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Identifying anthropogenic influences on weather and climate 
amidst the background of internal variability, and providing 
robust projections, are central scientific challenges with prac-

tical implications1–6. Since the inception of the Coupled Model 
Intercomparison Project (CMIP), substantial progress has been 
made on quantifying sources of uncertainty in climate projections 
(for examples, see refs. 7–9). However, such multi-model archives 
confound uncertainties arising from differences in model for-
mulation (that is, structural uncertainty) with those generated 
by internal variability (variability from natural processes in the 
coupled ocean–atmosphere–land–biosphere–cryosphere system). 
This distinction is important because the former is potentially 
reducible as models improve, whereas the latter is an intrinsic 
property of each model and is largely irreducible after the memory 
of initial conditions is lost, typically after less than a few years 
over land10. This key distinction is often not widely appreciated 
and communicated to stakeholder groups11. Indeed, internal vari-
ability accounts for approximately half of the inter-model spread 
within CMIP for projected changes in near-surface air tempera-
ture, precipitation and runoff across North America and Europe 
over the next 50 years5,8,9,12–14.

One way to isolate the uncertainty from internal variability is to 
create an ensemble of simulations with a single climate model under 
a particular radiative forcing scenario, applying perturbations to the 
initial conditions of each member to create diverging weather and 
climate trajectories, causing ensemble spread (for examples, see 

refs. 12,15–17). Since the resulting sequences of unpredictable inter-
nal variability are randomly phased between the individual ensem-
ble members, the forced response can be estimated by averaging 
over a sufficient number of members. The definition of ‘sufficient’ 
depends on the quantity of interest, location, spatial scale, temporal 
scale and time horizon, often on the order of 10–100 members (for 
example, see ref. 12). Such ‘initial-condition large ensembles (LEs)’ 
conducted with fully-coupled global models are a relatively new 
development in climate science, with the first efforts employing 
CMIP3-era models12,18.

The past few years have witnessed an explosion of LEs with  
newer-generation CMIP5-class Earth system models (ESMs;  
Table 1). Each LE required substantial high-performance comput-
ing resources and generated hundreds of terabytes of output. For 
example, the CESM1-LE used 21 million CPU hours and produced 
over 600 terabytes of model output (for comparison, the entire 
CESM1 contribution to CMIP5 was 170 terabytes). Making these 
‘big data’ projects accessible to a wide range of users is challenging, 
yet their ease-of-use for different types of analysis workflows has a 
substantial impact on the scientific value gained from their produc-
tion. A case in point is the NCAR CESM1-LE Project19, which was 
created to serve a broad research community by responding to user 
needs to provide easy access to the output and stable on-disk access. 
This project has resulted in more than 860 peer-reviewed studies to 
date, with approximately 400,000 data files downloaded. Remaining  
nimble to new workflows and users is important, as is following the 

Insights from Earth system model initial-condition 
large ensembles and future prospects
C. Deser   1,2 ✉, F. Lehner   1,2, K. B. Rodgers2,3,4, T. Ault2,5, T. L. Delworth2,6, P. N. DiNezio   2,7, 
A. Fiore   2,8, C. Frankignoul2,9, J. C. Fyfe   2,10, D. E. Horton   2,11, J. E. Kay   2,12,13, R. Knutti   2,14, 
N. S. Lovenduski   2,12,15, J. Marotzke   2,16, K. A. McKinnon2,17, S. Minobe   2,18, J. Randerson   2,19, 
J. A. Screen   2,20, I. R. Simpson   1,2 and M. Ting   2,8

Internal variability in the climate system confounds assessment of human-induced climate change and imposes irreducible lim-
its on the accuracy of climate change projections, especially at regional and decadal scales. A new collection of initial-condition 
large ensembles (LEs) generated with seven Earth system models under historical and future radiative forcing scenarios pro-
vides new insights into uncertainties due to internal variability versus model differences. These data enhance the assessment 
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recommended big data practice of ‘bringing your analysis to your 
data’. Following these principles, the CESM1-LE was made freely 
available as a public dataset on the Amazon Web Services cloud 
in October 2019. Access on the commercial cloud demonstrates 
strong interest in LEs from industry and scientific communities well 
beyond typical climate researchers. Such scrutiny and widespread 
use attests to the value of LEs for a range of applications—truly a sea 
change for climate and related sciences.

Strength in numbers with a Multi-Model Large Ensemble 
Archive
While a single-model LE has enormous utility, a multi-model col-
lection of LEs can be leveraged for robust comparison of both the 
forced response on regional or decadal scales across models and 
internal variability across models. It can also advance model evalu-
ation by providing more complete information on biases in inter-
nal variability versus those in the forced response. Unlike CMIP, a 
multi-model archive of LEs allows for direct separation of projection 
uncertainty into a structural component due to model differences 
and an internal variability component. Despite these advantages, 
most analyses to date have been limited to one or two LEs (with a 
few exceptions; for examples, see refs. 20,21), in part because of the 
burdensome task of accessing large volumes of data from disparate 
sources. To fill this gap, we have produced a centralized data reposi-
tory of LEs conducted with seven different CMIP5-class ESMs 
under historical and future emissions scenarios (hereafter referred 
to as the ‘Multi-Model Large Ensemble Archive’ (MMLEA); Table 1).  
This repository includes gridded fields of key variables at daily 
and monthly resolution, and it is easily accessible via the National 
Center for Atmospheric Research (NCAR) Climate Data Gateway22.

This Perspective seeks to illustrate what MMLEA can offer, with 
the aim of widening its usage and stimulating new research direc-
tions and Earth system applications. We also look to the future of 
initial-condition LEs, in particular the opportunities and challenges 
that confront their design and facilitate their accessibility to the 
user community. In this regard, we offer a path forward that bal-
ances demands for increased spatial resolution and model complex-
ity against ensemble size. We encourage future CMIPs to take on a 
greater role in the design and coordination of LE simulations, data 
storage and access.

New insights on separating sources of uncertainties
Individual LEs have been crucial to understand the need to con-
sider internal variability alongside forced trends in past and future  
climate change at continental and smaller spatial scales10,12,14,19,23–31. 

The MMLEA expands on this view by providing new insights on 
the relative roles of internal variability and model structural differ-
ences—two sources of projection uncertainty in addition to the radi-
ative forcing scenario. The MMLEA shows both factors can play a 
first-order role in the magnitude and pattern of warming at continen-
tal scales; for example, the distributions of trends in North American 
air temperature over the last 60 years from each of the seven LEs 
(Fig. 1 and Methods). While they all encompass the observed trend 
value, they clearly differ in the strength of the forced trend (given by 
the ensemble mean) and in the shape and width of the distribution 
of trends, which emerge due to internal variability. This information 
on model dependence of both the forced trend and its range due to 
internal variability is unique to the MMLEA and could not have been 
deduced directly from CMIP archives. It is important to note that a 
LE centred on the single observed trend value does not constitute 
evidence that this particular model is more realistic than any other 
model (see further discussion in sub-section titled ‘Multi-model LEs 
as methodological testbeds for observations’ below).

The distribution of North American temperature trends based 
on CMIP5 (see Methods) is only slightly wider than that based on 
an individual LE and is due to both model differences and inter-
nal variability (see grey shaded probability distribution function 
(PDF) (Fig. 1)). Moreover, the MMLEA spans a wider range than 
CMIP5, suggesting that CMIP5 under-samples internal variability 
at regional scales. This highlights the importance of evaluating the 
realism of models’ internal variability of trends, since a model with 
unrealistically large trend variability (that is, a broad distribution) 
can encompass the observed trend for the wrong reason and would 
also inflate uncertainty in projections. Approaches to address this 
challenge are discussed in the sub-section titled ‘Multi-model LEs 
as methodological testbeds for observations’ below.

Just as North American temperature trends vary across the 
members of a LE, the geographical pattern of trends can also dif-
fer strikingly (Fig. 1). This can confound comparisons of individual 
simulations from different models and lead to erroneous interpre-
tations, since internal variability might be mistaken for structural 
differences. With enough members, the spatial pattern of the forced 
response emerges for each model, allowing for a direct comparison 
between models. Models may show similar forced patterns of pole-
ward-amplified warming but different overall amplitudes (Fig. 1), 
a conclusion that is difficult to discern without a MMLEA. Similar 
issues confront the study of observed real-world trends (Fig. 1), 
since these are also just one realization of many that could have hap-
pened (see sub-section titled ‘Multi-model LEs as methodological 
testbeds for observations’ below).

Table 1 | The multi-model LE archive and data repository

Modelling 
centre

Model version Resolution  
(atmosphere/ocean)

Years Initialization No. of 
members

Forcing Reference

CCCma CanESM2 ~2.8°×2.8°/~1.4°×0.9° 1950-2100 Macro and micro 50 Historical, RCP 8.5 94

CSIRO MK3.6 ~1.9°×1.9°/~1.9°×1.0° 1850–2100 Macro 30 Historical, RCP 8.5 95

GFDL ESM2M 2.0°×2.5°/1.0°×0.9° 1950–2100 Macro 30 Historical, RCP 8.5 78

GFDL CM3 2.0°×2.5°/1.0°×0.9° 1920–2100 Micro 20 Historical, RCP 8.5 96

MPI MPI-ESM-LR ~1.9°×1.9°/nominal 1.5° 1850–2100 Macro 100 Historical, RCP 2.6, RCP 4.5, RCP 8.5 61

NCAR CESM1 ~1.3°×0.9°/nominal 1.0° 1920–2100 Micro 40 Historical, RCP 8.5 97

SMHI or KNMI EC-Earth ~1.1°×1.1°/nominal 1.0° 1860–2100 Micro 16 Historical, RCP 8.5 98

Salient characteristics of each LE, including the method of initialization. Here, the term ‘micro’, referring to micro perturbation15, indicates that all LE members begin from a single coupled model state, with 
slight perturbations introduced only in the atmospheric component to create ensemble spread. The term ‘macro’, referring to macro perturbation15, indicates that the LE members begin from a variety of 
coupled model states (for example, from different years in a long control simulation). Canadian Earth System Model (CanESM2) consists of a hybrid approach, with ten micro ensemble members for each 
five macro ensemble members. Additionally, ‘forcing’ refers to the greenhouse gas concentrations used to drive the model simulations; ‘historical’ corresponds to observed forcing during the historical 
period; and representative concentration pathway (RCP) refers to the estimated trajectory of greenhouse gas emissions corresponding to a range of radiative forcing values of 2.6 W m–2, 4.5 W m–2 and 8.5 
W m–2 by 2100. Data from the multi-model LE archive are accessbible from ref. 22.
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Quantifying model uncertainty requires knowledge of the forced 
response in each model, but most models in past and current CMIPs 
do not have enough available ensemble members to allow for a robust 
estimate of the forced response. Instead, low-frequency statistical fits 
to a single ensemble member are often used to estimate the forced 
response (for examples, see refs. 8,9). Consequently, internal variabil-
ity has to be estimated either from the residual of this fit or from long 
pre-industrial control simulations. From these approaches, it is often 
not easy or possible to robustly estimate systematic changes to inter-
nal variability under increasing radiative forcing. The availability of 
a MMLEA circumvents these limitations and assumptions. More 
importantly, it allows one to separate the sources of uncertainty at 
smaller spatial and temporal scales, and for quantities that are noto-
riously variable, such as precipitation and extremes.

Decision-making and risk assessment in a variable climate
LEs are increasingly proving their utility in the context of real-world 
decision-making32 where full assessment of changing climate risks is 
needed, including variability and extremes. In particular, discerning 
changes in variability and extremes requires large sample sizes33–37: 
the hallmark of LEs. Moreover, the MMLEA is critical for evaluating 
the extent to which projected changes in variability and extremes 
are model-dependent.

The Upper Colorado River basin—which feeds the largest reser-
voirs in the US—is an example of where changes in mean and variabil-
ity can produce a wide range of climate risks for water managers. This 
basin is located at a latitude where projected changes in precipitation 
are notoriously uncertain: the transition zone between the expected 
drying in the subtropics and the wetting at high latitudes2,38–40.  
The MMLEA shows divergent outcomes regarding how decadal 
mean precipitation will change in this region under a high-emissions  

scenario (Fig. 2a). However, decadal variability of precipitation is 
projected to increase on average by ~10% of the magnitude of the 
forced change (Fig. 2b). This result by itself suggests a heightened 
hazard of prolonged droughts and pluvials and could, in the absence 
of consistent projections of mean change, provide useful informa-
tion for refining water management strategies.

To illustrate the challenge of projecting extreme events, we 
use an example of daily summer heat extremes for a location in 
the south-central US centred on Dallas, Texas (see Methods). As 
expected under global warming, daily July heat extremes at Dallas 
are projected to increase over the twenty-first century; however, 
their evolution is far from monotonic in any single ensemble mem-
ber, and their rate and degree of increase varies considerably across 
different realizations of future internal variability in the same model 
(Fig. 3a). For instance, historical daily heat records could be broken 
almost continuously starting in the late 2060s, or their occurrence 
could be more punctuated, with some decades even as late as the 
2090s spared from any days of record heat depending on how inter-
nal variability unfolds (Fig. 3a). This variety of temporal expressions 
of historical heat extreme exceedances should be a cautionary note 
on the enormous impact of internal variability on rare events (for 
examples, see refs. 31,32). Results also differ among models, as differ-
ences in the amount of warming and in the magnitude of variability 
combine into an uncertain future risk of exceeding a given thresh-
old (Fig. 3b). Validating not only a model’s climatology or mean 
trend but also its variability thus emerges again as an important step 
when investigating, and ultimately constraining, future projections 
in this case of extreme events41.

Attribution-focused LEs differ from those in the MMLEA in that 
they often rely on regional or high-resolution global atmosphere–
land models to capture the small spatial scales of specific extreme 
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Fig. 1 | Internal variability and model differences in continental temperature trends. The distribution of 60-yr annual temperature trends (1951–2010) over 
North America (24–72° N, 180–62° W) from seven ESM LEs (thin curves), 40 different CMIP5 models (grey shading), and observations (Berkeley Earth 
Surface Temperature; vertical black line). The maps show the associated patterns of temperature trends: top row, observed and the forced component 
(estimated by the ensemble mean) from two LEs (CESM1 in green and MPI in purple); bottom row, individual ensemble members from CESM1 (green) and 
MPI (purple) with the weakest (‘coldest’) and strongest (‘warmest’) trends. Note that the individual member maps show the total (forced-plus-internal) 
trends in the model LEs. Observed trends are analogous to an individual ensemble member in that they reflect forced and internal contributions.
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events35–37,42,43, and may prescribe additional boundary conditions, 
such as the large-scale atmospheric circulation44,45. Nevertheless, 
these types of ensembles highlight the large number of simulations 
required to identify significant shifts in the probability of certain 
events. We note that LEs can also serve these alternate types of 
ensembles by providing lateral boundary conditions to more spe-
cialized regional climate models46 and oceanic boundary conditions 
to higher-resolution global atmosphere–land models.

Multi-model LEs as methodological testbeds for 
observations
Another key usage of LEs is to test methods suitable for application 
to the observational record, for example those aimed at separating 
the signals of internal variability and forced climate change from a 
single realization (for examples, see refs. 29,30,47–51). Using observations 
alone, it is difficult to assess the skill of such separation methods due 

to lack of true knowledge of the observed forced response or the full 
range of variability, including extremes. However, separation meth-
ods can be evaluated by applying the methodology to each LE mem-
ber individually and comparing the results to the model’s forced 
response, estimated from the ensemble mean of the LE (Fig. 4).  
Application to the MMLEA will identify if the validation has a 
strong dependence on model structure.

An additional testbed application of model LEs is the development 
of surrogate realizations of internal variability based on observations 
(Fig. 4). Although one cannot replay the ‘tape of history’52 with an 
initial-condition perturbation in the real world, the single observed 
trajectory is only one of many that could have plausibly occurred 
(under the same boundary conditions and forcing). The underlying 
premise of LEs is that internal variability can unfold with a different 
(and largely unpredictable) chronology, creating uncertainty in the 
estimate of trends that are calculated over a finite time interval. Can 
the sample of internal variability in the observational record be used 
to generate surrogate realizations whose statistical characteristics are 
largely unchanged, but whose temporal sequences are altered? If so, 
an observationally based LE can be developed, wherein these surro-
gates are added to an estimate of the forced response (derived from 
models or empirical methods applied to observations) to produce an 
observationally constrained range of outcomes (Fig. 4).

Several methods for generating surrogate realizations that aim 
to preserve the temporal26 and spatio-temporal characteristics of 
observed internal variability have been proposed47,53–59. To date, 
these techniques have been applied to terrestrial temperature and 
precipitation26,47,59, sea level pressure47 and sea-surface tempera-
ture53,55. These methods interact in two important ways with model 
LEs. First, model LEs can be used as methodological testbeds to 
ensure that the statistical ensembles have the desired properties 
(Fig. 4). Second, after the statistical ensembles are validated, they 
can then be used to validate the model LEs. We demonstrate this 
interplay with an example from the Observational Large Ensemble 
(Obs-LE) developed by ref. 47 (see Methods).

Analogous to the approach mentioned above for estimating the 
forced trend, the Obs-LE methodology can be tested in the con-
text of a model LE by creating a statistical ensemble based on a 
single member of the model LE, and assessing whether the spread 
of the statistical ensemble is consistent with that of the remain-
ing ensemble members. This procedure can then be repeated for 
each ensemble member, and the resulting information pooled for a 
robust estimate of the accuracy of the methodology (Fig. 4). In the 
case of annual temperature trend variability over the past 50 years 
on land, the fractional error of the Obs-LE methodology is generally 
less than 20% over most of the globe, with slightly larger errors in 
certain regions of the tropics (Fig. 5a). Assuming the properties of 
the real world are not drastically different from those of the model, 
this indicates that applying the same approach to generate a statisti-
cal ensemble from the single realization of the real world is valid.

Having validated the Obs-LE approach, one can then assess the 
realism of internal variability simulated by each model LE by com-
parison with the Obs-LE. Regarding the CESM1-LE case, the model 
overestimates variability of 50-year temperature trends by up to 
50% in parts of western North America and northern Eurasia, and 
up to 100% in areas of high terrain in the tropics (Fig. 5b). These 
model biases are larger than the error of the Obs-LE methodology, 
indicating they are true model biases. Similar results are found for 
precipitation trend variability, which exhibits regions of both sig-
nificant underestimation and overestimation in the CESM1-LE47.

One can also apply the Obs-LE to evaluate the simulated distri-
butions of temperature trends at specific locations. For example, the 
simulated temperature trend distribution for Dallas, Texas, in the 
CESM1 and LE narrows considerably when the Obs-LE is used to 
estimate the internal variability (Fig. 5b), which is consistent with 
the model’s significant overestimation of variability at this location. 

1950 2000 2050 2100

Time (yr)

-0.4

-0.2

0

0.2

0.4

0.6

P
re

ci
pi

ta
tio

n 
an

om
al

y 
(m

m
 d

–1
)

10-yr running mean relative to 1971–2000

CanESM2
CSIRO-Mk3-6-0
GFDL-CM3
CESM1-CAM5
GFDL-ESM2M
EC-Earth
MPI-ESM

1950 2000 2050 2100
Time (yr)

– 0.04

– 0.02

0

0.02

0.04

0.06

C
ha

ng
e 

in
 s

.d
. (

m
m

 d
–1

)

Change in s.d. of 10-yr running means
relative to 1971–2000

Range across LEs
Mean across LEs

a

b

Fig. 2 | Decision-making under uncertainty: changes in mean and 
variability. a, 10-yr running mean annual precipitation anomalies (mm d–1) 
over the Upper Colorado River Basin (approximated as a spatial average 
over 38.75–41.25° N and 111.25–106.25° W) relative to the reference 
period 1971–2000 from each of the seven model LEs. Solid lines show the 
ensemble means, and colour shading the 5–95% range across ensemble 
members. b, Moving average of the change in standard deviation of 10-yr 
mean precipitation (relative to 1971–2000), calculated across the individual 
ensemble members of each model LE. The thick black curve shows the 
mean, and grey shading shows the 5–95% range across the seven models. 
Note the order-of-magnitude smaller range in the y axis in b compared to  
a. s.d., standard deviation.
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This brings the observed trend closer to the lower tail of the dis-
tribution. It is worth emphasizing that without an observationally 
based LE, it would not have been possible to assess the width of the 
models’ temperature trend distributions, which indicate important 
implications for constraining future projections.

An important future challenge for the LE community is to develop 
effective means to evaluate and benchmark the internal variability 
generated by model LEs. Meeting this challenge requires taking 
advantage of historical and paleoclimate records, and developing 
suitable statistical emulation methods to construct observationally 
based LEs for other components of the climate system. Statistical 
emulation of internal variability may also be advantageous in the 
context of ESMs when the cost of conducting a sufficiently large 
LE is prohibitive; for example, in the case of models with increased 
spatial resolution and/or complexity (discussed further below in the 
sub-section titled ‘Designing future initial-condition LEs’). These 
statistical emulation methods will need to take into account any 
projected changes in internal variability60.

Designing future initial-condition LEs
The existing LEs have been designed and created independently, 
with different choices of time period, radiative forcing scenario, 

number of members and method of initialization (Table 1). In addi-
tion, they employ different protocols for data output, storage and 
access. These differences must be considered when comparing LEs 
across models, as each has ramifications.

Initialization. In some LEs, the initial conditions are created by 
introducing miniscule perturbations (at the level of round-off error 
or 10–14 K, also known as ‘micro perturbation’15) into the atmo-
sphere. The rapid growth of atmospheric perturbations makes this 
technique well suited for studies involving atmospheric variability 
and trends. However, for persistent phenomena involving oceanic 
or terrestrial processes, it may be more desirable to start each mem-
ber from completely different initial conditions in the ocean and 
other components (also known as ‘macro perturbations’) to bet-
ter sample possible climate trajectories. Macro perturbations can 
increase ensemble utility but also introduce subsurface ocean drift 
in the control simulation that can influence ocean initial condi-
tions; thus, they require long and quasi-equilibrated control simula-
tions to choose initial conditions from61. A combination of micro 
and macro perturbations could have the most scientific benefit, 
but ensemble initialization procedures need close examination and 
potential coordination among LE projects.

Length of simulation and ensemble size. For a given amount of 
computer time, there is a trade-off between the number of ensem-
ble members and their length. For example, is it better (for some 
purposes) to have a 100-member ensemble covering the period 
1981–2040, or a 50-member ensemble extending over 1981–2100? 
Furthermore, if higher spatial resolution is critical, such as for the 
simulation of some climate extremes, this usually comes at the 
expense of the total number of ensemble members that can be run. 
The optimal balance between ensemble size and spatial resolution 
will depend on the LE application (for further details, see ref. 62).

Radiative forcing scenario. The forcing scenario may impact the 
characteristics of internal variability. Is it better to run more mem-
bers using a single choice of a forcing scenario, or multiple smaller 
ensembles with differing scenarios? Even single scenarios are nor-
mally comprised of individual forcing components (for example, 
greenhouse gases and aerosols), and for the important but other-
wise elusive goal of attribution, the use of ensembles with a single 
radiative forcing (for example, only changing aerosols) can provide 
critical insight into the mechanistic drivers63,64.

Data output, storage and access. As the LE applications expand to 
broader timescales (diurnal to centuries), practical limitations arise 
from the computational burden and storage requirements of main-
taining hundreds of terabytes of data for analysis. At present, some 
LEs only provide monthly averaged output, while others provide 
daily averages but only for select fields. In general, practical storage 
limitations require a compromise between ensemble size and choice 
of output fields. Model fields can also be in non-intuitive formats 
for users, limiting accessibility. Careful consideration should be 
given not only to data storage, enabling workflows that bring analy-
sis to the data, but also to format. We recommend single-variable 
time series. We also encourage modelling centres to provide some 
LE output interpolated onto conventional grid structures and/or 
tools to accomplish this re-gridding—for example, for non-uniform 
ocean model output.

Accommodating increases in model complexity and 
resolution
High-resolution regional climate projections can also benefit from 
MMLEs. As mentioned above, statistical and dynamical downscal-
ing techniques can help resolve processes at smaller spatial scales. 
Such efforts are currently limited by the trade-off between ensemble 
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Fig. 3 | Decision-making under uncertainty: changes in extremes.  
a, Vertical bars mark the occurrence of July days that meet or exceed the 
historical (1950–1999) 99.9th temperature percentile for the grid box 
containing Dallas, Texas, in five members of the CESM1-LE under historical 
and future (RCP 8.5) radiative forcing. The 99.9th percentile is defined as 
the average of the 99.9th percentile values calculated for each ensemble 
member. b, Probability of exceeding the historical (1950–1999) 99.9th 
percentile of daily temperature in July at Dallas, Texas, for six model LEs. 
Thick coloured lines show the probability in each LE calculated over all 
ensemble members, and colour shading shows the 5–95th percentile range 
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Open circles and vertical bars show those same values for every other 
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size and spatial resolution, with most studies performing downscal-
ing from only one LE and for only part of the globe (for examples, 
see refs. 46,65). An alternative approach is to select events of interest 
from a MMLE, such as particular extremes (for example, see ref. 66) 
or El Niño–Southern Oscillation (ENSO) events (for examples, see 
refs. 67,68), and perform regional downscaling to understand their 
dynamics and predictability. Finally, we note that other ensemble 
methodologies could benefit from incorporating the information 
from initial-condition LEs into their design. For example, per-
turbed parameter ensembles69 can be a useful approach to probe the 
uncertainties arising from the lack of constraint on uncertain model 
parameters. However, they will only serve their purpose if, for each 
parameter combination, a sufficient number of ensemble members 
exists to allow for the isolation of that parameter influence amidst 
internal variability.

Despite the added value by multiple-ESM LEs, the ever-growing 
need for higher spatial resolution70 and more comprehensive repre-
sentations of the Earth system poses an enormous computational 
challenge, especially balanced against other demands for resources 
in the use and continued development of climate models, such as 
refining spatial resolution, improving numerical methods, incorpo-
rating more realistic and comprehensive physical and biophysical 
processes, and saving ever-expanding volumes of data.

We see two potential pathways from here: one is the continua-
tion of the current path, creating and extending LEs with the new-
est models; the second is to focus on developing new techniques 
that can create efficient statistical descriptions of the complete 
distribution from LEs, including extreme events47,56–58. These emu-
lation techniques would allow the generation of arbitrarily large 
ensembles at a fraction of the computational cost associated with 
the traditional LEs, but they would require focused development 
and validation using existing LEs. If this capability were realized, 
computational resources could be focused on limited sets of ensem-
bles employing very-high-resolution, comprehensive Earth sys-
tem models—the types that many applications now demand. After 

training on the new ‘super’ data sets produced by these models, the 
goal is that the new emulation techniques could produce arbitrarily 
LEs indistinguishable from the training data. One could envision a 
paradigm in which the required ensemble size for the most compre-
hensive high-resolution models would be the smallest number that 
is able to both (1) satisfactorily characterize the model’s response to 
radiative forcing and (2) provide a sufficient data set for training the 
emulators. A community discussion on how to optimize the scien-
tific return on computational investment from LEs while continu-
ing to advance climate modelling along multiple pathways would be 
of great value.

Emerging Earth system applications
Several communities have developed approaches to balance the 
trade-offs between increasing complexity and computational costs. 
In some cases, raw, bias-corrected or downscaled meteorological 
fields archived from climate models are used to drive offline mod-
els that include more complexity (for example, atmospheric com-
position, air quality and hydrologic models) or to conduct impact 
assessments (health burdens, economic valuations and reservoir 
operations)71–73. While these trade-offs will persist as next-gen-
eration developments in atmospheric chemistry, hydrology and 
resource management, and integrated assessment approaches con-
tinue to expand in complexity, the development of LEs and MMLEs 
represents a new research frontier for these applications. Below, we 
highlight some climate subfields where advances should be possible 
with the existing climate-focused MMLEs as well as examples where 
LEs with more complexity are already advancing scientific knowl-
edge (such as ocean biogeochemistry) and where a single LE has yet 
to be generated (such as atmospheric chemistry). We also discuss 
LEs’ applications across the Earth system.

Several stakeholder communities may be well-positioned to 
immediately tap into the power of the existing MMLEs. By pro-
viding large sample sizes, LEs enable construction of probabilistic 
frameworks for risk assessment. For example, the existing MMLE 
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archive may offer opportunities to flesh out the tails of probability 
distributions of future public health burdens, crop yields or fish-
eries catch. That is, to the extent that the probabilistic occurrence 
of complex extreme phenomena can be assessed using commonly 
simulated meteorological variables (for examples, see refs. 74–76), a 
MMLEA offers the ability to independently assess the contribu-
tions role of internal variability, anthropogenic climate change and 
model uncertainty to projected changes. By design, such statistical 
approaches inherently assume that the key drivers are meteoro-
logical and neglect feedback with, for example, the biosphere, that 
can be included in more specialized ESMs; for example, Coupled 
Chemistry Models. The power of LEs—even without additional 
complexity—as tools to investigate mean state biases77 and extreme 
events, as well as their impacts on ecosystems, food security and 
public health, remains largely unexplored.

A growing collection of ocean biogeochemistry studies has high-
lighted the utility of single-model LEs for quantifying the time of 

emergence for important biogeochemical variables such as air–sea 
carbon dioxide fluxes24, interior ocean oxygen concentration25, 
marine ecosystem drivers78 and interior ocean carbon cycling79. 
Additional work with single-model LEs has been used to quantify 
the role of internal variability in projection uncertainty for air–sea 
carbon dioxide fluxes80 and ecosystem stressors81 to identify avoid-
able impacts in the future evolution of phytoplankton net primary 
production with anthropogenic climate change82, and to quantify 
the number of ensemble members needed to detect decadal trends 
in air–sea CO2 flux83. While changes in phenology under future cli-
mate perturbations have been examined in a single LE for a terres-
trial ecosystem84, we anticipate much broader future applications to 
both terrestrial and oceanic ecosystems, as there are clear implica-
tions for ecosystem behaviour and resource management.

Due to the computational expense of simulating atmospheric 
chemistry within fully coupled ESMs, atmospheric composition and 
air quality have not yet been explored within a single LE, even though 
it is well established that atmospheric constituents vary with weather 
and climate. Changes in pollution events and public health burdens 
have been investigated through dynamical downscaling (for exam-
ples, see refs. 72,85) of a limited period from global climate models, or 
directly from coarse resolution global chemistry–climate models (for 
an example, see ref. 86). To date, these projections of future composi-
tion and air quality have not sufficiently separated internal variability 
from the forced signal as they rely on small ensembles from a single 
model (for examples, see refs. 73,87) or multi-model time-slice ensem-
bles (for examples, see refs. 88,89). Nevertheless, a small ensemble from 
one chemistry–climate model demonstrates the need to account for 
internal variability when detecting future changes in air quality (or, 
by extension, atmospheric composition) resulting from anthropo-
genic climate and emission changes90,91. A single LE with full atmo-
spheric chemistry would enable pursuit of new research questions 
paralleling those tackled within the climate community. The future 
development of MMLEs with full atmospheric chemistry would 
enable exploration of model structural uncertainty separately from 
internal variability.

While LEs alone enable one to quantify variations in some 
variable of interest, in some applications, a set of companion 
simulations further enhance their utility for decision making. For 
example, air quality planners would like to understand not just 
the role of climate change and variability, but also the influence of 
air pollutant emission pathways on future projections. One path 
to address this need could be to follow the approach discussed 
above for extreme events, in which high-frequency time fields are 
saved for use in dynamical downscaling. Archiving fields needed 
to drive air quality models would open up the possibility for mul-
tiple sensitivity simulations focused on a target time period and 
region, or even single pollution event, of interest. Another example 
involves resource managers who are interested in near-term pre-
diction (1–10 year time scales). The CESM-LE, when paired with 
the CESM Decadal Prediction Large Ensemble, has been shown to 
provide a significant advance in deepening our understanding of 
near-term predictability and its origin92.

Part of the promise offered by LEs is in informing optimization 
of observing system design and duration. For example, in fields 
where observations are notoriously sparse (such as ocean biogeo-
chemistry), LEs offer a powerful approach to assess where future 
measurements can most readily detect trends driven by anthropo-
genic forcing (for example, where signal-to-noise ratios are great-
est). In turn, LEs are useful for interpreting limited observational 
datasets in the context of internal variability. Internal variability 
can vary strongly with anthropogenic forcing in nonlinear systems, 
such as ocean carbonate or atmospheric chemistry; however, with-
out a LE, this signal is challenging to identify. The development of 
MMLEs in these fields would further allow investigation of model 
structural uncertainty separately from internal variability.

a

b Error of the model

Error of the method

– 1.0 – 0.8 – 0.6 – 0.4 – 0.2 0.0 0.2 0.4 0.6 0.8 1.0

M
od

el
 L

E

O
bservational LE

Methodological testbed

Model evaluation

Fractional error

Dallas, Texas

– 1 0 1 2 3

R
el

at
iv

e 
de

ns
ity

Observed Obs-LE

CESM1-LE

(°C per 50 yr)

Fig. 5 | Interplay between a Model LE and an Observational LE. The 
schematic illustrates how a model LE can be used to test the accuracy of a 
method for deriving surrogate realizations of internal variability based on 
the observational record to build an observational LE (Obs-LE), and how an 
observational LE can, in turn, be used to evaluate the model’s simulation 
of internal variability. a, The fractional difference between the spread in 
50-yr trends of annual near-surface air temperature in the CESM1-LE and 
the spread estimated from applying the methodology of McKinnon and 
Deser (ref. 47) to individual members of the CESM1-LE. b, The fractional 
difference between the spread of 50-yr trends (1965–2014) in CESM1-LE 
and Obs-LE (areas in grey indicate that the difference is not significant). 
After McKinnon and Deser (ref. 47). Inset: probability distribution functions 
of 50-yr annual temperature trends for the grid box containing Dallas, 
Texas, from the CESM1-LE (the green solid curve shows the model results; 
the green dashed curve shows the results based on internal variability from 
the Obs-LE). The vertical black bar shows the observed 1965–2014 trend 
value from Berkeley Earth Surface Temperature.

NATuRE CLIMATE CHANgE | VOL 10 | APRIL 2020 | 277–286 | www.nature.com/natureclimatechange 283

http://www.nature.com/natureclimatechange


PersPective NATurE CLImATE ChANgE

Fostering effective LE design and incorporation into CMIP7
Enabling discovery for a broad community is key to justifying the 
resources required for effective LE projects. Designing LE experi-
ments with useful outputs and bringing diverse workflows to these 
large datasets is challenging. How do we foster effective design and 
implementation? The experience of this author list in generating 
and sharing data, including the most widely used LE project to date 
(the NCAR CESM1-LE Project19), provides several lessons. First, 
open and free access to variables from a range of model compo-
nents (such as ocean, atmosphere, land and ice) is critical. Involving 
a broad user community at the outset is essential to identify which 
variables and temporal frequencies to output as well as to decide 
on aspects like ensemble size, temporal duration, radiative forc-
ing scenario and method of initialization. Second, data should be 
distributed in a format that is easily ingested into user workflows. 
The current gold standard data format is single variable time series 
in a self-documenting format (for example, NetCDF93) on a uni-
form latitude–longitude grid. Third, well-written documentation 
that enables users to plan and realize their applications is neces-
sary. As is well known from CMIP and previous LE efforts, docu-
mentation and communication about climate modelling projects 
requires dedicated human resources. Updates must be continu-
ous, easily accessed and responsive to user concerns and questions. 
While easy-to-use data formats and effective documentation will be 
enough for experienced users, entraining new and non-traditional 
users is also needed. Targeted tutorials and example analysis work-
flows will enable more users to become involved. Finally, it is neces-
sary to consider not only the computational needs for producing 
LE data, but also the long-term storage and computational require-
ments to make these data usable, free and accessible over time. 
Effective user accessibility and data storage will allow researchers 
to build on the foundation of the original LE to complete off-shoot 
experiments, something that is only possible if the original code and 
climate model restart files are maintained and distributed publicly. 
Future LE projects should also move away from workflows where 
the burden is on individual users for data download, storage and 
analysis. The potential of the commercial cloud is worth exploring 
in this respect while also acknowledging the complications that may 
arise, like intellectual property rights and monetary costs. Careful 
thought and resources to address these above four considerations 
undoubtedly contributed to the widespread use and success of the 
CESM1-LE and are informing the design of next-generation LEs. 
Experience shows that choices made in the design and implementa-
tion of a LE have substantial implications for its scientific utility.

While LE experiments have witnessed success outside of offi-
cial CMIP coordination, we recommend increased integration and 
assessment of LE experiments within CMIP7. Incorporating LE 
design and knowledge into the next phase of CMIP has the poten-
tial to directly address the challenges of partitioning projection 
uncertainty into structural and internal variability components. 
For CMIP7, we recommend that modelling centres have a strategy 
to incorporate quantification of internal climate variability into all 
of their MIP contributions. Without such a strategy, we are con-
cerned that internal climate variability will, at times, continue to be 
impossible to differentiate from model uncertainty and/or forcing 
uncertainty. Moving forward, it is critical that the science and policy 
communities have the capacity to assess internal variability contri-
butions to climate projections.

Final remarks
Models form much of the scientific basis for future climate change 
projections. While the scientific and policy communities have 
focused on multi-model archive CMIP projections, these experi-
ments often confound structural uncertainty (that is, differences 
in model formulation, including physics, parameterizations, reso-
lution and so on) with internal variability. With the continuously 

growing MMLE archive introduced here, identifying anthropogenic 
influences on climate amidst the noise of internal variability from a 
multi-model perspective is finally possible. Scrutiny of this newly 
available MMLE archive is needed, as are answers to the question 
‘is a model’s internal variability realistic?’. Separating signal from 
noise is a grand challenge for all areas of climate science, and one 
that spans all components of the Earth system. Pairing the long-
term statistics of the internally driven noise of the climate system 
provided by LEs with, for example, high-resolution simulations, 
suggests a viable path forward to improve understanding of both 
the statistics and processes underlying extremes. Looking forward, 
a broad community from computational scientists to stakeholders 
must be engaged to maximize scientific return on the computing 
and human investment in new LE efforts.
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Methods
Calculations for Fig. 1. Trends in annual mean temperature over 1951–2010 are 
calculated as an ordinary least squares linear fit at each grid cell. The probability 
distribution functions (PDFs) show the trend in spatially averaged temperature. 
Distributions are computed by fitting a kernel density estimate (using Matlab’s 
‘ksdensity’) to the histograms of trends from each LE and from CMIP5. From 
CMIP5, a set of available model simulations with historical and RCP 8.5 forcing 
were used, ranging between 1 and 11 ensemble members per model, totalling 123 
simulations. Observations are from the Berkeley Earth Surface Temperature data set61.

The Obs-LE. A brief description of the method used to construct Obs-LE is 
given here; further details are available in ref. 47. The Obs-LE provides surrogate 
realizations of internal variability that could have happened in the real world 
while largely preserving the full spatio-temporal characteristics of the actual 
observational record. Internal variability in the Obs-LE is the sum of two pieces: a 
component that captures variability linearly related to the three dominant ocean-
atmosphere modes in the climate system (ENSO, the Pacific Decadal Oscillation99 
and the Atlantic Multidecadal Oscillation100), and a component termed residual 
‘climate noise’, which primarily emerges from unpredictable atmospheric 
variability. Both pieces are estimated using monthly mean temperatures from 
Berkeley Earth Surface Temperature (BEST) over the period 1920–2015 after 
an empirical removal of the forced trend following ref. 101. The spread across the 
ensemble is a result of the inherent randomness of both the mode time series and 
the residual climate noise; both components contribute approximately equally to 
the spread, although one may be more dominant than another in a given location 
(see Fig. 8 in ref. 47). The mode component is computed first and then subtracted 
from the total internal variability to obtain the residual component. Specifically, 
the Obs-LE is created through: (1) generating new time series of the three modes 
that share the same autocorrelation and distributions as the observed ones but 
have different temporal phasing, and multiplying them by the spatial pattern of 
temperature sensitivity to each mode; and (2) applying a two-year block bootstrap 
in time to the residual climate noise component. The choice of a two-year block to 
perform the bootstrapping provides a suitable balance between accommodating 
any remaining temporal autocorrelation in the residual noise component and 
number of independent samples in the record. The approach makes a key 
assumption that the internal variability (including teleconnection patterns) of 
monthly temperature has not changed over the period used to fit the model, and, if 
used for projections, will not change in the future period.

Data availability
All data used in this study are publicly available. The CMIP5 simulations are 
available through PCMDI, the large ensembles are available at the MMLE Archive 
and the observational data are available through the respective institutions.

Code availability
Code to produce Figs. 1–3 can be obtained from F.L.
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