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Abstract

Monte Carlo simulations are the foundational technique for predicting thermodynamic properties 

of open systems where the process of interest involves the exchange of particles. Thus, they have 

been used extensively to computationally evaluate the adsorption properties of nanoporous 

materials and are critical for the in silico identification of promising materials for a variety of gas 

storage and chemical separation applications. In this work we demonstrate that a well-known 

biasing technique, known as “flat-histogram” sampling, can be combined with temperature 

extrapolation of the free energy landscape to efficiently provide significantly more useful 

thermodynamic information than standard open ensemble MC simulations. Namely, we can 

accurately compute the isosteric heat of adsorption and number of particles adsorbed for various 

adsorbates over an extremely wide range of temperatures and pressures from a set of simulations 

at just one temperature. We extend this derivation of the temperature extrapolation to adsorbates 

with intramolecular degrees of freedom when Rosenbluth sampling is employed. Consequently, 

the working capacity and isosteric heat can be computed for any given combined temperature/

pressure swing adsorption process for a large range of operating conditions with both rigid and 

deformable adsorbates. Continuous thermodynamic properties can be computed with this 

technique at very moderate computational cost, thereby providing a strong case for its application 

to the in silico identification of promising nanoporous adsorbents.
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*Corresponding Author: berend.smit@epfl.ch. 

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jctc.8b00534.
Additional discussion on temperature extrapolation of the ideal chain partition function (PDF)
Supporting simulation files and crystallographic structure files (ZIP)

The authors declare no competing financial interest.

Author Manuscript
Accepted for publication in a peer-reviewed journal

National Institute of Standards and Technology • U.S. Department of Commerce

Published in final edited form as:
J Chem Theory Comput. 2018 December 11; 14(12): 6149–6158. doi:10.1021/acs.jctc.8b00534.N

IS
T

 A
uthor M

anuscript
N

IS
T

 A
uthor M

anuscript
N

IS
T

 A
uthor M

anuscript

https://pubs.acs.org/
https://pubs.acs.org/doi/abs/10.1021/acs.jctc.8b00534
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00534/suppl_file/ct8b00534_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00534/suppl_file/ct8b00534_si_002.zip


INTRODUCTION

Open ensemble Monte Carlo (MC) simulations, in which particles can be added or removed 

from a simulation domain, are the technique of choice for studying many important 

thermodynamic phenomena such as phase coexistence and adsorption.1 For example, Gibbs 

ensemble MC is particularly useful for predicting phase coexistence2,3 and grand canonical 

MC (GCMC) is often used to predict adsorption thermodynamics of fluids in porous media.
4,5 Extensive work over the past several decades has focused on developing these methods, 

as well as biasing techniques to enhance sampling of systems where the standard acceptance 

probability of moves becomes prohibitively small. Some of the most prominent examples 

include Rosenbluth sampling,6 configurational bias MC (CBMC),7,8 and continuous 

fractional MC9 methods which allow effective sampling of deformable molecules and/or 

high-density systems that otherwise cannot be simulated with standard GCMC particle 

insertion moves.

Another distinct category of biasing techniques emerged after Wang and Landau (WL)10 

developed a general technique to construct a bias on-the-fly enabling the sampling of low 

probability (high free energy) states that are otherwise not sampled during a normal MC 

simulation. The goal of transition matrix Monte Carlo (TMMC) is closely related to that of 

the WL scheme, but there are distinct algorithmic differences between the two which are 

detailed extensively in the literature.11 These are generally referred to as flat-histogram or 

density-of-states sampling techniques since the goal is to sample states characterized by a 

given collective variable with uniform probability.12,13 Often the two techniques are merged 

to exploit the advantages of each method while avoiding their individual disadvantages and 

have been applied extensively to study phase coexistence and adsorption thermodynamics.
13–18 More complex applications of WL/TMMC have been developed recently, especially in 

the context of studying adsorption and phase coexistence in model systems that contain 

flexibility, multicomponent mixtures, and nonrigid molecules.19,20 Recently, an approach for 

extrapolating the free energy landscapes determined by WL/TMMC has presented an 

opportunity to predict continuous thermodynamic properties as a function of temperature by 

simply post-processing simulation data obtained at a single temperature.21–23

In this article, we build upon the aforementioned literature to demonstrate the effectiveness 

of a flat-histogram method for evaluating a porous material’s performance in adsorption 

processes involving rigid and deformable adsorbates. By applying the recently developed 
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temperature extrapolation procedure,21 we can predict the thermodynamic adsorption 

properties of a porous material over a continuous range of temperature and pressure 

conditions from a simulation at just one temperature. For the first time, we extend this 

derivation of temperature extrapolation to simulations in which Rosenbluth sampling has 

been used to sample deformable molecules (e.g., a flexible chain with internal degrees of 

freedom). This applicability to both rigid and flexible molecules, as well as the large 

temperature ranges over which thermodynamic properties can be extrapolated, demonstrates 

some significant advantages of this method compared to traditional GCMC for the in silico 

evaluation of porous materials. We additionally show how these techniques can be useful in 

practical applications. As an example, we consider the capture of gaseous species in 

nanoporous materials using combined temperature and pressure swing adsorption (T/PSA). 

If one would like to optimize the operating conditions for such an adsorption process, one 

needs to know the adsorption isotherms over a wide range of conditions. Using these flat-

histogram and temperature extrapolation techniques, materials can be evaluated for T/PSA 

processes over a wide range of operating conditions (via determination of working capacities 

and isosteric heats) from simulation data obtained at just one temperature.

THEORETICAL ASPECTS

A variety of studies have used flat-histogram approaches to determine the free energy 

landscape as a function of particle number in open ensembles.14,16,24,25 Due to the detailed 

discussion and derivation of these techniques elsewhere, we only briefly summarize the 

formalism to obtain the macrostate probabilities in the grand canonical ensemble. Then we 

show how analyzing the potential energy fluctuations at each macrostate allows 

determination of the free energy landscape at different temperatures by Taylor series 

expansion, and we subsequently extend this temperature extrapolation derivation to the case 

of deformable adsorbates. Finally we explain how to obtain the continuous thermodynamic 

properties of the adsorbate/adsorbent system that are important for predicting a material’s 

utility as an adsorbent.

Thermodynamic Background.

We provide a brief review of the statistical mechanics equations that will be important for 

applying temperature extrapolation in the case when Rosenbluth sampling has been 

employed in conjunction with a TMMC biasing scheme. The total canonical partition 

function of an N particle system in a given volume, V, at thermodynamic temperature, β = 

(kBT)−1 (where kB is Boltzmann’s constant and T is the absolute temperature), is denoted 

Q(N,V,β). It can be factored into an integration over kinetic, Qk(N,β), and configurational, 

Qc(N,V,β), degrees of freedom as shown in eq 1.

Q(N, V , β) = Qk(N, β)Qc(N, V , β) = Qk(N, β) 1
N !∫ drNexp −βE ΓrN (1)

Here E is the total potential energy and Γr
N is the configuration of the N particle system. 

More generally we can write Qk(N,β) = q(β)N, where q(β) represents the integration over the 

kinetic degrees of freedom of a single molecule. In the case of monatomic particles, q(β) = 
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Λ−3, where Λ is the thermal des Broglie wavelength; however, in what follows we keep the 

notation of q(β) to more generally include polyatomic flexible molecules.

When this system can exchange particles with an infinite reservoir that imposes some 

constant chemical potential, μ, the system is described by the grand canonical ensemble 

where the grand canonical partition function is given by eq 2.

Ξ(μ, V , β) = ∑
N = 0

∞
exp(βμN) Q(N, V , β) (2)

In this ensemble, the probability of observing N particles in the system is given by eq 3:

Π(N; μ, V , β) = exp(βμN)Q(N, V , β)
Ξ(μ, V , β) (3)

By specifying μ, V, and T, one can use grand canonical MC simulations to sample the 

probability distribution in eq 3 and compute, among other things, the expected number of 

particles in the system.

Grand Canonical Flat-Histogram Simulations.

Flat-histogram techniques operate quite differently from the standard MC approach. They 

seek to bias the simulation so that a collective variable, or macrostate, is sampled uniformly; 

i.e., all macrostates are visited with equal probability and thus have a flat probability 

distribution. Therefore, macrostates that have a high free energy relative to other states 

become equally probable when the biasing function has been properly determined, and an 

efficient method to achieve this goal was pioneered by Wang and Landau.10,26,27 When 

studying adsorption, a convenient macrostate variable is the number of particles in the 

system, N. Upon convergence of the WL algorithm, Π(N;μ,V,β) is known for each 

macrostate N, which can be reweighted to determine Π(N;μ′,V,β) at some new chemical 

potential μ′ by simple post-processing.20,24 Alternatively, for single-component systems one 

can directly solve Q(N,V,β) as the biasing function rather than Π(N;μ,V,β).17

Transition Matrix Monte Carlo formulation.

Typically the Wang–Landau approach builds up an initial estimate of Π(N;μ,V,β) quickly but 

converges rather slowly. Transition matrix Monte Carlo tends to do the opposite, so 

simulations often start with a WL stage which is later switched to TMMC to accumulate the 

statistics that refine the exact values of the biasing function.13 The starting point for TMMC 

is the statement of detailed balance for Monte Carlo particle exchange moves between 

macrostates:

Π(N; μ, V , β)P (N N + 1) = Π(N + 1; μ, V , β)P (N + 1 N) (4)

Here P(N→N+1) represents the probability that a proposed MC move takes the system from 

macrostate N to macrostate N + 1, given that the system was already in macrostate N. The 

remaining task is to determine the values of P(N). This is done by constructing the collection 

matrix (C-matrix). Each entry in the C-matrix is updated by evaluation of the unbiased 
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acceptance rule, acc(ΓrN ΓrN + 1) when a swap move is proposed. For example, every 

time a particle addition move is proposed, the Nth row and (N + 1)th column is updated with 

the probability of accepting such a transition:

C(N, N + 1) = C(N, N + 1) + acc ΓrN ΓrN + 1 (5)

Simultaneously, the probability that such a transition is rejected is also used to update the C-

matrix.

C(N, N) = C(N, N) + 1 − acc ΓrN ΓrN + 1 (6)

The same concept applies to updating the C-matrix for particle deletion moves, and since 

only single-particle additions or deletions are proposed, the C-matrix is tridiagonal. The 

transition probability can be computed at the end of the simulation from the C-matrix via eq 

7.

P (N N + 1) = C(N, N + 1)
∑Δ ∈ −1, 0, 1 C(N, N + Δ) (7)

P(N) may then be used to obtain Π(N;μ,V,β) via eq 4. Regarding the implementation of this 

method, the simulation can be performed at any arbitrary value of μ. The macrostate 

probabilities can then be easily reweighted to other values of the chemical potential to obtain 

Π(N;μ′,V,β), which is extensively detailed elsewhere.20,24 It will be useful in subsequent 

sections to note that eq 4 can be combined with eqs 1 and 3 such that the calculation of 

Π(N;μ,V,β) is re-expressed as a calculation of ln Qc(N+1,V,β) in eq 8.

ln Qc(N + 1, V , β) = ln Qc(N, V , β) − ln[q(β)exp(βμ)] + ln P (N N + 1)
P (N + 1 N) (8)

Temperature Extrapolation of the Free Energy Landscape.

For TMMC, we expressed eq 8 in terms of ln Qc(N,V,β) to demonstrate how to most 

efficiently perform temperature extrapolation. The canonical partition function at some new 

temperature, β′, is just the product of the kinetic and configurational partition functions at 

this new temperature, or Q(N,V,β′) = q(β′)NQc(N,V,β′). The kinetic partition function is 

known exactly at this new temperature since ln q(β′)N = −3N ln(Λ′). The configurational 

partition function is not known analytically; however, it can be estimated at this new 

temperature by a Taylor series expansion truncated to some order m, as shown in eq 9.

ln Qc N, V , β′ ≈ ln Qc(N, V , β) + ∑
n ≥ 1

m 1
n!

∂nln Qc(N, V , β)
∂βn β′ − β n

(9)

Since ln Qc(N,V,β) is a cumulant generating function and related to the fluctuations in the 

system’s total potential energy, the derivative terms in the Taylor expansion can be evaluated 

by simply recording the potential energy from the simulation at the original temperature, β, 

and computing ensemble-averaged quantities, such as
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∂ln Qc(N, V , β)
∂β = − E

∂2ln Qc(N, V , β)
∂β2 = (E − E )2

∂3ln Qc(N, V , β)
∂β3 = −(E − E )3

∂4ln Qc(N, V , β)
∂β4 = (E − E )4 − 3 (E − E )2 2

(10)

Higher order terms may also be derived.21 Using the Taylor series expansion to approximate 

ln q(β) at a different temperature would have been highly undesirable since the analytic 

solution is already known for any temperature.22 This has been avoided by factoring the total 

partition function so that the Taylor approximation is only applied to ln Qc(N,V,β). Finally, 

the extent to which ln Qc(N,V,β) can be accurately extrapolated at each of the N macrostates 

depends on how well the moments of the potential energy distribution have converged 

throughout the simulation. The Results section demonstrates that this extrapolation can be 

valid over a surprisingly large temperature range.

EXTENSION TO DEFORMABLE ADSORBATES

The formalism presented thus far has implicitly assumed that the particles are rigid bodies 

with no internal degrees of freedom. Molecules with internal degrees of freedom often 

require additional sampling biases to explore configurational space effectively. One such 

approach we focus on is Rosenbluth sampling.6,7 Additional complexities must be 

accounted for in order to perform temperature extrapolation on TMMC simulations of 

deformable molecules using this sampling scheme, which we will now illustrate.

Rosenbluth Sampling.

The standard, unbiased acceptance rule for particle insertions in GCMC can become 

prohibitively small for the simulation of deformable adsorbates, since the vast majority of 

randomly generated configurations would yield an extremely high internal energy arising 

from intramolecular potentials (bonds, bends, and torsions, etc.). Rosenbluth sampling 

presents an efficient way to overcome this obstacle by biasing the growth of chain molecules 

during a MC move.6,8 In the case of flat-histogram MC, it is also necessary to take 

advantage of such a biasing scheme when accumulating statistics for the C-matrix. The 

acceptance rule for a MC particle insertion move using Rosenbluth sampling (in the notation 

of ref 1) is given as follows:

acc ΓrN ΓrN + 1 = min 1, V q(β)exp βμB
(N + 1) Wext ΓrN + 1 (11)

where Wext ΓrN + 1  is the Rosenbluth factor of the inserted molecule and μB is the chemical 

potential of a reservoir of “‘ideal chain”‘ molecules (see the following section for details). In 

Rosenbluth sampling, only the chain’s external (intermolecular and nonbonded 

intramolecular) interactions determine its acceptance probability, while reasonable trial 
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configurations are generated using only the intramolecular bonded interactions. An in-depth 

discussion of this biasing technique and the algorithm for computing Wext ΓrN + 1  is 

presented extensively in ref 1 and elsewhere.28,29

Ideal Chain Partition Function.

In order to extrapolate the thermodynamic observables of a system of chain molecules 

simulated using Rosenbluth sampling,1 the dependence of the ideal chain partition function 

on temperature must also be accounted for. An ideal chain is considered to have only 

intramolecular bonded interactions, so its partition function represents the integration over 

each bonded degree of freedom in the molecule. We focus on propane (C3H8) for the 

remainder of this work which has two bonds and one angle potential such that the ideal 

chain partition function becomes

QIC, c(β) = ∫ dr1∫ dr2∫ dθ1exp −β Ebond r1 + Ebond r2 + Eangle θ1 (12)

QIC,c(β) represents the configurational component of the partition function which has been 

separated from the integration of kinetic degrees of freedom, q(β), such that the total ideal 

chain partition function becomes QIC(β) = QIC,c(β) q(β). The default TraPPE description30 

of propane in the RASPA package31 was used to evaluate the Ebond and Eangle terms. Such 

an integral can be easily handled directly, and the value of the ideal chain partition function 

can be found by numerical integration for any temperature. However, for larger adsorbates 

with many internal degrees of freedom, the ideal chain partition may be a much more 

difficult integral to evaluate. A simulation-based alternative to handle these cases is 

discussed in the Supporting Information (SI).

Chemical Potential of Deformable Adsorbates.

To perform temperature extrapolation of TMMC simulations with Rosenbluth sampling, it is 

critical to see how the chemical potential of a reservoir of ideal chain molecules depends on 

the ideal chain partition function. First, consider a reservoir of rigid ideal gas particles:

βμ = βμ° + ln(ρ) (13)

Here ρ is the fluid density, which in the case of an ideal gas, is equal to βP, where P is the 

pressure. For real fluids, we can account for the nonideality of the reservoir by replacing P
with the fugacity, f = ϕP, after obtaining the fugacity coefficient, ϕ, from an equation of 

state. The reference state chemical potential, βμ° = − ln q(β), derives from the canonical 

partition function of a single ideal gas particle (which for a rigid particle is just the 

integration over its kinetic degrees of freedom).

If the reservoir consists of ideal chains, the chemical potential of such a fluid takes a form 

similar to that of eq 13, but the reference state no longer accounts only for an integration 

over the kinetic degrees of freedom. Now the reference state must also account for the fact 

that the ideal chain has some potential energy interactions associated with its bonded 

internal degrees of freedom. Unlike the case of an ideal gas of rigid molecules, now there are 

interactions that cannot be neglected in the limit of zero density. Thus, the reference state 
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chemical potential is shifted by the temperature-dependent ideal chain configurational 

partition function to give the chemical potential of an ideal chain, μIC, in eq 14.1,5

βμIC = − ln QIC(β) = − ln q(β) − ln QIC, c(β) (14)

The chemical potential of a reservoir of these ideal chain molecules, μB, is similar to eq 13 

where the reference state βμ° has been replaced by βμIC.

βμB = −ln q(β) − ln QIC, c(β) + ln (βϕP) + C (15)

Note we have introduced a temperature-dependent shift to the reservoir chemical potential in 

eq 15, where C = − ln WIG
ext(β) . Known as the ideal gas Rosenbluth weight, WIG

ext accounts 

for when nonbonded intramolecular interactions can contribute to an isolated chain’s 

partition function due to the molecule’s size (e.g., 1–5 pair interactions). Its inclusion in eq 

15 is derived in detail elsewhere.5,28,29 By using propane as our flexible adsorbate, we can 

presently ignore this possibility WIG
ext(β) = 1 , which allows us to proceed with a slightly 

more concise derivation of the temperature extrapolation in subsequent sections. As in the 

case of rigid adsorbates, we can account for the nonideality of the reservoir phase by 

replacing P with f and obtaining the fugacity coefficient from an equation of state. 

Alternatively, direct simulations of the bulk fluid can provide this information if a reliable 

equation of state is not readily available.23

Constructing and Extrapolating the Macrostate Distribution.

The TMMC formulation for chain molecules now becomes slightly more complex when 

using Rosenbluth sampling. This is because Rosenbluth sampling for particle insertions only 

yields the excess chemical potential relative to the ideal chain, a topic which we expand 

upon in the SI (this discussion closely relates to the formalism presented in ref 32, where the 

excess chemical potential of the ideal gas reference state of chain molecules was also 

computed in the context of a TMMC study). Thus, in order to properly compute the value of 

the total configurational partition function, one must add the contribution from the ideal 

chain when calculating ln Qc(N,V,β) at each successive N macrostate, as shown in eq 16.

ln Qc(N + 1, V , β) = ln QIC, c(β) + ln Qc(N, V , β) − ln q(β)exp βμB

+ ln P (N N + 1)
P (N + 1 N)

(16)

Thus, from a TMMC simulation at a chosen β, we may construct ln Qc(N,V,β) using the 

transition probabilities, P, computed from the C-matrix; what remains is to then predict the 

macrostate distribution, ln Π(N,V,β′), at arbitrary β′ via extrapolation. Following eq 3, 

assuming the fugacity coefficient is known from an equation of state, we obtain
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ln Π N; μ, V , β′ β′μN + ln Q N, V , β′
ln β′ϕ′P − ln q β′ − ln QIC, c β′ N + ln Qc N, V , β′ + ln Qk N, β′
ln β′ϕ′P − ln QIC, c β′ N + ln Qc N, V , β′ ln β′ϕ′P − ln QIC, c β′ N

+ ln Qc(N, V , β) + ∑
n ≥ 1

m 1
n!

∂nln Qc(N, V , β)
∂βn β′ − β n Nln  β′ϕ′P

+ ln Qc(N, V , β) − Nln QIC, c β′ + ∑
n ≥ 1

m 1
n!

∂nln Qc(N, V , β)
∂βn β′ − β n

(17)

Following eq 16, it can be observed that lnQc(N,V,β) in the macrostate probabilities 

implicitly contains a contribution of N × ln QIC,c(β) since it is constructed iteratively from 

P(N) starting from the N = 0 state. Thus, the bracketed term in the final line explicitly shows 

that differences between the ideal chain partition functions at the simulation temperature and 

the temperature being extrapolated to contribute to the macrostate probabilities at a chosen 

P and ϕ. Note that in eq 17, QIC,c(β) = 1 for rigid adsorbates. By summing the terms in eq 

17, we obtain an estimate of the grand canonical partition function (eq 2), which serves to 

normalize the macrostate probabilities. Just as in the case of adsorbates with no internal 

degrees of freedom, one uses the moments of the total potential energy distribution (which 

now included all bonded and nonbonded energies) to evaluate terms in the Taylor series of ln 

Qc(N,V,β).

EXTRACTION OF THERMODYNAMIC PROPERTIES

Temperature extrapolation of ln Q(N,V,β) yields continuous thermodynamic properties that 

cannot readily be obtained from standard GCMC simulations. For example, isotherms and 

isosteric heats of adsorption can be computed for any combination of reservoir (T, P) state 

points via a computationally cheap post-processing of the ln Q(N,V,β) data. These are 

typically the first two important quantities considered when evaluating a material’s potential 

as an adsorbent.

Isotherm Prediction.

The adsorption isotherm at a given temperature, β′, and chemical potential, μ′, can be 

resolved by computing the expectation number of particles in the system via eq 18 for a 

range of pressures (or equivalently, chemical potentials).

N μ′, V , β′ = ∑
N

N ⋅ Π N; μ′, V , β′ (18)

The ability to calculate this quantity at any μ′ (via reweighting) and β′ (subsequent 

extrapolation) from simulation data obtained at some different, single (μ,β) point results in 

significantly more predictive power than running simple GCMC simulations for individual 

(μ,β) state points.

Enthalpy of Adsorption.

Another important thermodynamic quantity for predicting an adsorbent material’s utility is 

the isosteric heat (or enthalpy of adsorption). The isosteric heat of adsorption measures how 
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much enthalpy is released when an additional molecule is adsorbed and plays an important 

role in calculating how much energy is required when cycling between adsorption and 

desorption conditions. The isosteric heat of adsorption can be determined from several 

statistical mechanics approaches. Since the standard energy-particle fluctuation method can 

suffer from poor statistical convergence, Vlugt et al. proposed determining the isosteric heat 

from a series of NVT simulations with Widom insertions (which just requires a simple post-

processing step of our TMMC simulation data).33 In this work, however, we chose to 

calculate the isosteric heat using the Clausius–Clapeyron equation. Isotherms can be 

obtained for arbitrarily small spacing between different T and P state points via the 

aforementioned post-processing and temperature extrapolation; therefore, the derivative in 

the Clausius–Clapeyron eq (eq 19) can be numerically evaluated.

qst(N, T ) = − RT 2 ∂ ln P
∂T N

(19)

Thus, qst as a function of N and T is known over the temperature range at which the 

temperature extrapolation is valid, and the total enthalpy change between two states (N1, T1) 

and (N2, T2) is easily calculated by integrating eq 19.34 As noted in ref 34, one can replace 

P with the fugacity to account for the nonideality of the vapor phase. While the isosteric 

heat often has only a weak dependence on temperature, it is interesting that this dependence 

can be explicitly computed via this method. In systems where the heat of adsorption has a 

strong dependence on temperature, the use of flat-histogram simulations to compute 

isosteric heats via this method provides a highly attractive alternative to GCMC.

COMPUTATIONAL DETAILS

Adsorbate/Adsorbent System.

Results in this work focus on the performance of the flat-histogram simulation of single-

component adsorbate thermodynamic properties of CH4, CO2, and C3H8 in MOF-950. 

MOF-950, visualized in Figure 1, was chosen as a model system because it was recently 

shown to have a high working capacity for methane.35 CH4 and CO2 were modeled as rigid 

adsorbates with the united-atom TraPPE and EPM2 force fields, respectively.30,36 C3H8 was 

modeled as a flexible adsorbate, also with the united-atom TraPPE force field. The molecule 

definition files for these adsorbates are provided in the standard RASPA installation. The 

framework was modeled as rigid, and the Universal Force Field parameters were adopted for 

the MOF atoms.37 Interaction parameters between the MOF and adsorbate were determined 

by Lorentz–Berthelot combining rules. The MOF-950 crystallographic information file is 

included in the SI.

Transition Matrix MC Implementation.

Before using TMMC, one typically wants to obtain a good initial estimate of the macrostate 

probabilities by quickly exploring the entire macrostate space via the WL algorithm. While 

TMMC can technically operate with any initial biasing array, it will more efficiently explore 

macrostate space if the initial biasing array approximates the true macrostate probabilities 

which are roughly determined from a short WL run. In practice, macrostate space is also 
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distributed in discrete chunks for parallel computation. The results of the individual 

simulations are then stitched back together to obtain the free energy across the entire 

macrostate space. Significant previous work has focused on determining the optimal way to 

distribute the macrostate blocks to each individual flat-histogram simulation.38,39 In this 

work we alternatively solve the macrostate probabilities, or ln Q(N,V,β), by running many 

simulations in the canonical ensemble for each value of N while performing Widom 

insertions.1 By imposing constant N simulations, we can artificially make the “observation” 

of each macrostate equally likely by performing N = 1 … Nmax different NVT simulations. 

Therefore, it is not necessary to ever construct or update a biasing function to make the 

sampling probability distribution flat as in WL/TMMC for effective macrostate exploration; 

however, we can still use the principles of TMMC to obtain the transition probabilities via 

Widom insertions and deletions. This is formally equivalent to taking a window size of 1, as 

has been already performed in ref 16. In other words, performing a flat-histogram simulation 

with a window size of 1 reduces the flat-histogram simulation to an Nmax number of NVT 
simulations where the C-matrix statistics are consequently populated by Widom insertions 

and deletions. For simplicity, we henceforth refer to a TMMC simulation with window size 

of 1 as an NVT + W simulation. It should be noted that this ghost insertion approach in 

individual canonical ensemble simulations works well for supercritical fluids, which are the 

conditions of interest for high-throughput screening of materials’ separation performance for 

light gases, but we have not explored its efficacy with temperature extrapolation in 

subcritical regimes where phase coexistence generates a bimodal macrostate distribution.

Simulation Details.

All simulations were performed with the RASPA code.31 NVT + W simulations were 

performed to obtain the data necessary to generate temperature extrapolated isotherms and 

isosteric heats, and the accuracies of these temperature extrapolated thermodynamic 

properties are compared to standard GCMC simulations. For GCMC simulations, 5 × 104 

cycles were utilized for both equilibration and production. Each NVT + W simulation was 

equilibrated for 5 × 103 cycles, and 4 × 103 cycles were used to accumulate the statistics 

necessary to construct the C-matrix, where translation/rotation/regrow/Widom moves were 

proposed in a ratio of 1/1/1/2. Cycles were defined such that this led to a total of at least 3.2 

× 104 × N Widom insertions and deletions acquired for each NVT simulation. For each 

adsorbate, the Peng–Robinson equation of state was used to compute the fugacity coefficient 

of the reservoir fluid for a given temperature and pressure,40 under the assumption that it 

faithfully captures the bulk behavior of the simulation model. The input files required to run 

the simulations are provided in the SI.

RESULTS

Isotherms of CH4, CO2, and C3H8 in MOF-950.

Figure 2 shows the isotherms computed from NVT + W and GCMC simulations for rigid 

CH4 and CO2 and deformable C3H8 in MOF-950. In this figure, open circles represent 

GCMC predicted loadings, while dashed lines represent the calculation of an isotherm at the 

color-coded temperature from an NVT + W simulation at that same temperature. Solid lines 

represent the temperature extrapolated isotherms from the NVT + W simulation data 
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originally obtained at one single temperature, Tsim, using up to third-order terms (m = 3) in 

eq 9. The temperature extrapolated isotherms for CH4 (Figure 2a,b), CO2 (Figure 2c,d), and 

C3H8 (Figure 2e,f) are generated from NVT + W simulations at Tsim = 270 K, Tsim = 300 K, 

and Tsim = 400 K, respectively. In all cases the GCMC isotherms match the temperature 

extrapolated isotherms over an extremely large temperature extrapolation range, and the log

−log representation of the data shows that the Henry coefficients match exactly. 

Interestingly, the temperature extrapolation for CO2 perfectly capture the non-Langmuirian 

shape (low-pressure inflection) of the adsorption isotherms for all temperatures.

To evaluate a material’s potential as an adsorbent, one is often interested in calculating 

working capacity, or the difference in uptake between the adsorption and desorption 

temperature and pressure. Since we can evaluate the number of particles adsorbed (eq 18) 

for any given number of temperatures and pressures by post-processing of the ln Qc(N,V,β) 

simulation data, the working capacity can be easily calculated via eq 20.

nwc = N μ2V β2 − N μ1V β1 (20)

In a combined temperature and pressure swing adsorption process, both temperature and 

pressure change between the adsorption and desorption conditions; however, an NVT + W 
simulation at only one temperature is needed to obtain any T/PSA working capacity, 

assuming that the Taylor series is sufficient to approximate the temperature dependence of ln 

Qc(N,V,β). From an engineering perspective, this is a marked advantage of NVT + W 
simulations over unbiased GCMC since we can numerically compute nearly continuous 

working capacities as a function of (μ2,β2,μ1,β1) state points and use these data as input into 

process simulation software.

Isosteric Heats of CH4, CO2, and C3H8 in MOF-950.

The isosteric heat of adsorption was computed for each adsorbate in MOF-950. Using the 

temperature extrapolated isotherms where 〈N〉μVT was generated on a grid of ΔT = 2 K and 

ΔP = 250 Pa intervals, the derivative in the Clausius–Clapeyron equation was numerically 

evaluated. Figure 3 shows that the heat of adsorption predicted via this methodology 

produces the same results as GCMC simulations which use the particle-energy fluctuation 

method at a fixed temperature.33

However, an added benefit can be achieved by using the flat-histogram technique to solve 

the isosteric heats. Figure 4 shows the isosteric heat of adsorption, qst(N,T), plotted as a 

continuous function of temperature and loading for CO2 in MOF-950. These data are only 

accessible due to the evaluation of the Clausius–Clapeyron equation on the aforementioned 

grid of 〈N〉μVT values, which would otherwise take a large number of GCMC simulations at 

many different temperatures and pressures to obtain. As expected the temperature 

dependence of the isosteric heat is small, but interestingly the temperature extrapolated NVT 
+ W data combined with the Clausius–Clapeyron analysis quantifies the subtle dependence 

of qst on temperature. Another advantage of obtaining the data visualized in Figure 4 is that 

the total change in enthalpy between any two states (termed the enthalpy of immersion in ref 

34) can be determined by numerical integration of the isosteric heat values along the path 
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between the two states. Also note that, since we have determined lnQ(N,V,β), one can also 

compute the entropy of adsorption as a function of loading via the Helmholtz free energy, 

F(N,V,β) = −kBT ln Q(N,V,β).

Statistical Performance of Temperature Extrapolation.

The temperature range over which the macrostate distribution can be extrapolated depends 

on the order at which the Taylor series approximation is truncated and how well the 

moments of the potential energy distribution have converged. To show the accuracy of the 

temperature extrapolation, we performed NVT + W simulations for a large number of β 
values to compute ln Qtrue(N,V,β). Next we took the values from one particular temperature, 

βsim, and extrapolated them to every other temperature, denoted by ln Qextrap , βsim (N, V , β). 

The relative error (RE) can be computed for each N macrostate and each extrapolation 

temperature β by eq 21, and the results of this evaluation for all three adsorbates in 

MOF-950 are shown in Figure 5. These are encouraging results for our ability to effectively 

screen continuous thermodynamic adsorption properties of light gases in the supercritical 

regime since the range over which the macrostates can be extrapolated is quite large. For the 

more difficult cases of deeply subcritical fluid regimes, future investigation on the efficacy 

of this temperature extrapolation is warranted.

RE β, βsin = 100 ×
ln Qtrue (N, V , β) − ln Qextrap , βsim (N, V , β)

ln Qtrue (N, V , β) (21)

Two characteristic decreases in performance can be observed from Figure 5. First, the RE 

performance decreases for NVT states corresponding to very high particle densities, most 

notably with CO2. However, the regions of highest percent error for CH4 and CO2 (|RE| > 

0.5%) correspond to states with density greater than the saturation loading as can be seen 

from the isotherm analysis in Figure 2. It is important to choose Nmax greater than one’s 

preliminary estimate of the saturation loading to avoid missing nonzero contributions at 

states that contribute significantly to the system’s average properties, but the poor sampling 

well above the actual saturation loading has little impact on the results since they contribute 

negligibly (have sufficiently low value of Π(N)) for any relevant temperature and pressure 

values.

The more important characteristic performance decrease arises at the extremes of the 

temperature extrapolation range when a first-order Taylor approximation is used; i.e., m = 1 

in eq 9. This suggests using a first-order Taylor approximation is not sufficient to capture the 

curvature of ln Q(N,V,β) as a function of β as one might expect when extrapolating over a 

large range of Δβ. Interestingly, the accuracy of the m ≥ 2 extrapolations are essentially 

identical, indicating that the m ≥ 3 order terms contribute negligibly to the expansion of ln 

Q(N,V,β) for these systems at these temperatures. For most of the extrapolation space, the 

error is within ±0.5% which leads to excellent prediction of thermodynamic properties 

across the entire temperature range.
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DISCUSSION

First, we highlight some of the significant advantages of these flat-histogram simulations 

over GCMC. Most importantly, flat-histogram simulations combined with temperature 

extrapolation yield the macrostate distribution as a function of adsorbed particle number 

over a large range of temperatures. Hence, thermodynamic observables can be predicted for 

a broad range of conditions from a computationally cheap post-processing of simulation data 

obtained at a single temperature for both rigid and, as we have demonstrated, deformable 

adsorbates. The temperature extrapolation was not only accurate in the tested range of ΔT = 

100–150 K but could also be achieved with only low-order moments (m < 3 in eq 9) of the 

potential energy distribution. This is highly encouraging as it indicates that applying this 

technique to study light gas adsorption under relevant supercritical (T, P) process conditions 

does not need computationally demanding convergence of higher order moments because 

the curvature of the partition function is sufficiently small and can be accurately described 

by a low-order Taylor expansion.

Since this post-processing of simulation data can be performed for arbitrarily small 

differences in state points, this is a powerful technique if the thermodynamic properties of an 

adsorbent need to be obtained for a continuous range of temperatures and pressures, e.g., as 

input for process optimization software. Consider in Figure 2a that there are approximately 

100 GCMC state points plotted, yet only approximately 100 total NVT + W simulations 

were required to generate significantly more useful data. An arbitrarily large number of 

GCMC simulations would be required to interpolate the expected number of particles as a 

function of temperature and pressure with the same accuracy as these flat-histogram 

methods. In this way, flat-histogram simulations can be vastly more efficient, depending on 

the goal of the simulation. Also, accumulating statistics at high-density states becomes more 

efficient with the NVT + W approach since constant N simulations are imposed for high-

density macro-states and the thermodynamic properties of the system are extracted from 

Widom insertions. In contrast, equilibrating a GCMC simulation at an extremely high 

density can be slow to converge due to infrequent acceptance of the particle insertion moves. 

The major drawback of these flat-histogram methods compared to GCMC becomes evident 

if one only needs to compute 〈N〉μ,V,β at a very limited number of state points.

Finally, we comment on the choice of using the NVT + W scheme, i.e., a TMMC scheme 

with a window size of 1, rather than a traditional binning scheme where each bin contains a 

range of macrostates. While optimal binning size is an important technical consideration, we 

chose to run TMMC in the NVT + W scheme to simplify several implementation details. 

The fundamental difference between the two implementations is that NVT + W simply uses 

Widom insertions to compute transition probabilities and uses many canonical ensemble 

simulations to quickly build up the initial estimate of the macrostate probabilities. WL/

TMMC methods often require at least an initial pass with the WL algorithm to obtain a 

reasonably good starting estimate for the macrostate probabilities, enabling a simulation to 

visit high free energy states. Therefore, no implementation of WL is necessary in a MC 

package when generating NVT + W data. Performing a traditional WL/TMMC simulation 

requires performing C-matrix updates on-the-fly, implementing biased acceptance rules, and 

updating biasing arrays, all of which have indeed been implemented before in freely 
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available packages.41 In the case of NVT + W, the MC code simply needs to write the 

unbiased acceptance criteria to disk, and all macrostate probability (TMMC) calculations 

can be done in post-processing. This may be useful to researchers working with multiple 

different MC codes for which there are no implemented WL/TMMC functionalities. A 

minor disadvantage of NVT + W is that additional simulation time is spent equilibrating 

each individual NVT simulation, an issue not experienced with WL/TMMC. Further 

investigation is also required before utilizing this scheme in deeply subcritical, phase 

coexistence regimes.

CONCLUSIONS

We have outlined the practical utility of flat-histogram Monte Carlo simulations that, when 

combined with temperature extrapolation, provide significantly more thermodynamic 

information regarding adsorption in nanoporous materials than traditional GCMC 

simulations. The formalism for the temperature extrapolation of macrostate probabilities was 

extended for the first time to handle molecules with intramolecular degrees of freedom 

simulated using Rosenbluth sampling. This led to successful application of the method on 

both rigid and deformable adsorbates. Consequently, the working capacity and working 

enthalpy for a T/PSA process over an extremely wide range of conditions can also be 

ascertained from a simulation at only one temperature. Thus, the results presented here 

demonstrate the potential of these simulation techniques for in silico identification and study 

of high-performing adsorbents for realistic T/PSA processes. Mechanistically, the TMMC 

simulations were executed using a window size of 1 such that the problem reduces to a 

series of NVT simulations with Widom insertions used to compute the transition 

probabilities.

If the simulations community moves toward flat-histogram techniques, a material’s 

performance can immediately be recalculated when specified process conditions change. 

Rather than repeating a MC simulation at the new conditions, this can be achieved by simply 

reprocessing the free energy landscape from our original simulation. In other words we 

significantly increase the recyclability of our simulation results by performing flat-histogram 

MC simulations. Similar to the way that databases are currently being developed to store and 

benchmark results in computational material science,42,43 developing databases of free 

energy landscapes for different pure components or mixtures will provide more robust data 

as we continue to screen potential adsorbents for separations and storage applications. There 

also remain exciting opportunities to extend these methods to adsorption in nanoporous 

materials involving mixtures, for which a theoretical framework has already been developed.
16,21 Upon further method development and application of more advanced sampling 

techniques to multicomponent mixtures, these methods could lead to numerical, “‘model-

free”‘ optimization of the operating conditions that minimize the parasitic energy of 

separations in porous materials.44,45

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Visual representation of the MOF-950 framework with the viewing plane parallel to the 011 

face.
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Figure 2. 
CH4 (a, b), CO2 (c, d), and C3H8 (e, f) isotherms are shown for MOF-950. Panels b, d, and f 

are plotted on log−log axes to show the agreement between all calculations in the low-

pressure, Henry’s Law regime. Open circles represent GCMC simulations, dashed lines 

represent NVT + W calculated isotherms from a simulation at the specified temperature, and 

solid lines represent temperature extrapolated isotherms from an NVT + W simulation 

originally performed at a single temperature (Tsim = 270 K for CH4, Tsim = 300 K for CO2, 

and Tsim = 400 K for C3H8).
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Figure 3. 
Isosteric heats of adsorption plotted as a function of loading for CH4, CO2, and C3H8 at 

temperatures of 270, 300, and 400 K, respectively.
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Figure 4. 
Full isosteric heat diagram, qst(N,T), for CO2 in MOF-950.
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Figure 5. 
RE of temperature extrapolations for CH4, CO2, and C3H8, first, second, and third rows, 

respectively. The data were extrapolated from the simulation temperatures denoted by red 

lines which are located at 270, 300, and 400 K for CH4, CO2, and C3H8, respectively. Each 

column represents the Taylor approximation with largest order m (eq 9). Finally, the color 

code is the RE of the extrapolation estimate, given by eq 21.
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