answer the relevant biological 

questions. In addition, these datasets contain substantial amounts of noise due to mostly 

unknown sources of technical or biological variation. For these reasons, bioinformatics analysis 

of genomics data is a non-trivial task, which often requires developing new computational 

methods. 

 

In this work, I present two collaborative projects with experimental biologists and two novel 

computational methods that I developed together with my doctoral advisor, Dr. Jason Ernst, to 

address problems in studying epigenetic regulation. The first collaborative project was a joint 

work with Dr. Kathrin Plath, Dr. Constantinos Chronis and members of the Plath lab at UCLA 

aimed at understanding the principles governing somatic cell reprogramming. Somatic cell 

reprogramming is an artificial process that achieves dramatic changes in cell identity of a starting 

population of cells. During this process, differentiated cells are converted to induced pluripotent 

stem cells, which are indistinguishable in their properties from naturally occurring embryonic 

stem cells. In particular, induced pluripotent stem cells have the potential to further differentiate 

into any tissue type in the body. Studying somatic cell reprogramming has tremendous potential 

to elucidate phenomena in basic developmental and cell biology and to have impact on many 

biomedical areas including regenerative medicine, targeted drug development, disease 
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diagnostics and prognostics. However, our understanding of the mechanics of reprogramming 

still remains limited and current protocols yield only a small fraction of successfully converted 

cells from the starting cell population, which is a major problem in the field.  

 

By using high-throughput experimental techniques, our collaborators from Dr. Plath's group 

have mapped the genomic locations of multiple epigenetic marks across four distinct stages of 

reprogramming corresponding to mouse embryonic fibroblasts (mEFs), mEFs at 48 hours after 

induction of reprogramming factors, pre-induced pluripotent stem cells and mouse embryonic 

stem cells. Among these features were nine post-translational histone modifications, one histone 

variant, DNA binding sites of a number of relevant transcription factors including Oct4, Sox2, 

Klf4 and cMyc that have been shown to lead to reprogramming upon induction, cytosine 

methylation and sites of transposase-accessible chromatin (ATAC-seq). In addition, gene 

expression levels were measured by RNA-seq assays. In this project, I performed the main part 

of the integrative computational analysis of these datasets to derive a comprehensive map of 

epigenetic changes and to identify key combinatorial transcription factor dynamics that drive 

reprogramming. Major analyses included deriving chromatin state maps for each stage during 

reprogramming, deriving chromatin state trajectories of epigenetic changes across all four stages 

by a novel application of software for chromatin state discovery, ChromHMM, in "stacked" 

mode, analyzing combinatorial transcription factor binding events upon induction of all or 

combinations of reprogramming factors, motif enrichment analysis to unravel relationships 

between transcription factor binding, underlying DNA sequence and chromatin states, and 

comparison of gene expression profiles across reprogramming stages. Together with our 
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collaborators, I worked to integrate all parts of the computational analysis and to interpret the 

findings in the study. As result, we discovered that reprogramming factors can exhibit dual roles 

in reprogramming which include both silencing of fibroblast specific genes and activation of 

stem cell specific genes. We further discovered combinatorial patterns of interactions between 

transcription factors that are required for successful reprogramming and a new additional factor, 

which facilitates the process. Chapter 2 contains a reprint of our joint publication with Dr. Plath's 

group, which describes our findings in detail[13]. 

 

Building on our experience during the collaboration with Dr. Plath's lab, together with my 

advisor Dr. Ernst, I developed ChromTime, a new computational method for analysis of time 

course data for chromatin marks. ChromTime is a general method for modeling spatio-temporal 

dynamics of epigenetic domains. The method detects domains of chromatin marks that expand, 

contract or hold steady in time course data from ChIP-seq experiments. Chapter 3 shows 

applications of the method to data for a diverse set of histone modifications and Pol2 in a range 

of biological systems. Domains of epigenetic marks that expand and contract likely mark 

important regulatory regions as their spatial dynamics correlate with changes in features captured 

by orthogonal genomics assays for measuring gene expression and transcription factor binding. 

Furthermore, ChromTime enables analysis of directionality of spatial dynamics of epigenetic 

peaks, which is a previously understudied aspect of chromatin regulation due to lack of suitable 

bioinformatics tools. Our directionality analysis showed that the direction of expanding and 

contracting peak boundaries of a subset of chromatin marks is well correlated with direction of 

transcription of genes in proximity of transcription start sites. ChromTime is implemented as a 
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software tool that can be used by researchers to study spatial dynamics of epigenetic peaks in 

time course ChIP-seq data. Chapter 3 contains a version of the manuscript describing the 

ChromTime method, which has been submitted and is under review at the time of writing of this 

thesis. 

 

The second collaborative project was a joint work with Dr. Lynda Chin, Dr. Kunal Rai, Dr. Kadir 

Akdemir and their colleagues at MD Anderson Cancer Center in Houston, Texas. The goal of 

this project was to investigate epigenetic changes during melanoma cancer progression. 

Epigenetics are known to play important role in some cancers. However, systematic mapping of 

a large number of histone modifications during cancer progression remains largely uncharted 

territory. By utilizing a high-throughput ChIP-seq technology our collaborators mapped the 

genomic positions of 35 epigenetic marks in two human tumorigenic cell lines that give rise to 

melanoma cancer and their non-tumorigenic counterparts. In addition, they measured gene 

expression, DNA methylation and DNA hydroxymethylation in those cell lines. Within this 

project, I performed the main part of the bioinformatics analysis of the ChIP-seq data, which 

involved deriving and comparing chromatin state maps for non-tumorigenic and tumorigenic 

human melanocytes. These maps highlighted large changes in chromatin state including a loss 

of acetylations at regulatory elements. I also helped in integrating these results with analysis of 

gene expression and DNA methylation performed by our collaborators. In addition, I 

implemented a pipeline for selecting a small subset of genomic regions that are most differential 

with respect to specific histone modifications, which were later used to design a custom 

nanostring assay to differentiate tumorigenic from non-tumorigenic cells. The nanostring assay 
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was applied among others to samples from melanoma cancer patients and was able to 

differentiate in a proof-of-principle experiment benign nevi from tumor cells. Chapter 4 contains 

a reprint of our joint publication with Dr. Lynda Chin and Dr. Kunal Rai's groups, which 

describes our findings in detail[14]. 

 

Building on our experience during the collaboration with Dr. Kunal Rai and his colleagues, we 

explored more generally the problem of comparing chromatin state maps between conditions. 

As result, together with my advisor, Dr. Ernst, I developed CSDELTA, a general computational 

method for genome-wide comparison of chromatin state segmentations between groups with 

multiple samples. Our method can be applied to find epigenetic changes in an unbiased manner 

across the whole genome. Furthermore, CSDELTA operates at the resolution of the input 

chromatin segmentations, which is typically 200 base pairs or one nucleosome and spacer region, 

thus enabling detection at a fine resolution. CSDELTA models the functional similarity between 

chromatin states, which can increase the power to detect true chromatin changes. The software 

provides an easy to use command line interface and runs in reasonable time and memory. Chapter 

5 shows applications of the method to a publicly available dataset, which showcases the 

advantages of CSDELTA over existing methods. The output of CSDELTA can be used to define 

group-specific chromatin state domains and to explore differences in regulatory dynamics in 

different cell types, tissues or conditions. Chapter 5 contains a version of the manuscript 

describing the CSDELTA method, which is in preparation for submission at the time of writing 

of this thesis. 
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SUMMARY

Oct4, Sox2, Klf4, and cMyc (OSKM) reprogram
somatic cells to pluripotency. To gain a mechanistic
understanding of their function, we mapped OSKM-
binding, stage-specific transcription factors (TFs),
and chromatin states in discrete reprogramming
stages and performed loss- and gain-of-function ex-
periments. We found that OSK predominantly bind
active somatic enhancers early in reprogramming
and immediately initiate their inactivation genome-
wide by inducing the redistribution of somatic TFs
away from somatic enhancers to sites elsewhere
engaged by OSK, recruiting Hdac1, and repressing
the somatic TF Fra1. Pluripotency enhancer selec-
tion is a stepwise process that also begins early in
reprogramming through collaborative binding of
OSK at sites with high OSK-motif density. Most
pluripotency enhancers are selected later in the pro-
cess and require OS and other pluripotency TFs. So-
matic and pluripotency TFs modulate reprogram-
ming efficiency when overexpressed by altering
OSK targeting, somatic-enhancer inactivation, and
pluripotency enhancer selection. Together, our data
indicate that collaborative interactions among OSK
and with stage-specific TFs direct both somatic-
enhancer inactivation and pluripotency-enhancer
selection to drive reprogramming.

INTRODUCTION

Differentiated cells can be reprogrammed to pluripotency by

overexpression of the four transcription factors (TFs) Oct4,

Sox2, Klf4, and cMyc (OSKM) (Takahashi and Yamanaka,

2006). Successful reprogramming of somatic cells to induced

pluripotent stem cells (iPSCs) leads to the faithful shutdown of

the somatic program and activation of the target program.

Conversely, in TF-induced conversions of one somatic cell

type to another, incomplete extinction of the starting cell pro-

gram represents a major barrier (Cahan et al., 2014). Hence, un-

derstanding the mechanisms by which OSKM inactivate the

starting cell program and induce the pluripotency network will

provide insights into the principles by which cell identity can

be effectively manipulated.

The interaction of OSKM with chromatin has been primarily

studied in ESCs, where O, S, and K preferentially bind enhancers

and M primarily associates with promoters (Chen et al., 2008;

Kim et al., 2008). In ESCs, enhancers are often occupied by addi-

tional pluripotency TFs including Nanog and Esrrb (Chen et al.,

2008; Kim et al., 2008; Whyte et al., 2013), suggesting that com-

plex regulatory interactions perpetuate the pluripotent state.

Among the pluripotency TFs, O, S, and Nanog are thought to

form a pivotal circuitry as they co-occupy enhancers with a

higher frequency than other TFs (Chen et al., 2008), raising the

questions of why K is an effective reprogramming factor when

combined with O and S and how these factors interact during re-

programming. Moreover, it is unclear how and when pluripo-

tency enhancer selection happens during reprogramming given

that most pluripotency TFs are only available late in the process

(Polo et al., 2012; Samavarchi-Tehrani et al., 2010). Since en-

hancers play a central role in driving cell-type-specific gene

expression (Heinz et al., 2015), defining how the reprogramming

factors control the reorganization of the enhancer landscape is

critical for the mechanistic understanding of reprogramming.

A few studies reported that the target sites of the reprogram-

ming factors change during reprogramming (Chen et al., 2016;

Sridharan et al., 2009). In addition, it has been shown that O,

S, and K each can act as pioneer factor since they can engage

nucleosome-occluded sites in human fibroblasts and nucleo-

somal templates in vitro (Soufi et al., 2012, 2015). Whether these

properties are relevant for their binding to pluripotency en-

hancers during the reprogramming process, however, remains

elusive. Moreover, the pioneer factor model does not provide a

mechanistic explanation for the silencing of the somatic pro-

gram, and, therefore, it has remained unclear how the reprog-

ramming factors would induce this process.

In our study, we delineated the interaction of the reprogram-

ming factors with somatic and pluripotency enhancers. We un-

covered that OSK mediate both somatic enhancer silencing

and pluripotency enhancer selection through collaborative inter-

actions among themselves and with stage-specific TFs.
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RESULTS

Comprehensive Mapping of TFs, Chromatin Features,
and Expression at Defined Reprogramming Stages
To characterize the role of OSKM in reprogramming, we carried

out chromatin immunoprecipitation for each reprogramming fac-

tor coupled to high-throughput sequencing (chromatin immuno-

precipitation sequencing [ChIP-seq]) at four distinct stages of

mouse embryonic fibroblast (MEF) reprogramming (Figure 1A).

These stages included (1) MEFs carrying a tetracycline-inducible

polycistronic OSKM expression cassette to capture the starting

state; (2) the sameMEFs induced forOSKMexpressionwithdoxy-

cycline (dox) for 48 hr; (3) two independently generated pre-iPSC

lines (pre-i#1 and pre-i#2); and (4) the pluripotent state represented

by mouse ESCs for the end state (Figures S1A–S1C). The 48 hr

timepoint represents anearly reprogramming stageandwascho-

sen to examine the initial interaction of OSKM with MEF chro-

matin. Importantly, within the first 48 hr, fibroblasts respond to

OSKM activation in a homogeneous manner and with limited

expression changes (Buganim et al., 2012; Koche et al., 2011;

Polo et al., 2012). Since reprogramming cultures are heteroge-

neous at later time points (Pasque et al., 2014; Polo et al., 2012),

we turned to pre-iPSC lines with closely related transcriptional,

epigenetic, and OSKM binding profiles (Figures S1D, S1E, S2E,

and S2F) that were isolated clonally from reprogramming cultures

infectedwithOSKM-encoding retroviruses (Sridharanet al., 2009)

for a proxy of a late intermediate stage. Since M and K are ex-

pressed endogenously in starting MEFs (Figures S1A–S1C), we

mapped both in all four reprogramming stages, whereas O and

S were profiled at 48 hr, in pre-iPSCs and ESCs.

Additionally, we determined the targets of endogenously ex-

pressed TFs (Cebpa, Cebpb, Fra1, Runx1, Esrrb, and Nanog)

and chromatin regulators (p300, Hdac1, and Brg1) in relevant re-

programming stages to determine their interplay with OSKM,

mapped histone H3 to assess nucleosome occupancy, and

measured chromatin accessibility by an assay for transposase-

accessible chromatin using ATAC sequencing (ATAC-seq) and

gene expression by RNA sequencing (RNA-seq) (Figure 1A)

(Tables S1 and S2). We also generated maps for nine histone

modifications and the histone variant H3.3 for each reprogram-

ming stage. The histone modifications included H3K4me3

and H3K9ac primarily associated with promoters; H3K4me1,

H3K4me2, and H3K27ac characteristic of active promoters

and enhancers; H3K79me2 and H3K36me3 associated with

transcription, and the repressive marks H3K9me3 and

H3K27me3 (Figure 1A) (Ernst et al., 2011). A snapshot of the

various datasets is shown in Figure 1B. Data reproducibility

was confirmed by correlating replicate experiments, experi-

mental and imputed data (Ernst and Kellis, 2015), and through

comparisons with published datasets (Table S3), leading to the

merging of replicate datasets for downstream analyses. Addi-

tionally, for TFs, their known motifs were identified at occupied

sites (Figure S1F), validating our datasets.

Identification of cis-Regulatory Elements at Each
Reprogramming Stage
To enable a characterization of the chromatin environment at

sites engaged by OSKM, we summarized the combinatorial and

spatial patterns of histone modifications and H3.3 for each re-

programming stage by building a chromatin state model with 18

states using ChromHMM and assigned candidate functional an-

notations to each state based onmarks present (Figure 1C) (Ernst

and Kellis, 2012). The 18 states defined active and poised pro-

moters, inter- and intragenic enhancers of varying activity levels,

various transcribed regions, repressed regions, and genomic re-

gions with minimal or no signal of any histone mark (Figures 1C

and 1D). These chromatin state annotations were supported by

associations with genomic landmarks such as CpG islands and

transcriptional start sites (TSSs) of genes, chromatin accessibility

and expression of nearby genes (Figures 1D, S1G, and S1H), and

captured epigenetic states expected to occur at somatic and

pluripotency loci during reprogramming (Figures 1B and S1I).

OSKM Predominantly Occupy Active and Poised
Promoters and Enhancers at Each
Reprogramming Stage
To understand OSKM action, we first investigated the character-

istics of OSKM binding sites at each reprogramming stage.

Regardless of reprogramming stage, O, S, and K predominantly

bound in distal regions >2 kb away from the TSS, whereas M

binding occurred more often in close proximity to the TSS (Fig-

ures 2A and S2A). Intersection of binding sites with chromatin

states revealed that at each reprogramming stage, all four re-

programming factors bound both active and poised promoters

and that the distal binding sites of OSK were predominantly

located within active enhancers (Figures 2B and S2B). These

binding preferences also applied when considering co-binding

between the reprogramming factors, such that M in combina-

tions with O, S, or K displayed strong promoter bias, whereas

combinations of O, S, or K binding without M preferentially tar-

geted active enhancers (Figure S2C). Sites occupied by O, S,

K, or M displayed pronounced nucleosome depletion and chro-

matin accessibility at the respective stage (Figures 2C and S2D).

Together, these results demonstrated that OSKM prefer to bind

active and poised promoters and enhancers regardless of re-

programming stage.

Figure 1. Reprogramming Factor and Epigenome Maps in Four Reprogramming Stages

(A) Summary of reprogramming stages and data sets produced.

(B) Snapshot of indicated genomics data at a candidate genomic locus. N/A, no data produced. The color code represents the stage-specific chromatin states

defined in (C). Red boxes mark the somatic gene Tgfb3 and the pluripotency gene Esrrb.

(C) Rows represent chromatin states and their representativemnemonics, color coded and grouped based on their putative annotation. Cells show the frequency

of each histone mark, H3.3, and input signal for each state (ChromHMM emission probabilities).

(D) Columns give the percentage of genome occupancy, median length in kilobases (kb), and fold enrichment of indicated features (TES, transcription end sites;

TSS, transcription start sites; conservation [phastCons elements]; ERVK, endogenous retrovirus K elements; and ATAC-seq, transposase hypersensitivity) for

each chromatin state described in (C) for MEFs and ESCs. Color code per column is from highest to lowest value.

See also Figure S1 and Tables S1 and S2.
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OSKMRedistribution and Binding Partner Switch during
Reprogramming
A comparison of binding sites between 48 hr, pre-iPSCs, and

ESCs revealed that the genomic locations of each reprogram-

ming factor differed dramatically between stages and that the

majority of sites were stage-specific (coined ‘‘100,’’ ‘‘010,’’ and

‘‘001,’’ where 1 represents presence and 0 absence of binding,

and the digits from left to right binding at 48 hr, pre-i#1, and

ESCs) (Figures 2D, S2E, and S2F). For instance, 48% of all

Oct4 binding events occurred exclusively at 48 hr (100 sites)

and 16% were specific for the pluripotent stage (001 sites). 48-

hr-specific Oct4 binding events (100 sites) occurred close to

genes with fibroblast functions based on gene ontology (GO)

analysis, whereas pluripotency-specific sites (001 sites) were

linked to genes that control stem cell function and early develop-

mental decisions (Figure S2G; Table S4), suggesting that stage-

specific binding events are associated with stage-specific gene

functions. Together, these data revealed the predominant inter-

action of OSKM with somatic sites early in reprogramming and

the redistribution to pluripotency-associated sites at later

stages.

The remaining binding events were transient (110 and 011),

absent in pre-iPSCs (101), or constitutive (111) (Figures 2D and

S2E). Constitutively bound Oct4 sites, for instance, represented

8% of all 48-hr-bound sites and occurred in the vicinity of genes

implicated in blastocyst formation, chromosome organization,

and inhibition of MAPK signaling, which is closely tied to the

maintenance of pluripotency (Ying et al., 2008) (Figure S2G;

Table S4). Thus, the majority of sites associated with the pluri-

potent state become engaged by the reprogramming factors

only late in the process, but certain sites are targeted within

the first 48 hr. Motif analysis revealed lower densities of OSKM

DNA binding sequences at 100 sites compared to 001 and 111

sites (Figure S2H), suggesting that temporal binding events differ

in their regulation.

In addition, we found that M binding differed strongly from that

of O, S, andK throughout reprogramming and,more surprisingly,

that K sites coincided more with those of O and S at 48 hr but

diverged from these in pre-iPSCs and the pluripotent state (Fig-

ures 2E, S2I, and S2J). Consequently, we observed significantly

more co-binding of OSK and OK at 48 hr than in ESCs and,

conversely, an increase in OS co-occupancy in ESCs relative

to 48 hr (Figure 2F). Thus, co-binding preferences change from

OSK/OK to OS during reprogramming, consistent with O and S

composing the core pluripotency network in ESCs alongside

Nanog instead of K (Chen et al., 2008).

OSK Co-occupancy at 48 hr Depends on Their
Co-expression
By comparing K binding between MEFs and 48 hr, we found that

many binding sites were gained, whereas others were lost at

48 hr, and only a subset maintained (Figures 2G and S3A).

Upon overexpression of only Klf4 in MEFs for 48 hr, either retro-

virally (KpMX) or inducibly (KtetO), without the other reprogram-

ming factors, K predominantly engaged sites that were targeted

by it in MEFs and not those newly accessible in the context of

OSKM co-expression (Figure 2G), despite its higher expression

level (Figure S3B). We conclude that O and S availability, and

not the expression level of K per se, is responsible for the differ-

ential binding at 48 hr compared to MEFs. Moreover, whereas

sites targeted by endogenous K inMEFs or upon individual over-

expression of K carried only the K motif (Figures 2G, 2H, ‘‘KpMX-

only’’ and ‘‘shared’’ sites, and S3A), new locations bound by K at

48 hr of OSKM reprogramming were co-occupied by O and S

and enriched for the motifs of all three factors (Figures 2G, 2H,

KOSKM-only sites, and S3A), revealing an unexpected depen-

dence of K occupancy on O and S early in reprogramming.

Conversely, the targeting of O and S, respectively, at 48 hr

also strongly depended on the presence of the other reprogram-

ming factors (Figure 2G). Specifically, when individually ex-

pressed, O and S bound many sites in open MEF chromatin

that carried the motif of the respective reprogramming factor

(Figures S3B–S3E), which did not overlap substantially between

the factors (Figure 2I). Yet, when co-expressed in the context of

OSKM for 48 hr, O and S co-occupied many new sites that also

bound K and carried the motifs of all three factors (Figures 2G,

2I, and S3B–S3E). M was largely dispensable for the redistribu-

tion of K and OSK co-binding at 48 hr as co-expression of

OSK, without M, led to engagement of largely the same sites

at 48 hr as in OSKM-induced reprogramming (Figure S3F).

We conclude that cooperative binding of O, S, and K is critical

for the targeting of a vast number of genomic sites early in re-

programming and additionally restricts access to locations that

carry the motif of only one reprogramming factor.

Figure 2. Characterization of OSKM Targets

(A) Fraction of TF binding sites within promoter-proximal (TSS ±2 kb) and -distal (>2 kb from TSS) regions. *p < 0.0001, two-sided binomial test.

(B) Fold enrichment of TF binding sites per chromatin state (Figure 1C) at the corresponding reprogramming stage, colored per column from highest to lowest.

(C) Heatmap of O, S, K, and M ChIP-seq signal for 48 hr and ESC peaks and corresponding signals for ATAC-seq and histone H3, ranked by ATAC-seq signal

strength.

(D) Comparison of binding events of each reprogramming factor between 48 hr, pre-i#1, and ESCs (0/white = unbound, 1/blue = bound), at 100-bp resolution (bin).

(E) Hierarchical clustering of pairwise enrichments of O, S, K, and M binding events.

(F) (i) Clustering of O, S, K, and M binding events at 100-bp resolution (bin). OS, OK, and OSK co-binding events are marked. (ii) Differential enrichments of co-

binding groups between ESCs and 48 hr.

(G) Heatmaps of ChIP-seq signal for K, S, or O peaks at 48 hr of OSKM or individual reprogramming factor expression (retrovirally [pMX] or inducibly [tetO]). Peaks

were grouped based on presence/absence of peak calls comparing the OSKM and single TF expressing (pMX) samples. For K, binding events in MEFs were also

plotted.

(H) Density plots of O, S, M, and K motifs in sets of K peaks defined in (G).

(I) Overlap of O, S, and K sites (number given) obtained from MEFs individually expressing O, S, and K for 48 hr (pMX, left) and MEFs co-expressing OSKM for

48 hr (right).

See also Figures S2 and S3 and Tables S2 and S4.
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Enhancers Are Sites of Most Dramatic Chromatin
Changes in Reprogramming
To examine the association between temporal OSKM binding

events and chromatin changes during reprogramming, we

derived an additional chromatin state model that took into

consideration the combination of histone marks and H3.3 at

any given genomic location within each reprogramming stage

as well as the changes of these histone marks/H3.3 between

the stages (Figure 3A) and defined 35 chromatin states that

will be referred to as chromatin trajectories (tr.) hereafter.

Based on the histone mark/H3.3 composition of each trajec-

tory, we annotated genomic regions as candidate promoters

(tr. 1–4), enhancers (tr. 5–18), units of transcription (tr. 19–27),

repressed (tr. 28–32), transcribed repeats (tr. 33), and devoid

of histone marks (tr. 34 and 35). These annotations were

consistent with enrichments for genomic landmarks and

expression of neighboring genes (Figures S4A and S4B). Differ-

ences in temporal histone marks/H3.3 composition between

the reprogramming stages defined the stage-specific or consti-

tutive chromatin character of each trajectory. We observed that

the promoter states (tr. 1–4) did not carry a strong stage-spe-

cific identity (Figures 3A and S4B) consistent with promoter

states being more conserved across cell types (Heintzman

et al., 2009). Around 16% of the genome represented

Figure 3. OSK Redistribution Mirrors Enhancer Reorganization

(A) Definition of the 35 chromatin trajectories that capture the major chromatin differences between our four reprogramming stages. The first three columns give

the number, functional annotation, and genome fraction of each trajectory. Following columns are organized by histonemark and sub-ordered by reprogramming

stage and display the frequency of each mark per reprogramming stage and trajectory, colored from 0 (white) to 100 (blue).

(B) (i) Boxplots of expression levels of MEF- and ESC-specific genes per reprogramming stage. (ii) Relative enrichment of each trajectory defined in (A)

within ±20 kb of the TSS of MEF- and ESC-specific genes compared to ±20 kb of the TSS of all active genes. Values above the dashed line indicate higher

enrichment in MEF- and ESC-specific genes, respectively.

(C) Fold enrichment of temporal O, S, K, and M binding events defined in Figure 2D for each trajectory in (A), colored per column from highest to lowest.

See also Figure S4.
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enhancers, and, in contrast to promoters, the enhancer trajec-

tories strongly differed in their histone mark composition be-

tween reprogramming stages and therefore likely in their activ-

ity and regulation (Figure 3A, tr. 5–18).

Based on the presence of the active enhancer mark H3K27ac

in MEFs and its absence in ESCs, we defined MEF enhancers

(MEs) (Figures 3A, S4A, and S4B). MEs were either inter- or intra-

genic (tr. 5, 6, 9, 10 and 7, 8, respectively) and typically located in

the vicinity of genes with fibroblast-specific functions that

tended to be expressed specifically early in reprogramming (Fig-

ures 3B, S4B, and S4C). Pluripotency enhancers (PEs) were

defined based on the presence of H3K27ac in ESCs and near

absence inMEFs (tr. 13–18). PEs of tr. 13 and 17were intergenic,

neighboring genes highly expressed in ESCs and implicated in

stem cell maintenance, blastocyst formation, and develop-

mental programs based on GO analysis (Figures 3A, 3B, and

S4A–S4C). PEs associated with tr. 14, 15, 16, and 18 were pre-

dominantly intragenic or poised (carrying H3K27me3) and close

to or within genes that tended to be either constitutively ex-

pressed or repressed during reprogramming (Figures 3A and

4B) and implicated in chromatin regulation and cell-fate

specification.

One group of intergenic enhancers was marked by

H3K4me1/2 at all four stages but displayed activity, defined by

H3K27ac presence, in a transient manner at 48 hr and in pre-

iPSCs (tr. 11, transient enhancers) (Figure 3A). These enhancers

were linked to transiently expressed genes involved in various

signaling pathways, most notably those acting in the bone

morphogenetic protein (BMP) pathway (Figures S4B and S4C).

Since BMPs have a positive role early in reprogramming (Sama-

varchi-Tehrani et al., 2010), activation of these enhancersmay be

critical for reprogramming progression. Other enhancers were

active exclusively in pre-iPSCs (tr. 12) (Figure 3A), and their

neighboring genes were enriched for neuronal ontologies (Fig-

ure S4C), consistent with the observation that neuronal genes

can be ectopically induced during reprogramming (Ho et al.,

2013). In summary, we identified enhancers as themost dynamic

part of the epigenome during reprogramming and defined

groups of enhancers that are selectively used at different reprog-

ramming stages.

Changes in OSK Binding Mirror Enhancer
Re-organization
To investigate how the redistribution of OSKM relates to the

chromatin rearrangement during reprogramming, we intersected

the genomic coordinates of temporal OSKM binding events (Fig-

ure 2D) with the chromatin trajectories (Figure 3A) and made

several key observations (Figures 3C and S4D): first, we

confirmed that OSK binding predominantly occurred in pro-

moters and enhancers, whereas M preferred promoters

throughout reprogramming. Second, the majority of O, S, and

K binding events at 48 hr (100, 110 sites) occurred in promoters,

MEs, and transient enhancers, indicating that early in reprogram-

ming, O, S, andKpredominantly target siteswith open chromatin

character in startingMEFs, unlike what has been reported for hu-

man cell reprogramming (Soufi et al., 2012). Third, O, S, and K

binding at enhancers was typically observed when they were

active (based on H3K27ac). For instance, pluripotency-specific

O, S, K binding events (001 sites) were enriched specifically

within PEs (tr. 13–18). Conversely, 48-hr-specific binding events

(100 sites) enriched most in active MEs (tr. 5/6) and transient en-

hancers (tr. 11). These observations identified a dramatic shift of

O, S, and K binding from MEs to PEs during reprogramming that

accompanies their inactivation and selection/activation, respec-

tively, and suggested that the reprogramming factors may

directly control these two opposing processes. Fourth, we noted

that a specific subset of PEs was targeted by O, S, and K early in

reprogramming. Among all enhancers, constitutive binding by O,

S, andK (111 sites) wasmost enriched in tr. 13 PEs, andoccurred

proximal to genes involved in stem cell maintenance, blastocyst

formation (Nanog, Lif, Esrrb, Stat3, Nodal, etc.) and negative

regulation of MAP kinase signaling (Figure S4E), supporting the

conclusion that PE selection starts early in reprogramming and

is finished in a stepwise manner throughout the process.

Since promoters displayed relatively little stage-specificity

with respect to chromatin state and temporal reprogramming

factor binding events, whereas enhancers were often stage spe-

cific for both (Figure 3C), we focused the rest of our study on the

targeting and action of OSK at MEs and PEs to understand the

regulation of ME silencing and PE selection as well as the regu-

lation of distinct temporal binding patterns of OSK at enhancers.

Figure 4. ME Silencing Is Initiated Genome-wide Early in Reprogramming

(A) Heatmaps of O, S, K, H3K27ac, and H3K4me1/2 ChIP-seq signal and the ATAC-seq signal at all O, S, and K binding sites in tr. 5 and 6MEs at 48 hr, ordered by

the ATAC-seq signal strength. The total number of peaks is given in brackets.

(B) Metaplots of signal intensities for H3K27ac, p300, Hdac1, and ATAC-seq data in MEFs, 48 hr, pre-i#1, and ESCs at tr. 5 MEs occupied by O, S, or K at 48 hr,

centered on ATAC-seq summits in MEFs.

(C) As in (B), except for tr. 5 MEs not bound by O, S, or K at 48 hr.

(D) De novo motifs identified at 48 hr O, S, or K- bound or unbound tr. 5 MEs. Last column: observed and expected motif frequencies (in parentheses).

(E) Heatmaps of somatic TF ChIP-seq signal at sites defined in (A).

(F) As in (B), except for somatic TFs in MEFs and at 48 hr.

(G) As in (C), except for somatic TFs in MEFs and at 48 hr.

(H) Schematic of the reprogramming experiment with Runx1 knockdown. Runx1 transcript levels were determined at 48 hr (error bars represent SD) and Nanog-

positive colonies were counted from two technical replicates (A and B).

(I) Comparison of O or K binding events at tr. 5MEs inMEFs individually expressing the respective reprogramming factor (OpMX or KpMX) andMEFs co-expressing

OSKM for 48 hr (OOSKM or KOSKM). Number of sites is given in brackets.

(J)Metaplots of signal densities for H3K27ac in startingMEFs andMEFs expressing only O for 48 hr (OpMX) at all OpMX bound sites and tr. 5MEs bound or unbound

by OpMX at 48 hr.

(K) As in (J), but for KpMX.

See also Figure S5.
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MEs Are Suppressed Genome-wide Early in
Reprogramming
Since it has remained unexplored how MEs become silenced

during reprogramming and how the reprogramming factors

contribute to this process, we examined active intergenic MEs

captured by tr. 5/6 in more detail, approximately half of which

were bound by O, S, or K at 48 hr. Considering tr. 5/6 MEs

engaged by O, S, or K, we found extensive co-occupancy of

these TFs at 48 hr, which was accompanied by an increased

ATAC-seq signal (Figures 4A, 4B, S5A, and S5B). Later in re-

programming, in pre-iPSCs and ESCs, theseMEswere depleted

of active enhancer marks, OSK binding, and presented dimin-

ished chromatin accessibility defined by ATAC-seq (Figures

4A, 4B, S5A, and S5B), consistent with a predominant 100

OSK binding pattern at these enhancers.

Surprisingly, OSK-bound MEs displayed a lower level of the

active enhancer mark H3K27ac at 48 hr compared to MEFs,

which was corroborated by decreased binding of the H3K27

acetyltransferase p300 (Figures 4A, 4B, and S5B), indicating

that somatic enhancer inactivation is initiated quite extensively

very early in reprogramming. The enhancer marks H3K4me1/2

displayed smaller or no changes at 48 hr (Figures 4A, S5A, and

S5B). The observation that the H3K27ac level was maintained

or increased at other genomic locations (tr. 4, 9, and 11) at

48 hr (Figures S5C–S5E) argued against a global reduction of

p300 activity and H3K27ac. The histone deacetylase Hdac1

was also present at OSK- targeted MEs and, unlike p300, its

binding increased at 48 hr (Figure 4B), which was also seen in in-

dependent replicates, and, as for p300, occurred without alter-

ation in its expression level (Figure S5F). We conclude that the

change in balance of both p300 and Hdac1 observed at OSK-

bound MEs at 48 hr likely accounts for the reduction in

H3K27ac at these enhancers in the earliest phase of reprogram-

ming. The completion of silencing of these enhancers occurred

later indicating that ME inactivation is a stepwise process.

Unexpectedly, we observed that MEs of tr. 5/6 that were not

engaged by OSK at 48 hr also had strongly reduced H3K27ac

and p300 levels at 48 hr (Figures 4C, S5A, and S5B). These find-

ings suggested that the disruption of the most active MEs takes

place genome-wide early in reprogramming and extends beyond

direct OSK targets. Interestingly, the increase in Hdac1 was spe-

cific to OSK-bound MEs and not observed at MEs that were not

targeted by OSK (Figures 4B and 4C), potentially as a conse-

quence of a direct action of O, S, or K.

Loss of Somatic TFs fromOSK-Bound and UnboundMEs
at 48 hr
To investigate how ME activity could be globally affected, we

performed de novo motif scanning in OSK-bound and

unbound tr. 5 MEs and identified DNA motifs of the Fra1

(AP-1 family), Tead, Runx, and Cebp families of TFs in both

sets (Figure 4D). O, S, and K motifs were enriched specifically

in the bound ME set (Figure 4D). We then performed ChIP-seq

for the corresponding TFs Fra1, Cebpa, Cebpb, and Runx1, all

highly expressed in MEFs (Figure S6J) and found that these TFs

indeed occupied both OSK-bound and -unbound MEs in MEFs

(Figures 4E–4G). At 48 hr, all four somatic TFs displayed

reduced binding at OSK-bound and unbound MEs (Figures

4E–4G), which was independently supported by a reduction

in ATAC-seq signal at MEs not targeted by OSK (Figures 4C,

S5A, and S5B). These results suggested that the loss of so-

matic TFs from active MEs causes the reduction of p300 and

H3K27ac at MEs at 48 hr genome-wide.

To test the functional significance of somatic TF loss, we per-

formed siRNA-mediated knockdown of Runx1 (Figure 4H) and

Cebpa/b (Figure S5G) during reprogramming. Both treatments

increased the number of Nanog-positive colonies indicating

that the depletion of ME-bound somatic TFs represents a mech-

anism for improving reprogramming efficiency, likely by aug-

menting ME inactivation.

Reprogramming Factors Can Individually Induce ME
Silencing
To determine whether OSK co-expression is required for global

ME silencing, we analyzed O and K binding and H3K27ac levels

at MEs in MEFs expressing only Oct4 or Klf4 for 48 hr. Only 23%

and 31% of tr. 5 MEs bound by O and K, respectively, in the

context of OSKM co-expression (OOSKM and KOSKM) were

engaged by the single factors (OpMX and KpMX) (Figure 4I),

emphasizing the importance of co-operative binding for the

engagement of MEs. The H3K27ac level was reduced at tr. 5

MEs, but maintained over all binding sites of the individually ex-

pressed reprogramming factor (Figures 4J and 4K). Notably,

individual reprogramming factors induced an H3K27ac drop

at tr. 5 MEs comparable to that observed for OSKM-induced re-

programming (Figure S5H). Interestingly, for O, we observed a

reduction of H3K27ac at tr. 5 MEs irrespective of its binding,

but for K only at MEs not targeted by this reprogramming factor

at 48 hr (Figures 4J and 4K), suggesting that Oct4, but not Klf4,

may enhance silencing at its target MEs directly by increasing

Hdac1 levels.

Somatic TF Redistribution at 48 hr Is Guided by OSK
A comparison of peak locations for Cebpa, Cebpb, Runx1, and

Fra1 revealed the loss- and gain-of-binding events between

MEFs and 48 hr as well as sites that were maintained (Figures

5A, 5B, S6A, and S6B). Gain and loss of binding occurred

predominantly at sites occupied by only one of the somatic

TFs (Figure 5C, clusters I–III and IV–VII), whereas binding sites

maintained at 48 hr weremore often co-occupied by the somatic

TFs (Figure 5C, cluster VIII). Binding events lost or maintained at

48 hr were located predominantly in MEs (tr. 5–10), promoters

(tr. 1–4), as well as transient enhancers (tr. 11) (Figure 5D,

MEF-only and shared sites). Conversely, new binding sites of

the somatic TFs at 48 hr were primarily enriched within pro-

moters (tr. 1–4), transient enhancers (tr. 11), and tr. 13 PEs (Fig-

ure 5D, 48-hr-only sites). Together, these data revealed an unex-

pected redistribution of somatic TFs away from sites that include

MEs toward new sites that include PEs.

48-hr-specific sites of Cepba, Cebpb, and Fra1, respectively,

were extensively co-occupied by O, S, or K at 48 hr (>80%) and

had a high density of OSK motifs, whereas MEF-specific sites

displayed lower reprogramming factor occupancy (<42%) and

lacked OSK motifs (Figures 5A, 5C, 5E, and S6B). Thus, somatic

TFs relocate from MEs toward new sites that become available

by binding of the reprogramming factors early in reprogramming,
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suggesting that OSK directly guide this process, which, in turn,

leads to the global destabilization of MEs. In support of an

inter-dependency of somatic TFs and OSK, we found that so-

matic TF binding sites maintained at 48 hr were also targets of

OSK early in reprogramming (Figures 5A, 5C, S6A, and S6B)

and that Cebpb co-occupied many sites with OSK in pre-iPSCs

(Figure S6C).

We also noted that somatic TF binding sites maintained at

48 hr (shared sites) exhibited higher normalized tag counts

and motif density of the respective TF than either MEF- or

48-hr-specific peaks (Figures 5F, 5G, S6D, and S6E). These

results suggested that binding events maintained early in re-

programming display higher affinity for the somatic TF

compared to those lost or gained and that OSK induce the relo-

cation of somatic TFs from one set of lower affinity binding sites

to another.

Runx1 also relocated early in reprogramming but the new

sites at 48 hr occurred often in transcribed units and did not

overlap as extensively with OSK binding as Fra1 and Cebpa/b

(Figures 5C, 5D, and S6A), suggesting that a different mecha-

nism controls the redistribution of this TF. In addition, we

noticed that more sites were lost and fewer sites gained at

48 hr for Fra1 compared to Cebpa/b or Runx1 (Figures 5A,

5C, and S6B, also seen in independent replicates), which

raised the question of whether the level of Fra1 was altered.

Indeed, RNA-seq revealed limited transcriptional changes early

in reprogramming (Figures S6F and S6G) (Koche et al., 2011)

with Cebpa, Cepbb, and Runx1 transcript levels remaining

largely unchanged, whereas Fra1 transcript levels decreased

substantially (2.7-fold) (Figures S6J and S6K; Table S2). Hence,

repression of Fra1 appears to be an additional mechanism that

contributes to the loss of somatic TFs from MEs. Loss of Fra1

binding at its own locus at 48 hr (Figure S6L) could enhance the

downregulation of this TF via its known auto-regulation (Verde

et al., 2007). Of note, genes upregulated early in reprogram-

ming were enriched for 48-hr-specific somatic TF binding and

downregulated genes for MEF-specific somatic TF peaks (Fig-

ures S6H and S6I), suggesting that the redistribution of somatic

TFs also contributes to the few expression changes detected

early in reprogramming.

Fra1 Repression Is Critical for Somatic Program
Silencing and Reprogramming
To test whether Fra1 repression is critical for ME silencing, we

ectopically expressed Fra1 or a Flag-tagged version together

with OSKM, which dramatically lowered the efficiency of

reprogramming (Figures 5H and S6M). In comparison, Runx1

overexpression had a more limited inhibitory effect on iPSC for-

mation (Figures 5H and S6M), again hinting at differential control

of reprogramming by Runx1. Ectopic expression of Flag-tagged

Fra1 for 48 hr abrogated the loss of Fra1 fromMEs that occurred

early in OSKM-mediated reprogramming (Figures 5I, clusters III

and IV, and S6L). Upon 48 hr overexpression together with

OSKM, Fra1 also engaged new sites in promoters, PEs, and tran-

sient enhancers that were co-occupied by O and K (Figure 5I,

cluster I, Swasnot testedhere) and induced the targetingof these

reprogramming factors to new sites (Figure 5I, clusters II and V)

emphasizing the co-dependency of somatic TF and reprogram-

ming factor binding events. Fra1 overexpression also reversed

expression changes observed under standard reprogramming

conditions at 48 hr and prevented the upregulation of the epithe-

lial signature gene E-cadherin (Figures 5J and 5K). These data

suggested that Fra1 loss from MEs is critical for their silencing

and iPSC production. Overexpression of cJun, the binding part-

ner of Fra1, was also detrimental for reprogramming (Figures 5H

and S6M) (Liu et al., 2015) and produced similar expression

changes as Fra1 overexpression (Figures 5J and 5K), suggesting

that cJun may block reprogramming in synergy with Fra1.

Stepwise PE Selection Is Not Explained by Starting
Chromatin State
Besides ME silencing, the selection of PEs is critical for re-

programming. The temporal differences in PE engagement,

with a large number of PEs targeted by OSK only late in reprog-

ramming and others first engaged at 48 hr or in pre-iPSCs (Fig-

ure 3C), prompted us to ask what distinguishes temporally

different reprogramming factor binding at PEs. We focused this

analysis on 111 and 001 O binding events in intergenic PEs of

tr. 13 and 17 because of their association with genes involved

in stem cell-related functions and high expression in ESCs (Fig-

ures S4B, S4C, and S4E).

Figure 5. Somatic TF Redistribution Early in Reprogramming

(A) Intersection of Cebpa or Cebpb binding sites between MEFs and 48 hr. The fraction of sites also bound by O, S, or K is given in brackets for each group.

(B) Genome browser view at the Gdf3 locus of OSK and somatic TF binding and ATAC-seq data in MEFs and at 48 hr.

(C) K-means clustering of somatic TF binding events in MEFs and at 48 hr. The fraction of sites in each cluster also bound by O, S, or K is provided on the right.

(D) Fold enrichment of MEF-only, 48-hr-only, and shared binding sites of somatic TFs from (A) in chromatin trajectories defined in Figure 3A, colored per column

from highest to lowest values.

(E) Density of O, S, or K motifs at MEF-only, 48-hr-only, and shared Cebpa (top) and Cebpb (bottom) sites from (A). Error bars = 95% confidence interval at

summits.

(F) As in (E), but for Cebpa (top) and Cebpb (bottom) motifs.

(G) MEF and 48 hr input-normalized ChIP-seq signal for MEF-only, 48-hr-only, and shared binding events of Cebpa and Cebpb from (A).

(H) Schematic of the reprogramming experiment with retroviral overexpression of somatic TFs. Nanog-positive colony counts from three biological replicates

are given.

(I) K-means clustering of Fra1 peaks inMEFs and Fra1, O, and K peaks at 48 hr of OSKM or OSKM+Fra1 co-expression. Right: fold enrichments of each cluster on

the left in chromatin trajectories defined in Figure 3A, colored per column from highest to lowest values.

(J) Heatmap of differential gene expression between each of the reprogramming stages indicated at the bottom relative to MEFs, for genes 2-fold differentially

expressed between 48 hrOSKM+Fra1 and 48 hrOSKM. Right, GO ontologies of these genes.

(K) E-cadherin (Cdh1) transcript level for indicated samples based on RNA-seq data.

See also Figure S6 and Table S2.
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We first analyzed enhancer-associated histone marks at 111

and 001 O binding events in tr. 13 PEs and 001 O sites in tr. 17

PEs (Figure 6A). All sites existed in a closed chromatin conforma-

tion in MEFs lacking active histone marks and ATAC-seq signal

(Figures 6A and S7A). For 111 sites in tr. 13 and 001 sites in

tr. 17, O binding correlated with the gain of the enhancer marks

H3K4me1/2 and H3K27ac and ATAC-seq signal (Figures 6A and

S7A), suggesting that chromatin opening and selection of these

sites is linked to reprogramming factor binding. At 001 sites in tr.

13 PEs, the gain of enhancer marks and chromatin accessibility

preceded O binding (Figure 6A), implying a role for non-reprog-

ramming TFs in the opening of these sites. Regardless, the tran-

sition of PEs from ‘‘closed’’ to ‘‘open’’ chromatin was associated

with the recruitment of Brg1 (Figure 6B).

Interestingly, at 111 sites in tr. 13 PEs the level of H3K4me1/2

and H3K27ac was much lower at 48 hr than in pre-iPSCs and

ESCs (Figures 6A and S7A). This pattern was recapitulated by

p300 and Hdac1 binding (Figure 6B), demonstrating that reprog-

ramming factor binding at 48 hr induced the selection of these

PEs but not their full activation, which occurred at a later reprog-

ramming stage (Figures 6A and 6B). One intriguing hypothesis is

that reprogramming factor binding to PEs early in the process

allows for the binding of additional TFs at later reprogramming

stages, which is required for full enhancer activation. Regard-

less, these data showed that the stepwise selection and

activation of PEs is largely controlled by parameters beyond

chromatin state.

Motif Density and OSK Co-occupancy Distinguish Early
and Late-Engaged PEs
Since the chromatin state in MEFs did not distinguish early (111)

and late- (001) engaged PEs, we examined properties of the un-

derlying DNA sequence. Early bound O sites in tr. 13 PEs carried

significantly more Oct4, Oct4/Sox2 composite, and Klf4

consensus motifs compared to late-bound sites in tr. 13 and

17 (Figure 6C). De novo motif scanning also revealed a stronger

enrichment of the Klf4 motif in 111 O sites in tr. 13 PEs compared

to 001 sites in tr. 17 PEs (Figure S7B). Consistent with these dif-

ferences in motif occurrence, 111 O sites in tr. 13 PEs were co-

bound by S andKwhen theywere first engaged at 48 hr, whereas

tr. 13 and 17 PEs bound by O late (001) were predominantly

co-occupied with S but not K in ESCs (Figures 6A and S7C).

These data demonstrated that OSK co-occupancy is associated

with PE selection early and OS co-binding with PE engagement

late in reprogramming, which is driven by motif presence.

Despite co-binding by OSK at 48 hr, 111 O sites in tr. 13 PEs

weremostly bound byOS in ESCs (Figures 6A andS7C) in agree-

ment with K binding being more distinct to O and S binding in

ESCs (Figures 2E and 2F) and being influenced by other TFs

in ESCs.

PE Engagement Early in Reprogramming Requires
Collaborative Binding by OSK
To test mechanistically how the selection of PEs occurs early in

reprogramming, we determined the independent ability of O, S,

and K to engage these sites at 48 hr. We found that tr. 13 PEs

were not targeted when O, S, and K were individually expressed

(Figures 6Di, ii, S3B, S3C, and S3G), indicating that the ability of

these reprogramming factors to act as pioneer factors is not at

play for the opening of these sites. Retroviral co-expression of

combinations of reprogramming factors and mapping of binding

sites at 48 hr further demonstrated that OSK co-expression was

sufficient for the selection of tr. 13 PEs at 48 hr, showing that

ectopic M is not essential for PE selection, and additionally re-

vealed lower occupancy when two reprogramming factors

were expressed (OS, SK, OK) compared to three (OSK) (Fig-

ure 6Diii). Though these data were consistent with PE section

requiring a collaborative mode of action by OSK, one exception

was that OS co-expression resulted in binding levels close to

those seen with OSK co-expression, particularly for O, despite

the lack of ectopic K (Figure 6Diii). This result likely can be ex-

plained by the relocation of endogenously expressed K to these

sites in OS-expressing MEFs (Figure 6Diii). Thus, we conclude

that the selection of PEs early in reprogramming requires the

collaborative action of O, S, and K and suggest that the necessity

of OSK for reprogramming is linked to their ability to open a sub-

set of PEs together.

We made similar observations when considering all sites that

were co-occupied by O, S, and K at 48 hr of OSKM-induced

reprogramming. Only �30% were accessible to individually

expressed O, S, or K, mainly at locations already engaged by

endogenous Klf4 in MEFs (Figure 6E, columns 1–8). The number

Figure 6. Stepwise Selection of PEs and OSK Requirement

(A) Heatmaps of O, S, K, H3K27ac, H3K4me1/2, and Nanog ChIP-seq signal and ATAC-seq data in indicated reprogramming stages at 111 or 001 O binding sites

within tr. 13 and 17 PEs, sorted by ESC ATAC-seq signal intensity. Number of peaks in each set is given in brackets.

(B) Metaplots of signal intensities of p300, Hdac1, and Brg1 for sites in (A).

(C) Motif density for sites in (A), with 95% confidence interval at the summits.

(D) (i) Heatmaps of O, S, and K ChIP-seq signal at 111 O sites in tr. 13 PEs in MEFs individually expressing O, S, or K for 48 hr. (ii) Metaplots of signal intensities of

the indicated reprogramming factor individually expressed (pMX or tetO) in MEFs for 48 hr and of Klf4 in MEFs in tr. 13 111 O sites. (iii) As in (ii), except for MEFs

expressing OK, SK, OS, or OSK for 48 hr. Binding of endogenous K in OS-expressing MEFs is also given.

(E) Heatmap of ChIP-seq signal for the factor indicated by ChIP, in MEFs ectopically expressing one or combinations of reprogramming factor(s) for 48 hr (TF)

using retroviral (pMX) or inducible (tetO) expression (system), for sites co-bound byOSK at 48 hr of OSKM-induced reprogramming, sorted by Klf4 signal inMEFs.

Kendo refers to targets of endogenously expressed K.

(F) As in (D), except for binding of somatic TFs in MEFs and at 48 hr. The given CEBPA:AP1 composite motif was identified in 13.5% of tr. 13 111 O sites.

(G) Fraction of ESC super enhancers occupied by O, S, or K at 48 hr and genes associated with OSK-targeted ESC super enhancers.

(H) Genome browser view of OSK ChIP-seq, ATAC-seq data, and chromatin trajectories (color coded as in Figure S4A) at themir290 ESC super enhancer. Gray

bars indicate seven sub-elements engaged by OSK in ESCs and the asterisks mark those bound by OSK at 48 hr.

(I) Fraction of locations within ESC super enhancers that are bound by O, S, or K in ESCs and also engaged by the respective TF at 48 hr.

See also Figure S7 and Tables S5.
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of accessible sites increased when double combinations of re-

programming factors were expressed, rising from SK, OK to

OS (Figure 6E, columns 9–15).

We also noted that 13.5% of 111 O sites in tr. 13 PEs carried

the CEBPA:AP1 composite motif, and that Cebpa, and to lesser

extent Cebpb, Fra1, and Runx1, occupied these PEswith OSK at

48 hr (Figures 6F and 5B). Additionally, Fra1 extensively engaged

tr. 13 PEs early in reprogramming upon overexpression together

with the reprogramming factors (Figure 5I, clusters I, II, and V),

further supporting a link between somatic TFs and OSK at

PEs. At PEs, somatic TFs may be required for their selection,

prevent their activation early in reprogramming, or may simply

bind due to the open chromatin character, which will need to

be studied further.

Early Engaged PEs Are Close to Core
Pluripotency Genes
Recently, super enhancers, defined as dense clusters of

enhancers with high activity, received attention as cis-regulatory

elements of genes that control cell identity (Whyte et al., 2013).

We found that ESC super enhancers gained enhancer marks

gradually during reprogramming and that their neighboring

genes were activated progressively (Figures S7D and S7E).

ESC super enhancers were enriched most strongly in tr. 13

PEs (Figure S7F) and typically engaged by O, S, and K early in re-

programming (of 231 ESC super enhancers 78%were bound by

O; 61% by S; 66% by K at 48 hr) including those at the mir290,

Pou5f1, Sox2, Klf4, Tdh1, and Nanog loci (Figures 6G, S7G,

and S7H). Thus, critical regulatory sites of the pluripotent state

are among the PEs that are selected early in reprogramming.

Interestingly, only a subset of sites within ESC super enhancers

bound by O, S, and K in ESCs was engaged at 48 hr (Figures

6H, 6I, and S7I), suggesting that super enhancers do not act as

a single entity and that the opening at specific sites early in

reprogramming may be critical for full selection/activation later

in the process. Notably, ESC super enhancers represented

only a small fraction of all early engaged PEs as only �4% of

the 111 O sites in tr. 13 were located within them.

Esrrb Enhances Both ME Inactivation and PE Selection
The data described above argue in favor of a model where coop-

erative binding of TFs, including both reprogramming factors

and endogenously expressed TFs, dictates their genomic target-

ing and thereby enhancer selection. For late-engaged PEs (001

sites), we therefore hypothesized that additional TFs that

become available progressively during reprogramming are

required for selection either prior to or together with OS. In sup-

port of this idea, we observed that in ESCs PEs were occupied

by additional TFs that become expressed later in reprogram-

ming, such as Nanog and Esrrb (Figure 6A; Table S5). Moreover,

001 O sites in PEs could be distinguished from 111 sites by the

presence of the Esrrbmotif (Figure 7A), establishing Esrrb, which

is turned on very late in reprograming (Buganim et al., 2012; Pas-

que et al., 2014; Polo et al., 2012) (Figures S7J and S7K), as a

unique candidate to test our hypothesis.

To this end, we expressed Esrrb alongside OSKM from an

inducible lentivirus and profiled binding of Esrrb, O, K, and

H3K27ac at 48 hr (48-hrE samples) (Figures 7B and S7K). As

for OSKM, most Esrrb binding sites at 48 hr differed from those

in ESCs (Figure 7C). 48-hr-specific binding occurred predomi-

nantly in promoters, MEs, and transient enhancers (Figure 7C,

group A), whereas ESC-specific sites enriched in PEs (Figure 7C,

group B). 25% of ESC targets of Esrrb became engaged at 48 hr,

many of which were located in promoters and, as seen for OSK,

in tr. 13 PEs (Figure 7C, group C). The sites in group C were tar-

geted by O and K in ESCs as well as upon OSKM/Esrrb co-

expression at 48 hr, but only a third were engaged by O and K

at 48 hr when merely OSKM were overexpressed (Figure 7C).

Similarly, 2291 sites in PEs of tr. 13–18 normally engaged by

O, S, or K only late (001 sites) (including 882 sites in tr. 13 and

415 in tr. 17), were targeted by O or K at 48 hr upon OSKM/Esrrb

overexpression. Thus, PEs not accessible to the reprogramming

factors early in reprogramming became accessible early when

Esrrb was co-expressed. These data provide evidence for the

cooperation of a pluripotency TF with OSK in the selection of

PEs and highlight the need of additional pluripotency TFs for

the reconstitution of the pluripotency network.

Figure 7. Control of ME Decommissioning and PE Selection by Esrrb

(A) Esrrb motif density in 111 and 001 O peaks in tr. 13 and 17 PEs. Error bars = 95% confidence interval at summits.

(B) Schematic of the reprogramming experiment with lentiviral overexpression of Esrrb (tetO-Esrrb). Image: Esrrb expression was confirmed by immunostaining

at day 3 (in green).

(C) Heatmap of Esrrb (E) ChIP-seq signal for Esrrb peaks identified in ESCs and at 48 hr of co-expression of OSKM and Esrrb (48 hrE). Peaks were divided into

three groups (A–C) based on their reprogramming stage specificity. TheO and K signal at 48 hr of OSKM (48 hr) or OSKM/Esrrb expression (48 hrE) and in ESCs for

the same sites is also shown. Right: fold enrichments of sites in groups A–C in chromatin trajectories defined in Figure 3A, colored per column from highest to

lowest value.

(D) Metaplot of signal intensity of H3K27ac at 111 O sites in tr. 13 PEs for MEFs, 48 hr, and 48 hrE (OSKM/Esrrb).

(E) As in (D), except for OSK-bound and unbound tr. 5 MEs, centered on ATAC-seq summits in MEFs.

(F) Boxplots of expression levels of genes downregulated at 48 hr of reprogramming with OSKM/Esrrb (48 hrE) relative to OSKM alone (48 hr). Asterisks mark any

significant differences between MEFs, 48-hr, and 48-hrE samples (Wilcoxon test, adj. p < 0.05).

(G) As in (F), for MEF-specific genes.

(H) As in (F), for upregulated genes.

(I) As in (F), for ESC-specific genes.

(J) Expression of pluripotency genes known to be regulated by Esrrb.

(K) Bright-field image at day 6 of reprogramming with OSKM and OSKM/Esrrb.

(L) Count of Dppa4-positive colonies at day 8 of OSKM or OSKM/Esrrb expression from three biological replicates.

(M) Model for the functions of OSK at MEs.

(N) Model for the functions of OSK at PEs. Asterisk indicates reduced K binding in ESCs.

See also Figure S7 and Table S2.
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Interestingly, at 48 hr, tr. 13 PEs reached a similar level of

H3K27ac in the presence of Esrrb as reprogramming cells not

exposed to Esrrb (Figure 7D). However, the average level of

H3K27ac was much lower at tr. 5 MEs at 48 hr upon Esrrb

expression indicating even more pronounced ME silencing (Fig-

ure 7E). Consistent with this observation, MEF signature genes

were more strongly repressed at 48 hr with Esrrb (48 hrE versus

48 hr; Figures 7F, 7G, and S7L). With the exception of a few plu-

ripotency genes such as Nr0b1/2, Tcfcp2l1, and Fut9, Esrrb did

not induce precocious expression of ESC-specific genes at 48 hr

but instead induced genes involved in metabolic pathways

ectopically (Figures 7H–7J and S7L). Last, we found that the mo-

lecular changes induced by Esrrb early in reprogramming corre-

lated with a more than 100-fold increase in the number of

Dppa4+ colonies and shortened kinetics of iPSC-like colony for-

mation (Figures 7K and 7L). Together, these data demonstrate a

dramatic effect of the pluripotency TF Esrrb onMEF identity, pro-

moting the inactivation of MEs, and, in parallel, on the induction

of the pluripotency program by enhancing PE selection.

DISCUSSION

Our study provides a comprehensive analysis of OSKM occu-

pancy at four reprogramming stages. Among the four reprog-

ramming factors, M is distinct as it primarily targets promoters

throughout reprogramming, whereas O, S, and K favor en-

hancers.We found that OSK switch from somatic to pluripotency

enhancers during reprogramming and, unexpectedly, orches-

trate both the inactivation of MEs and PE selection. Most

importantly, our work revealed that the selection of genomic

target sites of OSK and the opposing effects on MEs and PEs

are controlled by the combinatorial interplay of O, S, and K

with endogenously expressed TFs, many with a stage-specific

expression.

The extensive silencing of MEs at 48 hr, affecting MEs bound

by OSK and those not targeted by the reprogramming factors,

was a particularly surprising finding and indicated the wide-

spread interference with the somatic epigenetic network very

early in reprogramming. We determined that OSK initiate the

silencing of MEs by at least three distinct mechanisms: first,

OSK bind to approximately 50% of the most active MEs and in-

crease their Hdac1 levels, potentially attributable to the interac-

tion of Hdac1 with Oct4 (Pardo et al., 2010) (Figure 7Mi). Second,

OSK induce the removal of somatic TFs from OSK-bound and

unbound MEs (Figure 7Mi and Mii). Mechanistically, the loss of

somatic TFs from MEs is accomplished by their relocation

away from MEs to new sites including PEs that become bound

by OSK at 48 hr and carry the motifs for the reprogramming fac-

tors and the somatic TFs (Figure 7Miii). Third, OSK expression

leads to a decrease in Fra1 transcript levels, which contributes

to the extensive loss of this TF from MEs (Figure 7Miv).

Binding sites in MEs contained fewer consensus DNA binding

motifs of each reprogramming factor than those at PEs, suggest-

ing that the interaction of OSK with MEs differs from that at PEs.

Therefore, we propose that the targeting of MEs may involve

non-consensus motifs that are accessible to the reprogramming

factors due to the open chromatin state or protein-protein inter-

actions with endogenously expressed factors. For instance, pro-

tein-protein interactions with Cebpa/b, Fra1, or Runx1 may

contribute to the recruitment of OSK to MEs. Reciprocally, the

same interactions could facilitate the redistribution of somatic

TFs to new sites with OSK binding at 48 hr and contribute to

the combinatorial binding between OSK and somatic TFs. The

presence of fewer cognate OSK motifs at MEs could mediate a

generally weaker binding that, in turn, facilitates the disengage-

ment of OSK from these sites when somatic TFs become

unavailable.

In addition toMEs, OSK engage a substantial number of PEs at

48 hr including sites in super enhancers neighboring critical plu-

ripotency-associated genes (Figure 7Ni). However, the majority

of PEs are bound only at later stages (Figure 7Nii), revealing

that PEs selection is a stepwise process. The different kinetics

of PE selection was not explainable by differences in the chro-

matin state in starting MEFs. Instead, we propose that the timing

of PE selection is dictated by (1) the collaborative binding among

O, S, and K, and with additional, endogenously expressed TFs,

and (2) cis-encoded properties, i.e., the presence and combina-

tion of motifs at these sites (Figure 7N). O, S, and K together,

potentially with somatic TFs, are required for the opening of

PEs early in reprogramming (Figure 7Ni), which perhaps explains

why this combination of reprogramming factors is so successful

in establishing pluripotency. At early engaged PEs, opening by

OSK does not result in strong enhancer activation at 48 hr, which

likely requires other TFs that become available later. Conversely,

late-engaged PEs are targeted by OS, without K, indicating that

OS alone are not sufficient to effectively compete with nucleo-

somes at these sites early in reprogramming (Figure 7Nii). Here,

additional TFs that only become available later, such as Esrrb,

are required for their selection in concert with OS (Figure 7Nii).

Ectopic Esrrb not only influenced OSK binding at PEs, but also

bound MEs and facilitated their silencing. Equally, Fra1 acted on

both MEs and PEs when overexpressed. Thus, stage-specific

TFs, including both somatic and pluripotency TFs, influence

OSK binding, ME silencing, and PE selection, reinforcing the

idea of the combinatorial control of TF binding during reprogram-

ming. These observations and the fact that targeting of PEs in

closed chromatin require binding of multiple TFs indicate that

the pioneer factor model proposed for human somatic cell re-

programming (Soufi et al., 2012, 2015) does not act at enhancers

inmouse cell reprogramming. Additional work will be required to

understand the differences between reprogramming processes

in different species.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B Cell lines, culture conditions, and reprogramming

experiments

B Immunofluorescence

B Native ChIP-seq (N-ChIP)
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B Cross-linked ChIP-seq (X-ChIP)

B ATAC-seq library construction and sequencing

B RNA-seq

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Data Analysis and Visualization

B ChIP-seq and ATAC-seq data validation

B Correlation of our datasets with imputated datasets

B Differential gene expression analysis

B Defining combinatorial OSKM binding groups per re-

programming stage

B Determination of temporal OSKM binding groups

B Transcription factor clusters

B Ontology Annotation

B ChromHMM modeling parameters

B TF enrichment in the vicinity of differentially expressed

genes early in reprogramming (Figures S6H and S6I)

B Positional expression plots (Figures S1H and S4B)

B Calculations of fold-enrichment

B Assigning peaks to TSS (+/�2Kb) regions

B Motif analyses

d DATA AND SOFTWARE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and five tables and can be

found with this article online at http://dx.doi.org/10.1016/j.cell.2016.12.016.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rat monoclonal anti-Nanog eBioscience Cat#14-5761-80

Rabbit polyclonal anti-Nanog cosmobio Cat#REC-RCAB001P

Goat polyclonal anti-DPPA4 R&D Cat#AF3730

Goat polyclonal anti-Oct4 RnD Cat#AF1759

Goat polyclonal anti-Sox2 RnD Cat#AF2018

Goat polyclonal anti-Klf4 RnD Cat#AF3158

Goat polyclonal anti-cMyc RnD Cat#AF3158

Mouse monoclonal anti-Esrrb RnD Cat#H6705

Rabbit polyclonal anti-H3K9ac Abcam Cat#ab4441

Rabbit polyclonal anti-H3K4me3 Abcam Cat#ab8580

Rabbit polyclonal anti-H3K4me2 Abcam Cat#ab7766

Rabbit polyclonal anti-H3K4me1 Abcam Cat#ab8895

Rabbit polyclonal anti-H3K27me3 Active Motif Cat#39155

Rabbit polyclonal anti-H3K27ac Abcam Cat#ab4729

Rabbit polyclonal anti-H3K36me3 Abcam Cat#ab9050

Rabbit polyclonal anti-H3K79me2 Active Motif Cat#39143

Rabbit polyclonal anti-H3K9me3 Abcam Cat#ab8898

Mouse monoclonal anti-H3K9me3 Millipore Cat#05-1242

Rabbit polyclonal anti-H3 abcam Cat#ab1791

Mouse monoclonal anti-H3.3 Abnova Cat#H00003021-M01

Rabbit polyclonal anti-p300 SantaCruz Cat#sc-585

Rabbit polyclonal anti-Runx1 Novus Biologicals Cat#NBP1-61277

Rabbit polyclonal anti-Fra1 SantaCruz Cat#sc-183X

Rabbit polyclonal anti-Cebpa SantaCruz Cat#sc-61X

Rabbit polyclonal anti-Cebpb SantaCruz Cat#sc-150X

Rabbit polyclonal anti-Hdac1 abcam Cat#ab7028

Rabbit monoclonal anti-Brg1 abcam Cat#ab110641

Mouse monoclonal anti-Gapdh Fitzgerald Cat#10R-G109A

Chemicals, Peptides, and Recombinant Proteins

Micrococcal nuclease Roche Cat#10107921001

Formaldehyde Fisher Scientific Cat#F79-500

DSG ThermoFisher Scientific Cat#201593

Critical Commercial Assays

TruSeq ChIP Sample Prep Kit Illumina Cat#IP-202-1012

TruSeq stranded mRNA sample preparation kit Illumina Cat#RS-122-2101

Nextera DNA library preparation kit Illumina Cat#FC-121-1030

RNeasy Mini kit QIAGEN Cat#74104

QIAGEN MinElute reaction clean up kit QIAGEN Cat#28204

Deposited Data

ChIP-seq data, RNA-seq, ATAC-seq data: This study GEO: GSE90895

Experimental Models: Cell Lines

Mouse embryonic fibroblasts isolated from 129SV/

Jae mice

Laboratory of K. Plath

(Sridharan et al., 2009)

N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse embryonic fibroblasts isolated from 129SV/Jae/

C57BL6J mice carrying Col1A:tetO-OSKM/wt

Rosa26:M2rtTA/wt

Laboratory of K. Plath

(Sridharan et al., 2013)

N/A

Mouse embryonic fibroblasts isolated from 129SV/Jae/

C57BL6J mice carrying Col1A:tetO-Oct4/wt

Rosa26:M2rtTA/wt

This paper N/A

Mouse embryonic fibroblasts isolated from 129SV/Jae/

C57BL6J mice carrying Col1A:tetO-Sox2/wt

Rosa26:M2rtTA/wt

This paper N/A

Mouse embryonic fibroblasts isolated from 129SV/Jae/

C57BL6J mice carrying Col1A:tetO-Klf4/wt

Rosa26:M2rtTA/wt

This paper N/A

Pre-iPSC line 1 (12.1) Laboratory of K. Plath

(Sridharan et al., 2013)

N/A

Pre-iPSC line 2 (1A2) Laboratory of K. Plath

(Sridharan et al., 2009)

N/A

Mouse embryonic stem cell line V6.5 Laboratory of R. Jaenisch N/A

PlatE cell line; 293T based Laboratory of T. Kitamura

(Morita et al., 2000)

N/A

293T cells ATCC Cat#CRL3216

Experimental Models: Organisms/Strains

Mouse: 129SV/Jae/C57BL6J, Col1A: OSKMtetO/wt

R26: M2rtTA/wt

Laboratory of K.Plath

(Sridharan et al., 2013)

N/A

Mouse: 129SV/Jae/C57BL6J, Col1A: OtetO/wt

R26: M2rtTA/wt

This paper N/A

Mouse: 129SV/Jae/C57BL6J, Col1A: StetO/wt

R26: M2rtTA/wt

This paper N/A

Mouse: 129SV/Jae/C57BL6J, Col1A: KtetO/wt

R26: M2rtTA/wt

This paper N/A

Recombinant DNA

FUW-tetO Esrrb (Buganim et al., 2012) Addgene:#40798

pMX-RUNX1 This paper N/A

pMX-Fra1 This paper N/A

pMX-Flag-Fra1 This paper N/A

pMX-cJun This paper N/A

pMX-Flag-cJun This paper N/A

Sequence-Based Reagents

siRNA for Runx1-A Dharmacon Cat#D-048982-01

siRNA for Runx1-B Dharmacon Cat#D-048982-03

siRNA for Cebpa-A Dharmacon Cat#D-040561-03

siRNA for Cebpa-B Dharmacon Cat#D-040561-04

siRNA for Cebpb-A Dharmacon Cat#D-043110-06

siRNA for Cebpb-B Dharmacon Cat#D-043110-22

siRNA for Luciferase Dharmacon Cat#D-001210-02

Software and Algorithms

ChromHMM v1.1.0 (Ernst and Kellis, 2012) http://compbio.mit.edu/ChromHMM/

ChromImpute v1.0.0 (Ernst and Kellis, 2015) http://www.biolchem.ucla.edu/labs/ernst/

ChromImpute/

DESeq2 (Love et al., 2014) https://bioc.ism.ac.jp/packages/3.1/bioc/

html/DESeq2.html

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Please direct any requests for further information or reagents to the LeadContact, Professor Kathrin Plath (kplath@mednet.ucla.edu),

Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

TheChancellor’s Animal Research Committee at University of California Los Angeles has approved our animal breeding and research

protocols. Animals were used for isolating cultures of primary cells from mice. Mouse embryonic fibroblasts (MEFs) harboring the

M2rtTA construct in the R26 locus (heterozygously) together with a single dox-inducible polycistronic cassette coding for OSKM

in theCol1A locus (tetO-OSKM) (Ho et al., 2013; Sridharan et al., 2013) or a dox-inducible cassette encoding a single reprogramming

factor (tetO-Oct4, tetO-Sox2, or tetO–Klf4) in the Col1A locus, or wild-type MEFs were used for reprogramming experiments, ChIP-

seq, ATAC-seq, and RNA-seq assays. In addition, pre-iPSCs derived by retroviral overexpression of OSKM in MEFs and the mouse

ESC line V6.5 were used to study different stages of reprogramming. All cell lines are described in the Key Resources Table.

METHOD DETAILS

Cell lines, culture conditions, and reprogramming experiments
The following cell lines were used for the comprehensive genomics analysis of the reprogramming process at discrete stages: pri-

mary MEFs harboring a heterozygous R26-M2rtTA allele and a single dox-inducible polycistronic cassette coding for OSKM in the

Col1A locus (tetO-OSKM) (Ho et al., 2013; Sridharan et al., 2013), derived from day 13.5 embryos of timed mouse pregnancies; two

independently generatedmale pre-iPSC lines (line 12-1 (pre-i#1) and 1A2 (pre-i#2) obtained upon retroviral (pMX-based) expression of

Oct4, Sox2, Klf4, and cMyc in Nanog-GFP reporter MEFs (Sridharan et al., 2009, 2013); and themale ESC line V6.5 from the Jaenisch

laboratory. All cell types were grown in standard mouse ESC media containing KO DMEM, 15% fetal bovine serum (FBS), recombi-

nant leukemia inhibitory factor (Lif), b-mercaptoethanol, 1x penicillin/streptomycin, L-glutamine, and non-essential amino acids. Pre-

iPSCs and ESCs were grown on irradiated MEFs (feeders), but feeder-depleted and grown overnight on gelatin for genomics

experiment. For the 48h reprogramming time point, tetO-OSKM MEFs were cultured in ESC media containing 2 mg/ml doxycycline

for 48 hr to induce the expression of OSKM. For all ChIP-seq, ATAC-seq and RNA-seq experiments, cells were grown in ESC

medium.

For single reprogramming factor overexpression ChIP-seq experiments (Figures 2G, 4J, 4K, 6D, 6E, S3, and S5H), MEFs contain-

ing a dox-inducible cassette encoding a single reprogramming factor (tetO-Oct4, tetO-Sox2, or tetO–Klf4) in theCol1A locus and the

tet-transactivator M2rtTA in the R26 locus (heterozygous) were generated as described (Beard et al., 2006) by targeting V6.5 ESCs

carrying a FRT site in the Col1A locus, generating chimeric mice upon blastocyst injection, and breeding for germline transmission.

These MEFs were induced with 2ug/ml doxycycline for 48h to assess the binding events of individually expressed reprogramming

factors. Alternatively, wild-type 129SVJae MEFs were infected with a pMX retrovirus encoding an individual reprogramming factor

(either pMX-Oct4, pMX-Sox2, or pMX-Klf4) for single factor overexpression, or with a combination of reprogramming factor baring

retroviruses for double or triple reprogramming factor combinations (OK, SK, OS, or OSK). Briefly, the cDNAs of the three factors

(Oct4, Sox2 or Klf4) were cloned into the pMX retroviral vectors and individually transfected into PlatE packaging cells (Maherali

et al., 2007). Viral supernatants were harvested 48 hr post-infection and used to infect MEFs twice, for 8hrs continuously in the pres-

ence of 10 mg/ml polybrene. MEFs were harvested for genomics analyses 48 hr post infection.

The role of somatic TFs in the reprogramming process was tested via overexpression by infecting tetO-OSKM MEFs with pMX-

retroviruses encoding the Fra1, cJun, or Runx1 cDNA. N-terminally Flag-tagged versions of cJun and Fra1 were also cloned

into pMX vectors and tested for reprogramming efficiency. Viral supernatants were produced in platE cells as described above.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Metascape (Tripathi et al., 2015) http://metascape.org/gp/index.html#/

main/step1

GREAT (McLean et al., 2010) http://bejerano.stanford.edu/great/

public/html/

Bowtiev2 (Langmead and Salzberg, 2012) http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

Tophat (Trapnell et al., 2009) https://ccb.jhu.edu/software/tophat/

index.shtml

MACS2 2.1.0 (Zhang et al., 2008) https://github.com/taoliu/MACS

e3 Cell 168, 442–459.e1–e8, January 26, 2017 31



Subsequently, tetO-OSKM MEFs were infected twice for a span of 8 hr each time, followed by dox-induction of OSKM expression.

For Esrrb overexpression, a lentiviral construct encoding the tet-inducible Essrb cDNA, obtained from (Buganim et al., 2014), was

transfected alongside viral packaging vectors (pMDLg, pRSV-REV, pCMV-VSVG) into 293T cells using the CalPhos mammalian

transfection kit (Clontech 062013) as permanufacturer’s instructions. Lentiviral production was performed for 48h, and the harvested

supernatant used to infect tetO-OSKM MEFs containing M2rtTA twice. To initiate reprogramming and Esrrb expression, the cells

were cultured in ESC medium containing 2mg/ml doxycycline. The viral packaging vectors were a generous gift from Dr Zack lab-

oratory in UCLA.

For the Runx1, Cebpa and Cebpb siRNA experiments, a set of four different siRNAs was purchased from Dharmacon and initially

transfected into MEFs using lipofectamine–RNAi max (Life Technologies) according to manufacturer’s instructions to assess knock-

down efficiency. Of the four siRNAs, the two producing the most efficient knockdown were used in reprogramming experiments at a

final concentration of 20uM. For Runx1 these were D-048982-01 and D-048982-03, for Cebpa D-040561-03 and D-040561-04, and

for Cebpb D-043110-06 and D-043110-22. For control siRNA treatment, we used the non-targeting Luciferase control (D-001210-

02). siRNAs againstRunx1were transfected into tetO-OSKMMEFs two times: first 12 hr before reprogramming was started by doxy-

cycline addition, and second at the time of doxycycline addition, to induce depletion of Runx1 only early in reprogramming. siRNAs

against Cebpa/b were first transfected 12 hr before reprogramming was started by doxycycline addition and were re-transfected

every three days to maintain knockdown throughout reprogramming.

In all experiments that assessed reprogramming efficiency, reprogramming cultures were shifted to reprogramming media, which

is similar to ESC medium but contains 15% KSR instead of FBS, at day 3 of reprogramming. Reprogramming efficiency was scored

by counting Nanog-positive colonies after immunostaining cultures with an anti-Nanog antibody (eBioscience 14-5761-80), 11 days

post doxycycline induction. For the Runx1 siRNA experiment, doxycyline was withdrawn from the cultures at day 9, for the last 48 hr,

before fixation of the reprogramming cultures at day 11. For OSKM/Esrrb-induced reprogramming cultures reprogramming effi-

ciency was calculated by counting DPPA4-positive colonies after immunostaining with an antibody directed against DPPA4 (R&D

AF3730), 8 days post-OSKM/E induction with doxycycline. We have shown previously that DPPA4 is induced after Nanog expression

during the final steps of reprogramming (Pasque et al., 2014).

Immunofluorescence
Cells were grown on coverslips pretreated with 0.3% porcine gelatin (Sigma G2500) in ESC medium for 48h. After fixation with 4%

paraformaldehyde the cells werewashedwith 1xPBS-0.05%Tween, permeabilizedwith 1xPBS-0.5%Triton-X, and blockedwith 5%

donkey serum in 1xPBS-0.05%Tween. Primary antibody incubationwas carried out at 4�Covernight, secondary antibody incubation

was carried out at RT for 30min, each in blocking buffer. Between each incubation, cells were washed with 1xPBS-0.05% Tween for

three times. Cells were then mounted using a mounting medium with DAPI (Vector Labs H-1200). Antibodies used for Nanog and

DPPA4 to detect reprogrammed colonies are listed above. Antibodies for the detection of O,S,K,M or Esrrb were: anti-Oct4 (RnD;

AF1759), anti-Sox2 (RnD AF2018), anti-Klf4 (RnD; AF3158), anti-cMyc (RnD; AF3158) and anti-Esrrb (RnD; H6705).

Native ChIP-seq (N-ChIP)
Native ChIP-seq was performed for as described in (Wagschal et al., 2007) for all histone modification except H3K79me2 and

H3K9me3. Briefly, 50 3 106 Nuclei were isolated from non-crosslinked cells (MEFs, 48h, pre-i#1 and ESC) by incubation in 2 mL

of a hypotonic solution (0.3M sucrose, 60mM KCl, 15mM NaCl, 5mM MgCl2, 15mM Tris-HCl pH 7.5, 0.5mM DTT, 0.1% NP40,

and protease inhibitor cocktail) followed by centrifugation through a sucrose cushion (1.2M sucrose, 60mM KCL, 15mM NaCl,

5mM MgCl2, 0.1mM EGTA, 15 mM Tris-HCl pH 7.5, 0.5mM DTT, and protease inhibitor cocktail). Nuclei were then re-suspended

in MNAse-digestion buffer (0.32M sucrose, 50mM Tris-HCl pH 7.5, 4mM MgCl2, 1mM CaCl2, and protease inhibitor cocktail) and

digested with 3 units of MNase (Roche 10107921001) for 10 min at 37�C. The first soluble fraction (S1) was recovered by centrifu-

gation for 10 min at 10,000 rpm. The pellet containing nuclei was then dialyzed overnight in 1l of dialysis buffer (1mM Tris-HCl

pH7.5, 0.2mM EDTA, protease inhibitors) to more completely release the chromatin fraction (S2) from nuclei. 10 ug of soluble chro-

matin (S1 and S2) were then incubated with 5 ug of antibody targeting histone modifications-conjugated to magnetic beads (Active

Motif; 53014) under constant stirring at 4�C for 16 hr. The antibodies used were: anti-H3K9ac (Abcam; ab4441), anti-H3K4me3

(Abcam; ab8580), anti-H3K4me2 (Abcam ab7766), anti-H3K4me1 (Abcam; ab8895), anti-H3K27me3 (Active Motif; 39155),

antiH3K27ac (Abcam; ab4729), and anti-H3K36me3 (Abcam; ab9050). Beads were washed twice with wash buffer A (50mM Tris-

HCl pH 7.5, 10mM EDTA, 75mM NaCl), wash buffer B (50mM Tris-HCl pH 7.5, 10mM EDTA, 125mM NaCl), and wash buffer C

(50mM Tris-HCl pH 7.5, 10mM EDTA, 175 mM NaCl). DNA was extracted using phenol:chloroform:iso-amylacohol and used for

downstream library construction. DNA from fractions S1 and S2 was also isolated directly using phenol:chloroform:iso-amylacohol

extraction and used as an whole genome input control (native Input). All protocols for Illumina/Solexa sequencing library preparation,

sequencing, and quality control were performed as recommended by Illumina, with the minor modification of limiting the PCR ampli-

fication step to 10 cycles. All constructed libraries were sequenced using single-end 50 bp reactions.

Cross-linked ChIP-seq (X-ChIP)
Transcription factor and epigenetic regulator occupancy data generated in this study were acquired using ChIP after crosslinking

cells (X-Chip). X-ChIP was also employed for mapping H3K79me2 (Active Motif, 39143), H3K9me3 (abcam, ab8898 or Millipore,
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05-1242), H3 (abcam, ab1791) and H3.3 (Abnova, H00003021-M01). Briefly, cells were grown to a final concentration of 5x107 cells

for each ChIP-seq experiment. To stabilize HATs/HDACs (p300, Hdac1) and Brg1 on chromatin, cells were treated with 2 mM dis-

uccinimidyl glutarate (DSG) for 10 min prior to formaldehyde crosslinking. For all other targets, cells were chemically cross-linked at

room temperature by the addition of formaldehyde to 1% final concentration for 10 min and quenched with 0.125 M final concentra-

tion glycine. Cross-linked cells were re-suspended in sonication buffer (50mM HEPES-KOH pH 7.5, 140mM NaCl, 1mM EDTA,

1% Triton X-100, 0.1%Na-deoxycholate, 0.1%SDS) and sonicated using a Diagenode Bioruptor for three 10min rounds using puls-

ing settings (30 s ON; 1min OFF). 10 ug of sonicated chromatin was then incubated overnight at 4�Cwith 5 ug of antibody conjugated

to magnetic beads. The antibodies used were: anti-Esrrb (RnD; H6705), anti-Klf4 (RnD; AF3158), anti-cMyc (RnD; AF3696), anti-

Nanog (cosmobio REC-RCAB001P), anti-Oct4 (RnD; AF1759), anti-Sox2 (RnD AF2018), anti-p300 (SantaCruz;sc-585), anti-Runx1

(Novus Biologicals NBP1-61277), anti-Fra1 (SantaCruz;sc-183X), anti-Cebpa (SantaCruz; sc-61X), anti-Cebpb (SantaCruz;sc-

150X), anti-Hdac1(abcam; ab7028) and anti-Brg1(abcam; ab110641). Following the IP, beads were washed twice with RIPA buffer

(50mM Tris-HCl pH8, 150 mM NaCl, 2mM EDTA, 1% NP-40, 0.1% Na-deocycholate, 0.1% SDS), low salt buffer (20mM Tris pH 8.1,

150mM NaCl, 2mM EDTA, 1% Triton X-100, 0.1% SDS), high salt buffer (20mM Tris pH 8.1, 500mM NaCl, 2mM EDTA, 1% Triton

X-100, 0.1% SDS), LiCl buffer (10mM Tris pH 8.1, 250mM LiCl, 1mM EDTA, 1% Na-deoxycholate, 1% NP-40), and 1xTE. Finally,

DNA was extracted by reverse crosslinking at 60�C overnight with proteinase K (20ug/ul) and 1% SDS followed by phenol:

chloroform:iso-amylacohol purification. Libraries were constructed as indicated above and sequenced using single-end 50 bp

reactions.

ATAC-seq library construction and sequencing
ATAC-seq was done as previously described (Buenrostro et al., 2013). Briefly, 50000 cells (129SVJaeMEFs, un-induced tetO-OSKM

MEFs, 48hOSKM, pre-i#1, pre-i#2 or ESCs) were re-suspended in 50 mL lysis buffer (10 mM Tris pH 7.4, 10 mM NaCl, 3 mM MgCl2,

0.1% NP40, and 13 Complete Protease inhibitor (Roche)) and spun at 500g for 10 min at 4 �C to collect nuclei. Nuclei were washed

in 1x PBS and subsequently re-suspended in 50 ml Transposase reaction (25 ml 2 3 tagmentation buffer, 22.5 ml water, 2.5 ml Tn5

Transposase, following instructions by Illumina). Reactions were incubated for 30 min at 37 �C and DNA purified using QIAGEN

MinElute columns (QIAGEN). The transposed DNA was subsequently amplified with custom primers as described (Buenrostro

et al., 2013) for 7-9 cycles and libraries were visualized on a 2% TBE gel prior to sequencing with a single-end-sequencing length

of 50 nucleotides.

RNA-seq
RNA from independent biological replicates of each un-induced MEFs, induced MEFs at 48hrs, pre-iPSCs (pre-i#1& pre-i#2) and

ESCs, was isolated using the RNeasy Mini kit. RNA was treated on column with 0.5 kunitz units of DNase prior to elution according

to manufacturers instructions. RNA fromMEF cultures induced for 48h to express OSKM/Esrrb, OSKM/Fra1, OSKM/cJun or a single

reprogramming factor (tetO-Oct4, tetO-Sox2, or tetO–Klf4, tetO–Myc) was also isolated. In all cases, messenger RNA was captured

using oligodT Dynabeads (Life Technologies). Strand-specific RNA-seq libraries were constructed as described in (Parkhomchuk

et al., 2009).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data Analysis and Visualization
Reads from ChIP-seq experiments were mapped to the mouse genome (mm9) using Bowtie software (Langmead et al., 2009) and

only those reads that aligned to a unique position with no more than two sequence mismatches were retained for further analysis.

Multiple reads mapping to the exact same location and strand in the genome were collapsed to a single read to account for clonal

amplification effects. For ChIP-seq of TFs and ATAC-seq, peaks were called using MACS2 software (Zhang et al., 2008) using a

bandwidth parameter of 150bp. Peaks with q-val cut-off < 0.005 and fold > = 4-fold were retained. Identified peak locations can

be found in Table S1.

Reads from RNA-seq experiments were mapped to the mouse genome (mm9) using TopHat software (Trapnell et al., 2009) and

only those reads that aligned with nomore than two sequencemismatches were retained. Replicates weremerged andRPKM values

ofmm9RefSeq geneswere calculated as described (Mortazavi et al., 2008) (Table S2). Prior to log2 transformation of RPKMvalues, a

pseudo-count of 1 was added to all RPKM values (log2(RPKM+1).

Genome signal tracks of features (TFs, histone marks, ATAC-seq and RNA-seq) were calculated by partitioning the genome into

non-overlapping bins of fixed size (100b for TFs, ATAC-seq and RNA-seq, and 25bp for the histonemarks). RPKM values were calcu-

lated for each bin using the number of sequencing reads that overlap with the corresponding bin. For histone marks, each read was

extended by 200 bp in the direction of the alignment. Tracks were visualized in the IGV genome browser (Thorvaldsdóttir et al., 2013).

To produce the heatmaps, in Figures 2C, 2G, S2D, S2E, S3A, S3D, S3F, 4A, 4E, 6A, 6D–6F, S6C, and 7C, we aligned the given

feature (such as peaks of a TF) at their summit and tiled the flanking up- and downstream regions within ± 2kb in 100bp bins. For

each location, we calculated RPKM values over all 100bp bins by using the number of sequencing reads that overlap each bin after

extension by 200bp in the direction of the alignment. To control for input, we computed at each bin a log2 input-normalized RPKM

value as log2(RPKMFOREGROUND) - log2(RPKMInput), where RPKMFOREGROUND denotes the RPKM of the corresponding TF or histone

e5 Cell 168, 442–459.e1–e8, January 26, 2017 33



dataset and RPKMInput denotes the RPKM value of the corresponding whole genome ‘Input’. For visualization in figures, each 100 bp

bin was displayed with JavaTreeview (Eisen et al., 1998). All metaplots were produced by computing the average input-normalized

RPKM value for each 100bp bin across all locations in the given set.

The scatterplots in Figures 5G, S6D, and S6E were produced by first computing log2(RPKM+1) values over 200bp windows

centered at each binding site for the TF signal in MEFs and 48h. To control for the input, we computed log2(RPKM+1) for the input

signal in MEFs at each 200bp window and subtracted it from the values in MEFs and 48h to obtain an input-normalized log2 RPKM

value for each cell type: log2(RPKMTF in X+1) - log2(RPKMMEF_Input+1), where RPKMTF in X is the RPKM value in MEF or 48h.

Figures S7D and S7I were generated with ngs.plot (Shen et al., 2014).

ChIP-seq and ATAC-seq data validation
Several external (published) datasets were used to validate our ChIP-seq data (Table S3). Moreover, the majority of ChIP-seq data-

sets in this study were generated in biological replicates (Table S3), and the correlation of replicate datasets demonstrated a high

reproducibility of our data. Furthermore, to ensure that un-induced (starting) tetO-OSKM MEFs were not already representing a

‘leaky’ expression state for the reprogramming factors (already partially reprogrammed), we also profiledwild-typeMEFs not carrying

any reprogramming factor transgene for ATAC-seq. These ATAC-seq datasets correlated most closely with those of the un-induced

tetO-OSKM MEFs.

Correlation of our datasets with imputated datasets
We created an imputed version of the H3, H3.3, H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K79me2,

H3K9ac, H3K9me3, p300, ATAC-seq and INPUT (Native Input) data for MEFs, 48h, pre-i#1, and ESCs, using ChromImpute v1.0.0

(Ernst and Kellis, 2015). In creating the imputed version of a dataset, we used all other datasets but the dataset being imputed.

The imputed version of each dataset can be viewed as a pseudo-replicate for each dataset and can be used to assess reproducibility.

The data put into ChromImpute were the RPKM normalized signals at 25bp resolution after removing reads that map to blacklisted

regions in the mouse genome (https://sites.google.com/site/anshulkundaje/projects/blacklists; ENCODE Project Consortium, 2012)

and excluding chrM. The signal files for all histone marks, H3, H3.3, and INPUT were generated by extending reads by 200bp in the

direction of the alignment. The signal for p300 and ATAC-seq was generated without extension of the reads. ChromImpute was run

with default options except the flag ‘-b 20 -tieglobal’ was added to the GenerateTrainData command, the flag ‘-b 20’ to the Train

command, and the flag ‘-b 20 -tieglobal’ to the Apply command. The imputed data were converted to a 1000bp resolution by aver-

aging the signal for each 25bp within it. Signal tracks for the observed data were produced at 1000bp resolution in the same way as

the signal at 25bp used as input for ChromImpute. Pairwise Pearson correlations were then computed based on the 1000-bp reso-

lution data (Table S3). For each observed dataset, we also reported the maximum correlation with any of the other three observed

datasets (for the other reprogramming stages) for the mark based on the 1000-bp resolution data (Table S3).

Differential gene expression analysis
HTSeq (Anders et al., 2015) was used to determine gene counts from replicate experiments, and DESeq2 (Anders and Huber, 2010)

for differential analysis. Our quadruplicate datasets were used to identify differential genes betweenMEFs andOSKM-inducedMEFs

at 48h (48h), using an adjusted p value < 0.05. DESeq2 was also used to identify differential genes from the following comparisons 1)

OSKM-induced MEFs at 48h against and OSKM/Esrrb-induced MEFs at 48h; 2) OSKM-induced MEFs at 48h against and OSKM/

Fra1-induced MEFs at 48h; and 3) OSKM-induced MEFs at 48h against and OSKM/cJun-induced MEFs at 48h. In addition, genes

were called MEF- or ESC- specific using the following criteria: 1) DESeq2 differential calls with an adjusted p value < 0.05 between

ESCs and MEFs; 2) Fold-change of > = 5x between transcript levels in MEFs and ESCs; 3) low RPKM value of in the non-expressing

type (typically < 1 RPKM).

Defining combinatorial OSKM binding groups per reprogramming stage
We generated sets of sites co-bound by the reprogramming factors at a given reprogramming stage by extending TF summits pro-

duced by MACS2 by 100 bp in each direction and intersecting the extended summits between Oct4, Sox2, Klf4, and cMyc per re-

programming stage (Figure 2F). In this case, we first defined sites bound by all four TFs by intersecting the extended summits of all

four factors in any possible order and merging overlapping intersections. Analogously, we defined triply bound sites, and, subse-

quently, removed those regions that overlapped with the quadruply bound sites from them. Next, we defined doubly bound sites

by intersecting the extended summits of every pair of TFs and removing regions that overlapped triply and quadruply bound sites.

Finally, we defined solo bound sites as all sites that were not doubly, triply, or quadruply bound. To calculate the enrichment scores of

the co-bound groups in Figure 2Fii, we used the middle point between the start and the end coordinates of quadruply, triply, and

doubly bound sites. For solo sites, the coordinates of the original summits were used.

Determination of temporal OSKM binding groups
Seven co-binding groups (Figure 2D: ‘100’, ‘010’, ‘001’, ‘110’, ‘011’, ‘101’, ‘111’) were generated in a similar manner as the combi-

natorial OSKM binding groups described above, by intersecting the extended TF summits (100bp) of a given TF among the three

reprogramming stages: 48h, pre-i#1, and ESCs.
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Transcription factor clusters
K-means clustering was employed to identify coherent groups of TF binding in Figures S2J, 5C, and 5I. To define these TF clusters,

the genome was tiled into 500bp windows and the presence of TF peaks in each bin was determined. This procedure resulted in a

vector of binary data for each TF reflecting its absence or presence within 500bp windows across the genome. The windows repre-

sented by these vectors were then clustered using R’s k-means function applying the Hartigan-Wong method to obtain groups of

windows exhibiting common combinatorial binding patterns across the genome. The number of clusters was chosen to reduce

the number of potential combinatorial TF groups, while ensuring that each cluster was represented by a significant number of

windows.

Ontology Annotation
To associate transcription factor peaks with the closest gene for Ontology analysis (Figures S2G, S4C, and S4E; Table S4) we used

the GREAT tool (McLean et al., 2010) with default parameters. Differentially regulated genes defined by DESeq2 (Figures 5J, S6F,

S6G, and S7L) were assigned to relevant GO ontology groups using the Metascape software (Tripathi et al., 2015).

ChromHMM modeling parameters
To derive chromatin state segmentations for each reprogramming stage (Figure 1C), we used ChromHMM (version V1.1.0) (Ernst and

Kellis, 2012) with default parameters. First, we binarized the mapped reads for all chromatin marks and the native ‘Input’ indicated in

Figure 1C with the ChromHMM’s BinarizeBed procedure, using a p value cutoff of 1e-4. To reduce effects of artifacts, we removed

redundancy in the input data by keeping only one sequencing read in cases where multiple reads mapped to the same genomic po-

sition and strand orientation. We examined models with different numbers of states ranging from 2 to 30 and chose a model with 18

chromatin states that is both interpretable and able to capture the combinatorial complexity of chromatin marks in each reprogram-

ming stage.

In addition to the 18 chromatin state model shown in Figure 1C, which captures chromatin states per reprogramming stage, we

used ChromHMM in the ‘‘stacked’’ mode to capture the chromatin changes between MEFs, 48h, pre-iPSCs (pre-i#1), and the plurip-

otent state, which yielded the 35 chromatin trajectories defined in Figure 3A. In particular, we constructed a single virtual cell type that

has all datasets fromMEFs, 48h, pre-i#1, and ESCs as individual marks by setting the label of each original dataset in the input file for

ChromHMM to contain both the source cell type and the histone mark name. Then, we used ChromHMM to discover and annotate

the genome for chromatin states in the virtual cell type. The rest of the preprocessing and ChromHMM parameters were the same as

for the 18 statemodel described above. We consideredmodels with different numbers of states ranging from 25 to 100 and chose 35

states, because it was themodel with theminimum number of states that captured unique biological events. We termed the resulting

35 chromatin states (Figure 3A) ‘‘chromatin trajectories’’ to distinguish them from the chromatin states specific to each reprogram-

ming stage (Figure 1C).

TF enrichment in the vicinity of differentially expressed genes early in reprogramming (Figures S6H and S6I)
OSKM binding combinations and groups of MEF-only, 48h-only, and shared somatic TF binding events were intersected with the

genomic intervals encompassing TSS+/� 20kb regions of differentially expressed genes at 48h. To compute the fraction of bound

upregulated genes for each type of TF set, we counted the number of upregulated genes between MEFs and 48h that have at least

one such binding event within 20kb of their TSS and divided this number by the total number of upregulated genes between MEFs

and 48h. Analogously, we computed the fraction of bound downregulated genes betweenMEF and 48h for each TF combination. We

then divided the two fractions and plotted the ratio on log2 scale. The statistical significance of each log2 ratio was assessed by a chi-

square test that compares the number of TF bound genes between the two groups given the total number of genes in each group.

Positional expression plots (Figures S1H and S4B)
For each chromatin state, we calculated average gene expression levels in MEFs, 48h, pre-i#1, and ESCs, conditioned on the state’s

distance from annotated transcription start sites. We restricted this analysis to 50kb up- or downstream of transcriptional start sites

(TSS). We partitioned this region into non-overlapping bins of 200 bp. For each bin, we computed the average log2 (RPKM+1) value of

genes that have a particular chromatin state at this distance relative to their TSS.

Calculations of fold-enrichment
Using the ChromHMM OverlapEnrichment function (Ernst and Kellis, 2012), we calculated enrichment scores for genomic features

(TF binding events, conserved elements, repeats, exon, gene-bodies, TSS, TES, ESC super enhancers, etc) in the chromatin state of

each corresponding reprogramming stage (18-state chromatin model) and for the 35 chromatin trajectories capturing the chromatin

changes during reprogramming, respectively. The enrichment scores were calculated as the ratio between the observed and the ex-

pected overlap for each feature and chromatin state based on their sizes and the size of the mouse genome:

FXS

F � S=G
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where F is the number of base pairs annotated for the feature F,S is the size of chromatin state S andG is the total length of themouse

genome.

To calculate log2 differential enrichments in Figure 2Fii, we used the following formula:

log2

Enrichment in cell type A

Enrichment in cell type B

where each enrichment is calculated based on a binomial background model that treats the corresponding TFs as independent in

each cell type (48h and ESCs).

Coordinates for TSS, TES, CpG islands, Exon and Gene Body features used were part of the mm9 annotation included in the

ChromHMM software (Ernst and Kellis, 2012). For the calculation of enrichments of conserved genomic regions in Figures 1D and

S1G, we downloaded the 30-way Euarch phastCons elements from the UCSC genome browser for the mm9 genome that represent

30 vertebrate species (euarchontoglires) including human and mouse (Siepel et al., 2005).

In Figures 2E andS2I, we applied complete linkage hierarchical clusteringwith optimal leaf ordering to cluster the enrichments of all

pairs of TFs (Bar-Joseph et al., 2001). The pairwise enrichments at base-pair resolution were calculated as the observed overlap

divided by the expected overlap based on the binomial background model that treats both transcription factors as independent:

EnrichmentðTFA;TFBÞ=min

�
100+TFAXTFB

100+TFA � TFB=G
;500

�

where the numerator is the size of the overlap between peaks of TFA and TFB and the denominator is the product between the total

number of bp occupied by peaks of TFA and TFB divided by the size of the genome (G). A pseudo-count of 100 was added to both the

numerator and the denominator to avoid instabilities due to division of small numbers and the maximum enrichment was set to 500.

In Figure 3Bii, the fold-enrichment of the 35 chromatin trajectories in the vicinity of MEF- and ESC-specific genes was calculated

with the following formula:

% Cell type A specific genes with trajectory i within TSS± 20kb

% Cell type A active genes with trajectory i within TSS± 20kb

where the numerator is the percentage of genes (MEF- or ESC- specific; as described above and Table S2) carrying each trajectory i

within 20kb from their TSS. As control, we divided by the percentage of all active genes in the same cell type (> 1 RPKM) carrying that

trajectory.

Assigning peaks to TSS (+/�2Kb) regions
We computed the proportion of transcription factor binding summits of Oct4, Sox2, Klf4, and cMyc that are located within 2 kb of

annotated transcription start sites (mm9 RefSeq TSS) and the rest (distal). p values in Figures 2A and S2A were calculated based

on an exact two-sided Binomial test of the null hypothesis that the probability of TSS in one of the samples is given by the frequency

in the other sample.

Motif analyses
We calculated motif densities at 10 bp resolution within 500 bp around ChIP-seq summits by using the annotatePeaks procedure

from HOMER (Heinz et al., 2010) with the following command line arguments: annotatePeaks.pl mm9 -size -500,500 -hist 10

We used the positional weight matrices for the corresponding transcription factor binding motifs provided by HOMER with their

default thresholds.

When we scanned regions that were bound by multiple transcription factors, we centered each region at the summit of the cor-

responding TF. For example, regions co-bound by OSKM were centered at the corresponding Oct4 summits when we scanned

them for the Oct4 motif, then centered at the Sox2 summits for the Sox2 motif, then centered at the Klf4 summits for Klf4 motif,

and, finally, centered at the cMyc summits for the cMyc motif.

We subsequently smoothed the motif densities by applying a box kernel of length 5 bins centered at each bin. To calculate con-

fidence intervals at the summit bin, we generated 1000 bootstrap samples within each group and calculated the 95%percentile boot-

strap confidence intervals (Efron and Tibshirani, 1991).

For de novo motif discovery we used the findMotifsGenome.pl procedure from Homer using the following arguments.

findMotifsGenome.pl mm9 -size 200 -mask -cache 1000

DATA AND SOFTWARE AVAILABILITY

The accession number for the genomics data reported in this paper is GEO: GSE90895.

Peak locations derived from ChIP-seq and ATAC-seq experiments are given in Table S1, and normalized expression measure-

ments based on RNA-seq are given in Table S2.
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Figure S1. Validation of Genomics Data and Characterization of Stage-Specific Chromatin States, Related to Figure 1

(A) Immunostaining for Oct4, Sox2, Klf4, and cMyc (green) in MEFs and at 48h of dox addition to MEFs carrying the polycistronic OSKM cassette, demonstrating

endogenous expression of cMyc and Klf4 in MEFs and homogeneous induction of each of the four reprogramming factors across all cells upon dox treatment

for 48h.

(B) western blot for Oct4, Sox2, Klf4 and cMyc in MEFs, at 48h, pre-i#1, and ESCs. Whole cell extracts of equal cell numbers were used and Gapdh protein levels

served as a loading control.

(C) Transcript levels of the reprogramming factors in the four reprogramming stages (MEFs, 48h of dox-induction, pre-iPSCs and ESCs) based on RNA-seq data.

Transcripts of Oct4 and Sox2, unlike those of cMyc and Klf4, are not present in MEFs prior to induction of transgenic expression.

(D) Unsupervised hierarchical clustering of the top 10000 genes with most variant gene expression across MEFs, 48h, pre-i#1, pre-i#2, and ESCs. Scale is in

log2RPKM. This heatmap demonstrates that the independently generated pre-iPSC lines pre-i#1 and pre-i#2 clustered together and that both lines aremore similar

to ESCs than to the early reprogramming states.

(E) Hierarchical clustering with optimal leaf ordering of the pairwise enrichment of ATAC-seq peaks in MEFs, 48h, pre-i#1, pre-i#2, and ESCs, at base pair res-

olution. The pre-iPSCs lines were more similar to each other followed by ESCs, while MEFs and 48h formed a separate node.

(F) Motif analysis of binding sites of OSKM, somatic TFs, and pluripotency TFs in MEFs, at 48h, in pre-i#1, and ESCs, as indicated. At 48h and in pre-iPSCs Oct4,

Sox2, Klf4 and cMyc were ectopically expressed. Esrrb was ectopically expressed at 48h in OSKM-induced MEFs. N/A indicates that ChIP-seq data were not

generated for the given TF at the indicated reprogramming stage. The Homer tool was used to scan for motif presence under the peaks of the corresponding TF.

We scanned these peaks for all knownmotifs present in the Homer database and reported the top-scoring motif (canonical motif), which in all cases identified the

respective known canonical motif. The samemotifs were identified as the top represented by de novomotif analysis, with the exception of Oct4 and Sox2 in ESCs

and Sox2 in pre-iPSCs, where the composite Oct4:Sox2 motif was most over-represented. For Cebpa and Cebpb similar motifs were identified.

(G) Genomic enrichments of chromatin states defined in Figure 1C at 48h of reprogramming and in pre-i#1. Columns represent percentage (%) of genome

occupancy, median length of each state in kilo bases (kb), and fold-enrichments for CpG islands, exons, gene bodies, transcription end sites (TES), transcription

start sites (TSS), promoters (defined as TSS ± 2kb), conserved elements (phastCons), ATAC-seq peaks, and endogenous retrovirus K elements (ERVK), colored

within each column from highest (darkest) to lowest (white).

(H) Relationship between chromatin states and expression level of nearby genes. The average expression level of genes was plotted as a function of the position

of the chromatin state relative to RefSeq-TSS up to 50 kb in both directions. Each larger row corresponds to a chromatin state (1-18) defined in Figure 1C. Within

each larger row, smaller rows corresponding to each of our four reprogramming stages (MEFs, 48h, pre-i#1, and ESCs). Each small row shows for the presence of

the given chromatin state at each position relative to the TSS, the average expression level of those corresponding genes at the given reprogramming stage. Red

indicates higher expression, yellow intermediate expression, and blue low or no expression based on log2(RPKM+1) values fromRNA-seq data. For instance, one

can observe that the active promoter state (state 1) is present at the TSS of highly expressed genes, whereas the presence of the inactive/poised promoter state

(state 2) around the TSS corresponds to a low or no expression. Also the strong enhancer state (state 3) is proximal to genes with higher expression than the

weaker enhancer states (states 4-7).

(I) Validation of reprogramming stage-specific chromatin state annotations defined in Figure 1C by visualization of expected chromatin changes in re-

programming. A comparison of the chromatin states for each of the four reprogramming stages for genes known to be repressed during reprogramming (Col3a1

and Col5a2), induced (Dppa4/Dppa2 andmir290 clusters), and constitutively expressed (Hprt and Phf6). The color code of chromatin states is given in Figure 1C.

Notably, the Dppa2/Dppa4 cluster is embedded in low signal chromatin states until the pluripotent state. Conversely, the genomic regions upstream the ESC-

specific miR290 cluster gains enhancer marks (orange/yellow) as early as 48h post OSKM induction and forms a large enhancer domain in pre-iPSCs and ESCs.
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Figure S2. Additional Characterization of OSKM Binding Sites at Each Reprogramming Stage and OSKM Redistribution during Re-

programming, Related to Figure 2

(A) Percentage of O, S, K, and M binding events in promoter-proximal (TSS ± 2Kb) and distal genomic locations for pre-i#2. This figure accompanies Figure 2A.

(B) Percentage of O, S, K, andMbinding events in each of the 18 chromatin states from Figure 1C, per reprogramming stage. Specifically, peaks of O, S, K, andM,

respectively, in MEFs were analyzed with respect to the chromatin state in MEFs, 48h peaks to the chromatin state at 48h, pre-i#1 peaks against the chromatin

state in these cells, and ESC targets to ESC chromatin state. This figure accompanies Figure 2B that shows the fold-enrichment for the same data.

(C) Fold-enrichment of OSKMco-binding groups defined in Figure 2Fi per chromatin state as defined in Figure 1C, for each reprogramming stage. Specifically, co-

binding events of O, S,M, and K, respectively, at 48hwere analyzedwith respect to the chromatin state at 48h, those in pre-i#1 to the chromatin state in pre-i#1, etc.

(D) Heatmap of normalized tag densities (log2RPKM) for O, S, K, andM binding events and the corresponding ATAC-seq and histone H3 signals at the same sites

for MEFs and the two pre-iPSC lines pre-i#1 and pre-i#2. For each bound site, the signal is displayed within a 2 kb window centered on the peak summit for the

respective reprogramming factor and peaks were ranked based on ATAC-seq signal strength.

(E) Heatmap of normalized tag densities for O binding events (log2RPKM) for 48h, pre-i#1, and ESCs, for Oct4 binding groups shown in Figure 2D, depicting the

actual signal at regions surrounding 2kb in either direction of the peak calls. In addition, the figure displays the normalized tag densities for O binding events for the

same genomic locations in the independently derived pre-iPSC line pre-i#2.

(F) Venn diagram depicting the overlap of O, S, K, andMbinding events, respectively, between the pre-i#1 and pre-i#2 lines. The total number of binding events and

the number of overlapping sites and their percentage (against the pre-i#1 events) are given.

(G) Ontology of genes associated with ‘111’, ‘001’, and ‘100’ Oct4 sites defined in Figure 2D.

(H) Densities of the Oct4 and Oct4:Sox2 composite motifs at 48h-specific (‘100’), constitutive (‘111’), and ESC-specific (‘001’) binding events of Oct4, of the Sox2

motif within Sox2 peaks, the cMycmotif in cMyc peaks, and the Klf4motif in Klf4 peaks. 95%confidence intervals at peak summits are indicated by the error bars.

(I) Hierarchical clustering with optimal leaf ordering of the pairwise enrichment of O, S, K, and M binding events in the four reprogramming stages and pre-i#2, at

base pair resolution. Black boxes emphasize clusters of TFs. O and S bind similar targets in pre-i#1, pre-i#2 and ESC, and Klf4 binding events are more distinct at

these stages, clustering away fromOS and closer to Myc. At 48h, binding events of O, S, and K cluster together. Myc peaks are more similar to each other than to

those of the other reprogramming factors.

(J) K-means clustering of O, S, K, andMpeaks acrossMEFs, 48h, pre-i#1, pre-i#2, and ESCs. ExtensiveOSK andOK co-binding was observed at 48h, whereasOS

co-binding was more prevalent in ESCs. Notably, a subset of sites co-bound by OSK at 48h remained bound throughout reprogramming (second cluster from

left). This clustering approach of binding events supports the conclusions made in Figures 2E and 2F.
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Figure S3. Additional Characterization of Binding Sites of Individually and Co-expressed Reprogramming Factors at 48 hr, Related to

Figure 2

(A) Klf4 has relocated to new sites that are co-bound byOct4 and Sox2 at 48h of reprogramming. (i) A comparison of Klf4 peaks inMEFs (endogenously expressed

Klf4) and at 48h of reprogramming revealed sites bound at both stages (shared), sites that were bound in MEFs but not at 48h (lost sites), and sites that were

targeted at 48h but not in MEFs (de novo sites). The heatmap shows normalized Klf4 ChIP-seq signal (log2RPKM) at these sites. Each row shows the ± 2kb region

around each Klf4 summit. The number of sites in each category is given. The normalized signal for Oct4, Sox2 and cMyc binding at 48h and in MEFs were added

for the same genomic sites. (ii) The metaplots present the average normalized signal of Klf4 in MEFs and at 48h for the three binding groups defined in (i)

demonstrating that shared sites have higher Klf4 signal strength than ‘lost’ and ‘de novo’ sites. Density plots of the Oct4, Sox2, cMyc, and Klf4 motifs for the three

groups of Klf4 binding events defined in (i) are given in (iii). Oct4, Sox2, and Klf4 motifs can be found at de novo Klf4 sites, while only the Klf4 motif is present at lost

and shared sites.

(B) Transcript levels (log2(RPKM+1)) of the reprogramming factors in MEFs, at 48h of reprogramming with OSKM, and at 48h in MEFs overexpressing individual

reprogramming factors from a dox-inducible cassette, based on RNA-seq data. Individually expressed reprogramming factors are 50x (Oct4), 2.5x (Sox2) and

8.8x (Klf4) upregulated compared to the corresponding factor at 48h of OSKM-induced reprogramming.

(C) western blot for Oct4 on startingMEFs andMEFs expressing the indicated individual reprogramming factor or combinations thereof either retrovirally (pMX) or

inducibly (tetO) for 48h, pre-i#1, and ESCs. Whole cell extracts of equal cell numbers were used.

(D) Heatmap of normalized tag density for ATAC-seq data (log2RPKM) at sites bound by the indicated reprogramming factor at 48h of individual overexpression in

MEFs (OpMX, SpMX, or KpMX). The MEF ATAC-seq signal at the same sites is also shown in each heatmap and the number of sites per reprogramming factor is

given. Metaplots of the averaged normalized signal intensities of the ATAC-seq data are presented at the bottom.

(E) Density plots of Oct4, Sox2, Klf4, and cMyc motifs in Sox2 and Oct4 binding groups defined in Figure 2G (shared, OSKM-only, pMX-only). These data show

that motif presence discriminates OSKM-only from shared and pMX-only sites.

(F) Heatmaps of normalized log2RPKM signals for all Oct4, Sox2, and Klf4 binding events, respectively, at 48h of reprogramming with MEFs carrying all four

reprogramming factors (OSKM). In addition, the figure displays the normalized tag densities for the binding events of the same reprogramming factor when only

OSK were expressed together retrovirally for 48h in MEFs (OSKpMX), without cMyc, for the same genomic locations. The number of peaks per reprogramming

factor is given. These heatmaps demonstrate that the sites targeted by O, S, and K early in reprogramming in the context of OSKM co-expression are also largely

targeted when only OSK are co-expressed in MEFs (without ectopic cMyc).

(G) Fold-enrichment for O, S, and K binding groups, defined in Figure 2G against the 35 chromatin trajectories described in Figure 3A, colored within each column

from high (blue) to low (white) (left table). Percentage of binding events in each of the 35 chromatin trajectories is also given (right table; each column totals 100%)

with each column colored from high (blue) to low (white).
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Figure S4. Additional Characterization of the 35 Chromatin Trajectories Describing the Major Chromatin Changes that Occur during Re-

programming, Related to Figure 3

(A) Fold-enrichment of various genomic features for each of the 35 chromatin trajectories defined in Figure 3A. Columns represent fold-enrichment for CpG

islands, exons, gene bodies, transcription end sites (TES), transcription start sites (TSS), promoters (defined as TSS ± 2kb), conserved elements (phastCons),

satellite repeats as defined byRepeatMasker (RepeatMasker Open-4.0) and endogenous retrovirus 1 elements (ERV1). Enrichment scores were calculated as the

ratio between the observed overlap and the expected overlap based on the state size, and colored within each column from high (blue) to low (white).

(B) Relationship between the 35 chromatin trajectories and the expression level of associated genes. The average expression level of genes is plotted as a

function of the position of the chromatin state relative to RefSeq-TSS up to 50 kb in both directions. Each larger row corresponds to one of the 35 chromatin

trajectories. Within each larger row are smaller rows corresponding to each of our four reprogramming stages (MEFs, 48h, pre-i#1, and ESCs). Each small row

shows for the presence of the given chromatin trajectory at each position relative to the TSS, the average expression level of those corresponding genes at the

given reprogramming stage. Red indicates higher expression, yellow intermediate expression, and blue low or no expression based on log2(RPKM+1) values from

RNA-seq data. For instance one can observe that the pluripotency enhancer trajectory 13 is associated with a gradual increase in expression of associated genes

from 48h to ESCs, while enhancer trajectory 17 is associated more clearly with ESC-specific gene expression. Conversely, the MEF enhancer states (trajectories

5 to 10) display higher expression in MEFs and at 48h than in pre-iPSCs and ESCs.

(C) Gene ontology analysis for enriched biological processes for the indicated chromatin trajectories based on the 35 chromatin states defined in Figure 3A.

(D) Percentage of stage-specific and constitutive O, S, K, and M binding events as defined in Figure 2D (‘100’, ‘001’, ‘111’ sites etc) for each of the 35 chromatin

trajectories defined in Figure 3A. The total number of binding sites observed for each of the seven binding groups of O, S, K, and M, respectively, is given at the

bottom of each column. Color scale within each column ranges from the highest (blue) to lowest (white).

(E) Gene ontology analysis for ‘111’ Oct4 sites in trajectory 13.
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Figure S5. Additional Characterization of Changes Occurring at MEs during Reprogramming, Related to Figure 4

(A) Metaplots of averaged normalized signal intensities of ATAC-seq data and ChIP-seq data for H3K4me1 and H3K4me2 at trajectory 5 MEs bound by O, S, or K

(solid lines) and those not bound by any of the three reprogramming factors (dotted lines) inMEFs (green), 48h (blue), pre-i#1 (brown), and ESCs (red). The plots are

centered on the summits of ATAC-seq peaks in MEFs.

(B) As in (A), except for trajectory 6 MEs and additional metaplots for H3K27ac.

(C) As in (B), except for trajectory 9 MEs.

(D) As in (B), except for trajectory 11 elements (transient enhancers).

(E) As in (B), except for trajectory 4 (promoters).

(F) Normalized transcript levels of p300 and Hdac1 for the reprogramming stages indicated, based on RNA-seq data.

(G) Schematic of the reprogramming experiment testing the role of Cebpa/b in reprogramming. OSKM-inducible MEFs were transfected with siRNAs targeting

Cebpa or Cebpb or with siCtrl every 3 days during the course of reprogramming. Cebpa/b transcript levels were determined 48h post dox-addition (error bars

indicate standard deviation of duplicate qPCR measurements) and Nanog-positive colonies counted at day 11 post OSKM induction for two replicates. Each

replicate was generated using different siRNA reagents (siRNA 1 and 2).

(H) Metaplots of averaged normalized tag densities (RPKM) of the enhancer mark H3K27ac at trajectory 5MEs engaged by O, S, or K (left) and those not engaged

by either O, S, or K (right) at 48h post OSKM induction (blue). For the same two sets of trajectory 5 MEs, H3K27ac levels in starting MEFs (green) and in MEFs

individually expressing Oct4 (top panels) or Klf4 (bottom panels) for 48h (black) were plotted.
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Figure S6. Additional Characterization of the Role of Somatic TFs in Reprogramming, Related to Figure 5

(A) Venn diagrams representing the overlap of Runx1 binding sites in MEFs and at 48h of reprogramming. The number of MEF-only, 48h-only and shared sites is

given as well as the fractions of each set also bound by O, S, or K (in brackets).

(B) As in (A), for binding sites of Fra1.

(C) Heatmaps of normalized tag densities (log2RPKM) of the Cebpb ChIP-seq signal at the 12927 Cebpb binding sites obtained in pre-i#1. In addition, the data for

O, S, and K occupancy in pre-i#1 and the independent pre-iPSC line pre-i#2 are shown for the same sites, indicating extensive co-binding of O, S, and K with

Cebpb in pre-iPSC lines.

(D) Scatterplot of input normalized ChIP-seq signal (log2(RPKM+1) of Runx1 for MEF-only (green), 48h-only (blue), and shared (red) Runx1 binding events defined

in (A).

(E) As in (D), except for Fra1 at sites defined in (B).

(F) Expression changes early in reprogramming. 609 genes (adjusted p value < 0.05) were differentially regulated within the first 48h of OSKM induction based on

RNA-seq, with 372 genes induced and 237 genes downregulated (Table S2). Transcription levels of these up- and downregulated genes in MEFs and at 48h of

reprogramming are represented as boxplots.

(G) Gene ontology groups associated with up and downregulated genes defined in (F).

(H) Differential enrichment of OSKM co-binding events in genes up- and downregulated early in reprogramming as defined in (F). We computed the log2 ratio

between the fraction of bound downregulated genes out of all downregulated genes and the fraction of bound upregulated genes out of all upregulated genes for

different combinations of OSKM binding. Bound genes were defined as genes that have at least one binding site of the corresponding combination within 20kb of

their TSS. Blue and red coloring represent higher fractions in down- and upregulated genes, respectively. Only the enrichment of the OSK co-binding event was

significant (*; p < 0.01 Chi-square test) indicating that sites co-occupied by O, S, and K are enriched in upregulated genes.

(I) As in (H), but showing the differential enrichment ofMEF-only, 48h-only, and shared binding events of Cebpa, Cebpb, Fra1, and Runx1 as defined in Figures 5A,

S6A, and S6B in genes up- and downregulated early in reprogramming. These data demonstrate that upregulated genes carry more 48h-only somatic TF binding

events compared to downregulated genes whereas higher fractions of downregulated genes are occupied by MEF-only somatic TF binding relative to upre-

gulated genes. * denotes significance (p < 0.01 Chi-square test).

(J) Transcript levels of the somatic TFs Fra1, Cebpa, Cepbb, and Runx1 in MEFs, 48h, pre-i#1, pre-i#2, and ESCs, based on RNA-seq data.

(K) Fra1 transcript level in MEFs, iPSCs, and days 3, 6, 9 and 12 sorted SSEA1+ reprogramming populations, which are considered to be enriched for cells with

higher reprogramming potential, as defined in (Polo et al., 2012).

(L) Genome browser view of the Fra1 locus. RNA-seq reads and Fra1 ChIP-seq data (both in RPKM) in MEFs (green), at 48h of OSKM-induced reprogramming

(48h; blue) and at 48h of reprogramming with OSKM in the presence of Fra1 overexpression (black, 48hF) are shown. O and K binding in the locus for 48h and 48hF

reprogramming samples are also depicted. Shaded areas represent regions within the Fra1 locus that lose Fra1 binding within the first 48h of reprogramming but

have re-gained Fra-1 upon Fra1 overexpression in the context of OSKM/Fra1 (48hF). The asterisk (*) denotes an intronic enhancer that is known to auto-regulate

Fra1 expression (Verde et al., 2007).

(M) Fold-increase of Fra1, cJun, and Runx1 transcript levels determined by RT-PCR at 48h of reprogramming with OSKM in combination with Fra1, cJun, or

Runx1 overexpression, respectively, relative to 48h of reprogramming with OSKM only.
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Figure S7. Additional Characterization of Reprogramming Factor Binding at PEs and the Esrrb Overexpression Effect, Related to Figures 6

and 7

(A) Metaplots of averaged normalized signal intensities (RPKM) of H3K27Ac, H3K4me1, and H3K4me2 at ‘111’ Oct4 binding events within trajectory 13 PEs for

MEFs (green), 48h (blue), pre-i#1 (brown), and ESCs (red).

(B) De novo scanning for motif identification in ‘001’ and ‘111’ Oct4 binding events in PEs of trajectories 13 and 17. The top enriched motifs per indicated set of

peaks, the log10(P value) for each motif and the best matching TF are given.

(C) (top) Percentage of ‘111’ Oct4 binding sites in trajectory 13 PEs that are also bound by Klf4 at 48h (left) or in ESCs (right), demonstrating prominent co-binding

of Klf4 with Oct4 at these sites particularly early in reprogramming. (bottom) Percentage of ‘001’ Oct4 sites in PEs of trajectories 13 or 17 also bound by Klf4

in ESCs.

(D) Metaplot of normalized signal intensities of H3K27ac, H3K4me1, and H3K4me2 for all ESC super enhancers defined by (Whyte et al., 2013), for each of the four

reprogramming stages. 50 and 30 denote the start and stop coordinates for the super enhancers, and the shading represents one standard deviation from

the mean.

(E) Boxplots of transcript levels for genes neighboring ESC super enhancer in each of our four reprogramming stages. Asterisks (*) mark significant change

(p value < 0.007 and < 8.2e-12 for the MEF to pre-i#1 and MEF to ESC comparison, respectively, based on Wilcoxon test).

(F) Fold-enrichment of the 35 chromatin trajectory described in Figure 3A within ESC super enhancers colored within the column from highest (blue) to

lowest (white).

(G) Snapshot of 48h and ESC O, S, and K ChIP-seq data (RPKM) at the ESC super enhancer regions associated with the Nanog, Sox2, Oct4, and Klf4 genes. In

addition, the chromatin changes of these region are given by the trajectory annotation (from the 35 chromatin state model) based on the color-code in Figure S4A.

Sites bound by O, S, or K already at 48h are highlighted by the gray shading.

(H) Genome browser view of O, S, and K ChIP-seq data and ATAC-seq data at the Tdh1 ESC super enhancer (RPKM) at the indicated reprogramming stages. In

addition, the chromatin changes of this region are given by the trajectory annotation (from the 35 chromatin statemodel) based on the color code in Figure S4A. Of

the five major sites in this super enhancer bound by O, S, or K in ESCs (highlighted by gray bars), one is engaged already at 48h (labeled with 1) and the others are

bound only at later reprogramming stages (labeled with asterisks).

(I) Metaplot for normalized Klf4 (top) and Oct4 (bottom) ChIP-seq signal (RPKM) averaged across all ESC super enhancers for our four reprogramming stages.

Oct4 data for MEFs were not available since it is not expressed in these cells. 50 and 30 denote the start and stop coordinates for ESC super enhancers and the

shading indicates one standard deviation from the mean. Based on the comparison of Klf4 binding in MEFs and at 48hrs, we conclude that Klf4 already

significantly binds ESC super enhancers at 48h.

(J) Transcript levels of Esrrb in MEFs, iPSCs, and days 3, 6, 9 and 12 sorted SSEA1+ reprogramming populations, which are thought to enrich for cells with higher

reprogramming potential, as defined in (Polo et al., 2012).

(K) Transcript levels of Esrrb in our reprogramming stages (MEFs, 48h of OSKM expression (48h), 48h of OSKM and Esrrb co-expression (48hE), pre-iPSCs

(pre-i#1,pre-i#2), and ESCs, based on RNA-seq.

(L) Gene ontology analysis for enriched biological processes for down- and upregulated genes defined comparing MEFs expressing OSKM/Esrrb for 48h (48hE)

versus MEFs expressing only OSKM for 48h (48h).
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CHAPTER 3

ChromTime: Modeling Spatio-temporal Dynamics of

Chromatin Marks
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ABSTRACT 

 

Spatial dynamics of chromatin mark peaks have been implicated as important feature of 

epigenetic regulation. We developed a computational method, ChromTime, that identifies 

regions for which peaks either expand or contract or hold steady in time course chromatin data. 

Peaks with predicted expanding and contracting boundaries likely mark regulatory regions 

associated with transcription factor binding dynamics and gene expression changes. Spatial 

dynamics of peaks are informative about gene expression changes beyond localized signal 

changes. In proximity of gene starts, peaks preferentially expand in the same direction as 

transcription and contract in the opposite direction. 

 

KEYWORDS: epigenomics, time course ChIP-seq, spatial dynamics, histone modifications 

 

BACKGROUND 

 

Genome-wide mapping of histone modifications (HMs) and related chromatin marks using 

chromatin immunoprecipitation coupled with high throughput sequencing (ChIP-seq) has 

emerged as a powerful approach to annotate genomes and study cell states[1–3]. Through the 

efforts of large consortia projects such as the ENCODE[4], Roadmap Epigenomics[5] and 

BLUEPRINT[6] as well as individual labs[7–9] multiple different chromatin marks have been 
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mapped across more than a hundred different cell and tissue types. These maps have yielded 

numerous insights into gene regulation and genetic and epigenetic association with disease[10–

14].  

 

While many mapping efforts have largely focused on single or unrelated cell and tissue 

types[1, 4], a growing number of biological processes have been studied with temporal 

epigenomic data using time course ChIP-seq assays that map chromatin marks at consecutive 

stages during particular biological processes. Such datasets have been generated for a wide 

range of biological settings including T cell development[15], adipogenesis[16], 

hematopoiesis[17], macrophage differentiation[18], neural differentiation[10], cardiac 

development[19, 20], somatic cell reprogramming[21–24], embryogenesis[25] and many 

others[26–34].  The output of these experiments presents a unique opportunity to study the 

spatio-temporal changes of epigenetic peaks and associated regulatory elements. However, 

almost all computational methods designed or applied to epigenomic data have been developed 

based on single or multiple unrelated samples. For example, continuous regions of enrichments 

of single marks are detected by peak or domain calling methods[35–39]. In cases when 

multiple HMs are mapped in the same cell type, methods such as ChromHMM[40] and 

Segway[41] can be used to produce genome-wide chromatin state annotations. In addition, 

algorithms have been developed for pairwise comparisons of ChIP-seq signal data by 

differential peak calling[42, 43]. 

51



 

 

In the context of time course ChIP-seq data, only a few methods have been proposed that 

consider temporal dependencies between samples. One such method, TreeHMM[44], produces 

a chromatin state genome annotation similar to ChromHMM and Segway, while taking into 

account a tree-like structure that captures lineage relationships between the input cell types in 

order to potentially derive a more consistent annotation across samples. Another method, 

GATE[27], produces a genome annotation based on clustering fixed length genomic loci that 

can be modeled with the same switch from one chromatin state to another over time.  

 

One important limitation of methods for pairwise comparison of ChIP-seq data and time course 

modeling of it is that they do not directly consider or model spatial changes in the genomic 

territory occupied by chromatin marks over time. Spatial properties of genomic peaks 

continuously marked by HMs have gained increasing attention as a potentially important 

characteristic of chromatin marks. For example, long peaks of H3K27ac have been associated 

with active cell type specific locus control regions termed super-enhancers or stretch enhancers 

in a number of cell types[45, 46]. Also, the length of H3K4me3 peaks has been associated with 

transcriptional elongation and consistency of cell identity genes[47]. In the context of cancer, 

long H3K4me3 peaks have been linked to transcriptional elongation and enhancer activity at 

tumor suppressor genes and have been observed to be significantly shortened in tumor 

cells[48]. Long H3K4me3 domains have been implicated to mark loci involved in psychiatric 
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disorders[49]. Expanded domains of H3K27me3 and H3K9me3 marks have been shown to be 

characteristic of terminally differentiated cells compared to stem cells[50]. These studies 

suggest that length of epigenetic peaks is a dynamic feature that can correlate with activity of 

putative functional elements regulating specific genes. Computational methods that do not 

explicitly reason about the spatial changes of HMs have significant limitations for studying the 

dynamics of these properties because they are unable to detect territorial changes that might be 

associated with redistribution of signal or identify asymmetric directional peak boundary 

movements. 

 

In this work, we present ChromTime, a novel computational method for detection of 

expanding, contracting and steady peaks, which can detect patterns of changes in the genomic 

territory occupied by chromatin mark peaks from time course ChIP-seq data (Fig 3.1A). We 

applied ChromTime to a diverse set of data from different developmental, differentiation and 

reprogramming time courses. Expansions and contractions in general mark regulatory regions 

associated with changes in transcription factor binding and gene expression. ChromTime 

enables studying the directionality of spatial dynamics of chromatin mark peaks relative to 

other genomic features, which existing computational approaches do not directly address. Our 

results show that the direction of expansions and contractions correlates with direction of 

transcription near transcription start sites. ChromTime is a general method that can be used to 
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analyze time course ChIP-seq from a wide range of biological systems to gain insights into the 

dynamics of gene regulation. 

 

RESULTS 

 

Model for detecting expanding, contracting and steady peaks from temporal ChIP-seq 

data  

 

We developed a computational method, ChromTime (https://github.com/ernstlab/ChromTime), 

designed for systematic detection of expansions, contractions and steady peaks from time 

course ChIP-seq of single chromatin marks (Fig 3.1B). ChromTime takes as input a set of 

genomic coordinates of aligned sequencing reads from ChIP-seq and, optionally, control 

experiments over the time course. The method consists of two stages – block finding and 

dynamics prediction. During the block finding stage, ChromTime determines continuous 

genomic regions (blocks) that may contain ChIP-seq peaks throughout the time course. To 

achieve this, ChromTime partitions the genome into fixed length bins and counts the number of 

ChIP-seq and control reads that map to each bin at each time point. Nearby bins that show 

significant enrichment are joined into continuous intervals, which subsequently are grouped 

into blocks if they overlap across time points. As a result, large portions of the genome that are 

likely to contain background noise at all time points are filtered out, so that peak boundary 
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dynamics are determined within a subset of the genome potentially enriched for the chromatin 

mark.  

 

During the dynamics prediction stage, for each block ChromTime determines the most likely 

positions of the peak boundaries at each time point and whether the peak expands, contracts or 

holds steady at each boundary between consecutive time points. The method uses a 

probabilistic mixture model to partition the signal within each block at each time point into 

background and peak components (Fig 3.1C) by reasoning jointly about the data from all time 

points in the time course. The method assumes that central positions in blocks are more likely 

to be enriched for ChIP-seq reads and thus the peak component is flanked by the background 

components (see Methods, Fig 3.S1D). The number of sequencing reads in bins from each 

component at each time point is modelled with different negative binomial distributions that 

can account for the local abundance of control reads. Furthermore, between any two 

consecutive time points the boundaries of the peaks are assumed to follow one of three possible 

dynamics: steady, expand or contract. For steady dynamics, the peak boundaries are enforced 

to have the same genomic position. For expanding and contracting dynamics the number of 

genomic bins that the peak boundaries move between the two time points is modelled with 

different negative binomial distributions which depend on the pair of time points and the 

corresponding dynamic. Each dynamic is also assumed to have a prior probability which 

captures its genome-wide frequency at each time point. Within each block, except for peaks at 
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the first time point, the first appearance of a peak is modelled as expanding the peak 

boundaries from a zero-length peak at the previous time. Conversely, except for peaks at the 

last time point, completely removing a peak is modelled as contracting the peak boundaries to 

a zero-length peak at the next time point. ChromTime is thus flexible to model a wide range of 

spatial dynamics of peaks over time including peaks that are created later or removed earlier in 

the time course or those that appear only transiently. 

 

All model parameters are learned jointly from the whole time course. As a result, ChromTime 

can adapt to different boundary movements, dynamics frequencies and noise levels across 

experiments and biological systems. The estimated parameters are used to make a prediction 

for each block for the most likely positions of the peak boundaries and the corresponding 

boundary dynamics that had generated the signal within the block. The final output contains 

predicted peak boundaries annotated and colored by their assigned dynamics, which can be 

used for downstream analysis with existing tools and visualized in genome browsers (Fig 3.2, 

3.S2, https://github.com/ernstlab/ChromTime). 

 

Reproducibility of ChromTime predictions and association with changes in gene 

expression, TF binding and DNaseI hypersensitivity sites 
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To investigate the reproducibility of ChromTime predictions, we applied ChromTime 

separately to two biological replicate datasets for the H3K4me2 and the H3K(9/14)ac marks in 

T cell development in mouse[15] and confirmed on average strong enrichment for the same 

ChromTime annotations co-localizing across replicates (Fig 3.S3). We then applied the method 

to data from pooled replicates for the H3K4me2 and H3K(9,14)ac marks from the mouse T cell 

development study[15] and to data for the H3K4me3 and H3K27ac marks from a study on 

stem cell reprogramming in human[21]. To investigate the biological relevance of ChromTime 

predictions, we examined changes in orthogonal genomic annotations for gene expression, 

transcription factor binding[4, 15] and DNaseI hypersensitivity sites (DHS) [5] at predicted 

ChromTime peaks. Peaks with predicted expanding and contracting boundaries that overlap 

annotated TSSs associated with increase and decrease, respectively, in gene expression (Fig 

3.3, 3.S4). Predicted peaks with expanding and contracting boundaries enriched for sites bound 

by important regulators in each biological system as well as sites bound by generic TFs in a 

cell type specific manner. Furthermore, peaks with predicted steady boundaries throughout 

each time course associated with TF binding sites and DHS that are shared between the first 

and the last time point in each time course, which mark potentially stable regulatory elements.  

 

Predicted spatial dynamics by ChromTime associate better with gene expression changes 

compared to boundary position changes of peaks called from individual time points in 

isolation 

57



 

 

To investigate whether ChromTime’s approach for reasoning jointly about the whole time 

course increases power to detect associations with gene expression compared to considering 

boundary differences of peaks at consecutive time points called in isolation, we analyzed gene 

expression changes of genes with TSSs overlapping ChromTime predictions in relation to 

posterior probabilities for expansions and contractions compared to boundary differences of 

peaks called with ChromTime from data from individual time points in isolation. We 

specifically investigated this in the context of H3K4me2 peaks in mouse T cell 

development[15] and for H3K4me3 peaks in stem cell reprogramming in human[21]. In most 

cases, ranking boundaries of blocks with at least one called peak during the time course by 

their predicted ChromTime posterior probabilities for expansions and contractions associated 

on average with larger gene expression changes compared to ranking block boundaries directly 

based on the change in the genomic positions of the boundaries of ChromTime peaks called at 

individual time points in isolation (Fig 3.4). These results also held when using peaks from two 

different peak callers, MACS2[35] and SICER[37] applied on data from individual time points 

(Fig 3.S5). 

 

Spatial dynamics contain information about gene expression changes at consecutive time 

points not captured by corresponding pairwise HM signal changes 
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We next investigated whether there is additional information in ChromTime predictions 

beyond what can be captured by pairwise ChIP-seq signal density changes or by differential 

peak calls. For this analysis, we focused on H3K4me2 in mouse T cell development[15] and 

H3K4me3 in human stem cell reprogramming[21]. At each pair of consecutive time points 

from one before the first to one after the last time points with predicted peaks in a block, we 

computed the change in ChIP-seq signal density within the left most and right most predicted 

peak boundaries in the block. We associated the signal density changes with gene expression 

changes at the nearest TSS within 50kb of each block and computed the average gene 

expression change as a function of the ChIP-seq signal density change within blocks (Fig 3.5). 

We found that locations with the same ChIP-seq signal density change can associate with 

significantly different average gene expression changes of proximal genes depending on the 

predicted ChromTime dynamics. Notably, bidirectional expansions, expansions occurring on 

both sides of a peak, associated with greater average increase in gene expression than 

unidirectional expansions, those expansions occurring on one side with steady on the other. 

These unidirectional expansions in turn associated with greater expression change than steady 

regions, those regions with a steady call on both sides of a peak. We observed a similar 

relationship for contractions and decrease of gene expression. These results were replicated 

also after substituting ChIP-seq signal density changes with differential peak scores as 

outputted by two different differential peak calling methods (SICER[37] and MACS2[35], Fig 

3.S6). Therefore, ChromTime predictions can provide additional information about gene 
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expression changes beyond what is contained in the corresponding ChIP-seq signal density 

changes as measured directly or by utilizing differential peak calling procedures. 

 

Spatial dynamics are correlated between multiple histone marks 

 

Previous studies have shown that the locations of different HMs can be correlated[1, 51]. In 

this context, we tested whether multiple HMs can also exhibit jointly the same type of spatio-

temporal dynamics. For this purpose, we compared the genomic locations of predicted 

expansions, contractions and steady peaks for different HMs within the same time course. We 

focused on two previously published time courses – stem cell reprogramming in human[21] 

and adipogenesis in mouse[16], where multiple HMs were mapped (Fig 3.6). In both datasets, 

we observed that expansions for H3K4me1, H3K4me2, H3K4me3 and H3K27ac co-localized 

preferentially and similarly for contractions and steady. In contrast, different spatial dynamics 

for H3K36me3 and H3K27me3 tended to occupy distinct locations. These results suggest that 

spatial dynamics of HMs are coordinated at least at a subset of genomic locations. 

 

Direction of expansions and contractions is correlated with direction of transcription 

 

ChromTime can predict unidirectional expansions and contractions, which enables analysis of 

directionality of spatial dynamics of peaks, an aspect of chromatin regulation that has not been 
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previously systematically explored. To investigate this, we applied ChromTime on data from 

11 previously published studies from a variety of developmental, differentiation and 

reprogramming processes (Table 1) for nine different HMs including narrow and broad marks 

and for Pol2. We observed that unidirectional expansions and contractions are predicted in 

most cases on average to be the majority of all expansions and contractions, respectively, at a 

given pair of consecutive time points (Fig 3.S7). One hypothesis for the prevalence of 

asymmetric boundary movements for the promoter associated chromatin marks is that the 

direction of boundary movements is associated with the asymmetry of transcription initiation 

in promoter regions. To test this hypothesis, for each dataset we compared the prevalence of 

each class of unidirectional dynamics as a function of its distance to the nearest annotated 

transcription start site (TSS) and the orientation of the corresponding gene (Fig 3.7). Consistent 

with our hypothesis, for H3K4me3, H3K4me2, H3K(9/14)ac, H3K79me2, and for Pol2, we 

found that unidirectional expansions that expand into the gene body (i.e. in the same direction 

as transcription) were substantially more frequently found in proximity of TSSs compared to 

unidirectional expansions in the opposite direction. Moreover, this difference was not observed 

for expansions distal from TSSs. Similarly, in most cases for these data unidirectional 

contractions that contract towards the TSS of the nearest gene (i.e. in the opposite direction of 

transcription) were substantially more frequently found compared to unidirectional contraction 

in the opposite direction in proximity of TSSs, whereas their frequencies at distal sites showed 
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much smaller differences. HMs H3K27ac, H3K4me1 and H3K27me3 exhibited the same 

trend, but to a smaller degree. 

 

DISCUSSION 

 

In this work, we presented ChromTime, a novel computational method for systematic detection 

of expanding, contracting and steady peaks of chromatin marks from time course ChIP-seq 

data. ChromTime employs a probabilistic graphical model that directly models changes in the 

genomic territory occupied by single chromatin marks over time. This approach allowed us to 

directly encode our modeling assumptions about dependencies between variables in an 

interpretable and extendable framework. 

 

We applied ChromTime on datasets for broad and narrow HMs and for Pol2 from a variety of 

developmental, differentiation and reprogramming courses. Our results show that the method 

can identify sets of expanding and contracting peaks that are biologically relevant to the 

corresponding systems. In particular, expansions and contractions associate with up- and 

down-regulation of gene expression and differential transcription factor binding, supporting the 

biological relevance of ChromTime predictions.  
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ChromTime gains power by both reasoning jointly about all time points in a time course and 

by explicitly modeling the peak boundary movements. Supporting this we demonstrated that 

territorial changes identified by ChromTime had better agreement with gene expression 

changes compared to considering directly the boundary change of peaks called on data from 

individual time points in isolation. Additionally, we found that expanding and contracting 

peaks associated on average with greater change in gene expression compared to peaks with 

steady boundaries even after controlling for ChIP-seq signal density changes. Some of the 

power that ChromTime gains from considering spatial information might be explained by its 

ability to differentiate territorial expansions or contractions which can reflect changes in the 

number sites of TF binding in close vicinity from changes in ChIP-seq signal within steady 

peak boundaries. Changes in ChIP-seq signal without territorial expansions or contractions 

might reflect a change in proportion of cells with the chromatin mark without large changes in 

activity in any one cell. Additional power can come from the temporal and spatial information 

that allows the model to effectively smooth over noise in the data enabling more biologically 

relevant inferences.  

 

ChromTime enables novel analysis of directionality of spatial epigenetic dynamics. In this 

context, we found that asymmetric unidirectional expansions and contractions for several 

marks correlate strongly with direction of transcription in promoter proximal regions, which 

suggests that spatial dynamics at such locations may be related to actions of the transcriptional 
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machinery. One possible explanation for the observed correlation between the direction of 

spatial dynamics of at least some HMs and transcription can be provided in part by previous 

studies that have shown that the Pol2 elongation machinery can recruit H3K4-

methyltransferases such as members of the SET[52] and MLL[53] families at the promoters of 

genes. Our findings are consistent with such models where the Pol2 complex itself may be 

facilitating the attachment and removal of these marks[54].  

 

The ChromTime software is also relatively efficient particularly when using its option to 

parallelize all computations during the parameter learning and prediction phases over multiple 

CPU cores. In our tests, processing ChIP-seq for the H3K4me2 mark and control input data 

from 5 time points in mouse T cell development[15] took 3 hours by using 4 CPU cores on a 

MacBook Pro laptop with 2.7GHz Intel Core i7 and 16 GB RAM.  

  

One current limitation of the ChromTime method is that while the runtime of ChromTime still 

scales linearly with the number of time points, T, the number of observed combinations of 

dynamics can scale exponentially with T. This exponential growth can complicate downstream 

analyses that directly consider each combination of dynamics, as there will be 3T-1 possible 

sequences of dynamics at each side of a peak. Extensions of the ChromTime model could 

model the large number of combinations as being instances of a smaller number of more 

distinct dynamic patterns.  
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CONCLUSIONS 

 

The availability of time-series HM data provides an opportunity to understand chromatin 

dynamics in many biological systems. To better leverage the information in these experiments 

we presented ChromTime, a method to detect expansions, contractions and steady peaks of 

single chromatin marks between time points from time course ChIP-seq data. Our method 

gains power by both reasoning about data from all time points in the time course and by 

explicitly modeling movements of peak boundaries.  We showed that ChromTime predictions 

are reproducible across biological replicates and associate with relevant genomic features such 

as changes in gene expression and transcription factor binding. We demonstrated that territorial 

changes of peaks can contain additional information beyond ChIP-seq signal changes with 

respect to gene expression of proximal genes. ChromTime allows for novel analysis of 

directionality of spatial dynamics of chromatin marks. In this context, we showed for multiple 

chromatin marks that the direction of asymmetric expansions and contractions of peaks 

correlates strongly with direction of transcription in proximity of transcription start sites. 

ChromTime is generally applicable to modeling time courses of chromatin marks, and thus 

should be a useful tool to gaining insights into dynamics of epigenetic gene regulation in a 

range of biological systems. 
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METHODS 

 

Overview of the ChromTime method 

 

ChromTime takes as input a set of files in BED format with genomic coordinates of aligned 

sequencing reads from ChIP-seq experiments for a single mark over the time course and, 

optionally, from a set of control experiments. ChromTime consists of two stages (Fig 3.1B-C): 

 

1) Detecting genomic intervals (blocks) potentially containing regions of ChIP-seq signal 

enrichment (peaks) 

 

2) Learning a probabilistic mixture model for boundary dynamics of peaks within blocks 

throughout the time course and computing the most likely spatial dynamic and peak 

boundaries for each block throughout the whole time course 

 

Detecting genomic blocks containing regions of ChIP-seq signal enrichment 

 

The aim of this stage is to determine approximately the genomic coordinates of regions with 

potential ChIP-seq peaks at any time point in the time course. The signal within these blocks 

will be used as input to build the mixture model in the next stage of ChromTime. ChromTime 

66



 

supports analysis of both narrow marks and broad marks in two different modes. The method 

partitions the genome into non-overlapping bins of predefined length, BIN_SIZE (200 bp in 

narrow mode, 500 bp in broad mode by default) and counts for each bin and time point the 

number of sequencing reads whose alignment starting positions after shifting by a predefined 

number of bases (100 bp in the direction of alignment by default) are within its boundaries. 

Next, each bin at each time point is tested for enrichment based on a Poisson background 

distribution at a predefined false discovery rate (5% by default). The expected number of reads 

for a bin at position p and time point t, 𝜆𝑡,𝑝, in the Poisson test is computed conservatively as 

the maximum of: 

 

1) If control reads are provided: for each of windows of size w=1,000bp, 5,000bp and 

20,000bp the average number of control reads in the window centered at the current bin, 

normalized by the ratio of total reads in ChIP-seq and control experiments, that is: 

𝜆𝑡,𝑝,𝑤 =
# [Total Foreground Reads]

# [Total Control Reads]

BIN_SIZE

𝑤
Ctrl𝑡,𝑝,𝑤 

where Ctrl𝑡,𝑝,𝑤 is the total number of control reads in each of window of size w around 

the bin at position p at time point t.   

  

2) The average number of foreground ChIP-seq reads per genomic bin; 
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3) 1 read 

 

Testing multiple different windows sizes for the background is a strategy we adopted from the 

MACS2 peak caller[35]. 

 

Within each time point, consecutive bins that are significantly enriched are merged into 

continuous intervals. The intervals are further extended in both directions to include continuous 

stretches of bins where each bin is significant based on a Poisson background distribution at a 

weaker P-value threshold (0.15 by default). Extended intervals within a predefined number of 

non-significant bins, MAX_GAP (3 bins by default), are further joined together. This joining 

strategy has been previously implemented by other peak callers for single datasets such as 

SICER[37]. Next, overlapping intervals across time points are grouped into blocks. To capture 

more of the potential background signal and to increase the likelihood that central bins within 

blocks contain higher ChIP-seq signal, the start and end positions of each block are extended 

additionally by a predefined number of bins, BLOCK_EXTEND, (5 by default) upstream from 

the left-most coordinate and downstream from the right-most coordinate of the intervals in the 

block, respectively, or up to the middle point between the current block and its adjacent blocks 

if they are within BLOCK_EXTEND bins apart. Restricting BLOCK_EXTEND to a relatively 

limited number of bins helps in keeping the running time of the method within reasonable 

bounds. 
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In narrow mode, blocks that contain multiple intervals at the same time point separated by gaps 

of non-significant bins longer than MAX_GAP are split into sub-blocks at each gap between 

those intervals. In particular, all gaps within a block are intersected across the time points that 

have gaps. For each gap intersection, the block is split at the position with the lowest average 

ChIP-seq signal across all time points.  In broad mode, no such splitting is performed in order 

to avoid excessive peak fragmentation. 

 

Probabilistic mixture model for boundary dynamics of peaks within blocks across the 

time course 

 

The ChIP-seq signal within the blocks is used as input to build a probabilistic mixture model 

for the boundary dynamics of the peaks within blocks. One core assumption of the model is 

that each block contains zero or one peak at each time point. This implies that at each time 

point, the bins within a block can be partitioned into three continuous intervals: left-flanking 

background, foreground peak, and right-flanking background. Let Ot,p denote the number of 

observed ChIP-seq reads in a bin at position p at time point t, and Vt,p denote the label of that 

bin (one of Peak or Background). The conditional distribution of Ot,p conditioned on Vt,p is 

modeled with different negative binomial distributions depending on the value of Vt,p: 
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𝑃(𝑂𝑡,𝑝 = 𝑘|𝑉𝑡,𝑝 = Peak) =  NB(𝑘; 𝜇Peak,𝑡,𝑝 , 𝛿𝑡)

=  
Γ(𝑘 + 𝛿𝑡)

𝑘! Γ(𝛿𝑡)
(

𝛿𝑡
𝜇Peak,𝑡,𝑝 + 𝛿𝑡

)

𝛿𝑡

(
𝜇Peak,𝑡,𝑝

𝜇Peak,𝑡,𝑝 + 𝛿𝑡
)

𝑘

 

 

and  

 

𝑃(𝑂𝑡,𝑝 = 𝑘|𝑉𝑡,𝑝 = Background) =  NB(𝑘; 𝜇Background,𝑡,𝑝 , 𝛿𝑡)

=  
Γ(𝑘 + 𝛿𝑡)

𝑘! Γ(𝛿𝑡)
(

𝛿𝑡
𝜇Background,𝑡,𝑝 + 𝛿𝑡

)

𝛿𝑡

(
𝜇Background,𝑡,𝑝

𝜇Background,𝑡,𝑝 + 𝛿𝑡
)

𝑘

 

 

Similarly to negative binomial regression models[55], ChromTime models the mean of each 

component  through the log link as a linear combination of a two-dimensional vector of 

covariates, Xt,p,= (1, log 𝜆𝑡,𝑝), which includes a constant term and the logarithm of the expected 

number of reads as computed in the previous section, 𝜆𝑡,𝑝: 

 

𝜇Peak,𝑡,𝑝 = exp [𝛼𝑡 + 𝛾𝑡 log 𝜆𝑡,𝑝] 

𝜇Background,𝑡,𝑝 = exp[𝛽𝑡 + 𝛾𝑡 log 𝜆𝑡,𝑝] 

 

where 𝛼𝑡 , 𝛽𝑡 and 𝛾𝑡 are time point specific scalar parameters. Negative binomial distributions 

have been successfully employed in a similar manner to capture the over-dispersion of 
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sequencing reads in ChIP-seq experiments in peak callers for single samples such as 

ZINBA[56]. Of note however, ChromTime requires that the dispersion parameter 𝛿𝑡  and the 

coefficient 𝛾𝑡 are shared between the two components at each time point. The first requirement 

ensures that the distribution with the smaller mean value has higher probabilities compared to 

the distribution with the larger mean value for the lowest values of the support domain of the 

negative binomial distribution, and that the opposite holds for the largest values of the support 

domain (See Supplementary Methods). Sharing the dispersion parameter here is analogous to 

sharing the variance parameter in Gaussian mixture models. The second requirement to share 

the 𝛾𝑡 parameter ensures that the input signal has equal importance in each component.  

 

Formally, let BL,t and BR,t denote the bin indices relative to the beginning of the block of the 

first and the last bin in the peak partition at time t, respectively, and N be the length of the 

block (i.e. 1 ≤ 𝐵𝐿,𝑡 ≤ 𝑁 + 1 and 0 ≤  𝐵𝑅,𝑡 ≤  𝑁, with values of 𝐵𝐿,𝑡 = 𝑁 + 1 and 𝐵𝑅,𝑡 =0 

corresponding to the special cases of starting a peak after all positions and ending a peak 

before all positions in a block, respectively). For 𝐵𝐿,𝑡 and 𝐵𝑅,𝑡 to denote valid interval 

boundaries, ChromTime requires that 𝐵𝐿,𝑡 ≤ 𝐵𝑅,𝑡 + 1 at each time point. This can be formally 

encoded by introducing one auxiliary binary variable for each time point in the model, 𝑍𝑡, such 

that: 

 

𝑃(𝑍𝑡 = 1|𝐵𝐿,𝑡 = 𝑙, 𝐵𝑅,𝑡 = 𝑟) = { 
1   if 𝑙 ≤  𝑟 + 1
0   otherwise
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and thus also 

𝑃(𝑍𝑡 = 0|𝐵𝐿,𝑡 = 𝑙, 𝐵𝑅,𝑡 = 𝑟) = { 
0   if 𝑙 ≤  𝑟 + 1
1   otherwise

 

 

ChromTime treats all 𝑍𝑡 variables as observed with values equal to 1 for all blocks and time 

points. Then, the probability of a given partitioning of the ChIP-seq signal at time t under the 

model is: 

 

𝑃(𝐵𝐿,𝑡 = 𝑙, 𝐵𝑅,𝑡 = 𝑟, 𝑍𝑡 = 1, 𝑂𝑡|𝑋𝑡)

= 𝑃(𝑍𝑡 = 1|𝐵𝐿,𝑡 = 𝑙, 𝐵𝑅,𝑡 = 𝑟)

× ∏NB(𝑂𝑡,𝑝; 𝜇Background,𝑡 = exp[𝛽𝑡 + 𝛾𝑡 log 𝜆𝑡,𝑝], 𝛿𝑡)

𝑙−1

𝑝=1

×∏NB(𝑂𝑡,𝑝; 𝜇Peak,𝑡 = exp[𝛼𝑡 + 𝛾𝑡 log 𝜆𝑡,𝑝], 𝛿𝑡)

𝑟

𝑝=𝑙

× ∏ NB(𝑂𝑡,𝑝; 𝜇Background,𝑡 = exp[𝛽𝑡 + 𝛾𝑡 log 𝜆𝑡,𝑝], 𝛿𝑡)

𝑁

𝑝=𝑟+1

 

 

An important special case of the above formulation when 𝐵𝐿,𝑡 = 𝐵𝑅,𝑡 + 1 corresponds to 

modelling the whole signal at time point t as background, which enables ChromTime to 

accommodate time points with no peaks.  
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ChromTime assumes uniform prior probabilities for the left and the right end boundaries at the 

first time point: 

𝑃(𝐵𝐿,1 = 𝑙) = 𝑈𝑛𝑖𝑓(1,𝑁 + 1) 

and 

𝑃(𝐵𝑅,1 = 𝑟) = 𝑈𝑛𝑖𝑓(0, 𝑁) 

 

where 𝑈𝑛𝑖𝑓(𝑎, 𝑏) denotes the uniform distribution of integer numbers in the closed interval 

[𝑎, 𝑏]. 

 

Between any two time points the ChromTime model allows for one of three possible dynamics 

at both the left and the right end boundaries of a peak: Steady, Expand or Contract. To capture 

the change of boundary positions between consecutive time points t and t+1 we define the 

quantities JL,t = BL,t – BL,t+1 and JR,t = BR,t+1 – BR,t corresponding to the left and right boundaries 

respectively. Positive values of JL,t and JR,t indicate the number of bases a peak expanded, 

whereas negative values indicate the number of bases a peak contracted, and a value of 0 

indicates the peak held steady on the left and the right side respectively. ChromTime models 

JL,t and JR,t with a different probability distribution for each of the three dynamics. Let DS,t 

denote the dynamic between time points t and t+1 on boundary side S, where S is one of L (left 

side) or R (right side). For Steady dynamic, ChromTime uses the Kronecker delta function: 
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𝑃(𝐽𝑆,𝑡|𝐷𝑆,𝑡 = Steady) = {
1, if  𝐽𝑆,𝑡 = 0

0, otherwise
 

 

For Expand and Contract, ChromTime employs negative binomial distributions to model the 

number of genomic bins a peak boundary moves relative to the minimal movement of one bin 

required for peak expansions and contractions: 

 

𝑃(𝐽𝑆,𝑡 = 𝑗|𝐷𝑆,𝑡 = Expand) = 𝑁𝐵(𝑗 − 1; 𝜇Expand,t, 𝛿Expand,t) 

 and 

𝑃(𝐽𝑆,𝑡 = 𝑗|𝐷𝑆,𝑡 = Contract) = 𝑁𝐵(−𝑗 − 1; 𝜇Conract,t, 𝛿Contract,t) 

 

Furthermore, each distribution is parametrized with a mean and dispersion parameter 

depending on the dynamic and the time point, t: 𝜇Expand,t, 𝛿Expand,t for expansions, and 

𝜇Contract,t, 𝛿Contract,t for contractions. Of note, in negative binomial distributions the 

probabilities for negative integers are defined to be 0. Therefore, the above parametrization 

enforces that boundary movements of negative or zero length (i.e. contracting or steady, 

respectively) are impossible for expansions and that boundary movements of positive or zero 

length (i.e. expanding or steady) are impossible for contractions. 
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The ChromTime model additionally assumes that there is a prior probability to observe each 

dynamic between time points t and t+1, 𝑃(𝐷𝑆,𝑡 = 𝑑) =  𝜋𝑡,𝑑, which is the same at each side 

(left and right). Thus, the joint probability to observe a particular partition of the data into 

peaks and background and dynamics dL,t and dR,t on the left and right side at two consecutive 

time points, respectively, can be expressed as: 

 

𝑃(𝐵𝐿,𝑡 = 𝑙𝑡 , 𝐵𝐿,𝑡+1 = 𝑙𝑡+1, 𝐷𝐿,𝑡 = 𝑑𝐿,𝑡, 𝐵𝑅,𝑡 = 𝑟𝑡 , 𝐵𝑅,𝑡+1 = 𝑟𝑡+1, 𝐷𝑅,𝑡 = 𝑑𝑅,𝑡, 𝑍𝑡 = 1, 𝑍𝑡+1 = 1,𝑂𝑡 , 𝑂𝑡+1| 𝑋𝑡 , 𝑋𝑡+1) = 

=  𝑃(𝐵𝐿,𝑡 = 𝑙𝑡 , 𝐵𝑅,𝑡 = 𝑟𝑡 , 𝑍𝑡 = 1,𝑂𝑡|𝑋𝑡)  ×  𝑃(𝐽𝐿,𝑡 = 𝑙𝑡 − 𝑙𝑡+1|𝐷𝐿,𝑡 = 𝑑𝐿,𝑡)  ×  𝑃(𝐷𝐿,𝑡 = 𝑑𝐿,𝑡)  

×  𝑃(𝐽𝑅,𝑡 = 𝑟𝑡+1 − 𝑟𝑡|𝐷𝑅,𝑡 = 𝑑𝑅,𝑡)  ×  𝑃(𝐷𝑅,𝑡 = 𝑑𝑅,𝑡)  

×  𝑃(𝐵𝐿,𝑡+1 = 𝑙𝑡+1, 𝐵𝑅,𝑡+1 = 𝑟𝑡+1, 𝑍𝑡+1 = 1,𝑂𝑡+1|𝑋𝑡+1) 

 

In a block 𝑶 with covariates 𝑿 in a time course with T time points, the total probability of a 

particular sequence of dynamics and boundary positions on the left side (𝔇𝐿  and ℬ𝐿 

respectively) and on the right side (𝔇𝑅  and ℬ𝑅 respectively) can be expressed as: 

 

𝑃(𝔇𝐿, ℬ𝐿 , 𝔇𝑅, ℬ𝑅, 𝑶|𝑿) = 

𝑃(𝐵𝐿,1 = 𝑙1, 𝐵𝑅,1 = 𝑟1, 𝑍1 = 1,𝑂1|𝑋1)∏(𝑃(𝐵𝐿,𝑡 = 𝑙𝑡, 𝐵𝑅,𝑡 = 𝑟𝑡, 𝑍𝑡 = 1, 𝑂𝑡|𝑋𝑡)  

𝑇

𝑡=2

×  𝑃(𝐽𝐿,𝑡−1 = 𝑙𝑡−1 − 𝑙𝑡|𝐷𝐿,𝑡−1 = 𝑑𝐿,𝑡−1)  ×  𝑃(𝐷𝐿,𝑡−1 = 𝑑𝐿,𝑡−1) 

×  𝑃(𝐽𝑅,𝑡−1 = 𝑟𝑡 − 𝑟𝑡−1|𝐷𝑅,𝑡−1 = 𝑑𝑅,𝑡−1)  ×  𝑃(𝐷𝑅,𝑡−1 = 𝑑𝑅,𝑡−1))  
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where 𝔇𝑆 = (𝑑𝑆,𝑡|1 ≤ 𝑡 ≤ 𝑇 − 1) are T-1 dimensional vectors of dynamics labels for each pair 

of consecutive time points on the left or the right side (S = L or R), respectively, and ℬ𝑆 are the 

corresponding T dimensional vectors of boundary positions on each side at each time point. 

The total probability of the ChIP-seq signal in a block can be expressed as a sum over all 

possible sequences of dynamics and peak boundary positions that can generate the block across 

all time points. Thus, the probability of block 𝑶 is: 

 

𝑃(𝑶|𝑿) = ∑ 𝑃(𝔇𝐿, ℬ𝐿, 𝔇𝑅 , ℬ𝑅 , 𝑶|𝑿)

𝔇𝐿,ℬ𝐿,𝔇𝑅,ℬ𝑅

 

 

where 𝔇𝐿 and 𝔇𝑅 each iterate over all possible 3T-1 combinations of peak boundary dynamics, 

and ℬ𝐿  and ℬ𝑅 each iterate over all possible ways to place left and right end boundaries across 

all time points that are consistent with the requirements that 𝐵𝐿,𝑡 ≤ 𝐵𝑅,𝑡 + 1 at each time point. 

Let 𝒪 be the total set of blocks in the data, 𝒳 be the set of two-dimensional vectors containing 

the constant term and the log of the expected number of reads at each position and time point 

for each block, and M be the total number of blocks. Then the total likelihood of all blocks is: 

 

𝑃(𝒪|𝒳) =∏𝑃(𝑶𝑖|𝑿𝑖)

𝑀

𝑖=1
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Model optimization 

 

The total set of parameters of the model consists of: 

1) Prior probabilities of each dynamic d at each time point t: 𝜋𝑡,𝑑 

2) Parameters of the negative binomial distributions that model the Peak and the 

Background components at each time point: 𝛼𝑡,  𝛽𝑡,  𝛾𝑡 and 𝛿𝑡. 

3) Parameters of the negative binomial distributions that model the boundary movements in 

Expand and Contract dynamics at each time point: 𝜇Expand,t, 𝛿Expand,t and 

𝜇Contract,t, 𝛿Contract,t, respectively. 

 

The optimal parameter values are attempted to be estimated by Expectation Maximization 

(EM). In particular, ChromTime finds a local maximum of the expectation of the complete log-

likelihood function (for details, see Supplementary Methods): 

 

𝐿𝐿(𝜃; �̃�, 𝒪,𝒳) =  ∑log 𝑃(𝑶𝑖|𝑿𝑖)

𝑀

𝑖=1

 

 

Computing the most likely spatial dynamic and peak boundaries for each block across 

the whole time course 
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After the optimal values for all model parameters are estimated from the data, for each block 

the most likely positions of the peak boundaries at each time point are calculated. This 

procedure consists of two steps. First, ChromTime determines for each block all time points 

with significantly low probability of containing a false positive non-zero peak. Second, 

conditioned on those time points, ChromTime computes the most likely assignment of the peak 

boundary variables at each side and each time point (for details, see Supplementary 

Methods).  

 

ChromTime parameters used in this study 

 

In this work, we applied ChromTime in narrow mode on all data for H3K4me2, H3K4me3, 

H3K27ac and H3K(9,14)ac marks. We applied ChromTime in broad mode on all data for 

H3K79me2, Pol2, H3K4me1, H3K27me3, H3K9me3 and H3K36me3 marks. All other 

parameters were set to their default values. 

 

SUPPLEMENTARY METHODS 

 

ChromTime model optimization 
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As stated in the Methods, the total set of parameters of the model consists of: 

4) Prior probabilities of each dynamic d at each time point t: 𝜋𝑡,𝑑 

5) Parameters of the negative binomial distributions that model the Peak and the 

Background components at each time point: 𝛼𝑡,  𝛽𝑡,  𝛾𝑡 and 𝛿𝑡. 

6) Parameters of the negative binomial distributions that model the boundary movements in 

Expand and Contract dynamics at each time point: 𝜇Expand,t, 𝛿Expand,t and 

𝜇Contract,t, 𝛿Contract,t, respectively. 

 

The optimal parameter values are attempted to be estimated by Expectation Maximization 

(EM). In particular, ChromTime finds a local maximum of the expectation of the complete log-

likelihood function: 

 

𝐿𝐿(𝜃; �̃�, 𝒪,𝒳) =  ∑log 𝑃(𝑶𝑖|𝑿𝑖)

𝑀

𝑖=1

 

 

Furthermore, 

 

log 𝑃(𝑶𝑖|𝑿𝑖) = 
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= ∑  

𝑁𝑖+1

𝑙1=1

∑  𝑃(𝐵𝐿,1 = 𝑙1, 𝐵𝑅,1 = 𝑟1|𝑶𝑖, 𝑿𝑖; �̃�) ( ∑ log𝑃(𝑂𝑖,1,𝑝|𝑉1,𝑝 = Background, 𝑋𝑖,1,𝑝)

𝑙1−1

𝑝=1

𝑁𝑖

𝑟1=𝑙1−1

+ ∑ log𝑃(𝑂𝑖,1,𝑝|𝑉1,𝑝 = Peak, 𝑋𝑖,1,𝑝)

𝑟1

𝑝=𝑙1

+ ∑ log𝑃(𝑂𝑖,1,𝑝|𝑉1,𝑝 = Background, 𝑋𝑖,1,𝑝)

𝑁𝑖

𝑝=𝑟1+1

+ log𝑃(𝐵𝐿,1 = 𝑙1) + log 𝑃(𝐵𝑅,1 = 𝑟1) ) 

   +∑ ∑ ∑  

𝑑𝑅,𝑡−1∈𝔻𝑑𝐿,𝑡−1∈𝔻

 

𝑇

𝑡=2

∑  

𝑁𝑖+1

𝑙𝑡=1

∑ ∑  

𝑁𝑖+1

𝑙𝑡−1=1

∑  

𝑁𝑖

𝑟𝑡−1=𝑙𝑡−1−1

 

𝑁𝑖

𝑟𝑡=𝑙𝑡−1

 

       P(𝐵𝐿,𝑡 = 𝑙𝑡, 𝐵𝐿,𝑡−1 = 𝑙𝑡−1, 𝐷𝐿,𝑡−1 = 𝑑𝐿,𝑡−1, 𝐵𝑅,𝑡 = 𝑟𝑡, 𝐵𝑅,𝑡−1 = 𝑟𝑡−1, 𝐷𝑅,𝑡−1 = 𝑑𝑅,𝑡−1|𝑶𝑖 , 𝑿𝑖; �̃�) 

                     × ((log 𝑃(𝐵𝐿,𝑡 = 𝑙𝑡, 𝐵𝐿,𝑡−1 = 𝑙𝑡−1|𝐷𝐿,𝑡−1 = 𝑑𝐿,𝑡−1)

+ log𝑃(𝐵𝑅,𝑡 = 𝑟𝑡, 𝐵𝑅,𝑡−1 = 𝑟𝑡−1|𝐷𝑅,𝑡−1 = 𝑑𝑅,𝑡−1) + log𝑃(𝐷𝐿,𝑡−1 = 𝑑𝐿,𝑡−1)

+ log𝑃(𝐷𝑅,𝑡−1 = 𝑑𝑅,𝑡−1)   + ∑ log𝑃(𝑂𝑖,𝑡,𝑝|𝑉𝑡,𝑝 = Background, 𝑋𝑖,𝑡,𝑝)

𝑙𝑡−1

𝑝=1

+ ∑ log𝑃(𝑂𝑖,𝑡,𝑝|𝑉𝑡,𝑝 = Peak, 𝑋𝑖,𝑡,𝑝)

𝑟𝑡

𝑝=𝑙𝑡

+ ∑ log𝑃(𝑂𝑖,𝑡,𝑝|𝑉𝑡,𝑝 = Background, 𝑋𝑖,𝑡,𝑝)

𝑁𝑖

𝑝=𝑟𝑡+1

)) 

where 𝑂𝑖,𝑡,𝑝 and 𝑋𝑖,𝑡,𝑝 denote the number of observed foreground reads and covariates, 

respectively, in block 𝑖 at time point 𝑡 at position 𝑝, and 𝔻 denotes the set of all dynamics 

(Steady, Expand and Contract). 
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The complete log likelihood simplifies substantially, if we substitute in the above equation 

each of the following terms:  

 

∑  

𝑁𝑖+1

𝑙1=1

∑  𝑃(𝐵𝐿,1 = 𝑙1, 𝐵𝑅,1 = 𝑟1|𝑶𝑖 , 𝑿𝑖; 𝜃)( ∑ log𝑃(𝑂𝑖,1,𝑝|𝑉1,𝑝 = Background,𝑋𝑖,1,𝑝)

𝑙1−1

𝑝=1

𝑁𝑖

𝑟1=𝑙1−1

+ ∑ log𝑃(𝑂𝑖,1,𝑝|𝑉1,𝑝 = Peak, 𝑋𝑖,1,𝑝)

𝑟1

𝑝=𝑙1

+ ∑ log𝑃(𝑂𝑖,1,𝑝|𝑉1,𝑝 = Background, 𝑋𝑖,1,𝑝)

𝑁𝑖

𝑝=𝑟1+1

) 

=∑log𝑃(𝑂𝑖,1,𝑝|𝑉1,𝑝 = Peak, 𝑋𝑖,1,𝑝) 

𝑁𝑖

𝑝=1

∑  

𝑝

𝑙1=1

∑  𝑃(𝐵𝐿,1 = 𝑙1, 𝐵𝑅,1 = 𝑟1|𝑶𝑖 , 𝑿𝑖; 𝜃)

𝑁𝑖

𝑟1=𝑝

 

+ ∑ log𝑃(𝑂𝑖,1,𝑝|𝑉1,𝑝 = Background, 𝑋𝑖,1,𝑝)

𝑁𝑖

𝑝=1

 

× (∑  

𝑝−1

𝑙1=1

∑  𝑃(𝐵𝐿,1 = 𝑙1, 𝐵𝑅,1 = 𝑟1|𝑶𝑖 , 𝑿𝑖; 𝜃) + ∑  

𝑁𝑖+1

𝑙1=𝑝+1

∑  𝑃(𝐵𝐿,1 = 𝑙1, 𝐵𝑅,1 = 𝑟1|𝑶𝑖 , 𝑿𝑖; 𝜃)

𝑁𝑖

𝑟1=𝑙1−1

𝑝−1

𝑟1=𝑙1−1

) 

=∑  

𝑁𝑖

𝑝=1

(𝑃(𝑉1,𝑝 = Peak|𝑶𝑖 , 𝑿𝑖; 𝜃) log𝑃(𝑂𝑖,1,𝑝|𝑉1,𝑝 = Peak, 𝑋𝑖,1,𝑝)  

+ (1 − 𝑃(𝑉1,𝑝 = Peak|𝑶𝑖 , 𝑿𝑖; 𝜃)) log𝑃(𝑂𝑖,1,𝑝|𝑉1,𝑝 = Background,𝑋𝑖,1,𝑝)) 

=∑  

𝑁𝑖

𝑝=1

(𝑃(𝑉1,𝑝 = Peak|𝑶𝑖 , 𝑿𝑖; 𝜃) log (NB(𝑂𝑖,1,𝑝; 𝜇Peak,1 = exp[𝛼1 + 𝛾1 log 𝜆𝑖,1,𝑝], 𝛿1))

+ 𝑃(𝑉1,𝑝 = Background|𝑶𝑖 , 𝑿𝑖; 𝜃) log (NB(𝑂𝑖,1,𝑝; 𝜇Background,1 = exp[𝛽1 + 𝛾1 log 𝜆𝑖,1,𝑝], 𝛿1))) 
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and 

 

∑ ∑ ∑  

𝑑𝑅,𝑡−1∈𝔻𝑑𝐿,𝑡−1∈𝔻

 

𝑇

𝑡=2

∑  

𝑁𝑖+1

𝑙𝑡=1

∑ ∑  

𝑁𝑖+1

𝑙𝑡−1=1

∑  

𝑁𝑖

𝑟𝑡−1=𝑙𝑡−1−1

 

𝑁𝑖

𝑟𝑡=𝑙𝑡−1

 

                    P(𝐵𝐿,𝑡 = 𝑙𝑡, 𝐵𝐿,𝑡−1 = 𝑙𝑡−1, 𝐷𝐿,𝑡−1 = 𝑑𝐿,𝑡−1, 𝐵𝑅,𝑡 = 𝑟𝑡, 𝐵𝑅,𝑡−1 = 𝑟𝑡−1, 𝐷𝑅,𝑡−1 = 𝑑𝑅,𝑡−1|𝑶𝑖 , 𝑿𝑖; �̃�) 

                    ×  (log 𝑃(𝐵𝐿,𝑡 = 𝑙𝑡, 𝐵𝐿,𝑡−1 = 𝑙𝑡−1|𝐷𝐿,𝑡−1 = 𝑑𝐿,𝑡−1)

+ log 𝑃(𝐵𝑅,𝑡 = 𝑟𝑡, 𝐵𝑅,𝑡−1 = 𝑟𝑡−1|𝐷𝑅,𝑡−1 = 𝑑𝑅,𝑡−1)) 

=∑ ∑  

𝑑𝐿,𝑡−1∈𝔻

 

𝑇

𝑡=2

∑  

𝑁𝑖+1

𝑙𝑡−1=1

∑ P(𝐵𝐿,𝑡 = 𝑙𝑡 , 𝐵𝐿,𝑡−1 = 𝑙𝑡−1, 𝐷𝐿,𝑡−1 = 𝑑𝐿,𝑡−1|𝑶𝑖 , 𝑿𝑖; �̃�)

𝑁𝑖+1

𝑙𝑡=1

× log 𝑃(𝐵𝐿,𝑡 = 𝑙𝑡, 𝐵𝐿,𝑡−1 = 𝑙𝑡−1|𝐷𝐿,𝑡−1 = 𝑑𝐿,𝑡−1)

+∑ ∑  

𝑑𝑅,𝑡−1∈𝔻

 

𝑇

𝑡=2

∑  

𝑁𝑖

𝑟𝑡−1=0

∑P(𝐵𝑅,𝑡 = 𝑟𝑡 , 𝐵𝑅,𝑡−1 = 𝑟𝑡−1, 𝐷𝑅,𝑡−1 = 𝑑𝑅,𝑡−1|𝑶𝑖 , 𝑿𝑖; �̃�)

𝑁𝑖

𝑟𝑡=0

× log 𝑃(𝐵𝑅,𝑡 = 𝑟𝑡, 𝐵𝑅,𝑡−1 = 𝑟𝑡−1|𝐷𝑅,𝑡−1 = 𝑑𝑅,𝑡−1) 

=∑ ∑  

𝑆∈{𝐿,𝑅}

𝑇−1

𝑡=1

∑  

𝑑𝑆,𝑡∈{
Expand
Contract

}

∑ 

𝑁𝑖

𝑗=1

𝑃(𝐽𝑆,𝑡 = (−1)
𝜔(𝑑𝑆,𝑡)𝑗, 𝐷𝑆,𝑡 = 𝑑𝑆,𝑡|𝑶𝑖, 𝑿𝑖; �̃�)

× log (𝑃(𝐽𝑆,𝑡 = (−1)
𝜔(𝑑𝑆,𝑡)𝑗|𝐷𝑆,𝑡 = 𝑑𝑆,𝑡)) 

=∑ ∑  

𝑆∈{𝐿,𝑅}

𝑇−1

𝑡=1

∑  

𝑑𝑆,𝑡∈{
Expand
Contract

}

∑ 

𝑁𝑖

𝑗=1

𝑃(𝐽𝑆,𝑡 = (−1)
𝜔(𝑑𝑆,𝑡)𝑗, 𝐷𝑆,𝑡 = 𝑑𝑆,𝑡|𝑶𝑖, 𝑿𝑖; �̃�) log (NB(𝑗 − 1; 𝜇𝑑𝑆,𝑡 , 𝛿𝑑𝑆,𝑡)) 

 

where 
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𝜔(𝑑𝑆,𝑡) = {
1 if 𝑑𝑆,𝑡 = Contract 

0 otherwise
 

 

In the above we used the simplification that summing over all possible ways to place the peak 

boundaries on the left and on the right side at two consecutive time points is equivalent to 

summing over all possible distances between two left boundaries and all possible distances 

between two right boundaries, j.  

 

Also, we can simplify: 

 

∑ ∑ ∑  

𝑑𝑅,𝑡−1∈𝔻𝑑𝐿,𝑡−1∈𝔻

 

𝑇

𝑡=2

∑  

𝑁𝑖+1

𝑙𝑡=1

∑ ∑  

𝑁𝑖+1

𝑙𝑡−1=1

∑  

𝑁𝑖

𝑟𝑡−1=𝑙𝑡−1−1

 

𝑁𝑖

𝑟𝑡=𝑙𝑡−1

 

                    P(𝐵𝐿,𝑡 = 𝑙𝑡, 𝐵𝐿,𝑡−1 = 𝑙𝑡−1, 𝐷𝐿,𝑡−1 = 𝑑𝐿,𝑡−1, 𝐵𝑅,𝑡 = 𝑟𝑡, 𝐵𝑅,𝑡−1 = 𝑟𝑡−1, 𝐷𝑅,𝑡−1 = 𝑑𝑅,𝑡−1|𝑶𝑖 , 𝑿𝑖; �̃�) 

                    ×  (log 𝑃(𝐷𝐿,𝑡−1 = 𝑑𝐿,𝑡−1) + log 𝑃(𝐷𝑅,𝑡−1 = 𝑑𝑅,𝑡−1)) 

=∑ ∑ ∑  

𝑑𝑆,𝑡∈{
Steady
Expand
Contract

}

𝑃(𝐷𝑆,𝑡 = 𝑑𝑆,𝑡|𝑶𝑖 , 𝑿𝑖; �̃�) log (𝑃(𝐷𝑆,𝑡 = 𝑑𝑆,𝑡))

𝑆∈{𝐿,𝑅}

  

𝑇−1

𝑡=1

 

=∑ ∑ ∑  

𝑑𝑆,𝑡∈{
Steady
Expand
Contract

}

𝑃(𝐷𝑆,𝑡 = 𝑑𝑆,𝑡|𝑶𝑖 , 𝑿𝑖; �̃�) log(𝜋𝑡,𝑑𝑆,𝑡)

𝑆∈{𝐿,𝑅}

  

𝑇−1

𝑡=1

 

 

and 
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∑ ∑ ∑  

𝑑𝑅,𝑡−1∈𝔻𝑑𝐿,𝑡−1∈𝔻

 

𝑇

𝑡=2

∑  

𝑁𝑖+1

𝑙𝑡=1

∑ ∑  

𝑁𝑖+1

𝑙𝑡−1=1

∑  

𝑁𝑖

𝑟𝑡−1=𝑙𝑡−1−1

 

𝑁𝑖

𝑟𝑡=𝑙𝑡−1

 

                    P(𝐵𝐿,𝑡 = 𝑙𝑡, 𝐵𝐿,𝑡−1 = 𝑙𝑡−1, 𝐷𝐿,𝑡−1 = 𝑑𝐿,𝑡−1, 𝐵𝑅,𝑡 = 𝑟𝑡, 𝐵𝑅,𝑡−1 = 𝑟𝑡−1, 𝐷𝑅,𝑡−1 = 𝑑𝑅,𝑡−1|𝑶𝑖 , 𝑿𝑖; �̃�) 

                    × (∑ log𝑃(𝑂𝑖,𝑡,𝑝|𝑉𝑡,𝑝 = Background, 𝑋𝑖,𝑡,𝑝)

𝑙𝑡−1

𝑝=1

+ ∑ log𝑃(𝑂𝑖,𝑡,𝑝|𝑉𝑡,𝑝 = Peak, 𝑋𝑖,𝑡,𝑝)

𝑟𝑡

𝑝=𝑙𝑡

+ ∑ log𝑃(𝑂𝑖,𝑡,𝑝|𝑉𝑡,𝑝 = Background, 𝑋𝑖,𝑡,𝑝)

𝑁𝑖

𝑝=𝑟𝑡+1

) 

=∑ 

𝑇

𝑡=2

∑ 

𝑁𝑖

𝑝=1

(𝑃(𝑉𝑡,𝑝 = Peak|𝑶𝑖 , 𝑿𝑖; �̃�) log 𝑃(𝑂𝑖,𝑡,𝑝|𝑉𝑡,𝑝 = Peak, 𝑋𝑖,𝑡,𝑝)

+ 𝑃(𝑉𝑡,𝑝 = Background|𝑶𝑖 , 𝑿𝑖; �̃�) log 𝑃(𝑂𝑖,𝑡,𝑝|𝑉1,𝑝 = Background, 𝑋𝑖,𝑡,𝑝)) 

=∑ 

𝑇

𝑡=1

∑ 

𝑁𝑖

𝑝=1

(𝑃(𝑉𝑡,𝑝 = Peak|𝑶𝑖 , 𝑿𝑖; �̃�) log (NB(𝑂𝑖,𝑡,𝑝; 𝜇Peak,𝑡 = exp[𝛼𝑡 + 𝛾𝑡 log 𝜆𝑖,𝑡,𝑝], 𝛿𝑡))

+ 𝑃(𝑉𝑡,𝑝 = Background|𝑶𝑖 , 𝑿𝑖; �̃�) log (NB(𝑂𝑖,𝑡,𝑝; 𝜇Background,𝑡 = exp[𝛽𝑡 + 𝛾𝑡 log 𝜆𝑖,𝑡,𝑝], 𝛿𝑡))) 

 

With these substitutions, we can rewrite the complete log likelihood, 𝐿𝐿(𝜃; �̃�, 𝒪,𝒳), as  

 

∑ ∑  

𝑁𝑖+1

𝑙1=1

∑  

𝑁𝑖

𝑟1=𝑙1−1

 

𝑀

𝑖=1

𝑃(𝐵𝐿,1 = 𝑙1, 𝐵𝑅,1 = 𝑟1|𝑶𝑖 , 𝑿𝑖; 𝜃)(log𝑃(𝐵𝐿,1 = 𝑙1) + log𝑃(𝐵𝑅,1 = 𝑟1)) 
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+∑ 

𝑀

𝑖=1

∑ 

𝑇

𝑡=1

∑ 

𝑁𝑖

𝑝=1

(𝑃(𝑉𝑡,𝑝 = Peak|𝑶𝑖 , 𝑿𝑖; 𝜃) log (NB(𝑂𝑖,𝑡,𝑝; 𝜇Peak,𝑡 = exp[𝛼𝑡 + 𝛾𝑡 log 𝜆𝑖,𝑡,𝑝], 𝛿𝑡))

+  𝑃(𝑉𝑡,𝑝 = Background|𝑶𝑖 , 𝑿𝑖; 𝜃) log (NB(𝑂𝑖,𝑡,𝑝; 𝜇Bgr,𝑡 = exp[𝛽𝑡 + 𝛾𝑡 log 𝜆𝑖,𝑡,𝑝], 𝛿𝑡))) 

 

+ ∑  

𝑀

𝑖=1

∑ ∑  

𝑆∈{𝐿,𝑅}

𝑇−1

𝑡=1

∑  

𝑑𝑆,𝑡∈{
Expand
Contract

}

∑ 

𝑁𝑖

𝑗=1

𝑃(𝐽𝑆,𝑡 = (−1)
𝜔(𝑑𝑆,𝑡)𝑗, 𝐷𝑆,𝑡 = 𝑑𝑆,𝑡|𝑶𝑖 , 𝑿𝑖; 𝜃) log (NB(𝑗 − 1; 𝜇𝑑𝑆,𝑡, 𝛿𝑑𝑆,𝑡)) 

+ ∑  

𝑀

𝑖=1

∑ ∑ ∑  

𝑑𝑆,𝑡∈{
Steady
Expand
Contract

}

𝑃(𝐷𝑆,𝑡 = 𝑑𝑆,𝑡|𝑶𝑖 , 𝑿𝑖; 𝜃) log(𝜋𝑡,𝑑𝑆,𝑡)

𝑆∈{𝐿,𝑅}

  

𝑇−1

𝑡=1

 

 

Parameter initialization 

 

The values of the model parameters before the first EM iteration are initialized as follows:  

1) All dynamics priors, 𝜋𝑡,𝑑, are set uniformly to 
1

3
; 

2) All parameters for the distributions modelling the Peak and Background components, 

𝛼𝑡 ,  𝛽𝑡,  𝛾𝑡 and 𝛿𝑡, are set to 1; 

3) All dispersion and mean parameters for the distributions modelling the boundary 

movements in Expand and Contract dynamics, 𝜇Expand,t, 𝛿Expand,t, 

𝜇Contract,t, and 𝛿Contract,t, are set to 1. 
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At each time point, ChromTime requires that the left boundary of each non-zero length peak is 

placed before its right boundary. This requirement in combination with the uniform priors over 

𝐵𝐿,1 and 𝐵𝑅,1 induces non-uniform conditional probabilities 𝑃(𝑉𝑡,𝑝 = Peak|𝑍𝑡 = 1), which 

depend on the position index 𝑝. As result, everything else being equal, bins in the middle of the 

block are more likely to be in the Peak component compared to flanking bins on each side. For 

example, in datasets with only one time point the conditional probability for a bin at position 𝑝 

(1 ≤ 𝑝 ≤ 𝑁) to be in a peak after marginalizing out the observed read counts in the model is: 

 

𝑃(𝑉1,𝑝 = Peak|𝑍1 = 1)

=∑∑𝑃(𝐵𝐿,1 = 𝑙, 𝐵𝑅,1 = 𝑟|𝑍1 = 1)

𝑁

𝑟=𝑝

𝑝

𝑙=1

=∑∑
𝑃(𝑍1 = 1|𝐵𝐿,1 = 𝑙, 𝐵𝑅,1 = 𝑟)𝑃(𝐵𝐿,1 = 𝑙, 𝐵𝑅,1 = 𝑟)

𝑃(𝑍1 = 1)

𝑁

𝑟=𝑝

𝑝

𝑙=1

=∑∑
𝑃(𝑍1 = 1|𝐵𝐿,1 = 𝑙, 𝐵𝑅,1 = 𝑟)𝑃(𝐵𝐿,1 = 𝑙)𝑃(𝐵𝑅,1 = 𝑟)

∑ ∑ 𝑃(𝑍1 = 1|𝐵𝐿,1 = 𝑙′, 𝐵𝑅,1 = 𝑟′)𝑃(𝐵𝐿,1 = 𝑙′)𝑃(𝐵𝑅,1 = 𝑟′)
𝑁
𝑟′=0

𝑁+1
𝑙′=1

𝑁

𝑟=𝑝

𝑝

𝑙=1

 

= ∑∑
1

∑ ∑ 1𝑁
𝑟′=𝑙′−1

𝑁+1
𝑙′=1

𝑁

𝑟=𝑝

𝑝

𝑙=1

= 
2𝑝(𝑁 − 𝑝 + 1)

(𝑁 + 1)(𝑁 + 2)
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The above equalities follow from 𝑃(𝐵𝐿,1 = 𝑙′) = 𝑃(𝐵𝑅,1 = 𝑟′) =
1

𝑁+1
 for all 𝑙′ ∈ [1, 𝑁 +

1], 𝑟′ ∈ [0, 𝑁] and 𝑃(𝑍1 = 1|𝐵𝐿,1 = 𝑙′, 𝐵𝑅,1 = 𝑟′) = 1 for 𝑙′ ≤ 𝑟′ − 1 and 𝑃(𝑍1 = 1|𝐵𝐿,1 =

𝑙′, 𝐵𝑅,1 = 𝑟′) = 0, otherwise. Of note, 𝑃(𝑉1,𝑝 = Peak|𝑍1 = 1) is symmetric with respect to the 

center of the block and has its maximum of 
𝑁

2(𝑁+1)
<

1

2
 at 𝑝 =

𝑁

2
. In datasets with more time 

points, 𝑃(𝑉𝑡,𝑝 = Peak|𝑍𝑡 = 1) has shown in practice to have similar relationship to the 

position index 𝑝, which can be computed by marginalizing out all remaining latent variables 

and the observed read counts from the joint probability distribution defined by the model (Fig 

3.S1Di). These conditional probabilities play a role during the learning stage of ChromTime, 

because they direct the model during the initial iterations of the EM to correctly associate the 

Peak component with high ChIP-seq signal and the Background component with low ChIP-seq 

signal. The assumption that high ChIP-seq signal will more likely be located in the middle of 

blocks is motivated by the procedure that determines the block boundaries in the first phase of 

ChromTime, which naturally produces blocks with high signal in the middle compared to their 

flanking regions (Fig 3.S1Dii-iv). As result, no further efforts from the initialization or the 

training procedures are necessary in practice to identify correctly each component.  

 

Expectation step 
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ChromTime provides an efficient implementation of the expectation step of EM based on a 

dynamic programming algorithm similar to the Baum-Welch algorithm for hidden Markov 

models. In brief, at each time point there are O(N2) ways to place the start and end positions of 

a peak, resulting in O(N4) combinations between any pair of consecutive time points. Thus, a 

standard forward-backward procedure that caches intermediate results can compute all 

expectations in O(T*N4) time and O(T*N2) memory. Since O(T*N4) time complexity can result 

in very long running times even for moderate N, ChromTime splits blocks that are longer than 

a predefined number of bins, MAX_BINS, (30 by default) into two halves (left and right) and 

estimates all sufficient statistics in each half independently. If block 𝑖 is longer than 

MAX_BINS, the split is performed at the position with the highest average ChIP-seq signal 

across all time points in the block, 𝐾𝑖. This splitting procedure corresponds to imposing an 

additional constraint on the values of the boundary position variables that 𝐵𝐿,𝑡 ≤ 𝐾𝑖 and 𝐵𝑅,𝑡 ≥

 𝐾𝑖 − 1 at each time point, 𝑡, while still having all bins between the left and the right 

boundaries annotated as peak bins (i.e. 𝑉𝑡,𝑝 = Peak  for all 𝑝 such that 𝐵𝐿,𝑡 ≤ 𝑝 ≤ 𝐵𝑅,𝑡 and 

𝑉𝑡,𝑝 = Background for all other values of 𝑝). This heuristic reduces the time complexity to 

O(T*N2) and the memory footprint to O(T*N), thus making the whole EM procedure run in 

feasible time and space. Since the O(T*N4) algorithm is applied only to blocks shorter than 

MAX_BINS bins, the total running time of ChromTime in a dataset of M blocks remains at 

most quadratic in the length of longer peaks in the data, O(M*T*N2). 
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For computational efficiency, if there are more than 10,000 blocks, ChromTime randomly 

selects 10,000 as input for the EM procedure.  

 

Maximization step 

 

The form of the complete log-likelihood implies that each set of model parameters can be 

optimized independently by solving for the roots of the respective partial derivatives. The 

dynamics prior probabilities are updated after each EM iteration as: 

 

𝑃(𝐷𝐿,𝑡 = 𝑑) = 𝑃(𝐷𝑅,𝑡 = 𝑑) =
1

2𝑀
∑ ∑  

𝑆∈{𝐿,𝑅}

𝑃(𝐷𝑆,𝑡 = 𝑑|𝑶𝑖 , 𝑿𝑖; �̃�)

𝑀

𝑖=1

 

 

Optimizing the peak and background signal components 

 

The part of the total log likelihood that pertains to the peak and background signal components 

is: 

 

𝐿𝐿𝑆𝑖𝑔𝑛𝑎𝑙(𝜃; �̃�, 𝒪,𝒳) = 
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=∑  

𝑀

𝑖=1

∑  

𝑇

𝑡=1

∑  

𝑁𝑖

𝑝=1

𝑃(𝑉𝑡,𝑝 = Peak|𝑶𝑖 , 𝑿𝑖; �̃�) log (NB(𝑂𝑖,𝑡,𝑝; 𝜇Peak,𝑡 = exp[𝛼𝑡 + 𝛾𝑡 log 𝜆𝑖,𝑡,𝑝], 𝛿𝑡)) +  

+∑  

𝑀

𝑖=1

∑  

𝑇

𝑡=1

∑  

𝑁𝑖

𝑝=1

𝑃(𝑉𝑡,𝑝 = Background|𝑶𝑖 , 𝑿𝑖; �̃�) log (NB(𝑂𝑖,𝑡,𝑝; 𝜇Bgr,𝑡 = exp[𝛽𝑡 + 𝛾𝑡 log 𝜆𝑖,𝑡,𝑝], 𝛿𝑡)) 

 

These equations are equivalent to the equations for finding the maximum likelihood estimates 

for the coefficients and the dispersion parameter of one weighted negative binomial regression 

for each time point and component (Peak and Background) that aims to predict the observed 

number of ChIP-seq reads, 𝑂𝑖,𝑡,𝑝 (as response), from the vector of covariates 𝑋𝑖,𝑡,𝑝 =

[1, log 𝜆𝑖,𝑡,𝑝]. The coefficients in our case are 𝛼𝑡 and 𝛾𝑡 (for the Peak component) and 𝛽𝑡 and 𝛾𝑡 

(for the Background component). The weights for each regression correspond to the posterior 

probabilities 𝑃(𝑉𝑡,𝑝 = Peak|𝑶𝑖 , 𝑿𝑖; �̃�) and 𝑃(𝑉𝑡,𝑝 = Background|𝑶𝑖 , 𝑿𝑖; �̃�), respectively. In 

contrast to standard regressions, for each time point we have a pair of coupled negative 

binomial regressions that share the dispersion parameter 𝛿𝑡 and the coefficient 𝛾𝑡. ChromTime 

implements a procedure that jointly optimizes each pair of coupled regressions, which is based 

on a modification of the glm.nb method from the MASS package[57] in R. In particular, we 

attempt to find the roots of the partial derivative of 𝐿𝐿𝑆𝑖𝑔𝑛𝑎𝑙(𝜃; �̃�, 𝒪,𝒳) with respect to the 

shared 𝛿𝑡 and 𝛾𝑡. Each of these derivatives however is simply the sum of the partial derivatives 

with respect to each parameter of the two components. Therefore, the standard procedure of 

fitting weighted negative binomial regressions can be reused whereby the part that finds the 
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roots of the partial derivatives with respect to 𝛿𝑡 and 𝛾𝑡, had they not been shared, is replaced 

by a routine that finds the roots of the sum of the partial derivatives across both components 

with respect to each parameter. On the other hand, the parts that find the roots of the partial 

derivatives with respect to 𝛼𝑡 and 𝛽𝑡 are the same as in the standard procedure for fitting 

weighted negative binomial regressions. The only other difference between our implementation 

and glm.nb is that ChromTime uses the HYBRD method from the MINPACK package[58] for 

finding roots of functions instead of Iterative Reweighted Least Squares (IRLS). In our tests, 

our optimization routine and glm.nb yielded very similar results for regular un-coupled 

weighted negative binomial regressions. 

 

Optimizing the boundary movement components 

 

The part of the total log likelihood that pertains to modelling the peak boundary movements is: 

 

𝐿𝐿𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡(𝜃; �̃�, 𝒪,𝒳) = 

 

=∑ 

𝑀

𝑖=1

∑ ∑  

𝑆∈{𝐿,𝑅}

𝑇−1

𝑡=1

∑  

𝑑𝑆,𝑡∈{
Expand
Contract

}

∑ 

𝑁𝑖

𝑗=1

𝑃(𝐽𝑆,𝑡 = (−1)
𝜔(𝑑𝑆,𝑡)𝑗, 𝐷𝑆,𝑡 = 𝑑𝑆,𝑡|𝑶𝑖 , 𝑿𝑖 ; �̃�) log (NB(𝑗 − 1; 𝜇𝑑𝑆,𝑡 , 𝛿𝑑𝑆,𝑡)) 

 

Again, this equation is equivalent to the equation for finding the maximum likelihood estimates 

of the coefficients and the dispersion parameter of one weighted negative binomial regression 
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for each dynamic and time point that aims to predict the number of positions the left or the 

right boundary moves minus 1 (𝑗 − 1, as response) from a single covariate which is the 

constant term equal to 1. The weights correspond to the posterior probability of moving the 

boundary by j positions, 𝑃(𝐽𝑆,𝑡 = (−1)𝜔(𝑑𝑆,𝑡)𝑗, 𝐷𝑆,𝑡 = 𝑑𝑆,𝑡|𝑶𝑖 , 𝑿𝑖; �̃�). The procedure to find the 

maximum likelihood estimates is the same as the one used in the previous section, except that 

no sharing of parameters is enforced between any of the regressions. 

 

Sharing dispersion parameter between negative binomial distributions 

 

Sharing the dispersion parameter 𝛿 between two negative binomial distributions ensures that 

the distribution with the smaller mean value has higher probabilities compared to the 

distribution with the larger mean value for the lowest values of the support domain of the 

negative binomial distribution, and that the opposite holds for the largest values of the support 

domain. Here we will prove this claim. Let 𝜇1 and 𝜇2 be the means of two negative binomial 

distributions, NB1 and NB2, respectively. Without loss of generality, we will assume that 0 ≤

𝜇1 < 𝜇2. Dividing the probability mass functions of the two distributions gives: 

 

𝑁𝐵1(𝑘)

𝑁𝐵2(𝑘)
=

Γ(𝑘 + 𝛿)
𝑘! Γ(𝛿) (

𝛿
𝜇1 + 𝛿

)
𝛿

(
𝜇1

𝜇1 + 𝛿
)
𝑘

Γ(𝑘 + 𝛿)
𝑘! Γ(𝛿)

(
𝛿

𝜇2 + 𝛿
)
𝛿

(
𝜇2

𝜇2 + 𝛿
)
𝑘
=
(

1
𝜇1 + 𝛿

)
𝛿

(
𝜇1

𝜇1 + 𝛿
)
𝑘

(
1

𝜇2 + 𝛿
)
𝛿

(
𝜇2

𝜇2 + 𝛿
)
𝑘
= (

𝜇1
𝜇2
)
𝑘

(
𝜇2 + 𝛿

𝜇1 + 𝛿
)
𝛿+𝑘
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Since 𝛿 > 0, substituting with 𝑘 = 0, gives: 

 

𝑁𝐵1(0)

𝑁𝐵2(0)
= (

𝜇1
𝜇2
)
0

(
𝜇2 + 𝛿

𝜇1 + 𝛿
)
𝛿

= (
𝜇2 + 𝛿

𝜇1 + 𝛿
)
𝛿

> 1 

 

Therefore, NB1 has higher probability for 𝑘 = 0 compared to NB2.  

 

To prove that the opposite holds for the largest values of the support, we will take the limit of 

the above ratio for 𝑘 → ∞: 

 

lim
𝑘→∞

𝑁𝐵1(𝑘)

𝑁𝐵2(𝑘)
= lim

𝑘→∞
(
𝜇1
𝜇2
)
𝑘

(
𝜇2 + 𝛿

𝜇1 + 𝛿
)
𝛿+𝑘

= (
𝜇2 + 𝛿

𝜇1 + 𝛿
)
𝛿

lim
𝑘→∞

(

𝜇1
𝜇1 + 𝛿
𝜇2

𝜇2 + 𝛿

)

𝑘

= 0 

 

The last equality holds, because: 

 

𝜇1
𝜇1 + 𝛿

−
𝜇2

𝜇2 + 𝛿
=

𝛿(𝜇1 − 𝜇2)

(𝜇1 + 𝛿)(𝜇2 + 𝛿)
< 0  ⟹ 

𝜇1
𝜇1 + 𝛿
𝜇2

𝜇2 + 𝛿

<  1  

 

Therefore, for sufficiently large 𝑘 NB2 has higher probability compared to NB1. 
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Computing the most likely spatial dynamic and peak boundaries for each block across 

the whole time course 

 

After the optimal values for all model parameters are estimated from the data, for each block 

the most likely positions of the peak boundaries at each time point are calculated. This 

procedure consists of two steps. First, ChromTime determines for each block all time points 

with significantly low probability of containing a false positive non-zero peak. Second, 

conditioned on those time points, ChromTime computes the most likely assignment of the peak 

boundary variables at each side and each time point.  

 

During the first step, for each block and each time point ChromTime computes the posterior 

probability that the whole time point is modelled as background, 𝜑𝑡,𝑖 = ∏ 𝑃(𝑉𝑡,𝑝 =
𝑁𝑖
𝑝=1

Background|𝑶𝑖 , 𝑿𝑖). This probability can be interpreted as the probability of making a false 

positive non-zero length peak call as estimated by the model at time point t in block 𝑶𝑖. To 

determine significant time points with low false positive probability, 𝜑𝑡,𝑖, ChromTime 

computes a time point specific threshold, 𝜏𝑡, at a predefined false discovery rate (0.05 by 

default) by applying the standard Benjamini-Hochberg procedure[59] on all values of 𝜑𝑡,𝑖  from 

time point t.  
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In the second step, for each block ChromTime computes the most likely sequence of 

assignments of the boundary positions, conditioned on the event that all time points that failed 

to pass the FDR threshold in the previous step for the block are assigned to having no peaks. In 

particular, ChromTime executes a dynamic programming algorithm similar to the Viterbi 

algorithm for hidden Markov models, which uses the following recursive formula to find the 

most likely position for the peak boundaries at each side, S (Left or Right) and enforces that 

time points that failed the FDR test contain no peaks: 

 

DP𝑡,𝑙,𝑟 =

{
 
 
 
 

 
 
 
 
 log 𝑃(𝐵𝐿,1 = 𝑙, 𝐵𝑅,1 = 𝑟, 𝑂1|𝑋1) , 𝑡 = 1

max
𝑙𝑡−1∈[1,𝑁+1]

𝑟𝑡−1∈{
 [𝑙𝑡−1−1,𝑁] if 𝜑𝑡,𝑖≤𝜏𝑡 

{𝑙𝑡−1−1}  otherwise    

 

(

 
 
 
 
 

 DP𝑡,𝑙𝑡−1,𝑟𝑡−1 +

 log 𝑃(𝐵𝐿,𝑡 = 𝑙, 𝐵𝑅,𝑡 = 𝑟, 𝑂𝑡|𝑋𝑡) +

 log 𝑃(𝐽𝐿,𝑡−1 = 𝑙𝑡−1 − 𝑙|𝐷𝐿,𝑡−1 = DYN(𝑙𝑡−1 − 𝑙)) +

 log 𝑃(𝐷𝐿,𝑡−1 = DYN(𝑙𝑡−1 − 𝑙)) +

 log 𝑃(𝐽𝑅,𝑡−1 = 𝑟 − 𝑟𝑡−1|𝐷𝑅,𝑡−1 = DYN(𝑟 − 𝑟𝑡−1)) +

 log 𝑃(𝐷𝑅,𝑡−1 = DYN(𝑟 − 𝑟𝑡−1)) )

 
 
 
 
 

, 𝑡 > 1
 

 

where DYN(𝑗) = {

 Steady if  𝑗 = 0
 Expand if  𝑗 ≥ 1
 Contract if  𝑗 ≤ −1

 

 

and DP denotes the dynamic programing cube of size T(N+1)2
 that stores the log likelihood for 

the best assignment of the peak boundary variables up to time point t. Tracing the DP cube 

from the highest value on row T back to row 1 retrieves the best assignment of the peak end 

variables. Similarly to the expectation step of the EM phase, for blocks longer than 
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MAX_BINS bins the best Viterbi path is chosen among the splits at the top MAX_BINS 

positions in the block sorted by their average ChIP-seq signal across all time points. Since 

MAX_BINS is a predefined constant, the whole procedure has the same time and space 

complexity as computing the expectations in the EM phase of ChromTime. The dynamic 

between any two time points is determined from the direction of the movement of the optimal 

positions of the corresponding boundaries.  

 

Transcription factor binding and DNaseI hypersensitivity data 

 

In Figure 3.3A, TF binding data for GATA3 was used from the same study of mouse T cell 

development[15].  

 

In Figure 3.S4A, OCT4, NANOG and P300 binding data for H1-hESC was downloaded from 

the ENCODE project [4]: 

 

https://www.encodeproject.org/files/ENCFF002CJF/@@download/ENCFF002CJF.bed.gz 

https://www.encodeproject.org/files/ENCFF002CJA/@@download/ENCFF002CJA.bed.gz 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/wgEnc

odeBroadHistoneH1hescP300kat3bPk.broadPeak.gz 
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In Figure 3.S4A IMR90 peaks for P300 generated from previously published data[60] were 

downloaded at 0.05 FDR from: 

http://chip-atlas.org/view?id=SRX212184 

 

Narrow peaks for all other TFs in Figure 3.S4A were downloaded from the ENCODE 

consortium[4] from the following URL: 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/ 

 

In Figure 3.S4A, DNaseI hypersensitivity peaks for H1 and IMR90 cells were downloaded 

from the Roadmap Epigenomics Consortium[5]: 

http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E003-

DNase.macs2.narrowPeak.gz 

http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E017-

DNase.macs2.narrowPeak.gz 

  

Cell type specific and shared annotations were derived after subtracting one of the annotations 

from the other with the BedTools software[61] using the “bedtools subtract –A” command and 

by intersecting the two annotations with “bedtools intersect”, respectively. 

 

Fold enrichments calculation 
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In Figures 3.3A and 3.S4A, three types of ChromTime blocks (T1-Tn Steady, Tx-Tn Expand 

and T1-Tx Contract) were defined to start and end from the left most to the right most 

boundary, respectively, of the non-zero length peaks across all time points within each block. 

“T1-Tn Steady” blocks have non-zero length peaks at all time points with both left and right 

boundaries predicted as steady across all time points. “Tx-Tn Expand” blocks have a non-zero 

length peak at the last time point, have no contracting boundaries and have an expanding 

boundary at at least one pair of consecutive time points. “T1-Tx Contract” blocks have a non-

zero length peak at the first time point, have no expanding boundaries and have a contracting 

boundary at at least one pair of consecutive time points. 

 

In Figure 3.S3, ChromTime peaks annotated with each dynamic class (e.g. E/E, E/S, etc) at 

each pair of consecutive time points were defined to start and end from the left most to the 

right most coordinate, respectively, of the peaks at the corresponding pair of time points.  

 

Fold enrichments of base pair overlap in Figure 3.3A, 3.S3, 3.S4A and 3.6 were computed for 

each pair of genomic features by dividing the size of their observed overlap by the size of their 

expected overlap. For two genomic features A and B, the observed overlap was defined as the 

total number of bases in their intersection, |𝐴 ∩ 𝐵|. The expected overlap was defined based on 
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a binomial null model that preserves the size of each feature and treats the two features as 

independently distributed within a certain set of eligible background genomic positions, G: 

E(𝐴, 𝐵) =  |𝐴| ∗
|𝐵|

|𝐺|
 

where |G| denotes the size of the set of all eligible positions. In Figures 3.3A and 3.S4A,  the 

set of eligible background positions was defined for each time course as all genomic bases 

covered by ChromTime peaks for that time course. In Figure 3.S3, the set of eligible 

background positions at each time point was defined as all bases in the union of all predicted 

ChromTime peaks from both replicates at that time point. In Figure 3.6, the set of eligible 

background positions is defined to be all genomic bases in the corresponding genome. In 

addition, in Figure 3.S3 and 3.6 in order to avoid extremely high enrichments due to very rare 

predicted dynamics classes a pseudo-count of 200 bp (i.e. one genomic bin) was added to each 

overlap. In Figure 3.S3, the fold enrichments for each pair of consecutive time points were 

log2-transformed and the average of the log-transformed values across all time point pairs is 

shown. In Figure 3.6, geometric means were taken across enrichments at each pair of 

consecutive time points and the resulted average enrichments were capped at a maximum value 

of 50. Clustering with optimal leaf ordering[62] was performed Figure 3.6 after this procedure. 

 

Gene expression 
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Gene expression data used in Figures 3.3B, 3.4, 3.S4B, 3.5, 3.S5 and 3.S6 was used from the 

same studies that provided the ChIP-seq data for the corresponding histone marks. Prior to all 

analysis, the gene expression values (RPKM) were transformed with log2(1+RPKM) and then 

Z-transformed within each time point. In Figures 3.3B and 3.S4B, we used all blocks with at 

least one non-zero length peak called with ChromTime by using data from all time points in 

each time course. Peaks that did not overlap a TSS were excluded from this analysis. For peaks 

that overlap multiple TSSs, the average gene expression change across all overlapping TSSs 

was used. 

 

Average rank differences based on gene expression change 

 

In Figures 3.4 and 3.S5 we compared whether ranking block boundaries by ChromTime 

posterior probabilities for Expand (left panels) and Contract (right panels) dynamics has better 

agreement with gene expression changes than ranking block boundaries by the number of 

genomic bases that peak boundaries move between consecutive time points when peaks are 

called at each time point by using input data only from that time point. The above comparison 

provides insights into whether ChromTime’s posterior probabilities, which are computed by 

reasoning jointly about all time points in the time course, have benefits compared to analyzing 

boundary movements of peaks that are called at each time point in isolation. To compute the 

latter in Figure 3.4 and 3.S5A we applied ChromTime to call peaks at each time point by using 
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as input only data from that time point (ChromTime SINGLE). We then used the boundaries of 

those peaks that overlapped predicted ChromTime peaks called by using data from all time 

points in the time course (ChromTime ALL). In Figure 3.S5B, we used the boundaries of broad 

peaks called with MACS2[35] with the --broad option that overlap blocks with predicted 

ChromTime ALL peaks. To call MACS2 peaks in H3K4me2 in mouse T cell development[15] 

we additionally used “--nomodel --extsize 200” options. In Figure 3.S5C, we used the 

boundaries of peaks called with SICER[37] with parameters as recommended[63] that overlap 

blocks with predicted ChromTime ALL peaks.  

 

To determine whether ranking based on ChromTime posteriors or ranking based on boundary 

movements between consecutive time points is better, we evaluated the consistencies of these 

rankings with respect to ranking all boundaries by the change in gene expression of genes 

whose TSS directly overlaps predicted peaks. Blocks with peaks that did not overlap a TSS 

were excluded from the analyses performed for Figures 3.4 and 3.S5. For blocks with peaks 

that overlap multiple TSSs, the average gene expression change across all overlapping TSSs 

was used.  

 

Between a pair of consecutive time points each block is represented by two boundaries – one 

boundary on the left side and one on the right side. If M is the total number of blocks with 

predicted peaks from both methods in each pairwise comparison, then the total number of 

101



 

boundaries is 2*M. For a pair of consecutive time points, t and t+1, each of these boundaries 

can either stay steady, or expand or contract relative to time point t. Technically, ChromTime 

blocks have the same number of boundaries at all time points even if some time points are 

predicted as zero length peaks (i.e. all background). In the case of  a zero length peak at time 

point t, the model sets the left and the right end boundaries so that 𝐵𝐿,𝑡 = 𝐵𝑅,𝑡 + 1 and 

posterior probabilities for the dynamics involving time point t are still estimated. The actual 

values of 𝐵𝐿,𝑡 and 𝐵𝑅,𝑡 of the boundaries of zero length peaks are determined by the model in 

the same way as boundary positions for non-zero length peaks.  

 

Expanding block boundaries of H3K4me2 and H3K4me3 peaks are expected to be found near 

genes that increase in gene expression at time point t+1 relative to time point t, and vice versa 

for contracting boundaries. To quantify the degree to which ranking by posteriors and ranking 

by boundary movements of peaks in isolation is more consistent with gene expression changes, 

for each pair of consecutive time points t and t+1 we computed the following quantities for 

each boundary i and dynamic D:  

 

1) CT(𝑖, 𝐷) – rank of boundary i when boundaries are sorted by ChromTime posteriors of 

dynamic D (where D is one of Expand (left plots) or Contract (right plots)) in descending 

order from the highest to the lowest posterior. 
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2) BM(𝑖, 𝐷) – rank of boundary i when boundaries are sorted by the number of genomic 

bases that the boundaries of the overlapping peaks called in isolation move. For D = 

Expand (left plots), this ranking is performed in descending order from the most 

expanding to the most contracting boundary, and vice versa for D = Contract (right 

plots). The number of genomic bases that a boundary moves is calculated as 

(−1)𝜔(𝑆)(𝐵𝑆,𝑡+1 − 𝐵𝑆,𝑡), where 𝐵𝑆,𝑡+1 and 𝐵𝑆,𝑡 are the genomic positions of the peak 

boundary on side 𝑆 (left or right) at times t+1 and t respectively, and 𝜔(𝑆) = 1 for left 

end boundaries and 𝜔(𝑆) = 0 for right end boundaries. To handle cases, where 

ChromTime SINGLE or MACS2 or SICER did not call a peak at a given time point 

within a block, a zero length peak for these methods were created artificially at the 

middle position of the non-zero length peak at the nearest time point to the time point 

with no peak. In this way, the first appearance in time of peaks for these methods within a 

block is effectively treated as a positive movement of both the left and the right boundary 

from a zero length peak at the previous time point that was placed in the middle of the 

new peak. Conversely, the complete removal of a peak is treated as a negative movement 

of both the left and the right boundary to a zero length peak at the next time point placed 

in the middle of the removed peak. Also, if two consecutive time points have no peaks, 

then the boundary movements between them of both the left and the right boundaries is 

set to 0. This procedure ensures that block boundaries at all time points can be associated 

with a boundary movement based peaks called in isolation. 
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3) Δ𝐸(𝑖, 𝐷) – rank of boundary i when boundaries are sorted by the change in gene 

expression at time point t+1 relative to time point t of the overlapping TSS. The gene 

expression change at each TSS is quantified as 𝐸𝑡+1 − 𝐸𝑡, where and 𝐸𝑡+1 and 𝐸𝑡 are the 

normalized gene expression levels at time points t+1 and t, respectively. For D=Expand 

(left plots), this ranking is performed in descending order (i.e. most up-regulated genes 

rank first and most down-regulated genes rank last), and vice versa for D=Contract (right 

plots).   

 

In all rankings, ties were broken randomly. Then for each rank k in rankings CT and BM, 

where 1 ≤ 𝑘 ≤ 2 ∗ 𝑀, and dynamic D we computed the average Δ𝐸(𝑖, 𝐷) rank of all 

boundaries up to and including rank k: 

𝜇𝐶𝑇(𝑘,𝐷) =
1

𝑘
∑ Δ𝐸(𝐶𝑇−1(𝑘′, 𝐷), 𝐷)

𝑘

𝑘′=1

 

and 

𝜇𝐵𝑀(𝑘, 𝐷) =
1

𝑘
∑ Δ𝐸(𝐵𝑀−1(𝑘′, 𝐷), 𝐷)

𝑘

𝑘′=1

 

 

where 𝐶𝑇−1(𝑘′, 𝐷) and 𝐵𝑀−1(𝑘′, 𝐷) denote the inverse functions of the rankings 𝐶𝑇 and 𝐵𝑀, 

respectively, which return the boundary of rank 𝑘′ according to the corresponding ranking. The 

two quantities, 𝜇𝐶𝑇(𝑘, 𝐷) and 𝜇𝐵𝑀(𝑘, 𝐷), measure the degree to which rankings CT and BM 
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associate with differential gene expression as measured by the ranking Δ𝐸 up to the first 𝑘 

boundaries ordered by each ranking. In particular, 𝜇𝐶𝑇(𝑘,𝐷) < 𝜇𝐵𝑀(𝑘, 𝐷) corresponds to the 

case where CT is more consistent with Δ𝐸 than BM is, because the first 𝑘 boundaries according 

to CT on average rank higher in terms of gene expression changes compared to the first 𝑘 

boundaries according to BM, and vice versa for  𝜇𝐶𝑇(𝑘, 𝐷) > 𝜇𝐵𝑀(𝑘, 𝐷). In Figures 3.4Aii, 

3.4Bii and the bottom plots in 3.S5, for each pair of consecutive time points t and t+1 we plot 

the difference 𝛿(𝑘, 𝐷) = 𝜇𝐵𝑀(𝑘, 𝐷) − 𝜇𝐶𝑇(𝑘, 𝐷) as a function of 𝑘. Thus, positive values 

correspond to ranks for which CT better associates with gene expression as measured by Δ𝐸 

than BM, and vice versa for negative values. The shaded regions correspond to 95% confidence 

intervals. Finally, due to large fluctuations of the 𝜇𝐶𝑇 and 𝜇𝐵𝑀 quantities in the top ranks, the 

plots are shown for 𝑘 ≥ 20. 

 

Gene expression changes as function of ChIP-seq signal changes for different predicted 

ChromTime dynamics 

 

In Figures 3.5 and 3.S6, gene expression changes are plotted as function of ChIP-seq signal 

change for all peaks annotated with the same predicted ChromTime dynamics. First, each 

block i was associated with the difference of the standardized log2 gene expression (as defined 

in the Gene expression section) at the nearest TSS within 50kb at each pair of consecutive 

time points t and t+1, Δ𝑒𝑖,𝑡.  
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In Figure 3.5, to compute the change of ChIP-seq density we first computed the log2 Control-

normalized ChIP-seq density for each block i at each time point t, as: 

 

𝐷𝑖,𝑡 = log2(1 + 𝑅𝑃𝐾𝑀𝑀,𝑡,𝑖) − log2(1 + 𝜆𝑡,𝑖) 

 

where 𝑅𝑃𝐾𝑀𝑀,𝑡,𝑖 denotes the number of reads per kilobase per million mapped reads (RPKM) 

from the histone mark ChIP-seq, M, and 𝜆𝑡,𝑖 denotes the average expected number of reads for 

all bins in block i at time point t. The RPKM and 𝜆𝑡,𝑖 values for each block at each time point 

were computed over the same genomic territory spanning from the left most to the right most 

coordinate of the predicted peaks across all time points in the block. To compute the change in 

signal density between consecutive time points, we computed the difference between the 

corresponding 𝐷𝑖,𝑡 values: 

 

𝛿𝑖,𝑡 = 𝐷𝑖,𝑡+1 − 𝐷𝑖,𝑡 

 

To visualize the relationship between signal density changes and gene expression changes, the 

tuples (𝛿𝑖,𝑡, Δ𝑒𝑖,𝑡) were pooled together across all time points and a Loess regression with linear 

polynomials was fitted with the loess function[64] in R with default parameters except for 

106



 

degree=1. In cases with too many tuples the R package required excessive memory to compute 

the loess curves and, thus, 10,000 tuples were chosen at random as input for the loess function. 

 

In Figure 3.S6, the same procedure was applied except that 𝛿𝑖,𝑡 values were defined as 

differential peak scores of peaks called by different methods. Two independent differential 

peak callers were used, MACS2[35] and SICER[37], which were recommended by a previous 

study that evaluated a number of differential peak callers[63]. With each differential caller we 

called differential and common peaks between every pair of consecutive time points in each 

time course according to the instructions in the evaluation study[63]. For each peak caller, we 

intersected ChromTime blocks with all called peaks from the caller and performed the analysis 

only on peaks identified by both ChromTime and the corresponding differential peak caller. 

 

For MACS2, the differential score was defined as the log2 fold change of the signal of each 

differential or common peak as computed by MACS2. 

 

For SICER, the differential score for each peak was defined as: 

 

(−1)𝑞(− log10min(FDR_A_vs_B, FDR_B_vs_A) 

 

where 
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𝑞 = {
1 if FDR_A_vs_B < FDR_B_vs_A
0 otherwise

 

 

The differential score for SICER has a negative sign for SICER peaks with enriched signal at 

the previous time point compared to the next time point, and a positive sign for peaks with 

enriched signal at the next time point compared to the previous time point. For peaks for which 

the FDR outputted by SICER was 0, the differential score was defined as the maximum 

differential score across all peaks with non-zero FDRs multiplied by (−1)𝑞 in order to take 

into account the direction of enrichment. 

 

Analysis of directional preferences of spatial dynamics of chromatin marks 

 

The average log-ratios in Figure 3.7 were computed across all tested datasets for the 

corresponding mark (see Results). For each time course, we split all ChromTime peaks into 

two groups, TSS+-1kb and TSS distal. The TSS+-1kb group contains all peaks whose distance 

to the nearest TSS is less than 1kb as measured with the “bedtools closest” software[61]. All 

other peaks were put in the TSS distal group. For each dataset and each group, we computed 

the log ratios for each pair of consecutive time points after adding a pseudo-count of 10 TSS +-

1kb and 10 TSS distal peaks. Then, we averaged those log-ratios across all time points in the 

dataset. For marks mapped in at least six time courses, we then plotted the average across all 
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tested datasets as a solid black line in each subplot. A two-tailed Mann-Whitney test was 

performed for these marks to assess the statistical significance of the difference between the 

TSS+-1kb and TSS distal groups with the SciPy library[65]. To compute averages and test 

statistics in Figures 3.7 and 3.S7, all datasets were treated as independent, except in the case of 

the mouse hematopoiesis data[17]. For this time course, we applied ChromTime on data from 

each branch of the hematopoietic tree and computed a single average across all branches for 

the corresponding enrichment. The single average was then used in place of the values for each 

individual branch. This was done in order to avoid biasing statistics towards the Mouse 

hematopoiesis data, since branches in the hematopoietic tree overlap substantially and, thus, 

cannot be treated as independent datasets.  

 

ABBREVIATIONS 

 

DHS: DNase I Hypersensitive Sites 

HM: Histone mark 

TF: Transcription factor 

TSS: Transcription start-site 

ChIP-seq: Chromatin immunoprecipitation coupled with high throughput DNA sequencing 

FDR: False Discovery Rate 

EM: Expectation Maximization 
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Figure 3.1: Overview of the ChromTime method. (A) Examples of H3K4me2 peaks with 

steady, expanding and contracting boundary dynamics, shown from left to right respectively, 

across five time points during mouse T cell development[15]. Time points 1, 2 and 3 

correspond to in vitro differentiated T cell precursors (FLDN1, FLDN2a and FLDN2b), 

whereas time points 4 and 5 correspond to in vivo purified thymocytes (ThyDN3 and ThyDP). 

Normalized ChIP-seq signal, MACS2[35] peaks (black rectangles) and ChromTime output are 

shown for each time point. Peaks upstream of Zfp148 gene are called steady by ChromTime 

despite fluctuations of MACS2 peak boundaries. In contrast, ChromTime calls a peak at the 

Skap1/GM11529 promoter to expand after time points 2 and 3. Conversely, ChromTime calls a 

peak upstream of GPR141 gene to contract after time points 2, 3, and 4. (B) Overview of the 

ChromTime method. During the block finding stage, input ChIP-seq and, optionally, control 

reads are used to determine blocks of signal enrichment. In the dynamics prediction stage, for 

each block, peak boundary positions are predicted at each time point and peak boundary 

dynamics are predicted at each pair of consecutive time points. (C) Schematic of predicting 

dynamics for one block. Boxes represent genomic bins at each time point. ChIP-seq signal is 

depicted as blue bars for each bin whose height represents the number of reads mapped to the 

bin. ChromTime learns a probabilistic mixture model from the input data to partition each 

block at each time point into peak and background components. Bins in the peak component 

(orange) mark ChIP-seq peaks whereas those in the background component (white) mark 

flanking background signal. The movement of the boundaries on the left and the right side of 
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peaks between consecutive time points are estimated by reasoning jointly about the input data 

from all time points. 
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Figure 3.2: Sample output from ChromTime with contracting peaks. Genome browser 

screenshot with sample output of ChromTime for H3K4me2 from the T cell development time 

course in mouse[15] with 5 time points at the Esam/Vsig2/Nrgn locus. Time points 1, 2 and 3 

correspond to in vitro differentiated T cell precursors (FLDN1, FLDN2a, and FLDN2b), 

whereas time points 4 and 5 correspond to in vivo purified thymocytes (ThyDN3 and ThyDP). 

The input ChIP-seq signal and MACS2[35] peaks (black boxes under each signal track) are 

shown in the upper panel of the screenshot. The ChromTime predicted peaks colored by their 

boundary dynamics for each block at each time point are shown in the bottom panel. The first 

peak in each block is colored in dark grey. Each subsequent peak is colored with respect to the 

predicted dynamic relative to its previous time point. Peaks with steady boundaries on both 

sides are shown in light grey, and those with at least one contracting boundary are shown in 

blue. Nearby peaks that touch boundaries are visualized as one peak by the genome browser. 

Not shown in the figure are expanding peaks, peaks at single time points and peaks with 

opposite dynamics (Expand on the left and Contract on the right, or vice versa), which would 

be colored in red, orange and black, respectively. See Fig 3.S2 for examples of predicted 

expanding peaks. 
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Figure 3.3: Changes in GATA3 binding and gene expression at predicted H3K4me2 

dynamics in T cell development. (A) Fold enrichments of cell type specific and shared peaks 

of GATA3, which is a master regulator in T cell development[15], are shown for three sets of 

blocks with predicted H3K4me2 peaks: 1) blocks with peaks present at all time points whose 

boundaries hold steady on both sides throughout the whole time course (T1-Tn Steady); 2) 

blocks with non-contracting peaks whose boundaries expand between at least one pair of 

consecutive time points and have a peak at the last time point (Tx-Tn Expand); and 3) blocks 

with non-expanding peaks whose boundaries contract between at least one pair of consecutive 

time points and have a peak at the first time point (T1-Tx Contract). First column shows the 

percentage of bases out of all bases covered by peaks of the set. Last row shows the baseline 

percentage for each feature out of all bases covered by ChromTime peaks at any time point. 

Percentages are colored from 0 (white) to 100 (green). Fold enrichments in each column are 

colored from 1 (white) to the maximum value in the column (red). FLDN1 and ThyDP denote 

differentiated T cell precursors and purified thymocytes, which are the first and the last time 

point, respectively. (B) Boundaries of blocks with predicted H3K4me2 peaks overlapping 

annotated TSSs were sorted in decreasing order by their posterior probability for Expand 

dynamic (left plots) and Contract dynamic (right plots) at each pair of consecutive time points 

(see Supplementary Methods). Gene expression differences between consecutive time points 

were calculated as the average difference of all overlapping TSSs for each block. For each 

posterior rank (X-axis) the plot shows the cumulative average gene expression difference (Y-
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axis). Expanding boundaries associated with increase of gene expression and contracting 

boundaries associated with decrease of gene expression. Shaded regions correspond to 95% 

confidence intervals. 
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A. H3K4me2 in mouse T cell development

H3K4me3 in human stem cell reprogrammingB. 

Figure 3.4
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Figure 3.4: ChromTime predictions associate better with expression changes than 

boundary movements of peaks called in isolation. (A) For H3K4me2 in mouse T cell 

development[15] ChromTime was applied once with data from all time points (ChromTime 

ALL), and once with single time points in isolation (ChromTime SINGLE; see 

Supplementary Methods). Time points 1, 2 and 3 correspond to T cell precursors, whereas 4 

and 5 to purified thymocytes. Peaks called by both procedures overlapping annotated TSSs 

were analyzed for their relationship with gene expression changes. (i) (Left) Comparison of 

agreement with expression for expansions when applying ChromTime ALL and ChromTime 

SINGLE for the change between time points 3 and 4. Block boundaries were sorted in 

decreasing order of their Expand posterior probabilities from ChromTime ALL and compared 

to sorting them in decreasing order of the difference of peak boundary positions in ChromTime 

SINGLE peaks with positive differences indicating peaks expanding with time. Each boundary 

was also ranked by gene expression difference of overlapping TSSs in decreasing order with 

positive expression differences indicating gain with time. The cumulative average boundary 

rank of expression change (Y-axis) is shown for the boundary change ranking for ChromTime 

ALL and ChromTime SINGLE (X-axis). Low Y-values indicate stronger association with 

expression changes. Black line shows expected average expression change rank. Shaded 

regions indicate 95% confidence intervals. Plots for other time points can be found in Fig 3.S5. 

(Right) Analogous to left plots for Contract posterior probabilities for ChromTime ALL, 

increasing order of the difference of boundary change positions for ChromTime SINGLE, and 
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increasing order of expression changes. (ii) Differences between ChromTime ALL and 

ChromTime SINGLE values shown in (i) between time points 3 and 4 as well as for each other 

pair of time points. Positive values correspond to boundaries ranked based on ChromTime 

ALL better associating with gene expression changes than ChromTime SINGLE. Black lines 

show expected difference of zero between random rankings. (B) As in (A) for H3K4me3 in 

human stem cell reprogramming[21]. Time points correspond to hiF-T fibroblasts, fibroblasts 

at 5, 10 and 20 days after induction, and hIPSC-T cells.  
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Figure 3.5: Spatial dynamics can contain additional information about gene expression 

changes beyond ChIP-seq signal density changes. Gene expression change is plotted as 

function of ChIP-seq signal density change after loess smoothing for each predicted 

ChromTime dynamic for (A) H3K4me2 dynamics in T cell development in mouse[15]; and (B) 

in H3K4me3 dynamics in stem cell reprogramming in human[21]. Peaks of each type of 

dynamics were pooled from all time points for this analysis. Peaks with asymmetric dynamics 

E/S and S/E were pooled together in the “E-S” group. Similarly C/S and S/C peaks were 

pooled in the “C-S” group. In both systems, peaks with the same signal density change can 

associate with different gene expression changes depending on the predicted spatial dynamic. 

Shaded regions represent 95% confidence intervals. 
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Figure 3.6: Spatial dynamics of multiple different HMs co-localize within a time course. 

Hierarchical clustering with optimal leaf ordering[62] of the geometric average fold 

enrichments taken across all time points of the overlap of every pair of predicted spatial 

dynamics for mapped HMs in (A) mouse adipogenesis[16] and (B) human stem cell 

reprogramming[21]. At each pair of time points, “Expand” and “Contract” dynamics are 

defined as all peaks that are predicted as either unidirectional or bidirectional expansions and 

contractions, respectively, whereas “Steady” dynamics are defined as all peaks that have 

predicted steady boundaries at both sides. Peaks with opposing dynamics at each side (i.e. E/C 

and C/E) were excluded from this analysis. In both datasets, expansions, contractions and 

steady peaks of H3K4me1, H3K4me2, H3K4me3 and H3K27ac tend to cluster together within 

each of the three classes, whereas spatial dynamics of H3K27me3 and H3K36me3 peaks tend 

to occupy different locations. All enrichments were capped at 50. 
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Figure 3.7: Direction of asymmetric dynamics correlates with direction of transcription. 

(A) (i) Left panel shows a schematic representation of unidirectional expansions that expand in 

the same direction as transcription and in the opposite direction of transcription. The adjacent 

plots show, for each mark, the average log2 ratio between the fraction of unidirectional 

expansions that expand in the same directions as transcription of the nearest gene and the 

fraction of unidirectional expansions that expand in the opposite direction of transcription of 

the nearest gene for blocks that are within 1 kb of annotated TSSs and for more distal blocks. 

Positive values correspond to enrichment of unidirectional expansions in the same direction as 

transcription. For marks mapped in at least six time courses, a black line is plotted representing 

the average across all data sets and significant differences are denoted with asterisks based on a 

two-tailed Mann-Whitney test at a p-value threshold of 0.05. (ii) Left panel shows analogous 

schematic for unidirectional contractions. Likewise, adjacent plots show, for each mark, the 

average ratio between the fraction of unidirectional contractions that contract in the opposite 

direction of transcription of the nearest TSS and unidirectional contractions that contract in the 

same direction as transcription of the nearest TSS. (B) Left panel shows an example of 

unidirectional expansions between pairs of time points that expand in the same direction as 

transcription at the Hs6st1 gene of the H3K4me2 mark in the T cell development dataset[15]. 

Right panel shows an example of unidirectional contractions in the opposite direction of 

transcription at the DNMT3B gene. Time points 1, 2 and 3 correspond to in vitro differentiated 

T cell precursors, whereas time points 4 and 5 correspond to in vivo purified thymocytes. The 
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predicted ChromTime peaks colored by their boundary dynamics are shown under the signal 

track for each time point. 
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Supplementary Figure 3.1: Details of the ChromTime method. (A) Calling enriched 

intervals at a given time point during the block finding stage of ChromTime. The number of 

ChIP-seq reads and its expectation are shown for each bin within a genomic region. 

Significantly enriched bins are called after correcting for multiple testing at FDR of 0.01 (seed 

step). Enriched bins are extended locally in both directions until a bin is found whose 

enrichment is not significant at a P-value of 0.15 (extend step). Extended bins are marked 

with “~” signs in the schematic. Continuous intervals are joined if they are separated by gaps 

of up to MIN_GAP bins (3 by default). (B) Enriched intervals from (A) that overlap across 

time are grouped in blocks. Blocks are further extended by BLOCK_EXTEND bins (5 by 

default, or up to the midpoint to their nearest neighbor block) up and down-stream from the 

left-most and the right-most position respectively of the enriched intervals within blocks. (C) 

Graphical model for the ChromTime mixture model with T time points. The learned model 

has T levels of BL,t, BR,t Vt,p and Ot,p variables – one for each time point, and T-1 levels of DL,t 

and DR,t variables in between. Observed and latent variables are represented as boxes and 

circles, respectively. Example values for observed read counts are represented with blue bars 

inside each box. All conditional and prior probabilities from the model, their distribution type 

and their parameters estimated during the expectation maximization phase, are listed on the 

right. The probability mass function for 𝑃(𝑍𝑡|𝐵𝐿,𝑡 , 𝐵𝑅,𝑡) is given below all parameters. (D) (i) 

The conditional probabilities of the 𝑉𝑡,𝑝 variables, which model the probability that bin at 

position 𝑝 at time point 𝑡 is annotated as Peak, conditioned on the requirement that the left 
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end boundary is placed before the right end boundary, 𝑃(𝑉𝑡,𝑝 = Peak|𝑍𝑡 = 1), at each time 

point are plotted as a function of the bin position 𝑝. The values of 𝑃(𝑉𝑡,𝑝 = Peak|𝑍𝑡 = 1) are 

shown for a block of length 30 bins (corresponding to default value of the MAX_BINS 

parameter, see Supplementary Methods) in a dataset with 5 time points computed after 

marginalizing out the observed read counts and with model parameters as initialized at the 

beginning of the EM procedure. Lines are largely overlapping and have their maximum at the 

center bin. (ii) The average fraction of blocks with significant bins at FDR 0.01 from the seed 

step during the block finding stage of ChromTime as a function of the bin position for 

H3K4me2 in mouse T cell development[15] for blocks of length up to 30 bins. Each line 

corresponds to one time point. X-axis corresponds to bin positions within blocks when blocks 

are rescaled uniformly to length of 30 bins. (iii, iv) as in (ii) for H3K4me3 in human stem cell 

reprogramming[21] and H3K79me2 in mouse stem cell reprogramming[24]. In all three cases, 

(ii-iv), the average fraction of blocks with significant bins has its maximum at the central 

positions of the blocks, which is consistent with the assumption of the method that the 

conditional probability 𝑃(𝑉𝑡,𝑝 = Peak|𝑍𝑡 = 1) peaks at central positions. 
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Supplementary Figure 3.2: Sample output from ChromTime with expanding peaks. 

Genome browser screenshot with sample output of ChromTime for H3K4me2 from the T cell 

development time course in mouse[15] with 5 time points at the Gm10684/Scn2b locus. Time 

points 1, 2 and 3 correspond to in vitro differentiated T cell precursors (FLDN1, FLDN2a, 

and FLDN2b), whereas time points 4 and 5 correspond to in vivo purified thymocytes 

(ThyDN3 and ThyDP). The input ChIP-seq signal and MACS2[35] peaks (black boxes under 

each signal track) are shown in the upper panel of the screenshot. The predicted ChromTime 

peaks colored by their boundary dynamics for each block at each time point are shown in the 

bottom panel. The first peak in each block is colored in dark grey. Each subsequent peak is 

colored with respect to the predicted dynamic relative to its previous time point. Peaks with 

steady boundaries on both sides are shown in light grey, and those with at least one expanding 

are shown in red. Not shown in the figure are contracting peaks, peaks at single time points 

and peaks with opposite dynamics (Expand on the left and Contract on the right, or vice 

versa), which would be colored in blue, orange and black, respectively. See Fig 3.2 for 

examples of predicted contracting peaks. 
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H3K4me2 in mouse T cell development H3K(9,14)ac in mouse T cell development 

0-6 6

Log2 Fold EnrichmentBase %

0 100

Base % C/C C/S S/C S/S C/E E/C E/E E/S S/E
C/C 1.9 4.7 1.2 1.5 -1.9 -0.6 -1.2 -3.7 -5.9 -6.7
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S/C 6.6 2.9 1.6 3.1 -1.0 0.0 -0.8 -2.3 -4.1 -3.9
S/S 74.5 -5.1 -0.8 -0.8 0.2 0.0 -1.9 -3.0 -1.1 -1.2
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Base % 0.1 2.1 2.1 72.4 0.0 < 0.1 0.2 1.8 2.0

Figure 3.S3
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Supplementary Figure 3.3: Reproducibility of ChromTime predictions across biological 

replicates. Average log2 fold enrichments (positive values, red) and depletions (negative 

values, blue) of base level overlap between peaks with predicted spatial dynamics in 

biological replicate experiments for H3K4me2 and H3K(9/14)ac in mouse T cell 

development[15]. The first column and the last row in each table show the average baseline 

fraction of bases covered by each dynamic out of all bases covered by ChromTime peaks. The 

averages are taken across all pairs of consecutive time points in each time course.  
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Figure 3.S4
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Supplementary Figure 3.4: Changes in TF binding, DHS and gene expression at 

ChromTime predicted dynamics. (A) Three sets of peaks were examined as defined in Fig 

3.3: T1-Tn Steady, Tx-Tn Expand, and T1-Tx Contract. (i) For predicted H3K27ac  dynamics 

in human stem cell reprogramming[21], fold enrichments are shown for DHS, CEBP, P300, 

OCT4 and NANOG. OCT4 and NANOG are key factors for maintaining pluripotency. 

IMR90 and H1 denote IMR90 human fetal lung fibroblast cells and H1 human embryonic 

stem cells, respectively, which resemble biologically the first and the last time point in this 

time course. (ii) As in (i) for DHS, CEBP, POL2 and RAD21 binding for different H3K4me3 

dynamics during human stem cell reprogramming[21]. (B) For blocks with predicted peaks of 

(i) H3K27ac and (ii) H3K4me3 in human stem cell reprogramming[21] that overlap annotated 

TSSs, block boundaries were sorted in decreasing order by their posterior probability for 

Expand dynamic (left plots) and Contract dynamic (right plots) at each pair of consecutive 

time points (see Supplementary Methods). For each block boundary, gene expression 

differences were calculated between consecutive time points as the average difference of all 

TSSs overlapping the region spanning from the left-most to the right-most coordinate of peaks 

within the block, with positive values corresponding to increasing expression. For each 

posterior rank (X-axis) the plots show the cumulative average gene expression change (Y-

axis). In both datasets, expanding boundaries associate with increase of gene expression and 

contracting boundaries associate with decrease of gene expression. Shaded regions correspond 

to 95% confidence intervals. 
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i) H3K4me2 in mouse T cell development
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Figure 3.S5

20 5000 10000 15000 20000
Rank by Expansion

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Expansions T1/2

ChromTime ALL
MACS2 T1 & T2

20 5000 10000 15000 20000
Rank by Contraction

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Contractions T1/2

ChromTime ALL
MACS2 T1 & T2

20 5000 10000 15000 20000
Rank by Expansion

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Expansions T2/3

ChromTime ALL
MACS2 T2 & T3

20 5000 10000 15000 20000
Rank by Contraction

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Contractions T2/3

ChromTime ALL
MACS2 T2 & T3

20 5000 10000 15000 20000
Rank by Expansion

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Expansions T3/4

ChromTime ALL
MACS2 T3 & T4

20 5000 10000 15000 20000
Rank by Contraction

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Contractions T3/4

ChromTime ALL
MACS2 T3 & T4

20 5000 10000 15000 20000
Rank by Expansion

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Expansions T4/5

ChromTime ALL
MACS2 T4 & T5

20 5000 10000 15000 20000
Rank by Contraction

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Contractions T4/5

ChromTime ALL
MACS2 T4 & T5

20 5000 10000 15000 20000
Rank

0

1000

2000

3000

4000

5000

6000

7000

Av
er

ag
e 

Ra
nk

s 
D

i�
er

en
ce

 b
as

ed
 o

n 
Ex

pr
es

si
on

 C
ha

ng
e

Expansions at All Time Points

T 1/2
T 2/3
T 3/4
T 4/5

20 5000 10000 15000 20000
Rank

−1000

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e 

Ra
nk

s 
D

i�
er

en
ce

 b
as

ed
 o

n 
Ex

pr
es

si
on

 C
ha

ng
e

Contract at All Time Points

T 1/2
T 2/3
T 3/4
T 4/5

B
i) H3K4me2 in mouse T cell development

20 5000 10000 15000 20000
Rank by Expansion

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Expansions T1/2

ChromTime ALL
MACS2 T1 & T2

20 5000 10000 15000 20000
Rank by Contraction

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Contractions T1/2

ChromTime ALL
MACS2 T1 & T2

20 5000 10000 15000 20000
Rank by Expansion

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Expansions T2/3

ChromTime ALL
MACS2 T2 & T3

20 5000 10000 15000 20000
Rank by Contraction

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Contractions T2/3

ChromTime ALL
MACS2 T2 & T3

20 5000 10000 15000 20000
Rank by Expansion

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Expansions T3/4

ChromTime ALL
MACS2 T3 & T4

20 5000 10000 15000 20000
Rank by Contraction

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Contractions T3/4

ChromTime ALL
MACS2 T3 & T4

20 5000 10000 15000 20000
Rank by Expansion

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Expansions T4/5

ChromTime ALL
MACS2 T4 & T5

20 5000 10000 15000 20000
Rank by Contraction

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Contractions T4/5

ChromTime ALL
MACS2 T4 & T5

20 5000 10000 15000 20000
Rank

0

1000

2000

3000

4000

5000

6000

7000

Av
er

ag
e 

Ra
nk

s 
D

i�
er

en
ce

 b
as

ed
 o

n 
Ex

pr
es

si
on

 C
ha

ng
e

Expansions at All Time Points

T 1/2
T 2/3
T 3/4
T 4/5

20 5000 10000 15000 20000
Rank

0

2000

4000

6000

8000

Av
er

ag
e 

Ra
nk

s 
D

i�
er

en
ce

 b
as

ed
 o

n 
Ex

pr
es

si
on

 C
ha

ng
e

Contract at All Time Points

T 1/2
T 2/3
T 3/4
T 4/5

ii) H3K4me3 in human stem cell reprogramming
MACS2

139



20 5000 10000 15000 20000
Rank by Expansion

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Expansions T1/2

ChromTime ALL
SICER T1 & T2

20 5000 10000 15000 20000
Rank by Contraction

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Contractions T1/2

ChromTime ALL
SICER T1 & T2

20 5000 10000 15000 20000
Rank by Expansion

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Expansions T2/3

ChromTime ALL
SICER T2 & T3

20 5000 10000 15000 20000
Rank by Contraction

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Contractions T2/3

ChromTime ALL
SICER T2 & T3

20 5000 10000 15000 20000
Rank by Expansion

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Expansions T3/4

ChromTime ALL
SICER T3 & T4

20 5000 10000 15000 20000
Rank by Contraction

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Contractions T3/4

ChromTime ALL
SICER T3 & T4

20 5000 10000 15000 20000
Rank by Expansion

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Expansions T4/5

ChromTime ALL
SICER T4 & T5

20 5000 10000 15000 20000
Rank by Contraction

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ex
pr

es
si

on
 C

ha
ng

e 
Ra

nk

Contractions T4/5

ChromTime ALL
SICER T4 & T5

20 5000 10000 15000 20000
Rank

0

1000

2000

3000

4000

5000

6000

7000

8000

Av
er

ag
e 

Ra
nk

s 
D

i�
er

en
ce

 b
as

ed
 o

n 
Ex

pr
es

si
on

 C
ha

ng
e

Expansions at All Time Points

T 1/2
T 2/3
T 3/4
T 4/5

20 5000 10000 15000 20000
Rank

0

1000

2000

3000

4000

5000

6000

7000

Av
er

ag
e 

Ra
nk

s 
D

i�
er

en
ce

 b
as

ed
 o

n 
Ex

pr
es

si
on

 C
ha

ng
e

Contract at All Time Points

T 1/2
T 2/3
T 3/4
T 4/5

Figure 3.S5
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Supplementary Figure 3.5: Predicted spatial dynamics by ChromTime associate better 

with gene expression changes compared to boundary position changes of peaks called 

from single time points in isolation. This figure extends results presented in Fig 3.4 (A) (i) 

For H3K4me2 in mouse T cell development[15] ChromTime was applied once with data from 

all time points (ChromTime ALL), and once with single time points in isolation (ChromTime 

SINGLE; see Supplementary Methods). Time points 1, 2 and 3 correspond to T cell 

precursors, whereas 4 and 5 to purified thymocytes. Peaks called by both procedures 

overlapping annotated TSSs were analyzed for their relationship with gene expression 

changes. Left plots show comparisons of agreement with expression for expansions when 

applying ChromTime ALL and ChromTime SINGLE for the change between each pair of 

time points. Block boundaries were sorted in decreasing order of their Expand posterior 

probabilities from ChromTime ALL at each pair of consecutive time points and compared to 

sorting them in decreasing order of the difference of their positions in ChromTime SINGLE 

peaks with positive differences indicating peaks expanding with time. Each boundary was 

also ranked by gene expression difference of overlapping TSS in decreasing order with 

positive expression differences indicating gain with time. The cumulative average boundary 

rank of expression change (Y-axis) is shown for the boundary change ranking for ChromTime 

ALL and ChromTime SINGLE (X-axis). Low Y-values indicate stronger association with 

expression changes. Black line shows expected average expression change rank. Shaded 

regions indicate 95% confidence intervals. The last plot at the bottom shows differences 
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between ChromTime ALL and ChromTime SINGLE values shown in the individual plots 

above for each pair of time points. Positive values correspond to boundaries ranked based on 

ChromTime ALL better associating with gene expression changes than ChromTime SINGLE. 

Black lines show expected difference of zero between random rankings. Plots on the right 

show analogous comparisons for Contract posterior probabilities for ChromTime ALL, 

increasing order of the difference of boundary change positions for ChromTime SINGLE, and 

increasing order of expression changes. (ii) As in (i) for H3K4me3 in human stem cell 

reprogramming[21]. Time points correspond to hiF-T fibroblasts, fibroblasts at 5, 10 and 20 

days after induction, and hIPSC-T cells. (B) as in (A) when ChromTime ALL posteriors are 

compared to boundary movements of MACS2[35] peaks called at single time points in 

isolation. (C) as in (A) when ChromTime ALL posteriors are compared to boundary 

movements of SICER peaks called at single time points in isolation.  
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Figure 3.S6
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Supplementary Figure 3.6: Spatial dynamics can contain additional information about 

gene expression changes beyond differential ChIP-seq peak calls. Similar to Fig 3.5, gene 

expression change is plotted as function of method-specific differential peak scores after loess 

smoothing from two differential peak calling methods, MACS2[35] (left) and SICER[37] 

(right) for each predicted ChromTime dynamic (see Supplementary Methods) for (A) 

H3K4me2 dynamics in T cell development in mouse[15]; and (B) in H3K4me3 dynamics in 

stem cell reprogramming in human[21]. Peaks of each type of dynamics were pooled from all 

time points for this analysis. Peaks with asymmetric dynamics E/S and S/E were pooled 

together in the “E-S” group. Similarly C/S and S/C peaks were pooled in the “C-S” group. In 

both systems, peaks with the same differential peak score can associate with different gene 

expression changes depending on the predicted spatial dynamic. Shaded regions represent 

95% confidence intervals. 
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Supplementary Figure 3.7: Average percentages of unidirectional expansions and 

contractions per pair of consecutive time points for each dataset. For each chromatin 

mark within each time course, the average percentage of unidirectional expansions and 

contractions out of all expansions and contractions, respectively, per pair of consecutive time 

points are calculated. For marks represented by six or more datasets, the average across all 

datasets is plotted as a black line. 
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Table 3.1: Datasets used for analysis with ChromTime 

System Chromatin Marks Species # Time Points Reference 

Adipogenesis H3K4me2 

H3K4me3  

H3K27ac 

H3K4me1 

H3K36me3 

H3K27me3 

Mouse 

Human 

4 [16] 

Blood Formation H3K4me2 

H3K4me3 

H3K27ac 

H3K4me1 

Mouse 5-7 [17] 

Cardiac Development H3K4me3 

H3K27ac 

H3K4me1 

H3K27me3 

H3K36me3 

Pol2 

Mouse 4 [20] 

Cardiac Development H3K4me3 

H3K27me3 

H3K36me3 

Human 5 [19] 

Embryogenesis H3K4me3 

H3K27ac 

H3K4me1 

Zebrafis

h 

4 [25] 

Macrophage 

Differentiation 

H3K4me3  

H3K9ac 

H3K27ac 

H3K27me3 

Mouse 5 [18] 

Neural Differentiation H3K4me3 

H3K27ac 

H3K27me3 

H3K4me1 

Human 5 [10] 

Stem Cell 

Reprogramming 

H3K4me2 

H3K4me3 

H3K27ac 

H3K4me1 

H3K27me3 

H3K36me3 

Human 4-6 [21] 

Stem Cell H3K4me2 Mouse 4 [24] 
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Reprogramming H3K4me3 

H3K9ac 

H3K27ac 

H3K27me3 

H3K36me3 

H3K4me1 

H3K79me2 

H3K9me3 

Stem Cell 

Reprogramming 

H3K4me3 

H3K27ac 

H3K4me1 

H3K27me3 

Pol2 

Mouse 9 [22] 

T Cell Development H3K4me2 

H3K(9,14)ac 

H3K27me3 

Mouse 5 [15] 
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SUMMARY

The extent and nature of epigenomic changes asso-
ciated with melanoma progression is poorly under-
stood. Through systematic epigenomic profiling of
35 epigenetic modifications and transcriptomic anal-
ysis, we define chromatin state changes associated
with melanomagenesis by using a cell phenotypic
model of non-tumorigenic and tumorigenic states.
Computation of specific chromatin state transitions
showed loss of histone acetylations and H3K4me2/
3 on regulatory regions proximal to specific cancer-
regulatory genes in important melanoma-driving
cell signaling pathways. Importantly, such acetyla-
tion changes were also observed between benign
nevi and malignant melanoma human tissues.
Intriguingly, only a small fraction of chromatin state
transitions correlated with expected changes in
gene expression patterns. Restoration of acetylation
levels on deacetylated loci by histone deacetylase
(HDAC) inhibitors selectively blocked excessive pro-
liferation in tumorigenic cells and human melanoma

cells, suggesting functional roles of observed chro-
matin state transitions in driving hyperproliferative
phenotype. Through these results, we define func-
tionally relevant chromatin states associated with
melanoma progression.

INTRODUCTION

Cancer cells acquire genetic and epigenetic alterations that in-

crease fitness and drive progression through multiple steps of

tumor evolution. However, the understanding of the roles of

epigenetic alterations in cancer is lagging, in part due to chal-

lenges of generation of large-scale data for multiple epigenomes

across tissues/time per individual and lack of ‘‘germline normal’’

equivalence.

The epigenome consists of an array ofmodifications, including

DNA methylation and histone marks, which associate with dy-

namic changes in various cellular processes in response to stim-

uli. Although detailed profiles of specific epigenetic marks have

been characterized in a number of normal tissues (ENCODE

Project Consortium, 2012; Ernst et al., 2011; Kundaje et al.,

2015) and some cancers including DNA methylation in human

tumors, genome-wide profiles of multiple histone marks and

Cell Reports 19, 875–889, April 25, 2017 ª 2017 The Author(s). 875
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Figure 1. Cell-Line-Based Model of Melanoma Progression and Epigenome Profiling

(A) Brief description of the primary melanocyte-based model system that consists of two replicates of paired isogenic non (or weakly)-tumorigenic (NTMH and

NTMP) and tumorigenic (TMH and TMP) cells. Kaplan-Meier curve showing tumor formation efficiency of NTMH, NTMP, TMH, and TMP cells. NTMH and NTMP cells

display long latency, whereas TMH and TMP cells show shorter latency for tumor formation. Mantle-Cox test, p = 0.0007 for NTMH versus TMH and p = 0.0016 for

NTMP versus TMP.

(legend continued on next page)
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combinatorial chromatin states in cancer progression remain

largely uncharacterized. Recently, enhancer aberrations were

shown in diffuse large B cell lymphoma, colorectal, and gastric

cancers by mapping H3K4me1/H3K27Ac (Akhtar-Zaidi et al.,

2012; Chapuy et al., 2013; Muratani et al., 2014). Although these

studies provide insight into the correlation of isolated epigenetic

marks with cancer stage, more than 100 epigenetic modifica-

tions have been identified (Kouzarides, 2007; Tan et al., 2011)

without clear understanding of their biological roles and interde-

pendence. Furthermore, there is an even larger number of

possible combinatorial patterns of these histone and DNA mod-

ifications, and it is these combinatorial patterns, not individual

modifications, that dictate epigenetic states (Strahl and Allis,

2000). With the development of high-throughput chromatin

immunoprecipitation (ChIP)-sequencing methodology (Garber

et al., 2012), it is now possible to systematically and comprehen-

sively profile many epigenetic marks with relative ease. Here, we

profiled 35 epigenetic modifications in an isogenic cell system

with distinct non-tumorigenic and tumorigenic phenotypes,

and defined chromatin state alterations associated with tran-

sition to tumorigenesis. Further, we determined chromatin

changes correlation with stable RNA-expression patterns, as-

sessed their role in tumorigenesis, and established relevance

to premalignant-to- malignant transition in human melanoma.

RESULTS

Systematic Epigenomic Profiling to Define
Pro-tumorigenic Changes in Melanoma
To identify melanoma-associated changes, we leveraged a me-

lanocyte cell model system with two characterized biological

phenotypes, namely non (or weakly)-tumorigenic (NTM) and

tumorigenic (TM) phenotypes (Figure 1A). The NTM phenotype

is defined here as one poised to switch to the TM state but

require additional cooperative driver alterations. Specifically,

we used the well-characterized system of TERT-immortalized

human primary foreskin melanocytes engineered with domi-

nant-negative P53 and overexpression of CDK4R24C and

BRAFV600E (Garraway et al., 2005). In two early passage

(n < 10) clonal variants (HMEL and PMEL), isogenic cells were

created with knockdown of either GFP (NTM) or PTEN (TM).

NTM cells were confirmed to be inefficient in driving tumor for-

mation (average tumor latency = 22 weeks) with low penetrance

(10%–20%) in nude mice (Figure 1A). In comparison, TM cells

expressing shRNA for PTEN (shPTEN) (�75% knockdown; Fig-

ure S1A) were able to drive tumorigenesis within 10–12 weeks

with high penetrance (�80%) (Figure 1A). Similarly, TM cells

showed aggressive behavior in proliferation, clonogenic, and in-

vasion assays (Figures 1B and S1B–S1E). Hereafter, these two

duplicate biological pairs are referred as: (1) NTMH (HMEL-

BRAFV600E-shGFP [shRNA for GFP], NTM melanocytes) and

TMH (HMEL-BRAFV600E-shPTEN, TM melanocytes); and (2)

NTMP (PMEL-BRAFV600E-shGFP, NTM melanocytes) and TMP

(PMEL-BRAFV600E-shPTEN, TM melanocytes). Unless specified

otherwise, we have designated NTMH and TMH as the primary

pair for discovery, and the NTMP and TMP as the pair for addi-

tional validation (Experimental Procedures). These two isogenic

but phenotypically distinct melanocyte-derived cells provide a

practical and relevant system for understanding epigenomic

alterations that are associated with transition to tumorigenesis

in melanoma.

To define the epigenome, we determined the status of 33 his-

tone modifications, histone H3, H4, and IgG marks using a high-

throughput ChIP-sequencing method (ChIP followed by next-

generation sequencing) (Garber et al., 2012) (Figure 1C). We

confirmed that the pairwise relationship between the occupancy

patterns of different histone marks was consistent with known

associations among the marks (Figure S3A). We also predicted

combinatorial patterns of marks presented as ‘‘chromatin

states’’ and annotated each cell type based on them (Ernst

and Kellis, 2010). In addition, we profiled 5-methylcytosine using

a 450K Illumina array and 5-hydroxymethylcytosine using 5-hy-

droxymethylcytosine DNA immunoprecipitation followed by

sequencing (hMeDIP-seq). In total, we generated 3.08 billion

uniquely aligned reads and produced 142 chromatin maps

(Table S1). Furthermore, we performed RNA sequencing (RNA-

seq) experiments to define the transcriptomes of these two bio-

logical states based onmore than 1 billion uniquely aligned reads

(Table S1; Supplemental Experimental Procedures).

Changes in Histone Marks during Transition of NTM
Phenotypic State to TM Phenotypic State
We first compared the differences in occupancy of individual

chromatin marks between cells in NTM and TM biological states.

An analysis for relative enrichment of individual marks at all

reference sequence database (RefSeq) annotated promoters

revealed that multiple acetylation marks were consistently

depleted in TM compared with NTM cells (Figures 1D and S1F)

(Experimental Procedures). Similarly, a subset of acetylation

marks was consistently depleted at a set of distal DNase I hyper-

sensitive sites (in ENCODE melanocytes; Supplemental Experi-

mental Procedures) in TM cells compared with NTM cells

in both replicates (Figures 1D and S1F). We also identified

H3K4me2/3 marks in promoter regions as higher in NTM biolog-

ical state relative to TM biological state (Figures 1D and S1F).

Interestingly, we did not observe any difference in global levels

of histone acetylations or H3K4methylations bymass-spectrom-

etry-based quantitation (of the measurable marks) or by western

blotting (Figures S1G–S1I). Overall, these data suggest that tran-

sition from NTM phenotype to TM phenotype is accompanied by

switch to reduced acetylation and H3K4me2/3 methylation at

nucleosomes in specific regions, but not at the global level.

(B) Proliferation curve showing differences in cell confluence (y axis) in NTMH versus TMH and NTMP versus TMP as a function of time (x axis).

(C) Normalized signal of all profiled chromatin marks, IgG control, and RNA-seq in an example region (chr10: 43,572,517–44,100,000) for NTMH (blue) and TMH

(red) cells. Chromatin state tracks and gene annotations are also shown.

(D) Log2 ratio between NTMH and TMH cells for the average signal strength of each chromatin mark in a window of 2 kb around annotated transcription start sites

from RefSeq (green) and on DNase I hypersensitive sites from ‘Melano’ (purple) cell lines from ENCODE.

See also Figure S1 and Table S1.
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To demonstrate human relevance of these observations from

the cell model system, we assessed the status of representative

marks in human benign nevi and melanoma samples represent-

ing pre-malignant (NTM) and malignant (TM) biological states,

respectively. We first developed a validation strategy using a

ChIP-string assay (Ram et al., 2011) and designed a 96-test

probe ‘‘codeset’’ (Experimental Procedures; Table S2) that could

be used to evaluate recapitulation of key epigenetic features

observed in the isogenic cell models. This ChIP-string codeset

was designed to measure enrichment of six selected histone

marks (H3K27Ac, H2BK5Ac, H4K5Ac, H3K4me1, H3K27me3,

and H3K4me3) that showed consistent differences between

the NTM and TM cells and were part of three groups of

epigenetic elements: promoters, enhancers, and Polycomb-

repressed regions. To verify that the codeset for this ChIP-string

assay performs as expected, we assayed them in both NTMH

and TMH and showed that there was good correlation between

the signal intensity from ChIP-string with ChIP-seq intensity

(R = 0.62–0.81) for the tested probes (Figures S2A–S2F).

Chromatin immunoprecipitated DNA for two of the marks

(H2BK5Ac and H4K5Ac) that provided sufficient yield after

ChIP from nine melanoma tumors and four nevi samples (Table

S3) was tested for enrichment on the designed codeset. As

shown in Figures 2A and 2B, unsupervised hierarchical clus-

tering analysis showed that nevi samples cluster with the NTM

cells, whereas melanoma samples were more similar to the TM

cells (Figures 2A and 2B). Average mark levels across all desig-

nated probes showed that enrichment for these marks in nevi

and tumor samples was similar to those seen in NTMH and

TMH cells, respectively (Figures 2C, 2D, and S2G–S2J). Further,

principal component analysis (PCA) based on the enrichment of

these chromatinmarks at selected genomic regions showed that

human nevi clustered tightly with NTMH cells, but not the mela-

noma samples. Interestingly, although away from the NTMH

cells, the human melanoma samples do not cluster tightly

around the TMH cells, suggesting that the melanoma samples

were more variable among themselves but collectively more

different from the NTM cells and the nevi samples (Figures 2E

and 2F). This may foretell that, like the genome, the epigenome

is more heterogeneous and complex in tumors than benign neo-

plasms or normal cells, with the caveat that the assaywas limited

to 96 probes. In summary, a subset of chromatin changes

observed in the NTM/TM melanocytic system displayed similar

patterns as those observed in the benign/malignant human

melanocytic lesions.

Chromatin State Changes between NTM and TM States
To assess whether and how the combinatorial and spatial pat-

terns of chromatin marks (Ernst and Kellis, 2010; Ernst et al.,

2011) may change with transition from NTM to TM biological

states, we employed ChromHMM (Ernst and Kellis, 2012) to

discover and define a set of chromatin states based on the 33

histone modification profiles, in addition to H3, H4, and IgG con-

trols in both NTM and TM cells. In brief, by concatenating the

chromatin maps for each mark, ChromHMM derived a common

set of chromatin state definitions with cell-type-specific state as-

signments in both NTM and TM cells. A final model with 18 states

was adopted for further downstream analyses (Figures 3A and

S3B), based on the observations that it effectively achieved a

balance of: (1) capturing important biological distinctions while

(2) generating a manageable set of pairwise state combinations

(Experimental Procedures). We found for some states of the

model the assignments to be substantially recoverable by multi-

ple different individual marks, found other states that required a

specific mark in order to be able to recover their assignments,

and found also some states that would need multiple marks to

recover them (Supplemental Experimental Procedures; Table

S4). By triangulating the defined chromatin states with known

genome organization features (Figures S3C and S3D), we then

grouped the 18 chromatin states by the following putative anno-

tations: promoter regions (states 1–3), enhancers (states 4–6),

transcribed enhancers (states 7–9), transcribed (states 10–12),

active proximal (state 13), low signal (state 14), polycomb

repressed (state 15), H3K9me3 heterochromatin (state 16),

quiescent (state 17), and artifact/repetitive elements (state 18).

Within each of these groupings, enrichment of specific

genomic structures was as expected (Figures S3C and S3D).

For example, regions within 2 kb of RefSeq annotated transcrip-

tion start sites (TSSs) were enriched specifically in chromatin

states 1–3, corresponding to promoter regions and CpG islands

in the genome. Consistently, 5-methylcytosine (5-MeC)-contain-

ing sites were weakly enriched in promoter-associated states,

whereas 5-hydroxymethylcytosine (5-hMeC) showed comple-

mentary patterns to 5-MeC. RefSeq gene annotations were en-

riched in regions associated with chromatin states containing

transcription marks H3K79me2/H3K79me1/H3K36me3, primar-

ily states 1, 2, and 7–12. LaminB1-associated domain associa-

tion (Guelen et al., 2008) was specifically seen in H3K9me3-en-

riched state 16. These enrichments support the biological

relevance of this 18-state model and the annotation assigned

to each state.

Next, we sought to define associations of chromatin states

with NTM and TM cell phenotypes. To this end, we identified re-

gions that transition to a different chromatin state in NTM and TM

conditions. Calculation of coverage changes for each state in

NTMH and TMH cells revealed that genome-wide occupancies

of the most acetylated promoter state (State_1_TssA) and the

most acetylated enhancer state (State_4_EnhA) were reduced

from NTMH to TMH by 4.5- and 2.9-fold, respectively (p <

1e�15; Figure S4A). On the other hand, we noticed a 2.6-fold in-

crease in the H3K9me3 repressive State_16_ReprK9me3 in TMH

cells when compared with NTMH cells (p < 1e�15; Figure S4A).

To understand the global state transitions, we analyzed the

pairwise state transition enrichments between NTMH and TMH

relative to the same pair in the opposite direction, which controls

for overall state similarity (Supplemental Experimental Proced-

ures) (Figures 3B and S4B). This analysis revealed that, globally,

there was a significant shift (transition) from strongly acetylated

promoter and enhancer states to more weakly acetylated states

accompanying the evolution from NTM to TM biological states

(Figures 3B and S4B). For instance, the pairwise state transition

from the strongly acetylated promoter state (State_1_TssA) in

NTMH to a more weakly acetylated promoter State_2_PromWkD

or State_3_TssWkP in TMH was 72 and 21 times, respectively,

more enriched than observing a reverse transition from TMH to

NTMH (p < 1e�15). Similarly, the pairwise state transition from

878 Cell Reports 19, 875–889, April 25, 2017
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Figure 2. Chromatin Changes Are Reflected in Human Tumors

(A and B) Heatmap for H2BK5Ac (A) and H4K5Ac (B) showing enrichment in NTMH, TMH, four nevi samples (N1–N4), and up to nine melanoma tumor samples

(M1–M9) as calculated by ChIP-string assay. Probes are ordered with increasing ChIP-seq signal in TMH cells. Columns are ordered based on hierarchical

clustering.

(C and D) Boxplots showing average normalized intensity for ChIP-string probes across NTMH, TMH, nevi, and tumors (averaged over all enriched probes across

all samples for nevi and tumors). Probes enriched in NTMH cells are on the left panel whereas those enriched in TMH cells are in the right panel.

(E and F) PCA plot for H2BK5Ac (E) and H4K5Ac (F) showing the relationship between NTMH, TMH, four nevi samples (N1–N4), and up to nine melanoma tumor

samples (M1–M9) as calculated by ChIP-string assay.

*p < 0.05; **p < 0.001. See also Figure S2 and Tables S2 and S3.
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Figure 3. Chromatin State Predictions for NTM and TM Melanocytes

(A) Emission probabilities of the 18-state ChromHMMmodel (see Figure S3A for transition probabilities). Each row represents one chromatin state. First column

gives state number and mnemonic, and last column gives the candidate state description. Second column indicates the intensity of mean acetylation from

0 (white) to 0.62 (green), which is the maximummean acetylation across all states. Remaining columns each correspond to one chromatin mark with the intensity

of the color in each cell reflecting the frequency of occurrence of that mark in the corresponding chromatin state on the scale from 0 (white) to 1 (blue).

(legend continued on next page)
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the strongly acetylated enhancer state (State_4_EnhA) in NTMH

to a more weakly acetylated but transcribed enhancer state

(State_7_TxEnhM) in TMH was nine times more enriched, and

to a weakly acetylated non-transcribed state 5_EnhM in TMH

was three times more enriched, than the reverse transition be-

tween the same pair of states from TMH to NTMH (p < 1e�15).

The overall trends in chromatin state changes were similar after

quantile normalization or downsampling to the same read depth

(Figures S4C and S4D), as well as being replicated in NTMP and

TMP cells (Figure S4E). Finally, we evaluated the correlation be-

tweenmean histone acetylation and H3K4me2/3 changes on the

same promoter and found them to be well correlated (Figures

S5A and S5B). Together, these data suggest that during a

NTM to TM phenotype switch, certain promoter and enhancer

regions with specific chromatin states harboring higher acetyla-

tions and H3K4me2/3 transition to those with lower acetylation

and H3K4me2/3 levels.

Chromatin State Changes Enrich on Genes Regulating
Cancer-Associated Processes
To begin to explore the biological significance of prominent

chromatin state transitions between NTM and TM biological

states, we next performed pathway enrichment analysis [Gene

Ontology (GO)] for genes associated with a specific pairwise

transition in the promoter region (Supplemental Experimental

Procedures) (Figure 4A; Table S5). We found specific enrich-

ments for cancer-associated processes and metabolic pro-

cesses. For example, promoters harboring highly acetylated

State_1_TssA in NTMH that transitioned to weakly acetylated

State_2_PromWkD and State_3_TssWkP in TMH were found

preferentially by genes regulating cell cycle and apoptosis, as

well as various cellular metabolic processes and protein modifi-

cations. These included important melanoma cell cycle inhib-

itors CDKN1B and CDKN2A (Bennett, 2016), as well as

melanoma pro-apoptotic genes BAD and APAF1 (Campioni

et al., 2005; Sheridan et al., 2008) (Figures 4B, S5C, and S5D),

suggesting increased proliferation and reduced apoptosis in

TM cells. Interestingly, homophilic cell adhesion genes such as

proto-cadherins were associated with the transition from a

weakly poised promoter (State_3_TssWkP) or a quiescent state

(State_17_Quies) to a more strongly H3K9me3-associated chro-

matin state (State_16_ReprK9me3) in TM cells (Figures 4A and

4C). This suggests that upon acquisition of a TM fate, genes pro-

moting cell adhesion acquire a repressive chromatin signature,

possibly contributing to loss of cell-cell adhesion in cancer.

Further, a pathway enrichment analysis of genes displaying

chromatin state transition revealed additional association of

cell signaling pathways with chromatin states (Figure 4D; Table

S6; Supplemental Experimental Procedures). We found signifi-

cant enrichments of important melanoma cell signaling path-

ways such as phosphatidylinositol 3-kinase (PI3K), interferon

(IFN) g-, LKB1-, TRAIL-, and platelet-derived growth factor

(PDGF)-mediated signaling (Paluncic et al., 2016) in promoters

transitioning from State_1_TssA to either State_2_PromWkD or

State_3_TssWkP during NTM to TM phenotype switch (Fig-

ure 4D; Table S6).

Similar analysis of enhancer regions in two of the most signif-

icant chromatin state transitions, State_4_EnhA in NTMH to

State_7_TxEnhM or State_5_EnhM in TMH cells, showed enrich-

ment of the nearest genes in important melanoma cell signaling

events such as integrin, transforming growth factor (TGF) b, and

mitogen-activated protein kinase (MAPK) signaling (Busse and

Keilholz, 2011; Pinon andWehrle-Haller, 2011; Sullivan and Flah-

erty, 2013) (Figures S5E and S5F; Table S6; Supplemental

Experimental Procedures). Overall, these data suggest that

chromatin state changes during transition to TM phenotype

occur on promoters and enhancers of a large number of genes

that are known to regulate relevant cancer processes such as

proliferation, apoptosis, and adhesion.

Complex Relationship between Gene Expression and
Chromatin States
To understand relationships between chromatin state and gene

expression, we integrated RNA-seq profiles of NTM and TM cells

with the chromatin states individually in each cell type. As ex-

pected, promoters of highly expressed genes (fragments per

kilobase per million mapped reads [FPKM] > 5) displayed enrich-

ment in chromatin states 1 and 2 that are marked by H3K4me3

and acetylations (Figure S3E). These promoters were depleted

in repressed states 15–16, whereas their gene bodies were en-

riched in states 7–12 with transcription marks (H3K79me2/3

and H3K36me3) (Figure S3E). Furthermore, while comparing be-

tween different states within the same cell type, differences in

acetylation content were associated with gene expression differ-

ences, particularly within the enhancer state group (Figure S3E).

Analysis of significant changes between NTMand TM states in

the expression levels of known RefSeq transcripts revealed that

changes in gene expression are bidirectional with similar

numbers of genes upregulated or downregulated (Figure 5A).

Next, we sought to determine associations of chromatin state

transitions with gene expression changed between NTM and

TM cells. To this end, we calculated the relative enrichment of

all possible chromatin state transitions at the promoters +2 kb

and�2 kb from TSS of genes that were upregulated, downregu-

lated, or unchanged (Supplemental Experimental Procedures)

(Figures 5B and S6A–S6F) with an expectation that genes down-

regulated in TMH cells in comparison with NTMH cells would

show global switch from active chromatin states to repressed/

low states on their promoters and vice versa. However, we

observed overall similar patterns of chromatin state enrichments

and with few exceptions did not see substantial chromatin state

switches in upregulated, downregulated, or unchanged genes

between NTM and TM cells (Figures 5B and S6A–S6F). This

observation suggests that regulation of steady-state levels of

(B) Heatmap showing fold enrichment of transitions of chromatin states in NTMH to TMH cells controlling for the overall state size and similarity (Supplemental

Experimental Procedures). The color intensities above (below) the main diagonal range fromwhite (relative enrichment < 1) to blue (red) (relative enrichment > 20),

thus indicating chromatin state transitions that lose acetylation marks from NTMH to TMH within the same category are more enriched compared with the reverse

chromatin state transition (i.e., from TMH to NTMH) and the lack of those that gain acetylations.

See also Figures S3 and S4 and Table S4.
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RNA transcripts in this system involves more than chromatin

modification at the promoters.

Because changes in acetylation marks were prominent be-

tween NTM and TM cells, we quantitatively compared aggregate

acetylation changes in promoter regions of all 17 acetylation

marks profiled with gene expression changes. Here, we first

identified a set of promoters for which the change in their

average acetylation signal over all acetylation marks was statis-

tically significant at a false discovery rate (FDR) of 1% (Supple-

mental Experimental Procedures) when comparing between

NTMH and TMH (Figure 5C). In stark contrast to gene expression

patterns, changes in acetylation levels were unidirectional, with

most changed regions having a lower average acetylation in

TM cells compared with NTM cells (Figures 5C, 5D, and S6G).

Given these differences between patterns of acetylation

changes and stable gene expression changes, we explored

the possibility that different subsets of genes are responding

differently to acetylation changes on their promoters. To test

Figure 4. Chromatin State Changes during Transition to TM State Mark Specific Cancer Pathways

(A) Heatmap showing �log10(p value) for top GO terms enriched in specific promoter state transitions between NTMH and TMH cells.

(B) UCSC genome browser view of chromatin states as well as selected histone acetylation profiles (H2BK5Ac and H4K5Ac) for loci encompassing cell cycle

regulator CDKN1B and apoptotic gene BAD, which showed loss from NTMH to TMH cells.

(C) UCSC genome browser view of chromatin states as well as selected histone mark H3K9me3 and H3K4me3 profiles for loci encompassing pro-adhesion

PCDHB7 in NTMH and TMH.

(D) Top 10 most significant pathways (pathway commons) associated with promoters displaying state transitions from State 1_TssA in NTMH to states

2_PromWkD and 3_TssWkP in TMH cells.

See also Figure S5 and Tables S5 and S6.
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this directly, we systematically overlapped gene expression

changes with changes in promoter acetylation to define nine

possible subsets (Figures 5D and S6H; see Supplemental

Experimental Procedures for definitions) and performed enrich-

ment analysis of the genes to determine whether different

cellular processes were enriched in different subsets (Figure 5E;

Table S7). Indeed, we found that prominent cancer-relevant

pathways were enriched among genes that were downregu-

lated and showed loss of acetylation (LossAc_LossExp),

including EGFR pathway targets, p53-regulated genes, and

caspase-mediated apoptotic signaling genes (Figure 5E; Table

S7). These genes are epigenetically regulated by specific chro-

matin alterations and may regulate melanoma growth. For

example, DUSP5 showed loss of acetylation on its promoter

and concomitant downregulation in TM cells in comparison to

NTM cells (Figure 5F). DUSP5 is a negative regulator of the

MAPK pathway (Caunt and Keyse, 2013) that functions by

reducing nuclear phosphorylated ERK; therefore, its loss can

potentially provide positive feedback to MAPK signaling

enhancing p-ERK levels. To test this hypothesis, we reduced

DUSP5 levels in NTMH cells by generating stable cell lines

bearing two specific short hairpin RNAs (shRNAs) (Figure 5G)

and tested p-ERK levels as well as proliferative capacity.

Indeed, NTMH cells bearing DUSP5 shRNAs showed increased

p-ERK levels (Figure 5H) and proliferated faster in comparison

with NTMH cells harboring control shRNA (Figure 5I).

On the other hand, genes in certain signaling pathways such

as aurora kinase and PLK signaling showed only acetylation

loss in the promoters without expression change (LossAc_

ConstExp group) (Figure 5E). For example, ATM, a critical medi-

ator of the DNA damage checkpoint pathway (Shiloh and Ziv,

2013), was found to follow this pattern (Figure 5F). Possible

deacetylation changes without accompanying alterations in

steady-state RNA levels may reflect multi-level control of tran-

scription requiring either upstream regulation such as pro-

moter-enhancer interactions or downstream regulation by an

additional event such as microRNA (miRNA)-mediated post-

transcriptional regulation. Conversely, genes with differential

expression but without acetylation changes (ConstAc_GainExp

and ConstAc_LossExp) were enriched for various transport

pathways, TCA cycle, and translation, raising the possibility

that these pathways are less likely to be regulated on the epige-

nomic level through promoter acetylation during tumorigenesis.

Taken together, these integrative analyses showed that some

well-characterized cancer signaling pathways exhibit promoter

acetylation-correlated expression regulation, suggesting that

these pathways can be regulated by epigenomic modifications.

At the same time, it is intriguing that changes in expression of

some pathway genes, such as those related to metabolism or

transport, do not appear to show correlation with changes in

their promoter acetylation.

Loss of CREB-Binding Protein Creates Pro-TM
Chromatin Patterns and Accelerates TM Properties
Next, we asked whether decreased expression of a histone ace-

tyltransferase or increased expression of a histone deacetylase

(HDAC) in this system might be responsible for observed loss

of acetylation peaks. We checked the expression differences

of 32 known histone acetyltransferases and deacetylases be-

tween the NTM and TM models (Sammons et al., 2016)

(Figure 6A). The expression of CREB-binding protein (CBP) ace-

tyltransferase showed consistent patterns to observed acetyla-

tion loss in that its expression was downregulated >2-fold in

both variants of TM cells compared with their counterpart NTM

cells (Figures 6A and 6B). We knocked down CBP mRNA in

NTMH cells using two specific shRNAs (Figure 6C) and checked

the levels of H2BK5Ac and H4K5Ac using the ChIP-string

codeset that was utilized to validate acetylation changes in

nevi/tumor samples. Indeed, stable cells harboring CBP shRNAs

showed similar patterns of these two acetylations as seen in

TM cells compared with NTM cells (Figures 6D–6G). Consis-

tently, the NTMH cells harboring CBP shRNAs showed signifi-

cantly enhanced tumorigenesis compared with control shRNA-

bearing cells (Figure 6H). These data argue that a TM phenotype

might be associated with loss of acetylation irrespective of

whether TM behavior was achieved by PTEN loss or by CBP

loss in the same background (NTM background of TERT/

p53DD/CDK4R24C). This hypothesis was further supported by

our observations that NRASG12D overexpression in TERT/

p53DD/CDK4R24C immortalized melanocytes created similar

H4K5Ac and H2BK5Ac acetylation patterns to TMH cells (over-

expression of BRAFV600E along with shPTEN) (Figures 6D–G).

NRAS has been previously shown to activate theMAPK pathway

(result of BRAF activation) and PI3K pathway (result of PTEN

loss) (Chudnovsky et al., 2005), thereby mimicking cellular

phenotype of TM cells. Together, our data argue for a relatively

uniform acetylation pattern of cells with TM behavior.

HDAC Inhibitors Specifically Reduce Proliferative Rate
in TM Cells
Next, we sought to determine whether chromatin state changes

seen during transition to tumorigenesis impart proliferative

advantage to TM cells. Because loss of histone acetylation

peaks was a consistent feature of all major chromatin state alter-

ations, we tested the contribution of widespread acetylation loss

to cell proliferation. Because steady-state acetylation loss seen

in TM cells could be an outcome of aberrations in histone acet-

ylation-deacetylation cycle in favor of accelerated deacetylation

or reduced acetylation, we sought to alter the former by inhibition

of HDACs, the primary driver enzymes of histone deacetylation in

mammalian cells. We tested whether treatment of TM cells with

HDAC inhibitors alters their acetylation levels toward those in

NTM cells. Indeed, measurement of H2BK5Ac, H4K5Ac, and

H3K27Ac levels in TMH cells treated with vehicle or two different

HDAC inhibitors (vorinostat and entinostat) by ChIP-string re-

vealed that the levels of the histone acetylations on loci highly

acetylated in NTMH cells, but not in TMH cells, were partially

restored to the levels seen in NTMH cells (Figures 7A, 7B, and

S7A). However, this treatment hadminimal impact on acetylation

levels on the loci seen to harbor higher levels of acetylation in

TMH cells (Figures S7B–S7D). Next, we tested the impact of vor-

inostat and entinostat on the growth rate of NTM and TM cells in

a time-course experiment. Indeed, both of these inhibitors

showed preferential effect on abrogation of proliferation in TM

cells TMH and TMP compared with NTMH and NTMP (Figures

7C, 7D, S7E, and S7F).
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Figure 5. Correspondence of Chromatin State Changes with RNA Expression Changes during Transition to Tumorigenesis

(A) Scatterplot comparing gene expression values [log2 (FPKM+1)] in NTMH and TMH for RefSeq genes.

(B) Relative enrichment of chromatin state transitions at promoters of downregulated genes compared with upregulated genes (left panel) or upregulated gene

promoters compared with downregulated (right panel) for all pairs of chromatin state transitions. Red shows enrichment, whereas blue is depletion.

(legend continued on next page)

884 Cell Reports 19, 875–889, April 25, 2017
166



Because these observations were made in an artificial model

system that mimics melanoma progression, we next tested

whether levels of histone acetylation in melanoma-derived cell

lines could indicate vulnerability to HDAC inhibitors. To this

end, we performed H3K27Ac ChIP-seq in five melanoma cell

lines and measured relative acetylation levels on promoters de-

acetylated in TMH cells. NTMH and Hs839.T contained relatively

higher levels, Skmel-28 moderate levels, and WM115, Skmel-5,

and WM793B showed lower levels of H3K27Ac (Figure 7E). To

determine whether the acetylation levels correlated with their

response to HDAC inhibitors, we determined IC50 values and

area under the curve (AUC) for vorinostat and entinostat in

each cell line (Figures 7F–7H and S7G). Indeed, all three cell lines

with lower acetylation levels (WM115, Skmel-5, and WM793B)

showed substantially lower IC50/AUC values compared with

those that had higher acetylation levels (NTMH and Hs839.T) to

both treatments (Figures 7F, 7G, and S7G). Skmel-28, which

harbored intermediate levels of acetylation, displayed inter-

mediate IC50/AUC values (Figures 7F, 7G, and S7G). Correlation

score between average acetylation at TSS and AUC values was

calculated to be 0.97 (Figure 7H). These data confirm disease

relevance of our observations that lower acetylation levels in

TM cells functionally contribute to the proliferative phenotype

and suggest that responsiveness to HDAC inhibitors may asso-

ciate with histone acetylation levels on specific genomic loci.

DISCUSSION

We have generated snapshots of the epigenome landscape at

two phenotypically distinct biological states (e.g., NTM and

TM) as a way to delineate changes that are associated with

tumorigenesis by leveraging an isogenic cell model system.

Although artificial, this system is well-suited for this study for

the following reasons: (1) these cells are derived from primary

melanocytes, the appropriate cells of origin for melanoma; (2)

the cell system recapitulates known genetic alterations observed

in human melanoma tumors, in particular in P53, CDK4, BRAF,

and PTEN (Hodis et al., 2012; Krauthammer et al., 2012); and

(3) NTM cells (shGFP) and TM cells (shPTEN) are otherwise

isogenic. Finally, this melanocyte-based cell system has been

previously used in othermechanistic studies related to regulation

of melanomagenesis (Garraway et al., 2005; Rai et al., 2015).

We show that a predominant feature of chromatin state

changes during progression to TM state in melanoma is lowering

of frequency of detectable locations of acetylationmodifications.

Two independent observations suggest that these changes are

relevant to human disease and could play a functional role: first,

a selected subset of acetylation changes between NTM and TM

cells was reproduced between human benign nevi and malig-

nant tumors. Second, the treatment with HDAC inhibition, which

restored acetylation patterns on deacetylated loci, was able to

abrogate high proliferation rate of TM cells and melanoma cells

that contained lower acetylation than NTM cells. Overall, our

data suggest that a specific chromatin environment around

certain loci in the genome can have pro-tumorigenic function.

One can hypothesize that such a state of chromatin can be es-

tablished by one or multiple tumor-promoting genetic events

such as PTEN deletion/mutation or other alterations in epige-

netic machinery. This is supported by our observations that

knockdown of CBP histone acetyltransferase in NTMH cells or

overexpression of NRAS (which recapitulates BRAF activation +

PTEN loss because of its ability to activate MAPK and PI3K path-

ways; Chudnovsky et al., 2005) in TERT/P53/CDK4R24C immor-

talized melanocytes showed similar histone acetylation profiles

as in TMH.

Functional characterization of the regions displaying altered

chromatin states suggested that, consistent with observed phe-

notypes, promoters of genes with important roles in cancer pro-

gression show preferential deacetylation, such as cell cycle

regulation and apoptosis, in TM cells. Further, we noted that a

number of genes in important melanoma cell signaling pathways

such as TRAIL, IFNg, LKB1, PDGF, PI3K, ITGb1, TGFb, and

cytokine signaling were associated with chromatin state

changes involving histone acetylations (Figure 4). For example,

TGFb and INTGb1 are known to regulate cell invasion and adhe-

sion properties (Jakowlew, 2006; Trikha et al., 1997), consistent

with observed invasive properties of TM cells. Enrichment of

multiple such signaling events linked to observed TM pheno-

types suggests that, in this model system, chromatin-associated

changes are likely regulators of cancer progression, underscor-

ing important roles of chromatin in tumorigenesis. This hypothe-

sis is reinforced by abrogation of hyperproliferative phenotype

by HDAC inhibitors, which restores the acetylation on deacety-

lated loci.

Interestingly, although acetylation intensity measurements

based on ChIP-seq profiles revealed a loss of peaks of acetyla-

tion marks in TM cells, we did not observe any changes in total

levels of histone acetylation marks either by western blotting in

whole cell lysate and chromatin fraction or by mass spectrom-

etry analysis of acid-extracted histones (Figure S1 and data

not shown). Two independent observations in addition to ChIP-

seq reinforced the results of loss of acetylation peaks in TM cells

(C) Scatterplot comparing promoter acetylations [log2(RPKM+1)] around ±2 kb of each RefSeq gene in NTMH and TMH. The line in red is a regression line,

whereas in black it is the y = x line.

(D) Scatterplot displays directional log10(p value) for acetylation and gene expression changes between TMH and NTMH. Negative values represent genes with

decreased expression or acetylation levels in TMH compared with NTMH cells. Dashed lines show the significance cutoff for acetylation or expression changes.

Genes with significant gene expression and/or acetylation changes are colored based on grouping indicated.

(E) Heatmap represents enriched pathways (pathway commons) for each group identified in (D). Color scale represents �log10(HyperFdrQ corrected).

(F) UCSC genome browser view of average acetylation and RNA-seq for an example from each of the LossAc_LossExp (DUSP5) (top) and LossAc_ConstExp

(ATM) groups (bottom).

(G) Graph showing relative levels of DUSP5 in NTMH cells harboring either control or DUSP5 shRNAs.

(H) Western blot showing levels of p-ERK in NTMH cells harboring either control or DUSP5 shRNAs.

(I) Growth curve showing proliferative capacity of NTMH cells harboring control or DUSP5 shRNAs (shDUSP5-1 and shDUSP5-2).

See also Figure S6 and Table S7.
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and diminished the possibility of this being a technical or exper-

imental bias. First, ChIP enrichment measurement by either

nanostring at 96 probes or by qPCR at five loci revealed results

consistent with the ChIP-seq signal (Figures 2 and S2 and data

not shown). Second, biological replicates for ChIP followed by

either nanostring or qPCRmeasurement revealed similar enrich-

ment profiles (data not shown). Based on these observations, we

speculate that, although both TMandNTMcells harbor the same

levels of acetylated histones in the cell and on chromatin, acety-

lated histones are more diffusely incorporated throughout the

genome in TM cells, including at locations where it is not present

in normal cells.

Overlap of epigenomic and transcriptomic data revealed that

there was little correlation between chromatin changes and

Figure 6. CBP Loss in NTMH Cells Promotes Tumorigenesis and Mimics Acetylation Loss Seen in TMH Cells

(A) Bar graph showing relative levels of 32 histone acetyltransferases and deacetylases between NTMH/TMH and NTMP/TMP cells. The y axis shows log2 fold-

change values. The dotted line shows the cutoff of 2-fold change.

(B and C) Graph showing relative levels of CBP histone acetyltransferase in (B) NTMH, TMH, NTMP, and TMP cells and (C) NTMH cells harboring either control or

CBP shRNAs.

(D–G) Boxplots showing average normalized intensity for ChIP-string probes for (D and F) H2BK5Ac and (E and G) H4K5Ac in NTMH, TMH, and NTMH cells

harboring CBP shRNAs or NRASG12D-expressing transformedmelanocytes (M-NRAS). The plot is limited to those probes that were originally enriched in (D and E)

NTMH cells or in (F and G) TMH cells by ChIP-seq experiments and validated by ChIP-string in Figures S2A–S2F. *p < 0.05; **p < 0.001 (Wilcoxon rank test), when

comparisons are made with NTMH.

(H) Kaplan-Meier curve showing tumor formation efficiency of NTMH cells harboring control or CBP shRNAs (shCBP-1 and shCBP-2).
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gene expression changes at the global level between the TM and

NTM cells in this system. Some other recent studies have also

shown low correlation between gene expression and acetylation

changes in specific systems (Sen et al., 2016; Sun et al., 2016). A

plausible explanation for such an observation is that the steady-

state RNA levels may not completely be reflective of all chro-

matin-associated gene expression changes during biological

state switches in tumorigenesis process and are influenced

by other post-transcriptional regulatory molecular processes.

Nonetheless, systematic analysis of gene sets in different groups

clearly suggests that the set of genes that had both lower acet-

ylations and lower gene expression enriched for pathways with

known roles in tumor progression underscoring the importance

of chromatin-associated gene expression changes in cancer

progression.

Taken together, our study provides a first systematic view of

the epigenomic, as well as transcriptomic, landscape evolutions

between two distinct biological states (e.g., NTM and TM) asso-

ciated with melanoma tumorigenesis.

EXPERIMENTAL PROCEDURES

Cell Culture, Generation of Stable Cells, and Drug Treatment

HMEL-BRAFV600E, PMEL-BRAFV600E cells were obtained from Dr. David

Fisher’s laboratory (Garraway et al., 2005) and maintained in standard tissue-

culture conditions in DMEM media with 10% fetal bovine serum (FBS). Stable

knockdown of GFP (control) or PTEN (experimental) in early passage (n < 10)

was performed using pMKO-shGFP or pMKO-shPTEN vectors (Addgene) to

create NTMH (HMEL-BRAFV600E-shGFP), TMH (HMEL-BRAFV600E-shPTEN),

NTMP (PMEL-BRAFV600E-shGFP), and TMP (PMEL-BRAFV600E-shPTEN) cells.

Control and experimental cells were passaged together for the same time

before harvesting cells for ChIP-seq experiments. Hs839.T, Skmel-28,

Skmel-5, WM115, and WM793B cells were obtained from ATCC and grown

according to the manufacturer’s recommendation. Cells were treated with

Vorinostat (Sigma), entinostat (MS-275; SelleckChem) or vehicle (DMSO) by

direct addition to media.

ChIP-Seq

ChIP was performed as described earlier (Garber et al., 2012) with optimized

shearing conditions and minor modifications for melanocytes. For more de-

tails, see Supplemental Experimental Procedures.

ChIP-Seq and Chromatin State Analysis

ChIP-seq reads were aligned using Bowtie (version 1.0.0) (Langmead et al.,

2009) to human genome assembly NCBI Build 37 (University of California at

Santa Cruz [UCSC] hg19) and uniquely mapped reads with one mismatch

were retained. ChromHMM (Ernst and Kellis, 2012) was used with default pa-

rameters to derive genome-wide chromatin state maps for all cell types. We

binarized the input data with ChromHMM’s BinarizeBed method using a p

value cutoff of 10�4. Chromatin state models were learned jointly on all

chromatin marks from NTMH and TMH ranging from 10 to 120 states. A model

with 18 states was chosen for detailed analysis and is presented throughout

the manuscript. Chromatin state annotations of NTMH, TMH, NTMP, and

TMP were produced subsequently by applying this model to the original binar-

ized, quantile normalized, or downsampled chromatin data from these cell

types. For details, see Supplemental Experimental Procedures.

RNA-Seq

Strand-specific libraries were constructed using ScriptSeq Kit (Epicenter/Illu-

mina). Reads were mapped to the human genome (hg19) using MapSplice

algorithm version 2.1.4 (Wang et al., 2010). Transcript expression was esti-

mated using Cuffdiff 2.11. Further details are in the Supplemental Experi-

mental Procedures.

ChIP-String

Nanostring experiments were run on a custom ChIP-string array according to

the manufacturer’s recommendation using ChIP-DNA for shown marks (Fig-

ures 2 and S2) from NTMH and TMH cells and nevi and tumor cells. A custom

ChIP-string array containing probes for 96 genomic locations (Table S2) was

used. Details of the design are in the Supplemental Experimental Procedures.

The analysis was done as previously described by Ram et al. (2011). The de-

tails are in the extended Supplemental Experimental Procedures.
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Figure 7. Acetylation Status on Deacetylated Promoters in TH Correlates with Response to HDAC Inhibitors

(A and B) Boxplots showing average normalized intensity for (A) H2BK5Ac or (B) H4K5Ac on ChIP-string probes (that were enriched in NTMH cells by ChIP-seq

experiment) across NTMH and TMH cells that were either untreated or treated with vorinostat (200 nM) or entinostat (300 nM) for 72 hr. *p < 0.05; **p < 0.001

(Wilcoxon rank test), when comparisons are made with TMH.

(C and D) Growth curves for NTMH and TMH cells grown under various concentrations of (C) vorinostat or (D) entinostat.

(E) Aggregate plot showing H3K27Ac levels around ±2 kb of deacetylated gene promoters (in TH cells) in various melanoma cell lines.

(F) Growth curves for melanoma cell lines grown under various concentrations of vorinostat.

(G) Table showing IC50 values (the concentration at which 50% response is achieved) and area under the curve (AUC) for two HDAC inhibitors, vorinostat and

entinostat, in melanoma cells lines. Immeasurable IC50 values are shown as NaN (not a number).

(H) Correlation plot between AUC and average H3K27Ac levels at TSS of gene promoters that showed loss of histone acetylation in TMH cells compared with

NTMH cells.

See also Figure S7.
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SUPPLEMENTARY INFORMATION 

  

EXTENDED SUPPLEMENTARY METHODS 

Cell Culture and Generation of Stable Cells                  

HMEL-BRAFV600E, PMEL-BRAFV600E, HEK-293T cells were grown in 5% CO2, at 370C in 

DMEM medium with 10% FBS. Cells were routinely tested for mycoplasma infection. 

Viral production was done in HEK-293T cells using pHIT60 and VSVg. Stable 

knockdown of GFP or PTEN in early passage (n < 10) HMEL-BRAFV600E, PMEL-

BRAFV600E cells was performed using pMKO-shGFP or pMKO-shPTEN vectors 

(Addgene) to create NTMH (HMEL-BRAFV600E-shGFP), TH (HMEL-BRAFV600E-shPTEN), 

NTMP (PMEL-BRAFV600E-shGFP) and TMP (PMEL-BRAFV600E-shPTEN) cells.  

  

ChIP-Seq  

Chromatin immunoprecipitation was performed as described earlier (Garber et al., 2012) 

with optimized shearing conditions and minor modifications for melanocytes. Briefly, 

cells (5 million per antibody) were cross linked using 1% paraformaldehyde for 10mins at 

37oC. Reaction was quenched by 0.125M glycine for 5mins, and cells washed with PBS 

and stored at -80oC. Next day cells were thawed on ice and lysed with RIPA buffer 

(10mM Tris-HCl pH 8.0, 1mM EDTA pH 8.0, 140mM NaCl, 1% Triton x-100, 0.2%SDS, 

0.1% DOC) for 10min on ice. Sonication conditions were optimized for HMEL-BRAFV600E 

cells and were performed using Branson Sonifier 250 to achieve shear length of 250-

500bp. Extracts were then incubated overnight with respective antibody-dynabead 

mixtures that were incubated separately for 1hr at 4oC earlier. Immunecomplexes were 

then washed in following order: 5 times with RIPA buffer, twice with RIPA-500 (RIPA 

with 500mM NaCl), twice with LiCl wash buffer (10mM Tris-HCl pH8.0, 1mM EDTA 

pH8.0, 250mM LiCl, 0.5% NP-40, 0.1% DOC) and once with TE (10mM Tris-HCl, 1mM 
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EDTA). Elution and decrosslinking was performed in direct elution buffer (10mM Tris-Cl 

pH8.0, 5mM EDTA, 300mM NaCl, 0.5% SDS) by incubating immunecomplexes at 65oC 

overnight. Proteinase K (20mg/ml) and RNaseA treatment was performed and DNA 

cleaned up using SPRI beads (Beckman-Coulter). Library preparation was done as 

described in (Garber et al., 2012) using paired end adapters from IDT. Libraries were 

multiplexed together and sequencing was performed in Hiseq2000 (Illumina).  Antibody 

details are below: 

Mark Company Catalog 
Number 

H2AK5ac Abcam ab45152 

H2BK120ac Active Motif 39119 

H2BK15ac Abcam ab62335 

H2BK5ac Active Motif 39123 

H3 Abcam ab1791 

H3K14ac Millipore 07-353 

H3K18ac Abcam ab1191 

H3K23ac Millipore 07-355 

H3K27ac Abcam ab4729 

H3K27me1 Millipore 07-448 

H3K27me3 Abcam ab6002 

H3K36ac Active Motif 39379 

H3K36me1 Abcam ab9048 

H3K36me2 Abcam ab9049 

H3K36me3 Abcam ab9050 

H3K4ac Millipore 07-539 

H3K4me1 Abcam ab8895 

H3K4me2 Abcam ab32356 

H3K4me3 Abcam ab8580 

H3K79me1 Abcam ab2886 

H3K79me2 Abcam ab3594 

H3K79me3 Abcam ab2621 

H3K9ac Abcam ab4441 

H3K9me1 Abcam ab8896 

H3K9me2 Abcam ab1220 

H3K9me3 Abcam ab8898 

H4 Millipore 05-858 

H4ac4 Active Motif 39179 

H4K12ac Active Motif 39165 

H4K16ac Millipore 07-329 
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H4K20me1 Abcam ab9051 

H4K5ac Millipore 07-327 

H4K8ac Abcam ab15823 

H4K91ac Abcam ab4627 

5-hmC Active Motif 39769 

H4K20me2 Abcam ab9052 

H4K20me3 Abcam ab9053 

 

ChIP-Seq Data Analysis: 

ChIP-Seq reads were aligned using Bowtie (version 1.0.0) (Langmead et al., 2009) to 

human genome assembly NCBI Build 37 (UCSC hg19) with the following parameters: -n 

1 -m 1 --best –strata (uniquely mapped reads with one mismatch were retained). First 

36bp from 5’ end of the reads were retained in case read lengths are longer than 36bp 

for any given histone modifications. To avoid biases due to PCR artifacts, sequencing 

reads that map to the same genomic location and strand were counted once in the input 

data.  

Peak calling was performed using MACS algorithm (Zhang et al., 2008) with default 

parameters except a p-value cut-off 10E-8 applied. DiffBind bioconductor package was 

used to cluster histone marks by using identified peaks with MACS algorithm. 

 
We generated signal tracks at 200bp resolution, by partitioning the genome into non-

overlapping bins at that resolution. We calculated signal values over all bins for each 

histone mark using the following formula: 

  

where Signali is the signal value of a given histone mark at bin i, Ki is the raw number of 

sequencing reads for that mark that span bin i after extending each read by 200bp from 

the start in the direction of the alignment, Li is the length of bin i, and N is the total 

number of sequencing reads for that mark. 
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ChromHMM Analysis 

We used ChromHMM (Ernst and Kellis, 2012) with default parameters to derive 

genome-wide chromatin state maps for all cell types. We binarized the input data with 

ChromHMM’s BinarizeBed method using a p-value cutoff of 1e-4.  We observed that the 

total number of binary presence calls was very similar between NTMH and TMH. 

However, total number of calls was higher in NTMP compared to TP. Thus, to reduce the 

effect of potential technical confounders, we normalized each chromatin mark in NTMP 

and TMP to have the same number of binary presence calls across these two cell types. 

To achieve that, we first used the BinarizeBed option of ChromHMM on all datasets from 

NTMP and TMP. Then, we sorted the binary calls for each chromatin mark in each bin 

according to the number of reads assigned and kept only the top N binary calls, where N 

is the smaller of the total numbers of binary calls for the corresponding chromatin mark 

in NTMP and TMP. In the case of ties, we dropped randomly binary calls that had the 

same number of sequencing reads assigned in order to arrive at equal number of binary 

calls across the two cell lines for the corresponding chromatin mark. 

 

We considered chromatin state models learned jointly on all chromatin marks from NTMH 

and TMH ranging from 10 to 120 states. Two models were considered for additional 

analysis: 18-state model (with the minimum number of states that had a separate state 

containing likely artifactual signal locations) and 45-state model (with the minimum 

number of states that contains a clear poised/bivalent state). We chose to focus on a 

model with 18 states for our main analysis to balance capturing informative state 

distinctions while maintaining interpretability and having a manageable number of 

pairwise state transitions. In particular the model with 18 states was the model with the 
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minimum number of states that had a separate state containing likely artifactual signal 

locations. The chromatin state annotations of NTMH, TMH, NTMP and TMP was produced 

subsequently by applying this model to the chromatin data from these cell types.  

 

Analysis of Chromatin State Changes 

To find important chromatin state changes between non-tumorigenic and tumorigenic 

cell lines, we intersected the chromatin state annotations of NTMH and TMH, and of 

NTMP and TMP, respectively. In each case, we counted the number of 200bp bins that is 

occupied by each of the 18 by 18 possible chromatin state transitions. To calculate 

enrichment scores, we divided this number by the expected number of such bins 

assuming a null model that treats the two chromatin states involved in each transition as 

independently distributed. Finally, to control for state similarity between each pair of 

chromatin states i and j, we divided the enrichment score of transitioning from state i in 

non-tumorigenic cells to state j in tumorigenic cells by the enrichment score of 

transitioning from state j in non-tumorigenic cells to state i in tumorigenic cells. In order 

to avoid division by 0 in cases where no overlap was detected between pairs of 

chromatin states, we added a pseudo-count of 1 bin to each intersection before we 

computed all enrichments, enrichment ratios and p-values.  

 

Besides our main analysis, we performed the above computations under two other 

normalization schemes. First, we downsampled randomly the number of sequencing 

reads for each chromatin mark to the minimum number across NTMH and TMH, and 

across NTMP and TMP, respectively. We applied the previously learned 18 states model 

on the downsampled data and ran the above analysis pipeline on the produced 

chromatin state annotations. In our second normalization scheme, we downsampled the 

number of binary calls from ChromHMM’s BinarizeBed routine for each chromatin mark 
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to the minimum number across all four cell types in the same way we did previously for 

NTMP and TMP. Again, we applied the 18 state model to this data and ran the above 

analysis pipeline. 

 

Analysis of Chromatin State Recovery with Subsets of Marks 

For the analysis of the chromatin state recovery with subset of marks relative to using all 

marks we used the EvalSubset of ChromHMM command(Ernst and Kellis, 2012) (Ernst 

and Kellis, 2015) applied to the chromatin state annotations of NTMH and TMH. For this 

analysis we separately evaluated for each mark, recovery based on only that mark and 

using all marks except that mark. 

 

Analysis of Individual Mark Enrichments at Promoters and DNaseI hypersensitive 

sites 

Promoter regions were defined as 4kbp regions centered at annotated transcription start 

sites from RefSeq (as downloaded on March 2014 from UCSC Genome Browser). As for 

DNaseI hypersensitive sites (DHS), we downloaded a data set with DNaseI peaks for 

the Melano cell type from the ENCODE project 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeOpenChromD

nase/wgEncodeOpenChromDnaseMelanoPk.narrowPeak.gz). To define distal sites, we 

further excluded peaks whose midpoints are within 4kb of annotated transcription start 

sites in hg19. To compute the histone mark signal over the remaining sites, we extended 

them by 2kb from their midpoints in both directions. For each promoter region or distal 

DHS i, chromatin mark in cell type c, we calculated the signal strength in RPKM as: 
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where Ki,c is the number of sequencing reads from that mark in cell type c whose center 

position overlaps with region i after extending each read by 200bp in the direction of the 

alignment, Li is the length of region i, and Nc is the total number of reads for the mark. 

We then calculated the average fold change of each mark at promoters and DHS 

separately by summing over all regions for them as: 

, 

Where c1 and c2 are NTMH and TMH or NTMP and TMP respectively. 

 

Differentially Acetylated Promoters  

To identify statistically significant differences of acetylations in aggregate at promoters, 

we compared to a null model in which the non-tumorigenic and tumorigenic label for 

each acetylation was randomly permuted. Specifically, for both promoters in each cell 

type separately we calculated an average acetylation level in each region i by taking the 

mean RPKM value across all acetylation marks for the given cell type c, denoted by 

RPKM(Ac)i,c. Next, we calculated the change in the average acetylation levels at region i: 

, 

where c1 and c2 are NTMH and TMH, or NTMP and TMP, respectively. To determine 

significant changes at a FDR of 1% we used a null model based on 100 randomized 

pairs of cell types for each system (NTMH / TMH and NTMP / TMP). Each randomized pair 

was generated by iterating through all acetylation datasets from NTMH and TMH (or 

NTMP and TMP) and randomly switching their labels with probability of 0.5. Based on the 

randomized data we constructed a background distribution of the  values across all 

intervals and randomizations, which we used to calculate two-sided P-values for all 
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observed . We then applied the Benjamini–Hochberg procedure on these P-

values to derive cutoffs at FDR of 1%. 

 

Promoter State Analysis 

Every RefSeq gene was assigned to one chromatin state based on the state call on the 

gene’s TSS in non-tumorigenic (NTMH, NTMP) and tumorigenic (TMH, TMP) cell types by 

using the 18 state ChromHMM genome annotation output. STEM software (Ernst and 

Bar-Joseph, 2006) was used to analyze enriched gene ontology (GO) terms for the 

genes that are changing their promoter states between non-tumorigenic (NTMH, NTMP) 

and tumorigenic (TMH, TMP) cells. Default settings changed to only reporting GO-

Biological Process (BP) terms, with equal or below level 5 according to GO taxonomy. 

STEM software output is processed as following: BP-terms that are enriched for a state-

transition with a p-value of less than 10-4 and at least 3 genes was assigned for that 

specific state-transition regarding that particular term is retained. To estimate an overall 

false discovery rate, we generated random gene sets by keeping the number of genes 

per state-transition constant but randomly assigning genes from RefSeq annotation 

table. We did not identify any enriched GO-terms for randomized promoter state-

transition pairs with the explained filtering steps. Identified state-transitions and BP-

terms were used for heat map generation (Figure 4A). 

 

Pathway Analysis 

Pathway Commons analysis on the enriched genomic regions was done using GREAT 

tool (McLean et al., 2010) (www.great.stanford.edu). For promoter state regions, we 

used the basal + extension option with -2Kb to +2Kb proximal to TSS and 20Kb 

extension. For enhancers we used the option of ‘single nearest gene” with 1000Kb 

extension.  
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RNA-Seq Analysis 

Strand specific libraries were constructed using a strand specific method (Levin et al., 

2010). Reads were mapped to the human genome (hg19) using Mapsplice algorithm 

version 2.1.4 (Wang et al., 2010). We first merged the annotations of UCSC gene 

annotation in Illumina’s iGenomes (available at http://cole-trapnell-

lab.github.io/cufflinks//igenome_table/index.html) gtf file with the recent long non-coding 

RNA annotation file (Kelley and Rinn, 2012) using GFFRead tool as part of Cufflinks 

suite (Trapnell et al., 2013) http://cole-trapnell-lab.github.io/cufflinks. Transcript 

expression was estimated using Cuffdiff 2.11 with the following option: ‘‘--library-type 

firststrand’’ against the merged annotation file. We then applied Cuffmerge 2.11 based 

on published protocol (Trapnell et al., 2012) for merging all identified transcripts in each 

replicates and generated master GTF file used for differential expression analysis. 

Cuffdiff 2.11 was run with the following options: ‘‘--library-type firststrand, --min-reps-for-

js-test 2, –dispersion-method per condition’’ and transcripts with less than 0.05 q-values 

called as differentially expressed (snoRNAs removed from the differentially expressed 

transcripts list). A transcript was designated as protein coding if it could be assigned to a 

protein ID using UCSC table browser, rest of the transcripts referred as non-coding. For 

the up-regulated, down-regulated or unchanged genes, we calculated occurrence of 

every possible combination of state transitions on TSS, or within -2Kb or +2Kb range. 

Log2 fold changes calculated based on observed versus expected number of state 

transitions. Expected number of state transitions was calculated by multiplying all 

observed transitions within each range (TSS, -2Kb and +2Kb) with the number of up-

regulated, down-regulated or unchanged genes then diving with the total RefSeq gene 

number. 
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Overlap of average acetylation and transcriptomic data 

We systematically overlapped gene expression changes with changes in 

promoter acetylation to define the nine possible subsets (Figure 5D, S6H): (1) 

deacetylated-promoters with no corresponding gene-expression changes 

(LossAc_ConstExp), (2) deacetylated-promoters accompanied with corresponding 

downregulated gene-expression changes (LossAc_LossExp), (3) deacetylated-

promoters accompanied with corresponding upregulated expression changes 

(LossAc_GainExp), (4) promoters that do not change their acetylation levels but are 

downregulated at the expression level (ConstAc_LossExp), (5)  promoters that do not 

change their acetylation levels but are upregulated at the expression level 

(ConstAc_GainExp), (6) acetylation gaining promoters with no corresponding gene-

expression changes (GainAc_NoExp), and (7) acetylation gaining promoters 

accompanied with corresponding upregulated gene-expression changes 

(GainAc_GainExp). Of the remaining two subsets, one (GainAc_LossExp) was an empty 

set, while the other set contained only unchanged loci (ConstAc_ConstExp). 

 

DNA Methylation Analysis 

We utilized Illumina Infinium HumanMethylation450 BeadChip arrays to profile DNA 

methylation profiles in NTMH and TMH cell lines. The Illumina Infinium 

HumanMethylation450 BeadChip covers over 450,000 CpG sites in the human genome. 

We processed the HumanMethylation450 images by Illumina’s GenomeStudio 

Methylation Module software to calculate average beta values for each probes. Later, we 

used IMA (Illumina Methylation Analyzer) Bioconductor package (Wang et al., 2012) to 

identify average methylation of CpGs in triplicates of NTMH and TMH cells. We removed 
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the sites with missing beta values and performed quantile normalization and peak 

correction  (Dedeurwaerder et al., 2011).  

 In addition, we utilized 5-hmCDIP-Seq assay (performed at Active Motif) to 

identify enriched locations for 5-hydroxymethyl cytosines for non-tumorigenic (NTMH) 

and tumorigenic (TMH) cell lines. Libraries were sequenced as 50bp single-end reads 

and mapped to the genome using bowtie as mentioned earlier. Peak calling was 

performed using MACS algorithm with whole cell extract as negative control, and a p-

value cut-off of 10-10. 

 

ChIP-String Experiments  

We conducted ChIP-string experiments for H2BK5ac, H4K5ac, H3K27ac, H3K4me1, 

H3K4me3 and H3K27me3 marks in 4 nevi and up to 9 melanoma tumors as well as in 

NTMH and TMH cells on a custom ChIP-string array. These histone marks were chosen 

to test representative regions from three groups: promoters, enhancers and Polycomb-

repressed regions. Since space on the array was limited to 96 probes, we aimed to 

prioritize marks and regions that are most differential based on the ChIP-seq signal 

between the tumorigenic and non-tumorigenic cells within each of the three groups. The 

tested marks were selected based on a combination of prior knowledge about their 

association with each type of regulatory region and findings in our ChIP-seq data. 

Initially, we selected H3K27me3 to test Polycomb repressed regions, H3K4me1 to test 

enhancers, H3K4me3 to test promoters, and H3K27ac to test both enhancers and 

promoters as these marks are known to correlate with the respective regulatory types. 

To increase our mark coverage, we further sought to select additional marks that could 

be tested on the same probes for differential enrichment between NTM and TM cells. By 

inspecting the top differential regions for pairs of marks, we identified H2BK5ac as a 

candidate mark that can differentially enrich with H3K27ac, and H4K5ac with H3K4me1. 
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The 96 probes were split equally in four parts to test regions for differential enrichment of 

H3K27me3, H3K4me3, H3K27ac together with H2BK5ac, and H3K4me1 together with 

H4K5ac. In particular, 24 probes were designed for each mark or pair of marks, half of 

which (12 probes) were chosen to be consistently differentially enriched in both non-

tumorigenic cell lines (NTMH and NTMP) for the histone mark or pair of marks, and the 

other half were chosen to be consistently differentially enriched in both tumorigenic cell 

lines (TMH and TMP). This symmetric design allows for a natural positive and negative 

control of each experiment, because a properly classifiable sample would show positive 

ChIP-string signal in precisely one of the two groups and no signal in the other group. 

 

To select genomic regions for each mark or pair of marks, we first divided the genome 

into non-overlapping bins of 200 bp and computed RPKM values for each bin. We then 

sorted in ascending order all bins by the ratios in their ChIP-seq signal between NTM 

and TM cells (the smaller of (NTMH / TMH) and (NTMP / TMP)). For regions tested on 

pairs of marks, we sorted the bins by the smaller of the ratios of the two marks. We 

further required that selected bins undergo a transition from one chromatin state to a 

sufficiently different chromatin state (e.g. bins annotated as promoters in NTM cells 

transitioning to low signal or to Polycomb repressed in TM cells were allowed, but 

promoter bins transitioning to other types of promoters were excluded). The chromatin 

states were defined based on a ChromHMM model learned from a subset of our final 

ChIP-seq data, which was available at the time the ChIP-String array was commissioned  

(in the final dataset, a file for H3K4me3 in NTMP cells was replaced due to a mislabeling 

issue). Additionally, we required that a binary presence call was made by ChromHMM’s 

BinarizeBed procedure in the cell type the signal was considered enriched in and no 

binary presence calls were made within 2 kb of the bin for the same mark in the other 
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cell type. Finally, bins within 2 kb of higher scoring bins were excluded. The probes for 

the ChIP-string array were designed from the top and bottom parts of the sorted list for 

either gain or loss of signal, respectively, between NTM and TM cells that pass all of the 

above criteria. Bins that presented technical problems for probe design were replaced 

with the next possible bin from the corresponding sorted list. The genomic coordinates of 

all selected regions for each mark used in the final design of the ChIP-string array are 

listed in Table S2. 

                   

ChIP-String Data Analysis  

Raw probes values were first normalized by the same method as the one used by Ram 

et al. (Ram et al., 2011). Counts for all probes of each sample were then compared to 

negative controls, and samples in which greater than 90% of probes were at or below 

background level counts (based on inbuilt negative controls) were omitted from further 

analysis. Counts derived from each ChIP sample were then normalized as follows. 

Probes for each individual sample were divided by the median count within the sample, 

then each probe was divided by the median value of that probe across all samples. The 

mean and standard deviation were calculated per sample. The mean value per sample 

was subtracted from each probe and then each probe was divided by the standard 

deviation. The resulting values were subsequently used for the analysis. 

 

Aggregate Plots  

Genome-wide coverage files (bigWig) for each H3K27Ac experiment was generated by 

using bamCoverage function of deepTools (Ramirez et al., 2016), with Reads Per 

Kilobase per Million mapped reads (RPKM) normalization. Then, obtained coverage 

tracks used for aggregate plots of H3K27Ac levels around -/+ 2Kb of de-acetylated 

promoters with visualization tool – ChAsE (Younesy et al., 2016). 
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Calculation of IC50 Values 

Cells were plated in 96-well plates and treated in six replicate wells. The images were 

obtained and confluence was calculated by the Incucyte machine (Essen biosciences) 

and associated software. The confluence data was then used for calculation of drug 

response. Drug-response data was adjusted to a four-parameter log-logistic function 

using the R package drc. IC50 were predicted using the derived model. The area under 

the curve (AUC) was obtained by numerical integration of cell viability in function of dose 

(log10 scale) using Bolstad R package. 

 

Mass Spectrometry 

Total histones were prepared and subject to mass spectrometry analysis as previously 

described (Karch et al., 2014) using the LTQ-Orbitrap Velos Pro (Thermo Scientific). 
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SUPPLEMENTARY FIGURE LEGENDS 

 

Figure S1. Cell line based model of melanoma progression and epigenome 

profiling, Related to Figure 1. (A) Validation of PTEN loss by PTEN shRNA by western 

blot. (B-C) Soft agar colony formation ability of NTMH, TMH, NTMP and TMP cells. Panel 

B shows representative image and panel C shows the quantitation of soft-agar colonies. 

(D-E) Matrigel-invasion ability of NTMH, TMH, NTMP and TMP cells. Panel D shows 

representative image of invaded cells post Boyden chamber assay and panel E shows 

the quantitation of invaded cells. (F) Log2ratio between NTMP and TMP cells for the 

average signal strength of each chromatin mark in a window of 2kb around annotated 

transcription start sites from RefSeq (Blue) and on distal DNaseI hypersensitive sites 

from ‘Melano’ cell lines (Red, See Supplementary Methods) from ENCODE. (G-I) 

Measurement of global levels of histone modification marks in NTMH and TMH cells. (G-

H) Mass Spectrometry based quantitation of various histone marks on histone H3 (G) or 

histone H4 (H). X-axis shows peptide identity whereas Y-axis shows relative abundance. 

(I) Western blot analysis for indicated histone marks from acid-extracted histones from 

NTMH and TMH cells. 
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Figure S2. Validation of chromatin changes in human tumors, Related to Figure 2.  

(A-F) Correlation plots between ChIP-Seq and ChIP-String. Plots showing correlations of 

normalized mark intensity in ChIP-Seq experiment (Y-axis) and ChIP-String experiment 

(X-axis) in NTMH and TMH cells for H2BK5Ac (A), H4K5Ac (B), H3K27me3 (C), 

H3K27Ac (D), H3K4me1 (E) and H3K4me3 (F). (G-J) Boxplots showing average 

normalized intensity for ChIP-string probes across NTMH, TMH, nevi and tumors 

individually for H2BK5Ac probes high in NTMH cells (G), H2BK5Ac probes high in TMH 

cells (H), H4K5Ac probes high in NTMH cells (I) and H4K5Ac probes high in TH cells (J).  
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Figure S3: Chromatin state profiles, Related to Figure 3 (A) Correlation plot showing 

pearson correlations of histone modification peaks between the histone marks profiled in 

our study in NTMH cells computed based on encoding the presence of a peak with a 

value of 1 and the absence of a peak with a value of 0. Peak calling was performed 

using MACS algorithm with default parameters except p-value < 1x10-8. ‘DiffBind’ 

bioconductor package was used to cluster correlation values. (B) Transition parameters 

for 18-state model derived by ChromHMM for NTMH and TMH cells. (C-D) Overlap of 

different genomic features (CpG island, RefSeq TSS, RefSeq TES, laminB lads (Guelen 

et al., 2008), 5-hMeC enriched and 5-MeC enriched regions) with chromatin state calls in 

NTMH (C) and TMH (D) cells. The fold enrichments are calculated as the ratio between 

observed and expected number of genomic bins for each overlap. The color intensities 

are normalized within each column between its minimum value (white) and its maximum 

value (blue). The last column shows the mean DNA methylation level for each chromatin 

state on the scale from completely unmethylated (white) to fully methylated (red). (E) 

Overlap enrichment of TSS coordinates and then gene body of highly expressed (FPKM 

>5) and low/not expressed (FPKM <5) genes in NTMH cells with chromatin states. Next 

to them is a gene expression positional plot that shows the average gene expression per 

chromatin state and cell type at a given distance within 50kb of annotated transcription 

start sites.  
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Figure S4. Chromatin state transitions between non-tumorigenic and tumorigenic 

cells, Related to Figure 3. (A) Log2 ratios between the total number of genomic bins 

occupied by each chromatin state in non-tumorigenic (NTMH) and tumorigenic (TMH) 

cells. (B) Heat map showing state transitions in NTMH and TMH cells with raw 

enrichment scores. (C-E) Heat maps showing under different normalization schemes 

fold enrichment of transitions of chromatin states in non-tumorigenic to tumorigenic cells 

controlling for the overall state size and similarity (see Supplementary Methods).  The 

color intensities above the main diagonal range from white (relative enrichment <1) to 

blue (relative enrichment > 20), thus indicating chromatin state transitions that lose 

acetylation marks from non-tumorigenic to tumorigenic cells within the same category 

are more enriched compared to the reverse chromatin state transition (i.e. from 

tumorigenic to non-tumorigenic). Similarly, the colors below the main diagonal range 

from white (relative enrichment < 1) to red (relative enrichment > 20), thus indicating the 

lack of chromatin state transitions that gain acetylation marks from non-tumorigenic to 

tumorigenic cells within each category that are more enriched compared to the reverse 

chromatin state transition (i.e. from tumorigenic to non-tumorigenic). (C) Relative 

enrichments for NTMH vs. TMH with binary peak calls normalized to the same number. 

(D) Relative enrichments for NTMH vs. TMH with sequencing reads downsampled to 

same number. (E) Relative enrichments for NTMP vs. TMP with binary peak calls 

normalized to the same number.  
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Figure S5. Chromatin state changes mark specific cancer pathways, Related to 

Figure 4. (A-B) The graphs show correlation between log2 fold change in mean 

acetylation and (A) H3K4me2 or (B) H3K4me3. Log2 fold change in mean acetylation (Y-

axis) for a particular RefSeq promoter was plotted against log2 fold change in H3K4me2 

or H3K4me3 signal (X-axis) in that promoter for NTMH vs. TMH. Log2 fold changes were 

calculated as log2((1 + signal in NTMH) / (1 + signal in TMH)). Overall these changes in 

H3K4me2/3 correlate highly (R = 0.68 for H3K4me2 and 0.72 for H3K4me3) with 

alteration in mean acetylation suggesting that these marks function as coregulators. 

Points in red indicate promoters that were called as significantly deacetylated in TMH at 

FDR of 1% by the permutation test in our analysis. (C-D) UCSC genome browser track 

for chromatin state and histone acetylations H2BK5Ac and H4K5Ac on genomic loci 

encompassing CDKN2A (A) and APAF1 (B) in NTMH and TMH cells.  (C-D) Top enriched 

pathways (pathway commons) associated with genes closest to enhancers displaying 

state transitions from State 4_EnhA in non-tumorigenic cells (NTMH) to States 

7_TxEnhM and 5_EnhM in tumorigenic (TMH) cells.  
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Figure S6. Comparative analysis of chromatin changes with RNA expression 

changes, Related to Figure 5. (A) Relative enrichment (in log space) of number of 

steady genes that do not change expression between NTMH and TMH cells for all pairs of 

chromatin state transitions in their promoters. (B) Difference in enrichment of 

downregulated genes and upregulated genes on all pairs of chromatin state transitions 

between NTMH and TMH cells. (C-E) Relative enrichment of number of downregulated 

genes (C) or upregulated genes (D) or steady genes that do not change expression 

between NTMP and TMP cells (E) for all pairs of chromatin state transitions. (F) 

Difference in enrichment of downregulated genes and upregulated genes on all pairs of 

chromatin state transitions between NTMP and TMP cells. (G) Percent of genes showing 

down- (orange) or up- (blue) regulated gene expression change in top 100, 250, 500, 

1000 and 2000 genes with differential levels in either direction between NTMH and TMH 

cells. Similarly, percent of the promoters showing gain (red) or loss (green) of acetylation 

in top 100, 250, 500, 1000 and 2000 promoter regions with differential levels between 

NTMH and TMH cells. (H) Scatter plot displays log2(fold change + 1) for acetylation and 

gene expression changes between NTMH and TMH. The color scheme is same as that in 

Figure 5D. 
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Figure S7. Acetylation status and proliferation changes in response to HDAC 

inhibitors, Related to Figure 7. (A) Boxplots showing average normalized intensity for 

H3K27Ac levels on ChIP-string probes (that are enriched in NTMH cells in ChIP-seq 

studies) across NTMH and TMH cells that were either untreated or treated with vorinostat 

(200nM) or entinostat (300nM) for 72 hrs. (B-D) Boxplots showing average normalized 

intensity for (B), H2BK5Ac, (C), H4K5Ac, or (D) H3K27Ac levels on ChIP-string probes 

that are enriched in TH cells across NTMH and TMH cells treated with vorinostat (200nM) 

or entinostat (300nM) for 72hrs.  Asterisk (*) represents p<0.05 and double asterisk (**) 

represents p<0.001 (Wilcoxon Rank test) when comparisons are made to TMH. (E-F) 

Growth curves for NTMH and TMH cells grown under various concentrations of (E) 

vorinostat or (F) entinostat. IC50 values are also shown. NaN refers to ‘not a number’. (G) 

Growth curves for melanoma cell lines grown under various concentrations of entinostat. 

IC50 values are in Figure 7G. 
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SUPPLEMENTARY TABLES 

Table S1. Details of sequencing data generated in this study, Related to Figure 1. 

Total read numbers for each mark in each of the 4 cell types used in this study, NTMH, 

TMH, NTMP and TMP. 

 

Table S2. Details of probe locations used for ChIP-String, Related to Figure 2.  

Genomic location (hg19) of the 96-probes used in the nanostring codeset.  

 

Table S3. Details of the nevi and tumor samples, Related to Figure 2. Clinical and 

genetic data for the nevi and tumor samples that were used for validation of histone 

modification levels used in Figure 2. 

 

Table S4. Chromatin state recovery with subsets of marks. Related to Figure 3. 

Top panel shows fraction of state assignments recovered of the state of the row with 

only the mark of the column compared to using all the marks in NTMH and TMH cells. We 

observed cases of high recovery (>60%) of acetylated enhancer or promoter states with 

a single acetylation mark. Bottom panel shows fraction of state recovery with all marks 

except the mark of the column in NTMH and TMH cells compared to using all marks. We 

observed four cases of low recovery (<60%) of a chromatin states when all marks except 

one mark were included highlighting the existence of many locations uniquely marked by 

one mark. These four cases of low recovery were the chromatin states 6_EnhW, 

10_Tx5’, 15_ReprPC, and 16_ReprK9me3 when excluding the H3K4me1, H3K79me2, 

H3K27me3, and H3K9me3 marks respectively (Table S4).  
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Table S5. GO terms for all state changes from NTMH to TMH, Related to Figure 4. 

Lists of GO-terms for the regions that belong to all significant chromatin state changes 

between NTMH and TMH cells. 

 

Table S6: Pathways enriched for top 2 promoter and enhancer state transitions 

from NTMH to TMH, Related to Figure 4.  

 

Table S7: Pathway analysis for different groups in overlap of gene expression and 

average acetylation, Related to Figure 5.  
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CHAPTER 5

CSDELTA: Systematic detection of differential

chromatin sites from group-wise comparisons of

multiple ChIP-seq maps
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ABSTRACT 

 

Comparing epigenetic marks between samples has emerged as a useful way to characterize 

regulatory elements in the genomes of living cells from high-throughput chromatin data. Yet, 

detecting differential chromatin sites in large epigenomics datasets is currently challenging due 

to the lack of suitable bioinformatics tools that can capture the combinatorial complexity of 

epigenetic marks at the resolution of single nucleosomes. In this work we present CSDELTA, a 

general method for genome-wide comparison of epigenomic maps between groups with multiple 

samples. CSDELTA models the functional similarity of different types of chromatin state 

domains, which can increase the power to detect real changes. Moreover, the method can detect 

chromatin changes at nucleosome level resolution. We show applications of the method on 

comparing human embryonic stem cells and brain tissues, which demonstrate the biological 

relevance of predicted differential sites and the superior performance of CSDELTA relative to 

existing methods. 

 

INTRODUCTION 

 

Epigenetic regulation of genes as manifested by dynamic patterns of post-translational histone 

modifications plays important role in normal development [1–7] and disease [8–12]. 

Experimental protocols such as chromatin immunoprecipitation followed by high-throughput 

sequencing (ChIP-seq) have enabled mapping histone modifications on a genome-wide scale in 

a large number of cell types and conditions [13]. Large consortia efforts [14–16] and individual 

studies [17, 11, 18] have produced an unprecedented amount of histone mark data that can be 

leveraged to uncover the underlying mechanisms and principles of epigenetic control in 

biological processes. 

 

While early on single histone marks have been found to correlate with specific genomic features 

such as gene expression [19, 20], combinatorial presence of multiple histone marks has been 

implicated to be important in a variety of biological processes across a large spectrum of cell 

206



types and tissues [13–15, 21–23]. For instance, the combination of H3K4me3 and H3K27ac 

marks is found at active promoters, whereas the joint presence of H3K4me3 and H3K27me3 

associates with poised or bivalent promoters [24]. As another example, the H3K36me3 mark is 

known to be deposited within the gene bodies of actively transcribed genes [13], whereas 

H3K36me3 in combination with H3K9me3 is preferentially found within the bodies of zinc 

finger genes and at repetitive regions [13, 25]. In contrast, broad H3K9me3 domains without 

H3K36me3 are found at constitutive heterochromatic regions that lack gene expression [26].  

 

To summarize and understand the combinatorial complexity of the histone code, the concept of 

chromatin states has been introduced and computational methods such as ChromHMM [27] and 

Segway [28] have been developed and applied for chromatin state discovery and genome-wide 

annotation. Subsequently, methods have been proposed that leverage dependencies between 

histone marks not only within each cell type, but also across cell types [29, 30]. The output of 

these methods enables comparisons of chromatin datasets between cell types, tissues and 

conditions that can capture combinatorial changes of histone marks and thus improve our 

understanding about the dynamics of regulatory mechanisms of gene expression.  

 

Pairwise comparisons between epigenomic maps are complicated both by technical noise in the 

data and by unknown relationships between chromatin marks. Currently, only few methods exist 

that model joint changes of multiple marks between conditions. One such method, dPCA [31], 

performs Principal Component Analysis on a de-noised version of the difference in the signal 

for each chromatin mark between two conditions. The method can be applied only on a 

predefined set of regions such as promoters or previously mapped transcription factor binding 

sites. While useful in such settings, individual differential principle components can be difficult 

to interpret and applying dPCA genome-wide at higher resolutions is not computationally 

feasible. A second method, ChromDiff [32], was proposed for pairwise comparison of chromatin 

maps between pairs of conditions with multiple samples. In contrast to dPCA, ChromDiff 

operates on chromatin state segmentations produced by methods such as ChromHMM by 

pooling information across a predefined set of relatively broad genomic regions such as gene 
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bodies. While useful to detect differences on the level of genes, ChromDiff is prone to missing 

important epigenetic changes at sites not included in the input set or at finer resolution (e.g. at 

the level of individual enhancers or even nucleosomes). Furthermore, this method does not 

model the similarity between different chromatin states, which can impact its power to detect 

real changes. Another tool, EpiCompare [33], was developed to detect tissue-specific enhancers 

and promoters at higher resolution. While useful in this setting, EpiCompare is limited only to 

these two types of regulatory elements and out-of-the-box can process only data from the 

Roadmap Epigenomics Consortium, thus requiring substantial manual adaptation of the source 

code to be applicable in more general settings. 

 

Here we present CSDELTA, a general method for genome-wide comparison of chromatin state 

segmentations between pairs of conditions with multiple samples. Our method presents several 

improvements over limitations of different existing methods. First, CSDELTA can be applied to 

find epigenetic changes in an unbiased manner across the whole genome without the need to 

specify a predefined set of input regions. Second, CSDELTA operates at the resolution of the 

input chromatin segmentations, which is typically 200 base pairs or one nucleosome and spacer 

region, thus enabling detection at much finer resolution. Third, CSDELTA models the functional 

similarity between chromatin states, which can increase the power to detect true changes. Fourth, 

the software is not tailored to specific datasets, provides an easy to use command line interface 

and runs in reasonable time and memory. 

 

CSDELTA takes as input two groups of chromatin state segmentations and produces a ranked 

list of differential chromatin locations with respect to each chromatin state. Furthermore, 

CSDELTA provides an estimate of the false discovery rate (FDR) for each differential site, that 

can be derived from one of two possible background models. In cases where at least four samples 

are available in each group, a background model with sufficient power can be built by 

randomizing chromatin state maps between the groups. This procedure makes the assumption 

that samples are independent representatives of their groups. In cases where fewer samples are 

available per group (as few as two samples per group) and the chromatin maps were derived with 
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ChromHMM[27], a background model can be built based on the additional assumption that 

histone mark datasets used to derive the chromatin state segmentations are independent 

measurements of the chromatin states in each sample. 

 

METHODS 

 

CSDELTA is designed for genome-wide comparisons of chromatin state segmentations 

produced by ChromHMM or similar methods between two groups with multiple samples at the 

resolution of the input segmentations (Fig 5.1). The output of CSDELTA is a ranked list of 

genomic loci ordered by a quantitative measure of how differential each location is between the 

two groups with respect to each chromatin state. In addition, CSDELTA builds a background 

model for the distribution of differential scores under the null hypothesis that there are no 

differences between the two groups and estimates the FDR for each locus with respect to each 

state differential score.  

 

Differential scores 

 

CSDELTA ranks all genomic locations by the degree of change between two input groups with 

respect to each chromatin state as quantified by a single number, further referred to as state 

differential score. Intuitively, the state differential score captures the likelihood that particular 

genomic location is annotated with a chromatin state and this state is over- or under-represented 

among the samples from the first group compared to the second group. Furthermore, the score 

attempts to account for functional similarity between chromatin states so that transitions between 

similar states rank lower than more substantial chromatin changes.  

 

Computing the state differential scores requires a formal notion of functional similarity between 

chromatin states. CSDELTA leverages information from multiple samples within each group to 

learn a distance function between states. The basic idea is that two states are likely to be more 

functionally similar if genomic locations annotated with one of them are annotated frequently 
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with the other state in samples from the same group. In contrast, two chromatin states are more 

different when genomic locations annotated with one of them are rarely annotated with the other 

in samples from the same group. Formally, this can be expressed with the help of a graphical 

model (Fig 5.1Aii), which models the conditional probability distribution of observing a 

chromatin state at a given location in a sample, conditioned on observing another chromatin state 

at that location in another sample from the same group. Let G and S be variables that denote the 

group and the sample label, respectively. Let B denote the genomic position of a bin, and let O 

denote the observed chromatin state in sample S at position B. Then, let R denote the chromatin 

state in another randomly selected sample from the same group at the same genomic position. 

CSDELTA models the probability 𝑃(𝑅|𝑆, 𝑂) directly without any further assumptions about the 

mechanics of the process that generated O and R. In particular, CSDELTA estimates 𝑃(𝑅|𝑆, 𝑂) 

from the input data by computing for each sample the average co-occurrence frequencies for 

each pair of states conditioned on the total fraction of the genome occupied by the states in that 

sample, across all samples in the same group: 

 

𝑃(𝑅 = 𝑦|𝑆 = 𝑠, 𝑂 = 𝑥) =
1

𝑁 − 1
 ∑

#[𝑦 and 𝑥 are assigned to the same bin in 𝑠 and 𝑟]

#[bins annotated with 𝑥 in 𝑠]
𝑟∈𝔾
𝑟≠𝑠

 

 

where 𝔾 denotes the set of all samples from the group and 𝑁 denotes the number of samples. 

Intuitively, if 𝑥  and 𝑦  are more closely related states, then  𝑃(𝑅 = 𝑦|𝑆 = 𝑠, 𝑂 = 𝑥)  will be 

different from zero, and vice versa for more distinct states. Next, CSDELTA computes the 

probability distribution of chromatin states at each position 𝑖 in each group, 𝑔: 

 

𝑃(𝑅 = 𝑦|𝐺 = 𝑔, 𝐵 = 𝑖)

= ∑ 𝑃(𝑅 = 𝑦, 𝑆 = 𝑠|𝐺 = 𝑔, 𝐵 = 𝑖) =

𝑠∈𝔾

∑ 𝑃(𝑅 = 𝑦|𝑆 = 𝑠, 𝐺 = 𝑔, 𝐵 = 𝑖)𝑃(𝑆 = 𝑠|𝐺 = 𝑔)

𝑠∈𝔾

=
1

𝑁𝑔
∑ 𝑃(𝑅 = 𝑦|𝑆 = 𝑠, 𝑂 = 𝑥𝑠,𝑖)

𝑠∈𝔾
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where 𝔾 is the set of samples in group 𝑔, 𝑁𝑔 is the number of samples in group 𝑔,  and 𝑥𝑠,𝑖 

denotes the chromatin state in dataset 𝑠 at position 𝑖. The above equality follows from the model 

assumption that every sample is equally likely to be generated in group 𝑔,and thus 𝑃(𝑆 = 𝑠|𝐺 =

𝑔)  is uniform. Importantly, 𝑃(𝑅 = 𝑦|𝐺 = 𝑔, 𝐵 = 𝑖) captures both the uncertainty about the 

chromatin state assignments at position 𝑖 across all samples in group 𝑔 and the similarity of 

chromatin states as measured by their genome-wide co-occurrence frequencies within group 𝑔. 

Then, the state differential score between two groups, 𝑔1 and 𝑔2, for each position 𝑖 and state 𝑦 

is computed as: 

 

𝛿𝑦,𝑖 = 𝑃(𝑅 = 𝑦|𝐺 = 𝑔1, 𝐵 = 𝑖) − 𝑃(𝑅 = 𝑦|𝐺 = 𝑔2, 𝐵 = 𝑖) 

State differential scores captures the degree to which the annotations at position 𝑖 differ with 

respect to chromatin state 𝑦 between the two groups.  Furthermore, the sign of 𝛿𝑦,𝑖  indicates 

which of the two groups exhibits higher frequency of state 𝑦, which allows to call group-specific 

chromatin state regions. 

 

False-discovery rate computation 

 

CSDELTA computes an estimation of the false discovery rate of the state differential scores for 

each genomic location based on permutation tests. The software provides two options to 

construct random groupings depending on the number of available samples and histone mark 

datasets in each group.  

 

Permuting chromatin state segmentations between groups 

 

This background model keeps the number of samples in each group and generates every 

permutation of the group assignments of individual samples. The power to detect significant 

changes with this procedure depends on the number of samples in each group, which in turn 

determines the total number of possible unique permutations. For example, significant changes 
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can be detected at FDR level of 0.01 if there are at least five samples in each group, whereas an 

FDR threshold of 0.05 would require each group to have at least four samples. Moreover, in 

cases where it is not computationally feasible to inspect all possible permutations, a random 

subset of 100 permutations is generated. For each permutation, the conditional distributions 

𝑃(𝑅 = 𝑦|𝑆 = 𝑠, 𝑂 = 𝑥) for each sample 𝑠 are computed by using the samples within its shuffled 

group. Then, differential scores between the two shuffled groups are computed for a random 

subset of 10 continuous regions of 5*106 base pairs each. 

 

Permuting histone marks across the two groups 

 

For chromatin state segmentations derived with ChromHMM[27], in cases where only few 

samples are available in each group, CSDELTA provides an option to estimate the FDR based 

on a background model that attempts to capture the technical rather than the biological 

reproducibility of the findings. This procedure assumes that the technical noise is not correlated 

between ChIP-seq experiments and individual histone mark experiments can be treated as 

independent measurements of the epigenetic state of the corresponding samples. CSDELTA 

generates mock samples by shuffling the histone mark datasets across all samples from both 

groups. After each shuffling, the mock samples are partitioned into two groups so that the number 

of samples in each group is the same as in the original groups. Next, ChromHMM is applied 

with the “MakeSegmentation” option to produce chromatin state segmentations for the mock 

samples by using the model parameters learned from the original data. This procedure preserves 

the original chromatin state definitions and thus allows for computation of the background 

distribution of scores over the same set of chromatin states. For computational reasons, a random 

subset of 100 permutations and 10 randomly selected continuous regions of 5*106 base pairs is 

used. 

 

FDR estimation 
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Since state differential scores range from -1 to 1, where scores equal to 0 indicate no difference 

between the groups, CSDELTA tests whether the absolute value of 𝛿𝑦,𝑖  is significantly different 

from 0: 

 

FDR(|𝛿𝑦,𝑖| = 𝑞) =  
Bgr(|𝛿𝑦,𝑖| ≥ 𝑞)

Fgr(|𝛿𝑦,𝑖| ≥ 𝑞)
 

 

where Bgr(|𝛿𝑦,𝑖| ≥ 𝑞) denotes the fraction of the background scores for state 𝑦 whose absolute 

values are greater than or equal to 𝑞, and Fgr(|𝛿𝑦,𝑖| ≥ 𝑞) denotes the fraction of foreground 

scores for state 𝑦 (i.e. scores from the true grouping) whose absolute values are greater than or 

equal to 𝑞. To ensure monotonicity, the reported FDR values are adjusted by using the Yekutieli-

Benjamini procedure [34]. 

 

RESULTS 

 

Comparison with ChromDiff and Fisher’s exact test methods 

 

We evaluated the performance of CSDELTA, ChromDiff [32] and a baseline method based on 

Fisher’s exact test (FET) on a pairwise comparison of chromatin state maps of human embryonic 

stem (ES) cells (n=8) and brain cells (n=10) downloaded from the Roadmap Epigenomics Project 

[14].  

 

In this comparison, ChromDiff was applied without its procedure for external covariate 

correction, which produced better results in our tests compared to using covariate correction. 

Since ChromDiff was designed to detect chromatin changes on more coarse resolutions, we 

applied this method genome-wide on bins of length 1mb, 100kb and 10kb and on 200bp bins 

from chromosome 19, further referred to as ChromDiff_1mb, ChromDiff_100kb, 

ChromDiff_10kb and ChromDiff_200bp/chr19, respectively. We chose chromosome 19 for 
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computational reasons and because it contains most zinc finger genes in the human genome, 

which are used as feature in our evaluation. For each state 𝑦 and window length 𝑤 ∈ {1mb, 

100kb, 10kb, 200bp}, we assigned to each 200bp bin, 𝑗 ∈ [𝑖 ∗ 𝑤, (𝑖 + 1) ∗ 𝑤], the same score 

derived from ChromDiffs’s output: 

 

𝛿ChromDiff,𝑦,𝑤,𝑗 = −log2(qvalue𝑦,𝑤,𝑖) ∗ sign(𝜇𝑦,𝑤,𝑖,𝑔1
− 𝜇𝑦,𝑤,𝑖,𝑔2

) 

 

where qvalue𝑦,𝑤,𝑖 denotes the FDR corrected P-value for state 𝑦 at window 𝑖 of length 𝑤 from 

the Mann-Whitney test as outputted by ChromDiff and 𝜇𝑦,𝑤,𝑖,𝑔1
  and 𝜇𝑦,𝑤,𝑖,𝑔2

 denote the average 

ranks with respect to the frequency of state 𝑦 in that window in group 𝑔1 and 𝑔2, respectively. 

 

The FET method closely resembles one of the procedures for chromatin state comparison in 

EpiCompare [33], but generalizes to any chromatin state and not just promoters and enhancers 

as implemented in EpiCompare. This method constructs a two-by-two contingency table for each 

chromatin state at each 200bp genomic bin and computes a P-value by Fisher’s exact test, which 

then is converted to a score to rank bins by the degree they differ between the two groups: 

 

𝛿FET,𝑦,𝑖 = −log2(pvalue𝑦,𝑖) ∗ sign(freq(𝑦, 𝑖, 𝑔1) − freq(𝑦, 𝑖, 𝑔2)) 

 

where pvalue𝑦,𝑖 denotes the P-value from the Fisher’s exact test at bin 𝑖 and freq(𝑦, 𝑖, 𝑔1) and 

freq(𝑦, 𝑖, 𝑔2) denote the frequency of state 𝑦 at bin 𝑖 in group 𝑔1 and 𝑔2, respectively. 

 

Conditional probabilities learned by CSDELTA reflect expected chromatin state 

similarities and capture more chromatin state variability than ChromHMM posterior 

probabilities 

 

Conditional probabilities learned by CSDELTA when comparing ES cells and brain tissues, 

𝑃(𝑅 = 𝑦|𝑆 = 𝑠, 𝑂 = 𝑥), reflected expected chromatin state similarities (Fig 5.2A). For example, 
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on average, the majority of the states are most similar to themselves. In addition, promoter and 

enhancer states exhibited higher similarities among each other than to other chromatin states. 

Furthermore, broad weakly transcribed (5_TxWk), heterochromatin (9_Het) and weakly 

Polycomb repressed (14_ReprPCWk) states showed similarity with the low signal state 

(15_Quies). Moreover, we investigated whether co-occurrence frequencies across samples from 

the same group provide more information about chromatin state similarities than statistics that 

do not explicitly consider variability at the same genomic location across samples. For example, 

in ChromHMM, posterior probabilities of chromatin state assignments can be outputted for each 

genomic bin, which give the uncertainty of the model about state assignments at that bin. Based 

on these uncertainty estimates, the expected co-occurrence frequency of chromatin state 

assignments by ChromHMM at that bin in a replicate experiment is given by the outer product 

of the vector of posterior probabilities. In our results, the amount of chromatin state variability 

captured by the average conditional probabilities in CSDELTA was substantially more than the 

variability captured by the average outer product of ChromHMM posterior probabilities across 

the genome in all samples as measured by the Shannon entropy of these distributions. Therefore, 

this suggests that the co-occurrence frequencies of chromatin states in samples from the same 

group provide additional information about chromatin state similarities that is not captured by 

the uncertainty about chromatin state assignments estimated by ChromHMM from data in 

individual samples. 

 

Comparison of the genome territory called as significantly differential by each method 

 

We next computed for each chromatin state the fraction of genome that showed statistically 

significant differences at FDR of 0.05 for each method (Fig 5.2B). CSDELTA, ChromDiff_1mb, 

ChromDiff_100kb and ChromDiff_10kb called significant differences for all states, whereas 

FET and ChromDiff_200bp/chr19 called much fewer locations only for a small subset of the 

chromatin states. As ES and brain cells are expected to have many epigenetic differences, this 

suggests that FET and ChromDiff_200bp are substantially underpowered to detect differences 

on nucleosome level resolution likely due to insufficient number of samples in the two groups. 
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Furthermore, using different background models for computing FDR estimates in CSDELTA 

had very little effect on the amount of genomic territory called as significant. 

 

Differential regions from CSDELTA and other methods associate with gene expression 

changes 

 

We compared how rankings produced by CSDELTA, ChromDiff and FET correlate with gene 

expression changes between ES and brain cells (Fig 5.3). Since chromatin states have been 

shown to correlate with gene expression[35], rankings with respect to differential chromatin 

states are expected to reflect this association. In this context, we computed for each ranking the 

cumulative average gene expression change for bins within 2kb of all annotated transcription 

start sites. As a quantitative assessment of the overall association we computed the normalized 

area under the curve for each ranking. Since gene expression changes are typically reflected in 

changes of epigenetic marks in windows much larger than 200bp, we also included in this 

comparison smoothed CSDELTA scores by sliding a window of length 21 bins centered at each 

bin (i.e. 10 bins upstream and 10 bins downstream from the current bin) and convolving the 

signal in the window with a Gaussian density function with 𝜎 = 21/6. This procedure allows 

for leveraging information from CSDELTA scores in nearby bins. All methods correctly 

associated changes in active promoter states with changes in gene expression to different 

degrees. CSDELTA, with and without smoothing, outperforms both FET and 

ChromDiff_200bp/chr19 on chromosome 19 with respect to the normalized area under the curve 

for states associated with TSS proximal regions including 1_TssA, 2_TssAFlnk, 3_TxFlnk, 

11_BivFlnk and for the Polycomb repressed state, 13_ReprPC. Genome-wide, ChromDiff_10kb 

and ChromDiff_100kb outperform non-smoothed CSDELTA scores for some states including 

1_TssA. Smoothed CSDELTA scores overall show the best performance for this task across all 

states associated with TSS proximal regions. These results suggest that: 1) CSDELTA’s model 

of similarity between chromatin states can increase the overall association of the detected 

changes with gene expression at 200bp resolution, and 2) pooling information across 
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neighboring bins as implemented in ChromDiff or by Gaussian smoothing can improve the 

strength of this association. 

 

CSDELTA scores associate better with differential DNaseI hypersensitivity sites than 

ChromDiff and FET 

 

We evaluated the performance of all three methods based on their ability to detect differential 

DNaseI hypersensitivity sites (DHS)  (Fig 5.4). DHS are a proxy for mapping transcription factor 

binding activity, which is known to correlate with cell type specific gene regulation, particularly 

at enhancers [36]. For this comparison, we computed Receiver Operating Characteristic (ROC) 

and Precision-Recall (PR) curves for the task of discriminating distal ES-specific DHS from 

distal Brain-specific DHS based on the state differential scores for enhancer states (6_EnhG, 

7_Enh and 12_EnhBiv) produced by each method. Distal sites were defined as sites that are 

farther than 2kb from annotated TSSs. In all cases, CSDELTA showed a substantial advantage 

over ChromDiff and FET as measured by the area under the ROC and PR curves. Smoothing of 

CSDELTA scores presented no advantage for this task and in fact slightly decreased the strength 

of association between the scores and distal differential DHS, thus implying that pooling 

chromatin state changes across broader regions is not beneficial in this case. Consequently, 

ChromDiff’s poor performance on this task can be explained by the fact that this method was 

designed for broader domains and is thus not suitable for detection of changes in more localized 

genomic features such as DHS. In addition, both FET and ChromDiff do not model chromatin 

state similarity, which can further affect their power to detect true changes. Overall, these results 

imply that CSDELTA’s model for chromatin state similarity, which leverages state co-

occurrence patterns from samples within each group, can lead to improvements in accuracy when 

detecting localized chromatin changes at nucleosome level resolution. 

 

CSDELTA scores associate better zinc finger genes than ChromDiff and FET 
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Finally, we evaluated the three methods on their ability to detect changes with respect to state 

8_Znf/Rpts, which is associated with zinc finger genes and repeats (Fig 5.5). State 8_Znf/Rpts 

is defined by the joint presence of H3K9me3 and H3K36me3 and as such is difficult to detect 

from inspecting any of these histone marks in isolation. Here we computed ROC and PR curves 

for the task of discriminating zinc finger genes from the rest of the genome based ranking 

genomic bins by the absolute value of each score. Based on the area under the ROC and PR 

curves, CSDELTA outperformed both FET and ChromDiff genome-wide and on chromosome 

19, where most zinc finger genes reside. As zinc fingers span broader domains, smoothing of 

CSDELTA scores slightly improves the strength of the association.  

 

CSDELTA run time and memory usage 

 

Comparing chromatin state maps of human embryonic stem (ES) cells (n=8) and brain cells 

(n=10) downloaded from the Roadmap Epigenomics Project [14] and computing statistical 

significance by permuting chromatin state maps between groups took 1 hour and 57 minutes on 

a 2.7 GHz Intel Core i7 quad-core MacBook Pro laptop with 16GB RAM by using all four CPU 

cores.  

 

DISCUSSION 

 

In this work we presented a new computational method, CSDELTA, for group-wise comparison 

of chromatin state segmentations. We benchmarked CSDELTA against two existing methods, 

ChromDiff [32] and Fisher exact test, which resembles a procedure implemented in EpiCompare 

[37]. CSDELTA outperformed the other two methods at detecting differential sites at 

nucleosome resolution, which correlate with transcription factor binding activity and associate 

with zinc finger genes. CSDELTA was able to detect chromatin state changes associated with 

gene expression changes at comparable accuracy to the other methods. 
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CSDELTA provides two options to estimate the statistical significance of differential sites based 

on permutation tests, which can be useful in different scenarios. The first option shuffles the 

chromatin state segmentations between the groups. This mode is preferable in cases where 

groups have sufficient number of samples, because it makes fewer assumptions about the input 

data and thus FDR estimates can be more accurate. Specifically, this procedure only assumes 

that the variability of chromatin state segmentations due to technical reasons is not correlated 

between samples, and thus each sample can be treated as an independent representative of its 

original group. While useful, this strategy can have a potential drawback as each group is 

required to have a sufficient number of samples in order to compute accurate FDR estimates in 

practice. For example, in cases where fewer than four samples per group are available, the 

number of possible permutations is too small and computed estimates can become overly 

conservative.  

 

The second option in CSDELTA to estimate FDR is to randomize the input histone mark datasets 

used to derive the original chromatin state segmentations. Since there are typically multiple 

histone mark datasets per sample, this procedure can generate a sufficient number of randomized 

samples for the permutation test. However, this gain in power comes at the cost of additional 

assumptions, namely that the technical variability between individual histone mark datasets 

within each sample is not correlated. This assumption can be violated in practice, for example, 

if ChIP-seq quality of datasets from the same biological sample is affected either by genomic 

features unique to that sample such as chromatin accessibility or by technical artifacts due to 

batch effects. As result, in cases of large batch effects or other unaccounted confounders, FDR 

estimates computed by shuffling histone mark datasets can produce inflated false positive rates. 

In such cases, it is generally preferable to flag problematic datasets beforehand and exclude them 

from further analysis if possible or correct for the corresponding confounders before deriving 

chromatin state segmentations. Overall, shuffling ChIP-seq datasets can still provide useful 

estimates of the FDR in cases where only few samples are available for each group. Future work 

entails comprehensive comparison of the performance of each background model. 
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In addition, I plan on extending the CSDELTA method to comparisons of more than two groups 

of samples. In particular, the state differential scores can be extended to compare one group 

against multiple other groups, which can be used to detect for example cell type and tissue 

specific regulatory regions from large compendiums of data such as the Roadmap Epigenomics 

Project [14] and others [16, 23]. In this context, the FDR estimation procedures can also be 

adapted to handle multi-group comparisons. 

 

 

  

220



Figure 5.1
A.

B.

CSDELTA
State

Differential
Scores

i) ii)

iii)

1_TssA
2_TssAFlnk

3_TxFlnk
4_Tx

5_TxWk
6_EnhG

7_Enh
8_ZNF/Rpts

9_Het
10_TssBiv
11_BivFlnk
12_EnhBiv

13_ReprPC
14_ReprPCWk

15_Quies
14_ReprPCWk

RefsSeq Genes

Human
ES Cells

Human
Brain Tissues

…
…

…

G

S

O

B

R

G: Group
S: Sample
O: State in current sample
R: State in another sample 
B: Bin index

Group

Sample 1
Sample 2

Sample N

Compute state co-occurrence
frequencies within the group:

Chromatin State Segmentations

……

Sample 3

O=x

R=y

P(R=y | S=s, O=x)
s ∈ Samples(Group)

221



Figure 5.1: Overview of CSDELTA method. (A) (i) Graphical model for the CSDELTA 

method. Variable explanations are shown under the model. The probability of observing a state 

in another sample from the same group, 𝑃(𝑅|𝑆, 𝑂), is modelled directly without additional 

assumptions about the process that generates the chromatin states. (ii) In the first step of the 

method, 𝑃(𝑅|𝑆, 𝑂) is estimated from co-occurrence frequencies for each pair of chromatin states 

among samples within each group. (iii) In the second step, for each genomic bin, B, and each 

group, G, 𝑃(𝑅|𝐺, 𝐵) is computed as the average across the conditional probabilities given the 

observed states in the samples from the group. The state differential scores are defined as the 

difference between the 𝑃(𝑅|𝐺, 𝐵)  probabilities for each state in each group. (B) Example 

CSDELTA output from comparing ES cells and brain tissues from the Roadmap Epigenomics 

Project[14] at the NANOG locus. ChromHMM segmentations are shown for ES cells at the top 

and brain tissues at the bottom. The tracks in the middle show the mnemonics, color codes and 

the state differential scores for all states. Several genes in this locus are differentially active in 

ES cells, which is reflected in the differential scores for specific chromatin states. For example, 

the promoter and the gene body of the NANOG gene, which is a key ES-specific regulator, show 

high positive differential scores for the promoter state, 1_TssA, and the transcribed states, 4_Tx 

and 5_TxWk, respectively. 
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Figure 5.2: CSDELTA conditional distributions and differential regions from comparison 

with CSDELTA, ChromDiff and FET. ES cells and brain tissues from the Roadmap 

Epigenomics Project[14] were compared with CSDELTA, ChromDiff and FET. (A) Left table 

shows the average estimated conditional distributions, 𝑃(𝑅|𝑆, 𝑂), across all samples in both 

groups. Right table shows the average outer product of ChromHMM posterior probabilities 

across all bins in the genome and all samples in both groups. The average outer product of 

ChromHMM posterior probabilities estimates the chromatin state similarities from the 

uncertainty about chromatin state assignments in individual samples without considering data 

from other samples at the same location. Probabilities in both tables were converted to 

percentages and color coded from 0 (white) to 100 (red). Last column in each table shows the 

Shannon entropy for the corresponding distributions with cells color coded from lowest value 

(white) to the highest value across all entropies from both tables (green). Distributions learned 

by CSDELTA have higher entropies and thus capture more of the variability of chromatin state 

assignments compared to the average outer product of ChromHMM posterior probabilities. (B) 

First two columns show the average percentage of genomic territory occupied by each state in 

ES cells and in brain tissues. Subsequent columns show for each method the percentage of 

genomic territory called as significantly differential with respect to each state at FDR of 0.05. 

Cells are color coded from 0 (white) to the highest value in the whole table (green). 
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Figure 5.3: State differential scores associate with gene expression changes. ES cells and 

brain tissues from the Roadmap Epigenomics Project [14] were compared with CSDELTA, 

ChromDiff and FET. (A) For chromatin states 1_TssA and 13_ReprPC, the cumulative average 

gene expression change between ES and brain cells is plotted as a function of the rank of bins 

within 2kb of annotated TSSs based on the differential score from each method sorted in 

descending order (left panels) and ascending order (right panels). The area under the curve 

normalized by the number of bins (𝜇AUC) is shown for each method. 𝜇AUC measures the 

overall association of rankings with gene expression changes with positive values corresponding 

to increase of gene expression compared to brain cells and vice versa for negative values. (B) 

𝜇AUC is shown for each chromatin state and method for scores sorted in descending order (top 

panel) and ascending order (bottom panel).  
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Figure 5.4: State differential scores for enhancers associate with differential DHS. ES cells 

and brain tissues from the Roadmap Epigenomics Project [14] were compared with CSDELTA, 

ChromDiff and FET. Receiver operating characteristic and Precision-recall curves for enhancer 

states (A) 6_EnhG, (B) 7_Enh and (C) 12_EnhBiv for the task of discriminating distal ES-

specific DHS from distal Brain-specific DHS based on the ranking of the scores from each 

method. Distal DHS sites are defined as DHS sites that are farther than 2 kb from annotated 

TSSs. The areas under each curve is shown for each method. Solid lines correspond to predicting 

tissue-specific DHS sites in the whole genome and dashed lines correspond to predicting tissue-

specific DHS sites only on chromosome 19. CSDELTA without smoothing performed best 

compared to the rest of the methods on this task. 
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Figure 5.5
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Figure 5.5: State differential scores associate with zinc finger genes. ES cells and brain tissues 

from the Roadmap Epigenomics Project [14] were compared with CSDELTA, ChromDiff and 

FET. Receiver operating characteristic and Precision-recall curves for chromatin state 

8_ZNF/Rpts for the task of discriminating zinc finger genes from the rest of the genome. Solid 

lines correspond to classifying zinc fingers genome-wide and dashed lines correspond to 

classifying zinc fingers only on chromosome 19. CSDELTA performed best compared to the 

rest of the methods on this task. Smoothing CSDELTA scores provides a slight advantage in this 

case. 
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