UC Irvine

UC Irvine Electronic Theses and Dissertations

Title

Thermodynamic Considerations for CO2 Activation and Further Reactivity of CO2 Reduction Products

Permalink https://escholarship.org/uc/item/4bq166c8

Author

Kerr, Tyler Alan

Publication Date

2023

Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA, IRVINE

Thermodynamic Considerations for CO₂ Activation and Further Reactivity of CO₂

Reduction Products

DISSERTATION

submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Chemistry

by

Tyler Alan Kerr

Dissertation Committee: Professor Jenny Y. Yang, Chair Professor Michael T. Green Professor Shane Ardo

Parts of Chapter 0 © 2020 American Chemical Society © 2023 Tyler Alan Kerr

DEDICATION

To my family,

To my friends,

To my fur children,

To my love,

Table of Contents

List of Schemes vi
List of Figures vii
List of Tablesx
Acknowledgements xii
Vitaxiv
Abstract of the Dissertationxvi
Chapter 0: Background and Motivations1
General Overview1
Research Goals7
References
Chapter 1: Protonation-Induced Oxidation and Dimerization of a Tungsten Bisdithiolene
Complex12
Introduction12
Experimental14
General Methods14
Synthesis of $[Na(18-crown-6)]_2[WS(S_2C_2(CH_3)_2)_2]$ (1b)14
Synthesis of $[K(2.2.2-cryptand)]_2[WS(S_2C_2(CH_3)_2)_2]$ (1c)15
Synthesis of $[K(2.2.2-cryptand)]_2[WS(S_2C_2(CH_3)_2)_2]_2$ (2)
X-ray Absorption Measurements15
EXAFS Fitting16
Electrochemical Experiments16

Results and Discussion16
Synthesis and Characterization16
Electrochemical Studies 22
Protonation of W ^{IV} Salts 27
X-ray Absorption Spectroscopy34
EXAFS
Electrochemical Characterization of Protonation Products37
Hydride Transfer Studies of 1aH 39
Infrared Studies on Protonated 1a and Density Functional Analysis41
Six-Coordinate FDH Analogues49
Conclusions and Outlook
Crystallographic Information52
References
Chapter 2: Studies of Cobalt Macrocyclic Compounds for CO ₂ Reduction
Introduction
Experimental68
General Methods68
Physical Methods69
Electrochemical Techniques
Synthesis of Co(TIM)Br ₂ PF ₆
Synthesis of Co(SIM)Br ₂ PF ₆
Synthesis of Co(DIM)Br ₂ ClO ₄ 71
Results and Discussion71
Synthesis and Characterization71

Electrochemical Analysis72
CO ₂ Binding73
Electrocatalytic Studies75
Attempted Electrocatalytic CO ₂ Reduction Using Co(SIM)Br ₂ PF ₆ 79
Spectroelectrochemical Characterization81
Attempted Isolation of More Soluble Starting Materials
Conclusions and Outlook
Crystallographic Information for Co(GIM)(THF)PF ₆ 90
References
Chapter 3: Development of an Electrochemical Catalytic System for the Reduction of CO_2 to
Methanol
Introduction
Experimental Methods100
General Considerations 100
NMR Experiments100
Results and Discussion101
Esterification and Amidation of HCO_2^- 101
Conclusions and Outlook 115
References
Appendix A: Tables of Cartesian Coordinates for DFT-Optimized Structures122

List of Schemes

Scheme 0.1: Thermochemical cycle for the reduction of CO_2 with a metal hydride
Scheme 0.2: Two systems showing decoupled proton-electron transfer
Scheme 1.1: Structure of the oxidized and the formate-reduced active site of a typical FDH where
M= Mo, W13
Scheme 1.2: Reactivity shown by Seo <i>et al</i> . and reactivity shown here
Scheme 1.3: Proposed reaction pathway for the conversion of 1c to 2 through protonation 33
Scheme 1.4: Attempted hydride transfer studies40
Scheme 1.5: Published work by Fontecave and coworkers and alternate ligand sets for DFT studies
Scheme 1.6: Potential structure of hydride-reduced 6-coordinate tungsten compound
Scheme 1.7: Proposed reaction pathway for the decomposition of $[Et_4N]W(S)(SAd)[S_2C_2(CH_3)_2]_2$
Scheme 2.1: Structures of compounds targeted in this study
Scheme 2.2: Proposed mechanism for the reversible reduction of CO ₂ using a Co(TIM) species as
a template
Scheme 3.1: Proposed electrochemical cascade catalytic process
Scheme 3.2: Plausible mechanism for the substitution of 4-fluoroaniline into formic acid 114

List of Figures

Figure 0.1: Comparsion of energy densities of common energy carriers1
Figure 0.2: Average reduction potentials have a linear relationship with hydricities in metal
complexes (Adapted from J. Am. Chem Soc. 2020, 142, 19438)
Figure 0.3: Energetic contributions from the pK_a and the $E_{1/2}$ on the hydricity of a metal complex
Figure 0.4: Alternate plot of the contributions of the pK_a and the $E_{1/2}$ of the metal hydride to the
hydricity7
Figure 1.1: ¹ H-NMRs of 1a (top), 1c (middle), and 1b (bottom)18
Figure 1.2: Solid state crystal structures of (A) 1b and (B) 1c19
Figure 1.3: Room temperature (Top) and –40°C (Bottom) ¹ H-NMR spectra of 1a 20
Figure 1.4: Low-temperature (-40 °C) ${}^{13}C{}^{1}H$ NMR of 1a in CD ₃ CN 20
Figure 1.5: Solid state crystal structure of 221
Figure 1.6: Cyclic voltammogram of 1 mM 1a (black) and 1c (red) in CH_3CN 23
Figure 1.7: Scan-rate dependent cyclic voltammetry studies of 1a 23
Figure 1.8: Scan-rate dependent cyclic voltammetry studies of 1c 24
Figure 1.9: Scan-rate dependent studies on the reduction of 2 25
Figure 1.10: Scan-rate dependent studies on the oxidation of 2
Figure 1.11: Cycled differential pulse voltammetry on the oxidation of 2
Figure 1.12: (A) UV-visible titrations of 1a with $Pyrr \cdot HBF_4$ in CH_3CN and (B) attempted
neutralization of acid with DBU
Figure 1.13: (A) UV-visible titrations of 1c with $Pyrr \cdot HBF_4$ in CH_3CN . (B) attempted neutralization
of acid with DBU28
Figure 1.14: Comparison of UV-visible titrations of acids into solutions of 1a and 1c in CH_3CN . 29

Figure 1.15: Time-resolved spectra of the products of the treatment of 1c with 1 equivalent of
Py•HBF ₄ in CH ₃ CN at room temperature
Figure 1.16: Time-resolved spectra of the products of the treatment of 1c with 1 equivalent of
Py•HBF ₄ in CH ₃ CN at 50°C
Figure 1.17: Plot of ln(1cH) vs. time showing a linear relationship
Figure 1.18: ¹ H NMR of the protonation of 1a showing evidence for H_2 and 2 after protonation by
Py•HBF ₄
Figure 1.19: Comparison of W L_3 edge energies. The solid line represents 1a, while the dotted line
represents protonated 1aH
Figure 1.20: EXAFS data and Fourier transforms for 1a (top) and 1aH (bottom)
Figure 1.21: Cyclic voltammetry studies of the protonation products of 5 mM 1a
Figure 1.22: Cyclic voltammograms of tungsten compounds
Figure 1.23: ³¹ P NMR study of hydride transfer from 1aH to $[Ni(dppe)_2][BF_4]_2$
Figure 1.24: Infrared spectrum of 1a treated with 1 equivalent of Py•HBF ₄ (black) and DFT-
simulated spectrum (red) 43
Figure 1.25: Infrared Spectrum of 1a treated with 1 equivalent of Py•DOTf (black) and the DFT-
simulated spectrum (blue)
Figure 1.26: DFT optimized structure of protonation state C from two angles with selected bond
lengths
Figure 1.27: Plot of relative energies of the various protonation states of $WS(S_2C_2(CH_3)_2)_2H$ using
various basis sets and an alternate method
Figure 1.28: Relative DFT-calculated energies of various compounds similar to 1a
Figure 1.29: ¹ H-NMR spectra of the reaction of $[Et_4N]W(S)(SAd)[S_2C_2(CH_3)_2]_2$ with hydride
donors in CD ₃ CN
Figure 2.1: Cyclic voltammograms of saturated solutions of $Co(TIM)Br_2PF_6$ (Blue),
Co(SIM)Br ₂ PF ₆ (Black), and Co(DIM)Br ₂ ClO ₄ (Red) in 100 mM [ⁿ Bu ₄ N][PF ₆] in THF73

Figure 2.2: Cyclic voltammograms of $Co(TIM)Br_2PF_6$ (A), $Co(SIM)Br_2PF_6$ (B), and
$Co(DIM)Br_2ClO_4$ (C) in THF (black traces) and under CO_2 (blue traces)
Figure 2.3: Cyclic voltammograms of a saturated solution of $Co(SIM)Br_2PF_6$ with acids75
Figure 2.4: Cyclic voltammograms of Co(SIM) Br_2PF_6 with CO ₂ and weak acids
Figure 2.5: Cyclic voltammograms of Co(TIM) Br_2PF_6 with CO ₂ and acids
Figure 2.6: Cyclic voltammograms of Co(DIM) Br_2ClO_4 with CO ₂ and acids
Figure 2.7: Chronoamperograms of the bulk electrolytic reduction of $Co(SIM)Br_2PF_6$ in THF 79
Figure 2.8: Chronoamperograms of the bulk electrolytic reduction of Co(SIM)Br ₂ PF ₆ in CH ₃ CN
80
Figure 2.9: Pre- (black) and post-electrolysis (red) UV-Visible spectra of Electrolysis 281
Figure 2.10: Spectroelectrochemistry of Co(SIM)Br ₂ PF ₆ in THF83
Figure 2.11: Cyclic voltammograms of Co(SIM)Br ₂ PF ₆ THF with increasing concentration of
CH ₃ CN
Figure 2.12: Spectroelectrochemistry of Co(SIM) Br_2PF_6 in CH_3CN under an atmosphere of N_2 85
Figure 2.13: Spectroelectrochemistry of Co(SIM)Br ₂ PF ₆ in CH ₃ CN under an atmosphere of CO ₂
Figure 2.14: (Top) Solid state crystal structure of Co ^{II} (GIM)(THF)PF ₆ and (bottom) drawn
structures of Co(SIM)Br ₂ PF ₆ and Co(GIM)PF ₆
Figure 2.15: EPR spectra of Co(SIM) Br_2PF_6 treated with 1 equiv. of KC ₈ in 2-Me-THF (black) and
held under vacuum for 3 hours (red)88
Figure 3.1: ¹ H-NMR spectra of the formyl proton of tetra-n-butylammonium formate in CD ₃ CN
(Top), with 5 mol% Sc(OTf) $_3$ (middle), and 10 mol% Al(OTf) $_3$ (bottom)103
Figure 3.2: Two rotamers of a generic formamide 109
Figure 3.3: Conversions of 4-fluoroaniline to 4-fluoroanilide in the presence of a salt at 25°C
(blue) and 60°C (red) 113

List of Tables

Table 0.1: Turnover frequencies for reported studies on catalysis with FDH
Table 1.1: pK_a s of relevant bases used in this chapter16
Table 1.2: Bond metrics of crystallized tungsten bisdithiolene species
Table 1.3: Reduction potentials of tungsten compounds 23
Table 1.4: EXAFS best fit bond metrics for W-S bonds in 1a and 1aH
Table 1.5: EXAFS best fit bond metrics for protonated 1a modeled as 2
Table 1.6: Results of hydride transfer studies
Table 1.7: Tabulated selected metrics for the DFT geometry-optimized structures of protonated
$W(S)[S_2C_2(CH_3)_2]_{2^{2^-}}$
Table 1.8: Selected bond lengths found using single crystal XRD (for 1b and 1c), EXAFS (for 1a
and 1aH), and computational methods for deprotonated and protonated $W(S)[S_2C_2(CH_3)_2]_{2^{2-}}$ 45
Table 1.9: NMR studies of 6-coordinate W^{VI} compounds
Table 1.10: Crystallographic data for 1b, 1c, and 2
Table 2.1: Structures of conjugate bases used in this chapter 69
Table 2.2: Measured reduction potentials and CO ₂ binding constants of Co complexes73
Table 2.3: Performance of electrolysis attempts 81
Table 2.4: Tabulated reduction potentials of Co(SIM) Br_2PF_6 in mixed THF and CH ₃ CN
Table 2.5: Crystal data for Co(GIM)(THF)PF691
Table 3.1: Relevant solvent-dependent empirically determined constants
Table 3.2: Relevant pK_a values
Table 3.3: Diphosphine ligand abbreviations 101
Table 3.4: Esterification of [ⁿ Bu ₄ N][HCO ₂] with EtOH using Lewis and Brønsted acid catalysts
Table 3.5: Effect of heating reaction mixtures for 2 weeks

Table 3.6: Attempted amidations of [ⁿ Bu ₄ N][HCO ₂] with dipropylamine and propylamine using
Lewis acid catalysts 104
Table 3.7: Attempted amidations of ["Bu ₄ N][HCO ₂] with ammonium salts105
Table 3.8: Amidations of formic acid with dipropylamine using $Sc(OTf)_3$
Table 3.9: Amidations and esterification of formic acid in the presence of drying agents107
Table 3.10: Solvent screen and ratio dependence for the amidation of formic acid with 4-
fluoroaniline
Table 3.11: Attempted amidations of [ⁿ Bu ₄ N][HCO ₂] with 4-fluoroanilinium triflate by varying
ratios and adding Brønsted acids110
Table 3.12: Solvent screen for the attempted amidation of $[{}^{n}Bu_{4}N][HCO_{2}]$ with 4-fluoroanilinium
triflate110
Table 3.13: Effect of salts on the amidation of formic acid and 4-fluoroaniline
Table 3.14: Effect of heating amidation reactions with salts 112

Acknowledgements

First, I'd like to thank the DOE DE-SC0020275 and the UCI Department of Chemistry for funding. The text and figures of Chapter 0 are an adaptation of the materials in Yang, Jenny Y.; Kerr, Tyler A.; Wang, Xinran S.; Barlow, Jeffrey M. *J. Am. Chem. Soc.*, **2020**, *142*(46), 19438. Permission granted by the American Chemical Society.

To Jenny, thank you so much for all of your support over the last 5 and a half years. It hasn't been easy, but I'm so happy I ended up in your lab.

To past and current Yang Group members, I won't name all of you, but I'll give a special shoutout to Caitlin, Drew, Zach, Steven, Brian, Bianca, Alex, Annie, and Sarah, who all were there from the beginning. Thank you all so much for editing all my documents and pulling (sometimes dragging) me through. And to Allie, Nadia, and Kelsey, who have been key in getting me through writing.

To my candidacy committee, Profs. Evans, Heyduk, Green, Ardo, and Ross, thank you so much for challenging me to do better when I clearly hadn't done enough. I have learned a lot about myself since then, and I am a better scientist because of it.

To Dr. Joe Ziller, with all of 5 hours of experience with X-ray crystallography, you took me as the X-ray fellow. I learned so much under your guidance, and I'm so thankful for all of the on the job training in an extremely useful skill.

To all of the friends that I've met here in SoCal, especially Meghen, Justin, Carly, Taylor, Kirsten, Chuck, Leah, you all have supported me so much, and I'm so happy to have met and gotten to know all of you.

To my family, this hasn't been easy. Living so far away for so long has been hard. Thank you all so much for being there for me.

To Angelika, you are the best partner I could ask for. I'm not always easy to live with. You have been and continue to be my rock. Coming home to you every day for the last 4 years has made my life better. Thank you for being you, and thank you for holding my hand as I've gone through this. And to our animals, Ethylene, Norby, and Jimmy who (begrudgingly) give the best cuddles.

Vita

Tyler Alan Kerr

Education	University of California, Irvine Ph.D. in Chemistry, 2023	Irvine, CA	
	University of Kansas Bachelor of Science, Chemistry; Minor, Religious Studies, Ma KU GPA: 3.0, Cumulative GPA: 3.2 (August 2012 – May 2016	Lawrence, KS y 2016.)	
	Wichita State University Student, Chemistry. GPA: 3.5 (August 2010 – May 2012)	Wichita, KS	
Research Experience	University of California, Irvine Advisor: Jenny Yang	Irvine, CA	
	University of Kansas Advisor: James Blakemore (May 2016 – July 2017)	Lawrence, KS	
	Advisor: Minae Mure (August 2013 – May 2015)		
Publications	<u>Kerr, T.A.</u> ; Yang, J.Y. Proton-Induced Oxidation and Dimerization of a Tungsten Bisdithiolene Complex. <i>In preparation</i> .		
	Cordova, D.L.M; Chua, K.; <u>Kerr, T.A.;</u> Aoki, T.; Knez, D.; Skorupskii, G.; Lopez, D.; Ziller, J.W.; Fishman, D.A.; Arguilla, M.Q. 1D van der Waals Tetrahelices with an Irrational Boerdijk-Coxeter Twist. <i>Submitted</i> .		
	Cypcar, A.D.; <u>Kerr, T.A.</u> ; Yang, J.Y. Thermochemical Studies of Nickel Hydride Complexes with Cationic Ligands in Aqueous and Organic Solvents. <i>Organometallics</i> , 2022 , <i>41</i> (18), 2605.		
	Henke, W.C.; <u>Kerr, T.A.;</u> Sheridan, T.R.; Henling, L.R.; Takase, M.K.; Day, V.W.; Gray, H.B.; Blakemore, J.D. Synthesis, structural studies, and redox chemistry of bimetallic [Mn(CO) ₃] and [Re(CO ₃)] Complexes. <i>Dalton Transactions</i> , 2021 , <i>50</i> , 2746.		
	Yang, J.Y.; <u>Kerr, T.A.</u> ; Wang, X.S.; Barlow, J.M. Reducing CO ₂ to HCO ₂ - at Mild Potentials: Lessons from Formate Dehydrogenase. <i>J. Am. Chem. Soc.</i> , 2020 , <i>142</i> (46), 19438.		
	Shaughnessy, C.I.; Sconyers, D.J.; <u>Kerr, T.A.</u> ; Lee H.J.; Subramaniam, B.; Leonard, K.C.; Blakemore, J.D. Intensified Electrocatalytic CO ₂ Conversion in Pressure-Tunable CO ₂ -Expanded Electrolytes. <i>ChemSusChem</i> , 2019 , <i>12</i> , 3761-3768.		
Oral Presentations	Tyler A. Kerr and Jenny Y. Yang. "Reactivity Studies of an Active-Site Model Complex of Tungsten-Containing Formate Dehydrogenases." University of California Chemical Symposium, Lake Arrowhead, CA, March 22-24, 2020. **cancelled due to COVID-19 pandemic		
	"Determining the Site of Protonation and the Hydricity of Active-Site Model Complexes of the Tungsten- and Molybdenum-Containing Formate Dehydrogenases." <u>Tyler A. Kerr</u> , and Jenny Y. Yang. ACS National Meeting & Exposition, San Diego, CA, August 25-29, 2019.		
	^(*) Development of New Media for Electrochemical CO ₂ Conver Shaughnessy, Hyun Jin Lee, David J. Sconyers, Bala Subram James D. Blakemore. 52 nd Midwest Regional Meeting of the A Lawrence, KS. October 18-20, 2017.	rsion." <u>Tyler A. Kerr</u> , Charles aniam, Kevin C. Leonard, and American Chemical Society in	

Teaching	University of California, Irvine Irvine, CA Inorganic Chemistry Lab (Chem 107L), Teaching Assistant (Winter 2018, Spring 2019)		
	Advanced Inorganic Chemistry (Chem 127) Teaching Assistant (Winter 2021)		
	Inorganic Chemistry Lab (Chem 107L), Head TA (Winter 2020)		
	Organic Chemistry Lab (Chem 51LB / Chem 51LC), Teaching Assistant (Spring 2018, Winter 2018)		
	General Chemistry Lab (Chem 1LD), Teaching Assistant (Fall 2017, Summer 2018)		
	University of Kansas Lawrence, KS General Chemistry Lab (Chem 135), Teaching Assistant (Springs 2015 and 2016)		
	College Chemistry Lab (Chem 125), Teaching Assistant (Spring 2014)		
Poster Presentations	Tyler A. Kerr and Jenny Y. Yang "Toward Electrocatalytic CO ₂ reduction using Cascade Catalysis." ACS National Meeting & Exposition in San Diego, CA. March 2022.		
	Tyler A. Kerr and Jenny Y. Yang. "Reactivity Studies of an Active-Site Model Complex of Tungsten-Containing Formate Dehydrogenases." University of California Chemical Symposium, Lake Arrowhead, CA, March 22-24, 2020. **cancelled due to COVID-19 pandemic		
	Tyler A. Kerr and Jenny Y. Yang. "Reactivity Studies of an Active-Site Model Complex of Tungsten-Containing Formate Dehydrogenases." SoCal Organometallics Conference, Santa Barbara, CA, March 15, 2020. **cancelled due to COVID-19 pandemic		
	"Tuning the Hydricity of Metal Complexes for Selective CO ₂ Reduction" <u>T. Kerr</u> , X. Wang, J Yang. SoCal Bioinorganic Meeting. December 2, 2018.		
	"Electrochemical Carbon Dioxide Conversion in CO ₂ -Expanded Liquids (CXLs)." <u>T. Kerr</u> , C. Shaughnessy, H. Lee, B. Subramaniam, K. Leonard, and J. Blakemore. Spring CEBC Industry Advisory Board Meeting in Lawrence, KS. April 24, 2017.		
	"Electrochemical Carbon Dioxide Conversion in CO ₂ -Expanded Liquids (CXLs)." <u>T. Kerr</u> , C. Shaughnessy, H. Lee, B. Subramaniam, K. Leonard, and J. Blakemore. Fall CEBC Industry Advisory Board Meeting in Lawrence, KS. Oct. 17, 2016.		
	"We Are KU Chem Club: The ACS Student Affiliate Chapter at the University of Kansas." <u>T. Kerr</u> , C. Barrett, R. Latimer, E. Lorenzo, M. Holtz, R. Walsh, R. Black, and P. Hanson. ACS National Meeting & Exposition in San Diego, CA. March 2016.		
Professional Activities	Co-chair for Programming, Registration, and Abstracts. University of California Chemical Symposium. Virtual Meeting. March 2021.		
	Chairperson, University of California Chemical Symposium 2022, 2023.		
	Crystallography Fellow, University of California, Irvine. September 2021-September 2022.		

Abstract of the Dissertation

Thermodynamic Considerations for CO_2 Activation and Further Reactivity of CO_2

Reduction Products

by

Tyler Alan Kerr

Doctor of Philosophy in Chemistry University of California, Irvine, 2023

Professor Jenny Y. Yang, Chair

Growing global energy demands and greenhouse gas emissions require the development of innovative technologies to both sustain the energy needs of the future and eliminate anthropogenic sources of climate change. By designing and deploying systems that capture, concentrate, and convert CO_2 to useful feedstocks on large scales using renewable, carbonless energy sources, we may be able to achieve a net neutral carbon economy.

One of the biggest challenges with reduction of carbon dioxide is that under standard state, where the concentration of every reagent is 1 M, the pressure of every gas is 1 atmosphere, and the temperature is 25°C, reduction of protons (H⁺) to hydrogen gas (H₂) is more favorable regardless of the reduction potential. When we move to non-standard state conditions, we can shift the thermodynamics to favor formate (HCO₂⁻) production with metal hydrides. Using empirical solvent-dependent thermodynamic constants that describe the reactivity of these small molecules in various solvents, we can identify conditions where many reactions with small molecules are favorable.

This dissertation focuses on using these empirically determined thermodynamic values to design systems that can convert CO_2 to reduced products, disfavoring other reactivity. I show, however, that deleterious side-reactivity and unexpected interactions in nonpolar solutions prevent the full understanding of the thermodynamics in the systems presented.

Chapter 0: Background and Motivations

Portions of this introduction adapted from J. Am. Chem Soc. 2020, 142, 19438.1

General Overview

The United Nations has indicated that the world population has grown from 7 billion in 2011 to 8 billion this month (November 2022).² With the population growing, energy demands are growing as well. As we migrate away from fossil fuels as our primary energy source, the use of photovoltaics and wind energy has grown immensely. These intermittent energy sources pose a problem in today's on-demand energy infrastructure: the times of day that energy use is spiking, the sun sets and the wind slows down, decreasing clean energy generation, necessitating the use of smaller, dirtier, on-demand fossil fuel sources.³ If the conversion to a more sustainable future continues, we need to find inexpensive, quickly deployable, and compact energy storage options. Current state of the art battery technology lags far behind the energy-carrying capacity of liquid and gaseous fuels (Figure **0.1**).⁴ One way of doing this is storing electrical energy in the form of chemical bonds. Specifically, conversion of carbon dioxide to liquid fuels may be an option for the storage of future intermittent electricity generation.

Figure 0.1: Comparsion of energy densities of common energy carriers

Metal hydrides are of great interest for thermodynamic studies because the overall reactions involve simple elementary reactions that sum to give the overall reaction thermodynamics. While true for all reactions, summation of the thermodynamic contributions from each of the elementary steps of hydride transfers has proven to be useful in predicting reactivity in many systems containing metal hydrides.⁵ Work in the Yang Group and much of the work herein has focused on the selective reduction of CO₂, predicting reactivity using Hess's Law and Bordwell thermodynamic cycles.⁶ Having well-defined empirical constants has been crucial in predicting reactivity in many of the systems published by our group.⁷⁻¹⁴ Also, the development of well-defined thermochemical cycles with no readily accessible off-cycle intermediates is crucial for the accurate and complete descriptions of the reactivity. A Bordwell-like thermodynamic cycle is shown in Scheme **0.1**. In the first set of reactions, the free energy associated with the release of a solvated hydride by a metal complex, known as the solvent-dependent hydricity (5), is calculated by summing the energetic contributions from each one-electron reduction (2, 3), the equilibrium constant of the protonation of the reduced metal center (4), and a solvent-dependent constant where the two-electron reduction of a proton to a hydride (1) has been determined empirically.¹⁵ Using the metal hydricity, the empirically determined hydricity for formate (6) (HCO₂⁻) is subtracted, yielding the overall change in free energy associated with hydride transfer to CO₂, labeled as ΔG_{HCO2-} (7). Some of the reported hydricities and associated reduction potentials are included in Figure 0.2. Average $E_{1/2}$ values were used to normalize the contribution to the reduction potential to the hydricity by metals that undergo two one-electron reductions and one two-electron reduction. The dashed line shows the point at which the transfer of a hydride to CO₂ in CH₃CN is ergoneutral (44 kcal/mol).⁵

Scheme 0.1: Thermochemical cycle for the reduction of CO₂ with a metal hydride

Figure 0.2: Average reduction potentials have a linear relationship with hydricities in metal complexes (Adapted from J. Am. Chem Soc. 2020, **142**, 19438)

Notably, the reduction potential of the metal center is strongly correlated with the complex's hydricity. To probe these observations further, the contributions of each of the elementary thermodynamic steps for some of the hydrides with reported pK_a and $E_{1/2}$ values were separated and are shown in Figure **0.3**. With a clearer picture of what is driving the reactivity here, we see that for all hydrides, the reduction potential contributes heavily to the overall calculated hydricity. In fact, the contribution by the pK_a has the opposite trend where if the

hydride is more basic, more energy is required to overcome the energy from the very downhill protonation reaction. In other words, all of the energy that was given off in the protonation step must be repaid by the contribution to the hydricity by the reduction potential.

Figure 0.3: Energetic contributions from the pK_a and the $E_{1/2}$ on the hydricity of a metal complex

With the energetic requirements in mind, how can we maximize overall energetic efficiency while maintaining catalytic turnover frequencies that are useful? Cunningham et al. used these principles in the development of the first synthetic example of reversible catalytic system for the interconversion of CO_2 and HCO_2^- and achieving a 48 mV overpotential but with an observed turnover frequency of only 1.0(1) hr⁻¹ for CO_2 reduction under catalytic conditions.^{13,14} This is greatly contrasted in work by Hirst and coworkers that showed reversible catalysis in an enzyme dissolved in solution and immobilized on an electrode.¹⁶ With a tungsten-containing formate dehydrogenase (FDH1, isolated from *S. fumaroxidans*), the best rates of catalysis are

shown in **Table 0.1**. In the enzymatic system, reversible catalysis proceeds at least 5 orders of magnitude faster than the synthetic example.

Table 0.1: Turnover frequencies for reported studies on catalysis with FI	DH
---	----

	Turnover Frequencies (s^{-1})	Immobilized				
_	CO₂ reduction	282ª	112 ^b			
<i>HCO</i> ₂ [−] oxidation		3380 ^a	700 ^c			
apH 7.5 with methylviologen						

^bpH 5.9

^cpH 8.0

Biological systems have had millions if not billions of years to optimize the reactivity of enzymes through natural selection, and understanding the mechanisms behind many enzymatic systems is exceedingly difficult. Niks and Hille reviewed a series of proposed mechanisms of the Mo- and W-containing formate dehydrogenases.^{17–22} Interestingly, there have been no experimentally supported mechanisms that involved a metal hydride (only one computational study).²³ Other systems like hydrogenases are thought to go through metal hydride intermediates that are often stabilized by a nearby metal.²⁴ All of the experimentally supported mechanisms for formate dehydrogenase enzymes involve the transfer of a hydride *equivalent* over the course of the reaction. The fate of the proton in the formate oxidation reaction is under scrutiny, but all mechanisms point to a two-electron reduction of the metal center. With no experimentally supported Mo or W hydrides, the proton and electrons become physically separated after the formal hydride transfer from formate. This decoupling of electron and proton equivalents is proposed in a synthetic system where HCO₂⁻ is oxidized to CO₂ in a Ni bisdiphosphene system with pendant amines. The basic amine accepts the proton while the Ni center accepts the two electrons²⁵ (Scheme 0.2, top). The proton and electron were also separated in hydrogen atom transfer from TEMPOH to a carboxylate 14 Å away from the Fe^{III} center that is subsequently reduced to Fe^{II} (Scheme **0.2**, bottom).²⁶ This example is particularly interesting because it uses a relatively acidic proton acceptor, a carboxylate. By separating the proton and electrons, the energy contribution from the p K_a and from the reduction potential become partially decoupled, allowing

for individual tuning of each parameter. Tuning the reduction potentials to more negative potentials will generate stronger hydrides, and tuning the complex to have a more acidic hydride will also generate stronger hydrides.

Scheme 0.2: Two systems showing decoupled proton-electron transfer

Looking back to Equation 4 and rearranging the data in Figure **0.3**, we can see that there are large variations in pK_a and reduction potential that cancel out on systems with similar hydricities (Figure **0.4**). This result shows that the pK_a of a metal hydride alone is not inextricably linked to the $E_{1/2}$, but there is a definite correlation. By providing some distance between the final resting place of the proton and the electrons, the acidity and the reduction potential of the metal center, this correlation may be broken entirely. In choosing a hydride for a reaction, this separation and decoupling of the acidity and reduction potential may also be useful in determining if the compound will be compatible with the other species in solution. For instance, if electrocatalysis is being attempted on a system that is very sensitive to reduction, a more acidic hydride may be selected to decrease the magnitude of the reduction potential needed to reduce the metal complex.

Figure 0.4: Alternate plot of the contributions of the pK_a and the $E_{1/2}$ of the metal hydride to the hydricity *Research Goals*

The main motive for this dissertation is to use published empirical thermochemical data in the development of systems that (1) reduce CO₂ at low overpotentials using orthogonal proton electron transfer, (2) reversibly interconvert CO and CO₂, and (3) convert CO₂ to methanol using cascade catalysis. First, in studying a synthetic structural model of the active site of W-containing formate dehydrogenase, I present a series of experiments to isolate a protonated intermediate that was proposed to have the same protonation state and oxidation state as the reduced form of the enzyme active site. Through these studies, I show that the formation of a non-biologically relevant dimeric W^v compound is very favorable under many conditions and is the preferred decomposition product for many reactions involving either W^{IV} or W^{VI} starting materials. In the second chapter, I attempt to use thermodynamic considerations to predict the reactivity of a cobalt macrocycle compound in the presence of CO_2 under reductive conditions. Small amounts of the desired reduction product, CO, was formed. However, subsequent unexpected reactivity of the fully reduced Co^I compound yielded a Co^{II} compound with multiple ligand oxidation and reduction reactions. With the unexpected reactivity, further thermochemical studies became unfeasible.

In the third and final chapter, I describe activation of formate for a proposed cascade catalytic cycle for CO_2 reduction to methanol. Use of nonpolar solvents for these reactions is both a drawback and an advantage. Nonpolar solvents like THF lack broadly applicable and self-consistent thermodynamic constants that are necessary to predict the reactivity of metal hydrides. Many pK_a values reported in nonpolar solvents include separate entries for the donation of a proton in the presence of ions that subsequently pair with the resulting charged molecules as the reactions proceed. Because these processes are not entirely predictable, the reactivity of salts in THF becomes unpredictable as well. Although not explored here, the thermodynamics of these ion pairing interactions have been studied in the context of hydricity¹⁵ and will continue to develop as we start to understand the quantification of the energies of these processes.

References

- Yang, J. Y.; Kerr, T. A.; Wang, X. S.; Barlow, J. M. Reducing CO2 to HCO2- at Mild Potentials: Lessons from Formate Dehydrogenase. J. Am. Chem. Soc. 2020. https://doi.org/10.1021/jacs.0c07965.
- Nations, U. World population to reach 8 billion on 15 November 2022. United Nations. https://www.un.org/en/desa/world-population-reach-8-billion-15-november-2022 (accessed 2022-11-24).

- (3) Tong, D.; Farnham, D. J.; Duan, L.; Zhang, Q.; Lewis, N. S.; Caldeira, K.; Davis, S. J. Geophysical Constraints on the Reliability of Solar and Wind Power Worldwide. *Nat Commun* 2021, *12* (1), 6146. https://doi.org/10.1038/s41467-021-26355-z.
- (4) Durbin, D. J.; Malardier-Jugroot, C. Review of Hydrogen Storage Techniques for on Board Vehicle Applications. *International Journal of Hydrogen Energy* 2013, *38* (34), 14595– 14617. https://doi.org/10.1016/j.ijhydene.2013.07.058.
- Wiedner, E. S.; Chambers, M. B.; Pitman, C. L.; Bullock, R. M.; Miller, A. J. M.; Appel, A. M. Thermodynamic Hydricity of Transition Metal Hydrides. *Chem. Rev.* 2016, *116* (15), 8655–8692. https://doi.org/10.1021/acs.chemrev.6b00168.
- (6) Bordwell, F. G. Equilibrium Acidities in Dimethyl Sulfoxide Solution. Acc. Chem. Res. **1988**, 21 (12), 456–463. https://doi.org/10.1021/ar00156a004.
- (7) Tsay, C.; Livesay, B. N.; Ruelas, S.; Yang, J. Y. Solvation Effects on Transition Metal Hydricity. J. Am. Chem. Soc. 2015, 137 (44), 14114–14121. https://doi.org/10.1021/jacs.5b07777.
- (8) Tsay, C.; Yang, J. Y. Electrocatalytic Hydrogen Evolution under Acidic Aqueous Conditions and Mechanistic Studies of a Highly Stable Molecular Catalyst. *J. Am. Chem. Soc.* 2016, *138* (43), 14174–14177. https://doi.org/10.1021/jacs.6b05851.
- Ceballos, B. M.; Tsay, C.; Yang, J. Y. CO2 Reduction or HCO2- Oxidation? Solvent-Dependent Thermochemistry of a Nickel Hydride Complex. *Chem. Commun.* 2017, *53* (53), 7405–7408. https://doi.org/10.1039/C7CC02511D.
- (10) Ceballos, B. M.; Yang, J. Y. Directing the Reactivity of Metal Hydrides for Selective CO2 Reduction. *PNAS* 2018, *115* (50), 12686–12691. https://doi.org/10.1073/pnas.1811396115.
- (11) Tsay, C.; Ceballos, B. M.; Yang, J. Y. PH-Dependent Reactivity of a Water-Soluble Nickel Complex: Hydrogen Evolution vs Selective Electrochemical Hydride Generation. *Organometallics* 2019, 38 (6), 1286–1291. https://doi.org/10.1021/acs.organomet.8b00558.

- (12) Ceballos, B. M.; Yang, J. Y. Highly Selective Electrocatalytic CO2 Reduction by [Pt(Dmpe)2]2+ through Kinetic and Thermodynamic Control. *Organometallics* 2020, *39* (9), 1491–1496. https://doi.org/10.1021/acs.organomet.9b00720.
- (13) Cunningham, D. W.; Barlow, J. M.; Velazquez, R. S.; Yang, J. Y. Reversible and Selective CO2 to HCO2– Electrocatalysis near the Thermodynamic Potential. *Angewandte Chemie International Edition* 2020, 59 (11), 4443–4447. https://doi.org/10.1002/anie.201913198.
- (14) Cunningham, D. W.; Yang, J. Y. Kinetic and Mechanistic Analysis of a Synthetic Reversible
 CO2/HCO2- Electrocatalyst. *Chem. Commun.* 2020, *56* (85), 12965–12968.
 https://doi.org/10.1039/DoCC05556E.
- Brereton, K. R.; Smith, N. E.; Hazari, N.; Miller, A. J. M. Thermodynamic and Kinetic Hydricity of Transition Metal Hydrides. *Chem. Soc. Rev.* 2020, *49* (22), 7929–7948. https://doi.org/10.1039/DoCS00405G.
- (16) Reda, T.; Plugge, C. M.; Abram, N. J.; Hirst, J. Reversible Interconversion of Carbon Dioxide and Formate by an Electroactive Enzyme. *PNAS* 2008, *105* (31), 10654–10658. https://doi.org/10.1073/pnas.0801290105.
- (17) Niks, D.; Hille, R. Molybdenum- and Tungsten-Containing Formate Dehydrogenases and Formylmethanofuran Dehydrogenases: Structure, Mechanism, and Cofactor Insertion. *Protein Science* 2019, *28* (1), 111–122. https://doi.org/10.1002/pro.3498.
- Boyington, J. C.; Gladyshev, V. N.; Khangulov, S. V.; Stadtman, T. C.; Sun, P. D. Crystal Structure of Formate Dehydrogenase H: Catalysis Involving Mo, Molybdopterin, Selenocysteine, and an Fe4S4 Cluster. *Science* 1997, *275* (5304), 1305–1308. https://doi.org/10.1126/science.275.5304.1305.
- (19) Raaijmakers, H. C. A.; Romão, M. J. Formate-Reduced E. Coli Formate Dehydrogenase H: The Reinterpretation of the Crystal Structure Suggests a New Reaction Mechanism. *J Biol Inorg Chem* 2006, *11* (7), 849–854. https://doi.org/10.1007/s00775-006-0129-2.

- (20) Hartmann, T.; Schrapers, P.; Utesch, T.; Nimtz, M.; Rippers, Y.; Dau, H.; Mroginski, M. A.; Haumann, M.; Leimkühler, S. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C–H Bond Cleavage and Oxygen Atom Transfer Reactions. *Biochemistry* 2016, *55* (16), 2381–2389. https://doi.org/10.1021/acs.biochem.6b00002.
- (21) Niks, D.; Duvvuru, J.; Escalona, M.; Hille, R. Spectroscopic and Kinetic Properties of the Molybdenum-Containing, NAD+-Dependent Formate Dehydrogenase from Ralstonia Eutropha. J. Biol. Chem. 2016, 291 (3), 1162–1174. https://doi.org/10.1074/jbc.M115.688457.
- Robinson, W. E.; Bassegoda, A.; Reisner, E.; Hirst, J. Oxidation-State-Dependent Binding Properties of the Active Site in a Mo-Containing Formate Dehydrogenase. J. Am. Chem. Soc. 2017, 139 (29), 9927–9936. https://doi.org/10.1021/jacs.7b03958.
- (23) Tiberti, M.; Papaleo, E.; Russo, N.; De Gioia, L.; Zampella, G. Evidence for the Formation of a Mo-H Intermediate in the Catalytic Cycle of Formate Dehydrogenase. *Inorg. Chem.* 2012, *51* (15), 8331–8339. https://doi.org/10.1021/ic300863d.
- (24) Schilter, D.; Camara, J. M.; Huynh, M. T.; Hammes-Schiffer, S.; Rauchfuss, T. B. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. *Chem. Rev.* 2016, *116* (15), 8693–8749. https://doi.org/10.1021/acs.chemrev.6b00180.
- (25) Galan, B. R.; Schöffel, J.; Linehan, J. C.; Seu, C.; Appel, A. M.; Roberts, J. A. S.; Helm, M. L.; Kilgore, U. J.; Yang, J. Y.; DuBois, D. L.; Kubiak, C. P. Electrocatalytic Oxidation of Formate by [Ni(PR2NR'2)2(CH3CN)]2+ Complexes. J. Am. Chem. Soc. 2011, 133 (32), 12767–12779. https://doi.org/10.1021/ja204489e.
- Warren, J. J.; Menzeleev, A. R.; Kretchmer, J. S.; Miller, T. F.; Gray, H. B.; Mayer, J. M. Long-Range Proton-Coupled Electron-Transfer Reactions of Bis(Imidazole) Iron Tetraphenylporphyrins Linked to Benzoates. J. Phys. Chem. Lett. 2013, 4 (3), 519–523. https://doi.org/10.1021/jz400029w.

Chapter 1: Protonation-Induced Oxidation and Dimerization of a Tungsten Bisdithiolene Complex

Introduction

Formate (HCO₂⁻) is the product of the reduction of carbon dioxide with a hydride. Formate can serve as a liquid storage medium for H₂ at ambient pressures,^{1,2} as a precursor to value-added chemicals,³ and as a direct energy storage medium in a formate fuel cell.⁴ A metal hydride intermediate is frequently invoked for synthetic catalysts that reduce CO₂ to HCO₂^{-.5} However, in the enzymes that oxidize formate in biology, there is uncertainty on where and how the electrons and proton are transferred over the course of the reaction,⁶ and there are few well-supported examples of metal hydrides in natural systems.⁷ Understanding the mechanisms of HCO₂⁻ oxidation and CO₂ reduction in nature can help inspire the design of efficient catalysts for these transformations.

In methylotrophs, organisms that consume and metabolize C_1 substrates, the formate dehydrogenase (FDH) family of enzymes catalyzes hydride abstraction from HCO₂⁻ to form CO₂ and the hydride-reduced enzyme active site.⁸ Enzymes involved in carbon catabolism have evolved to function at or near the thermodynamic potential of the given reaction. Thus, these enzymes are capable of performing not only HCO₂⁻ oxidation, but also CO₂ reduction, albeit at a slower rate (1500 s⁻¹ and 500 s⁻¹ respectively for tungsten-containing *S. fumarooxidans* FDH1).⁹ A popular proposed mechanism of this reaction involves the transfer of the formate hydride to the molybdenum or tungsten active site as shown in Scheme **1.1**.¹⁰

Scheme 1.1: Structure of the oxidized and the formate-reduced active site of a typical FDH where M= Mo, W

Both five- and six-coordinate structural analogues of these tungsten and molybdenumcontaining active sites have been developed,^{11–17} but formal hydride transfers have only been observed in one example (Scheme **1.2**, top),¹⁸ a noncatalytic system where formate was generated from CO_2 at 2 atm at 90°C in the presence of acid. Efficient handling of the protons and electrons in catalytic systems is essential to the function of reversible enzymes and molecular catalysts.^{19–21} Here, we study the proton reactivity of three salts of the five-coordinate $[W(S_2C_2(CH_3)_2)_2]^{2-}$ dianion (Scheme **1.2**, bottom).

Scheme 1.2: Reactivity shown by Seo et al. and reactivity shown here

Experimental

General Methods

All manipulations were carried out in open air unless otherwise specified. All reactions with P_2S_5 were performed with two consecutive bleach bubblers in order to neutralize the H_2S that was released. For manipulations carried out in an inert atmosphere glove box or using standard Schlenk technique, all solid chemicals were dried in vacuo prior to use, and all solvents were dried by passing over a column of molecular sieves or activated alumina and degassed by sparging with Ar. All chemicals were used as received from the supplier unless otherwise specified. Room temperature absorption spectra were collected using a Cary 60 spectrophotometer with fiber-optic connections to a quartz cell in an inert atmosphere glove box. Electronic aborption spectra collected at 50°C were collected on an 8453 Agilent UV-Vis spectrometer with an Unisoku Unispeks cryostat. IR spectra were determined using a Nicolet IS5 FT-IR spectrometer with ID5 ATR attachment in an inert atmosphere glove box or a Shimadzu IRAffinity-1S with ATR attachment in air. Ni(S₂C₂(CH₃)₂)₂,²² Et₄NSH,²³ W(CO)₃(NCCH₃)₃,²⁴ W(CO)₂(S₂C₂(CH₃)₂)₂,¹¹ and **1a**²⁵ were synthesized according to published procedures. Ni(dppe)₂(BF₄)₂ was synthesized by Janice Wong according to literature procedures.

Synthesis of $[Na(18-crown-6)]_2[WS(S_2C_2(CH_3)_2)_2]$ (1b)

In an inert atmosphere glove box filled with N₂, 20 mg of W(CO)₂(S₂C₂(CH₃)₂)₂ was dissolved in 1 mL THF. In a separate container, 4.7 mg of NaSH and 22.2 mg of 18-crown-6 were suspended in 1 mL of CH₃CN. The solutions were mixed and stirred for 12 hours. The solution turned to a dark brown color. The solvent was removed, and the solid was redissolved in CH₃CN and layered with ether, affording 40 mg (93%) of brown crystalline [Na(18-crown-6)]₂[WS(S₂C₂(CH₃)₂)₂]. ¹H NMR (CD₃CN, 500 MHz) 2.43 (s, 12H, CH₃). ¹³C{¹H} NMR (CD₃CN, 126 MHz, 233K) 141.91 (S₂C₂CH₃), 21.55 (S₂C₂CH₃).

Synthesis of $[K(2.2.2\text{-cryptand})]_2[WS(S_2C_2(CH_3)_2)_2]$ (1c)

In an inert atmosphere glove box filled with N₂, 100 mg of W(CO)₂(S₂C₂(CH₃)₂)₂ was dissolved in 5 mL THF. In a separate container, 30.5 mg of KSH and 158 mg of 2.2.2-cryptand were suspended in 5 mL of CH₃CN. The solutions were mixed, and it was allowed to stir for 12 hours. The solution turned to a dark brown color. The solvent was removed, and the solid was redissolved in CH₃CN and layered with ether and filtered, affording 230 mg (85%) of brown crystalline [K(2.2.2-cryptand)]₂[WS(S₂C₂(CH₃)₂)₂]. ¹H NMR (CD₃CN, 500 MHz) 2.44 (br s, 12H, CH₃).

Synthesis of $[K(2.2.2\text{-cryptand})]_2[WS(S_2C_2(CH_3)_2)_2]_2$ (2)

In an inert atmosphere glove box filled with N₂, 23.6 mg of **1c** was dissolved in 5 mL CH₃CN. 8.6 mg of $[Fe(C_5(CH_3)_5)][OTf]$ dissolved in 1 mL CH₃CN was added to the tungsten compound yielding a black solution. The reaction was allowed to proceed for 10 minutes, and the solvent was removed *in vacuo*. The solid was extracted and filtered sequentially through a pipette filter with 10 mL Et₂O, 10 mL THF, and 20 mL CH₃CN. The volume of the CH₃CN fraction was reduced to 1 mL *in vacuo*, and **2** was precipitated from solution with 15 mL Et₂O. 14.2 mg (89% yield) of **2** was isolated in the form of a black powder. The structure of **2** was confirmed by X-ray crystallography. ¹H NMR (CD₃CN, 500 MHz) 2.26 (br s, 12H, CH₃). ¹³C{¹H} NMR (CD₃CN, 126 MHz) 140.37 (S₂C₂CH₃), 20.63 (S₂C₂CH₃).

X-ray Absorption Measurements

X-ray absorption measurements around the W L₃ edge were performed by Mackenzie Field at the Stanford Synchrotron Radiation Laboratory (SSRL) on beam line 7-3 at ~ 10 K. The data were collected using a Si(220) $\varphi = 0^{\circ}$ double-crystal monochromator. Data sets were collected in fluorescence mode with a 30-element Ge detector. The sample position in the beam was adjusted after each scan so that a previously unexposed portion of the sample was examined.

EXAFS Fitting

The first shell (W-S) of the raw XAS data were fit over the region k=3-15 Å⁻¹ in EXAFSPAK. The scale factor, S_o, was set to 0.9. Our EXAFS data were fit from k=3-15 Å⁻¹, giving a resolution of 0.13 Å. Energies were calibrated using an iron foil (7111.2 eV).

Electrochemical Experiments

All electrochemical experiments were performed at 1.0 mM with 200 mM [$^{n}Bu_{4}N$][PF₆] supporting electrolyte in room temperature CH₃CN in an inert atmosphere glovebox unless otherwise noted. A 1 mm diameter glassy carbon disk was used as the working electrode with a glassy carbon rod as counter electrode. Measurements were performed against a Ag^{+/o} nonaqueous quasireference containing a Ag wire in 100 mM [$^{n}Bu_{4}N$][PF₆] in CH₃CN, separated from the analyte solution with a glass jacket and a VycorTM frit affixed with PTFE shrink-wrap tubing. All potentials recorded were normalized to the Fe(C₅H₅)₂^{+/o} redox couple.

Table 1.1: pK_as of relevant bases used in this chapter

Abbreviation	Py ²⁶	Et ₃ N ²⁶	Pyrr ²⁶	DBU ²⁶
p <i>K</i> ₄ THF	5.5	12.5	13.5	16.9
p <i>K</i> ₄ CH₃CN	12.53	18.83	19.62	24.31

Note: pK_a s are reported as the pK_a of the conjugate acid, B•HOTf or B•HBF₄. Values in THF do not include effects of ion pairing.

Results and Discussion

Synthesis and Characterization

Synthesis of reduced 5-coordinate $[Et_4N]_2[W(S)(S_2C_2(CH_3)_2)_2]$ (**1a**) was performed according to Holm and coworkers. A brown solid was isolated in 87% yield, and the observed NMR, IR, and electronic absorption spectra are consistent with literature.^{11,24,22,25} The reduced complexes $[Na(18-crown-6)]_2[W(S)(S_2C_2(CH_3)_2)_2]$ (**1b**) and [K(2.2.2cryptand)]₂[W(S)(S₂C₂(CH₃)₂)₂] (**tc**) were synthesized by stirring two equivalents of anhydrous NaSH and 18-crown-6 or anhydrous KSH and 2.2.2-cryptand (crypt) with W(CO)₂(S₂C₂(CH₃)₂)₂, which both formed the brown solid final products. The ¹H-NMR spectrum for **1b** (bottom) is shown alongside the ¹H-NMR spectra for **1a** (top) and **1c** (middle) in Figure **1.1**. The ¹H-NMR spectrum for **1b** shows two resonances. One belongs to two 18-crown-6 molecules chelating sodium ions and the other for the methyl substituents on the anion, with a few minor solvent impurities. Notably, the resonance that is associated with the methyl groups on the anion is significantly sharper than either the Et₄N⁺ and K(crypt)⁺ salts, suggesting that the sodium ion coordinated to the terminal sulfido group observed in the crystal structure (Figure **1.2**A) also persists in solution, stabilizing the solid-state square pyramidal structure. The ¹H-NMR spectrum of **1c** as shown in Figure **1.1** (middle) shows three resonances for the 2.2.2-cryptand ligand with a very broad resonance near 2.6 ppm, which corresponds to the methyl groups on the anionic metal compound and is consistent with the Et₄N⁺ salt.

Figure 1.1: ¹H-NMRs of 1a (top), 1c (middle), and 1b (bottom)

Crystals of **1b** and **1c** were grown by vapor diffusion of diethyl ether in to a CH_3CN solution of each. The solid-state structures of **1b** and **1c** are shown in Figure **1.2**. Because the K⁺ ions are encapsulated, there is no interaction with the terminal sulfido. Even without the interaction with the cation, the square pyramidal structure persists in the solid state, which is consistent with the analogous phenyl substituted dithiolene complex by Holm and coworkers.¹¹ Low-temperature ¹H-NMR spectra of **1a** feature sharper peaks corresponding to the dithiolene methyl groups, suggesting the broadness of the resonance is due to a fluxional process (Figure **1.3**). Also, by cooling the solution to -40° C, a ¹³C{¹H} NMR spectrum of **1a** was collected and shown in Figure **1.4**.

Figure 1.2: Solid state crystal structures of (A) **1b** and (B) **1c**. Thermal ellipsoids shown at 90%, hydrogen atoms removed for clarity.

Figure 1.3: Room temperature (Top) and -40° C (Bottom) ¹H-NMR spectra of **1a**. Each example shows a small impurity (<5%) of what is likely **2**. A straight line is drawn across the baseline in each to guide the eye.

Figure 1.4: Low-temperature (-40 °C) ¹³C{¹H} NMR of 1a in CD₃CN

Independent synthesis of **2** was performed as a modification of the various synthetic techniques by Holm and coworkers.²⁵ Instead of I₂ as an oxidant for **1c**, the K(crypt)⁺ salt of the W^{IV} starting material was treated with one equivalent of Fe($C_5(CH_3)_5$)₂OTf to afford an 89% yield of **2**. X-ray diffraction quality crystals were grown by slow diffusion of Et₂O into a concentrated solution of **2** in CH₃CN. The structure of **2** was confirmed by single crystal X-ray crystallography.

Figure 1.5: Solid state crystal structure of **2**. Thermal ellipsoids shown at 90%. Hydrogen atoms and countercations removed for clarity.

The crystal structure of **2** is shown in Figure **1.5**. The structure, which contains two $[K(crypt)]^+$ units confirms that the dimeric tungsten complex is a dianion, pointing to a formally W^V dimer. Further NMR characterization with no evidence for paramagnetic species in solution suggests this is an antiferromagnetically coupled, S=0 system. The structure in Figure **1.5** is nearly identical to the structure of $[Et_4N]_2[W(S_2C_2(CH_3)_2)_2]_2$ published by Holm and coworkers. Selected bond metrics for **2** and $[Et_4N]_2[W(S_2C_2(CH_3)_2)_2]_2$ are shown in Table **1.3** along with selected bond metrics from **1b** and **1c**. There are no major differences between **1c** and **1b** other than their τ_5 parameter. Both values are close to 0, confirming their near square pyramidal structure, but

having the sodium cation bound to the terminal sulfido (Na-S 2.913Å) further enforces the square pyramidal structure in the solid state for **1b**. The square-pyramidal structure likely persists in solution according to the sharp resonance corresponding to the ligand methyl groups in the ¹H-NMR compared with the others without a cation bound in the solid state.

	10	1b	2	$[Et_4N]_2 2^a$
W - S_{ax}^{b}	2.1818(4)	2.1881(6)	2.3279(5)	2.330(2)
W-S2	2.3543(4)	2.3513(5)	2.3930(6) ^c	$2.382(2)^{c}$
W-S3	2.3565(4)	2.3571(6)	2.4362(6) ^d	2.453(2) ^d
W-S4	2.3506(4)	2.3546(6)	2.4357(9) ^d	2.432(2) ^d
W-S5	2.3560(4)	2.3594(5)	2.3972(6) ^c	2.391(2) ^c
W-W			2.9787(5)	3.000(1)
W- S - W			79.48	79.84
$ au_5$	0.042	0.0087		
C-C	1.332(2), 1.338(2)	1.337(3), 1.337(3)	1.345(4) 1.349(3) ^e	1.330(9)

Table 1.2: Bond metrics of crystallized tungsten bisdithiolene species.

bonds are the dithiolene backbone carbons

^bS5 is the axial terminal sulfido for the monomeric complexes and the bridging sulfido for the dimeric complexes.

- ^cTrans to dithiolene
- ^dTrans to bridging sulfido

^eTwo sets of C-C bonds exist in this complex. The second set was symmetrically generated, thus omitted.

As expected, the bond length between W and S5 increases about 0.15 Å upon dimerization due to the decreased bond order between the tungsten and the sulfur. The W-S bond lengths for the **2** and the Et₄N⁺ salt are all within 0.02 Å. The biggest difference is the W-W distance, which 0.021 Å shorter in the K(crypt)⁺ salt, which is likely due to the temperature of data collection (213 K vs. 90 K here).

Electrochemical Studies

Cvclic Voltammetry (CV) studies were performed on 1a and 1c. The reduction potentials of the W^{IV/V} and W^{VI/V} redox couples essentially overlay between the two salts. Scan rate dependent studies indicate diffusion-controlled processes (Figure 1.7 and Figure 1.8). The identical reduction potentials indicate that there is no interaction of the countercation with the anion at this concentration in CH₃CN.

^aFrom Ref. 25

Table 1.3: Reduction potentials of tungsten compounds

Figure 1.6: Cyclic voltammogram of 1 mM **1a** (black) and **1c** (red) in CH_3CN with 100 mM [$^{n}Bu_4N$][PF₆] as the supporting electrolyte, glassy carbon disc electrode, glassy carbon rod counter electrode, and Ag^{+/o} pseudoreference at 100 mV/s.

Figure 1.7: Scan-rate dependent cyclic voltammetry studies of **1a** (left). Scan rates shown were 25, 50, 75, 125, 150, 175, and 200 mV/s. The peak currents of the anodic and cathodic waves are shown on the right plotted against (scan rate)^{1/2}. The W^{IV/V} is shown as black squares, and the W^{VI/V} couple is shown as blue circles. Linear regressions were performed on each peak at the various scan rates, and the R² values are reported next to the line.

Figure 1.8: Scan-rate dependent cyclic voltammetry studies of **1c** (left). Scan rates shown were 50, 100, 150, 200, 250, 300 350, 400, 450, and 500 mV/s. The peak currents of the anodic and cathodic waves are shown on the right plotted against (scan rate)^{1/2}. The W^{IV/V} is shown as black squares, and the W^{VI/V} couple is shown as blue circles. Linear regressions were performed on each peak at the various scan rates, and the R² values are reported next to the line.

Further electrochemical studies were performed on **2**, which had a quasireversible couple at -2.2 V and a complicated oxidation event with anodic events at -0.52 V and -0.33 V, determined by a cycled differential pulse voltammetry experiment (Figure **1.10**, bottom), which is a pulsed voltammetric technique that smoothes out the baseline of the cyclic voltammogram when multiple Faradaic events are present. When scan-rate dependent studies were performed on the reductive event, there was no major increase in the oxidative current, which may indicate instability of the reduced product. Also, when the currents are normalized to v^{1/2}, reversible redox couples under ideal conditions show that all traces overlap (Equation 1, the Randles-Ševčík equation).²⁷ However, in this case, the reductive event has a larger magnitude at slower scan rates. While diffusion at slow scan rates can cause an increase in the v^{1/2}-normalized current, it is not expected in this situation since the slowest scan rate is 100 mV/s. The oxidative event, however, does show a slight increase in current of the reduction following oxidation at 500 mV/s.

(1)
$$i_p = 0.4463 (n\mathcal{F})^{3/2} AC \sqrt{\frac{vD}{RT}}$$

 i_p = peak current, n = number of electrons in redox event, \mathcal{F} = the Faraday constant, A = electrode area, C = analyte concentration, v = scan rate, D = diffusion coefficient, R = gas constant, T = temperature.

Figure 1.9: Scan-rate dependent studies on the reduction of **2**. Scan rates shown were performed at 100, 150, 200, 250, 300 350, 400, and 450 mV/s. The top left panel shows current response, and the top right panel shows current response normalized to $(\text{scan rate})^{1/2}$. The bottom panel shows the peak currents of the anodic and cathodic waves plotted against $(\text{scan rate})^{1/2}$. Linear regressions were performed on each peak at the various scan rates, and the R² values are reported next to the line.

Figure 1.10: Scan-rate dependent studies on the oxidation of **2**. Scan rates shown were performed at 100, 150, 200, 250, 300 350, 400, 450, and 500 mV/s, scanning anodically first.

Figure 1.11: Cycled differential pulse voltammetry on the oxidation of **2**. Anodic sweep was performed first, followed immediately by the cathodic sweep.

Protonation of W^{IV} Salts

To access an oxidation and protonation state that is relevant to one of the resting states of the FDH enzyme, the reduced W^{IV} compound must either be protonated to form the formatereduced resting state or be oxidized by two electrons to the fully oxidized W^{VI} state. Previous work by Holm and coworkers has shown that although the two one-electron oxidations of 1a are reversible chemical oxidations with I₂ results in the Et₄N⁺ salt of **2**, a dimeric W^V compound.²⁵ Because of the deleterious dimerization that occurs upon chemical oxidation, we treated the W^{IV} compound with various acids in attempts to isolate a protonated W^{IV} compound. Upon titrating pyrrolidinium tetrafluoroborate (Pyrr • HBF₄) into a solution of **1a** the UV-visible spectrum exhibited an increase in the absorptions at 311, 470, and 669 nm and a decrease in the absorption at 358 nm with two isosbestic points at 302 and 374 nm suggesting conversion of 1a to a single product (Figure 1.12A). Attempting to determine a pK_a of the W^{IV} compound, after protonation, the deprotonation was attempted with DBU, a strong organic base. Adding 4 equivalents of DBU to the solution showed no change that would indicate deprotonation, and upon adding an excess of DBU (approximately 200 equivalents), the protonation was still irreversible (Figure 1.12B). Similarly, treatment of 1c with four equivalents of acid, followed by excess base yielded no evidence of deprotonation (Figure 1.13), indicating further reaction to a new product or a major reorganization of the ligand environment upon protonation.

Figure 1.12: (A) UV-visible titrations of **1a** with Pyrr•HBF₄ in CH₃CN and (B) attempted neutralization of acid with DBU

Figure 1.13: (A) UV-visible titrations of 1c with Pyrr•HBF₄ in CH₃CN. (B) attempted neutralization of acid with DBU

While protonations of **1a** and **1c** lead to single products, as evidenced by isosbestic points at 412 nm and 350 nm in both cases, the new peaks that are formed are similar and follow similar trends with new peaks at 670 nm and 350 nm. There is a difference in the new peaks around 500 nm, where protonation of **1a** with 4 equivalents of Pyrr•HBF₄ (solid black trace, Figure **1.14**) produces a new peak at 479 nm with a shoulder at 550 nm while **1c** (dashed black trace, Figure **1.14**) produces a new peak at 445 nm with a shoulder at 525 nm. Treatment of **1a** with 5 equivalents of NEt₃•HBF₄ (blue trace, Figure **1.14**) yields a spectrum that is similar to **1a** with Pyrr•HBF₄.Using Py•HBF₄ as the proton source for **1a** and **1c**, as with all of the cases, a peak grows in at 570 nm with slight shifts (<5 nm) most of the peaks compared to the Pyrr•HBF₄ samples. One major exception is the growth of the peak at 397 nm, which is not seen in any of the other spectra. With the slight differences among all of the combinations of acid and W compound, we believe that the tungsten-containing products of the reactions are very similar if not identical with the identical peaks at 670 nm and very similar peaks at 351 nm. If not identical products, the differences in the spectra could indicate conjugate base binding to the metal complex.

Figure 1.14: Comparison of UV-visible titrations of acids into solutions of **1a** and **1c** in CH₃CN at room temperature. Black traces contain 4 equivalents of Pyrr•HBF₄, red traces contain 1 equivalent of Py•HBF₄, and the blue trace contains 5 equivalents of NEt₃•HBF₄. In solid traces, acids were titrated into solutions of **1a**. In dashed traces, acids were titrated into **1c**.

While we are confident that the treatment of **1a** and **1c** with acids each yield single products based on the UV-visible spectra, the spectrum of the product is not consistent with any known compound. Holm and coworkers showed that decomposition of **1a** and similar compounds occurs to form the Et_4N^+ salt of **2** under various conditions.^{11,17,25} Based on further studies to be discussed, we detected and isolated **2** from solutions of **1a** or **1c** in the presence of Py•HBF₄. To investigate this, we treated solutions of **1c** with 1 equivalent of Py•HBF₄ and monitored the reaction over time. At room temperature, shown in Figure **1.15**, the red spectrum after reacting for 3 hours is consistent with the spectrum of independently synthesized **2**. Further, with more datapoints in between measurements, the same reaction was performed at 50°C and shown in Figure **1.16**. At elevated temperature, the evolution of the reaction is clearly cleanly forming **2** over the course of about 2 hours.

Figure 1.15: Time-resolved spectra of the products of the treatment of **1c** with 1 equivalent of $Py \cdot HBF_4$ in CH₃CN at room temperature. Black spectrum is of 0.16 mM **1c** in without acid. Blue trace is of **1c** in the presence of 1 equivalent of $Py \cdot HBF_4$ after 1 hr., salmon trace after 2 hr, and red trace after 3 hr. Gray trace is of independently synthesized **2**.

Figure 1.16: Time-resolved spectra of the products of the treatment of **1c** with 1 equivalent of Py•HBF₄ in CH₃CN at 50°C. Black spectrum is of 0.16 mM **1c** in without acid. Blue trace is of **1c** in the presence of Py•HBF₄ after 10 minutes. As the reaction proceeds, after the first blue spectrum, further spectra are reported in 30 minute increments, ending in the red spectrum at 270 min. The gray dashed spectrum is of independently synthesized **2**.

Assuming clean conversion from the direct product of protonation to **2**, the concentration of the direct product of protonation (**1cH**) can be estimated as a function of the concentration of **2**, shown in Equation 2 where the initial concentration of **1c** was 160 μ M at t = 0 and assuming full conversion to **1cH** at t = 10 min (Equation 3) and full conversion of **1cH** to **2** at t=110 min. (Equation 4). Because we assume that the concentration of **1c** is 0 at t ≥ 10 min, the absorbance of the solution at a given wavelength can be expressed as Equation 5. Taking into account Equations 2, 3, 4, and the fact that absorbance and concentration are proportional for a given compound at a given wavelength, the concentration of **1cH** can be estimated at each time point by the ratio of the change of absorbance at a given time and the total change in absorbance from t = 10 min to t = 110 min (Equation 6, expanded form in Equation 7).

(2) $[1cH]_{t \ge 10 \text{ min.}} \approx 160 \ \mu M - [2]_{t \ge 10 \text{ min.}}$ (3) $[1cH]_{t = 10 \text{ min.}} \approx 160 \ \mu M = [1c]_{t = 0}$

(4)
$$[2]_{t = 110 \text{ min.}} \approx 160 \ \mu M = [1c]_{t = 0}$$

(5) $Abs_t \approx Abs_{1cH,t} + Abs_{2,t}$
(6) $[1cH]_t \approx 160 \ \mu M \times \frac{|\Delta Abs_t|}{|\Delta Abs_{tot}|}$
(7) $[1cH]_t \approx 160 \ \mu M \times \frac{|Abs_{t=110} \text{ min.} - Abs_t|}{|Abs_{t=110} \text{ min.} - Abs_{t=10} \text{ min.}|}$

Having estimated the concentration of **1cH** in the reaction mixture over time, we can plot a function of the concentration of **1cH** over time and find that the ln[**1cH**] vs. time plot is linear (Figure **1.17**) indicating the transformation of **1cH** to **2** follows a 1st order observed rate. This strongly suggests that the collision of two molecules of **1cH** is not a plausible rate-determining step for the overall conversion of **1cH** to **2**, which would likely follow 2nd order behavior since **2** is a dimer. Overall, the data here show that the mechanism of the conversion of **1c** to **2** through protonation is complicated and may involve multiple steps not considered here.

Figure 1.17: Plot of $\ln(1cH)$ vs. time showing a linear relationship. [1cH] at each time point was calculated by determining the average of the values found at each time point using Equation 7 for $\lambda = 338$, 406, 490, and 570 nm. Error bars are the propagated errors from the standard deviations of those calculations.

The UV-visible titrations of acids into solutions of **1a** and **1c** have clearly shown that there is clean conversion to **1aH** and **1cH**, respectively. After allowing solutions of **1c** and Py•HBF₄ to react for longer periods of time, the conversion of **1cH** to **2** is also clean especially at elevated temperatures. To characterize the products of the reaction further, a series of ¹H NMR studies were performed with a set of them shown in Figure **1.18** (next page). In each of the experiments, solutions of **1a** were treated with 1 equivalent of Py•HBF₄. Concerningly, the resulting ¹H NMR spectra for **1aH** are inconsistent with multiple resonances growing in. A consistent feature among the spectra is the appearance of resonances at 4.57 and 2.26 ppm which correspond closely to H₂ and **2**, respectively. In one experiment, when treating **1c** with 1 equivalent of Py•HBF₄, a black crystalline solid precipitated, and the structure was confirmed to be **2** by single crystal XRD. All subsequent experiments in attempting to isolate **1cH** have resulted in **2**, which were confirmed by unit cell analyses on the black single crystals that formed from the reactions.

From these ¹H NMR studies and the UV-visible titrations, we are confident that rather than the oxidative pathways shown in the generation of **2** and in the previous studies by Holm, the reaction proceeds through a protonation pathway, which ultimately leads to the formation of H_2 and the final product (Scheme **1.3**).

33

Figure 1.18: ¹H NMR of the protonation of 1a showing evidence for H₂ and 2 after protonation by Py•HBF₄

X-ray Absorption Spectroscopy

While the structures of the WIV compounds, **1a-c**, and the dimeric W^v compound, **2**, are clear, full characterization of the protonated forms or the immediate product after protonation of the WIV compounds has been elusive. To explore the structure of intermediate **1aH**, X-ray absorption spectroscopy was performed Mackenzie Field at the W L₃ edge (10206.8 eV) on samples containing **1a** and **1a** with 1 equivalent of Py•HBF₄. Samples were prepared by dropping 20 mM solutions of **1a** and freshly prepared **1a** with 1 equivalent of Py•HBF₄ (**1aH**) into a frozen sample cup in a liquid nitrogen cooled cold well in an inert atmosphere glove box. The energies were calibrated to the Fe K edge of Fe foil (7111.2 eV). Figure **1.19** shows the energy of the edge for **1a**, a W^{IV} complex, was 10213.2(2) eV, and for the protonated complex (**1aH**), the energy was 10214.4(2). This 1.2 eV shift to higher binding energies can be associated with an increase in oxidation state of the metal center.²⁸ An increase in oxidation state is only expected upon protonation if the species formed formally oxidizes the metal center, which can be the case if the most basic site is at the metal center, forming a W^{VI} hydride.

Figure 1.19: Comparison of W L_3 edge energies. The solid line represents 1a, while the dotted line represents protonated 1aH

EXAFS

EXAFS fits of the XAS spectra and Fourier transforms for **1a** (Figure **1.20**, top) and its protonated form (**1aH**) (Figure **1.20**, bottom) were performed by Mackenzie Field. Upon protonation, there was no significant change in the bond lengths between the tungsten center and either of the sulfurs on the bisdithiolene ligands or the terminal sulfido. The lack of significant lengthening in the axial W-S bond is strongly indicative that this sulfur atom is not the site of protonation.

Figure 1.20: EXAFS data and Fourier transforms for 1a (top) and 1aH (bottom). Raw data is shown in black, and the best fit data is shown in light blue.

Table 1.4: EXAFS best fit bond metrics for W-S bonds in 1a and 1aH.

	EQUATORIAL W-S				IAL W=		
Sample	Ν	R(Å)	σ²(Ų)	N	R(Å)	σ²(Ų)	Eo(eV)
1 a	4	2.36	0.0016	1	2.19	0.0024	-6.4(2)
1aH	4	2.37	0.0016	1	2.18	0.0051	-7.6(2)

After showing previously that the major product of protonation of **1c** is **2**, an alternate fit, **1aH**_{alt}, was performed by Field (Table **1.5**) showing major differences between the crystallographically characterized **2** and the best fit with a large Debye-Waller factor for the W-W scattering. With these data, we are confident that the EXAFS data for **1aH** are inconsistent with either **1a** or **2**. This may be confirmed with EXAFS analysis of **2**.

W-S W-W Sample Method R(Å) $\sigma^2(Å^2)$ R(Å) $\sigma^2(Å^2)$ Ν Ν EXAFS 1aH_{alt} 2.39 0.00376 0.01247 1 3.07 6 XRD 2.3863(6)2.9787(5)

Table 1.5: EXAFS best fit bond metrics for protonated 1a modeled as 2

Electrochemical Characterization of Protonation Products

Further electrochemical studies were performed to gain insight into the products of protonation of the monomeric tungsten complexes. As Py•HBF₄ was titrated by 1/3 equivalents into a solution of **1a** (Figure **1.21**), the W^{VI/V} and W^{V/IV} couples become less pronounced as a cathodic event grows in at -2.25 V, which corresponds closely to an irreversible cathodic event in the independently synthesized dimer, **2**, shown in Figure **1.22** in blue. Also, there is a possibly quasireversible event centered at -1.1 V that has a current response that is inconsistent with the number of equivalents of Py•HBF₄ added. To explore this further, Figure **1.22** (red) shows a time-dependent study of the protonation of **1c** with Py•HBF₄ where one equivalent of pyridinium tetrafluoroborate was added to a solution of **1c**, and multiple cyclic voltammetry experiments were performed over the course of 7 minutes. A wide cyclic voltammogram of **1c** is shown in black in Figure **1.22** for reference. The loss of the event coupled with the growth of reductions and oxidations that are similar to the dimer suggest the dimer, **2** (shown in blue in Figure **1.22**), is a possible decomposition product in the electrochemical cell.

Figure 1.21: Cyclic voltammetry studies of the protonation products of 5 mM **1a**. the black trace shows the current response of **1a** without acid, and in each subsequent trace 1/3 equivalent of Py•HBF₄ was added to the analyte solution, totaling 1 equivalent in the red trace.

Figure 1.22: Cyclic voltammograms of tungsten compounds. Blue: **2**. Black: **1c**. Red: Sequential cyclic voltammograms of **1c** in the presence of 1 equivalent of Py•HBF₄ over the course of 7 min.

Hydride Transfer Studies of 1aH

In an attempt to confirm the presence of a hydride, samples of **1a** treated with 1 equivalent of Py•HBF₄ were treated with various hydride acceptors according to Scheme **1.4**, and the hydride-reduced products were measured by comparing ¹H-NMR or ³¹P-NMR integrations to an internal standard. The results of the hydride transfer studies are summarized in Table **1.6**. Using Ni(dppe)₂²⁺, a significant amount of NiH(dppe)₂⁺ was formed in the reaction, but the resulting ³¹P-NMR showed many resonances corresponding to various decomposition products, none of which were identifiable. In calculating the conversion for this sample, the lower bound was established by integrating the resonance corresponding to the Ni-H against all other resonances in the ³¹P-NMR, and the upper bound was set by assuming a 1:1 conversion and dividing the integration of the Ni-H resonance by the sum of the integrations of the resonances of the Ni-H and the Ni¹¹ starting material. The ³¹P-NMR spectra of [HNi(dppe)₂][BF₄], [Ni(dppe)₂][BF₄]₂, and the reaction mixture after 30 minutes and 72 hours are shown in Figure **1.23**. The chemical shifts were referenced to an external standard capillary of 0.1 M triphenylphosphate (OP(OPh)₃) in CD₃CN (17 ppm).²⁹

Figure 1.23: ³¹P NMR study of hydride transfer from **1aH** to [Ni(dppe)₂][BF₄]₂. The first 3 spectra were collected at 162 MHz using a Bruker DRX400, and the last at was collected 243 MHz on a Bruker AVANCE600.

Treating the protonated tungsten compound with CCl₄, a common diagnostic hydride acceptor, showed a broad resonance that grew in at 2.32 ppm in the ¹H-NMR suggesting some reaction with CCl₄, but no CHCl₃ was formed. Finally, using a very strong hydride acceptor, trityl tetrafluoroborate ([CPh₃][BF₄]), about 36% conversion to triphenylmethane was observed by observing the methyl proton resonance. Interestingly, no resonances belonging to trityl remain shortly after adding it, and the resonances that do remain (the other 64% of the reported conversion) are shifted. The resonance associated with the proton ortho to the methyl carbon shifts downfield by 1 ppm. The shifted resonances are inconsistent with Ph₃SH³⁰ and the dimerized trityl radical.³¹ We propose $W^{IV}(SCPh_3)(S_2C_2(CH_3)_2)_2^-$ as a possible explanation. Ultimately, these hydride transfer studies showed that although there may be some form of hydride equivalents in solution, the conversion is unpredictable.

Scheme 1.4: Attempted hydride transfer studies

	1.	Ni(dppe) ₂ (BF ₄) ₂		NiH(dppe) ₂ BF ₄		
"W–H [–] "	+ 2.	CCl ₄	CD ₃ CN ►	CHCl ₃	+	"W+"
	3.	[CPh ₃][BF ₄]		CHPh ₃		

Table 1.6: Results of hydride transfer studies

	Sam	iple	Hy	dric	le Acce	ptor	Hydricity o	f M-H (ka	cal/mol)	Conversio	on to M-H	_	
	1		Ni(dpp	e)2+		$62.8^{5,32}$			30-68%			
	2		CC	4						0%			
	3		CPI	h_{3}^{+}			99 ³³			36%ª			
fi	cant	amo	unt	of	other	pheny	yl-containing	product	present.	Structure	proposed	to	be

^aSignificant amount of other phenyl-containing product present. Structure propos $W^{IV}(SCPh_3)(S_2C_2(CH_3)_2)_2^-$.

Infrared Studies on Protonated 1a and Density Functional Analysis

To further characterize the products of protonation, IR studies were performed in hopes of identifying a W-H or S-H stretch as an intermediate to the formation of **2**. Additionally, various protonation states of the tungsten compound were analyzed using DFT analysis. Four possible protonation locations, two sulfur-based protonation sites and two tungsten-based protonation sites, are proposed on the W^{IV} starting material as shown in Scheme S1. The ground state free energies were calculated in Gaussian16³⁴ (GaussView³⁵ GUI) using B3LYP³⁶ with the LANL2dz³⁷ effective core potential on the W atom with the D95V³⁸ basis set, and on all other atoms, 6-311+G(d,p)^{39,40} was used. All were calculated using a singlet ground state. Vibrational frequencies were scaled by 0.9619.⁴¹

The calculated energies for the various protonation locations are summarized in Table **1.7** along with the calculated relevant IR stretch, formal oxidation state on the metal center, and selected bond lengths. Similar to experimental Group 6 M-SH compounds,^{42,43} the calculated stretching frequencies were 2540 cm⁻¹ and 2543 cm⁻¹ for the sulfido SH (A) and dithiolene SH (B), respectively. The calculated stretching frequencies for the equatorial hydride (C) and the axial hydride (D) vary greatly from each other. Published W-H IR stretching frequencies tend to depend on oxidation state where a lower oxidation state gives a lower stretching frequency. Published experimental W–H stretching frequencies (including the highest energy W-H stretches for compounds with multiple stretching modes) are usually 1875 ± 75 cm⁻¹.^{44–48} The calculated W–H stretching frequency for C agrees well with both calculated and experimental literature values while D, which optimized to a much higher energy ground state, falls outside of the expected region.

	H H ₃ C H ₃ C H H ₃ C H H H H H H H H H H H H H H H H H H H	SU-W-US H ₃ CTSSTCH ₃ H ₃ CCCH ₃]1- 3 H ₃ C 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-
Protonation State	Α	В	С	D
Calculated free energy relative to A (kcal/mol)	e)	6.01	-1.75	27.23
ν _{calc} MH or SH (cm ⁻¹)	I ₂₅₄₀	2543	1909	1631
W formal oxidation state	+4	+4	+6	+6
W-S _{eq} average (standard deviation)	2.357(2)	2.41(6)	2.454(8)	2.42001(2)
W-S _{ax}	2.37103	2.17518	2.16160	2.23907

Table 1.7: Tabulated selected metrics for the DFT geometry-optimized structures of protonated $W(S)[S_2C_2(CH_3)_2]_{2^{2-}}$

ATR-IR spectra were collected on drop cast samples of **1a** freshly mixed with 1 equiv. of Py•HBF₄ (Figure **1.24**) and **1a** with Py•DOTf (Figure **1.25**). In the sample treated with the protonated acid, a peak appears at 1937 cm⁻¹, which agrees with both literature precedent for tungsten hydrides and the DFT calculated IR stretches for C (1909 cm⁻¹). As expected for a W-H formed from protonation, when treated with the deuterated acid, a peak that would correspond to a W-H stretch was not present. The DFT-calculated W-D stretch was 1395 cm⁻¹, which agrees very well with the harmonic oscillator approximation for the experimental data (1392 cm⁻¹). An IR stretching frequency near 1390 cm⁻¹ falls very close to some of the lower energy stretching frequencies for the tetraethylammonium ion, so identifying a W-D stretching mode was unsuccessful. For both experiments, the simulated transmission spectra (red or blue) are shown overlaid with the experimental spectra (black).

Figure 1.24: Infrared spectrum of **1a** treated with 1 equivalent of Py•HBF₄ (black) and DFT-simulated spectrum (red)

Figure 1.25: Infrared Spectrum of 1a treated with 1 equivalent of Py•DOTf (black) and the DFT-simulated spectrum (blue)

The optimized geometry for structure C showed a pseudo-pentagonal prismatic coordination environment with near perfect C_{2v} symmetry and is shown in Figure **1.26**. The calculated S_{ax} -W-H angle was 88.45°, and the S_{ax} -W- S_{eq} angles were 110.24° and 103.88° for the sulfur atoms closest to the hydride and furthest from the hydride, respectively, which indicates a slight downward cant of the closer sulfur atoms from a plane perpendicular to the W- S_{ax} bond. Two crystallographically characterized examples of tungsten hydrides have previously been reported that show unconventional hydrides similar to the one calculated in protonation state C. The compound with CSD access code BENFEG⁴⁹ shows a pentagonal bipyramidal ligand environment with two bisdimethylphosphinoethane (dmpe) ligands in the equatorial plane with the hydride and a borylalkylidyne ligand trans to a chloride. NUCTAG⁵⁰ is a formally W^{IV} compound in a pseudo-C_{3V} tripodal ligand environment with a highly dissociated formyl group, leading to a hydride that points out of the equatorial plane with an axial CO ligand.

Figure 1.26: DFT optimized structure of protonation state C from two angles with selected bond lengths

The average equivalent W-S bond lengths are also shown in Table **1.7** in order to compare with EXAFS data, which is unable to distinguish among identical scatterers with very similar bond lengths. Table **1.8** shows a comparison of experimentally determined bond lengths for **1a** and **1aH** with the calculated bond metrics for the W^{IV} anion, W(S)[S₂C₂(CH₃)₂]₂²⁻ and calculated structure C, the equatorial W^{VI} hydride. The single crystal X-ray diffraction studies agree very well with the EXAFS data for the parent W^{IV} compound while the DFT optimized structure tends to overestimate the W-S bond lengths by about 0.045 Å for the equatorial sulfur atoms and about 0.025 Å for the axial sulfur atom. Comparing the EXAFS-determined bond lengths to the DFToptimized structures, there is no perfect match, but considering overall trends, the W-S bond lengths showed only minor changes of bond lengths in the protonated form. The equatorial W-S bonds show a very slight lengthening while the axial W-S bond shows a very slight shortening in the EXAFS fit. The DFT-calculated bond length changes were generally larger in magnitude than the changes seen in the EXAFS fit. A showed a major lengthening of the axial W-S bond consistent with the formation of a sulfhydryl group from a sulfido and a shortening of the W-S_{eq} bonds. B had a very large variation of W-S_{eq} bond lengths, ranging from 2.38 to 2.50 Å and a shortening of the W-S_{ax} bond by 0.05 Å. Both tungsten hydrides modeled showed an increase in the W-S_{eq} bonds, but while D showed a lengthening of the W-S_{ax} bond, C showed a shortening. Although the DFT-calculated bond length changes are significantly greater than the changes shown in the EXAFS fit, the only one that follows the general trend is C.

Table 1.8: Selected bond lengths found using single crystal XRD (for **1b** and **1c**), EXAFS (for **1a** and **1aH**), and computational methods for deprotonated and protonated W(S)[$S_2C_2(CH_3)_2$] $_2^{2-}$

		Protonated						
	1b	1C	$EXAFS^{a}$	DFT	$EXAFS^{b}$	DFT (C)		
W - S_{eq}	2.356(3) ^c	2.354(3) ^c	2.36	2.40051	2.37	2.454(8)		
W - S_{ax}	2.1881(6)	2.1818(4)	2.19	2.21020	2.18	2.16160		

^a**1a** dissolved in acetonitrile and flash frozen in liquid nitrogen ^b**1a** dissolved in acetonitrile, treated with one equivalent of Py•HBF₄ and promptly flash frozen in liquid nitrogen

^caverage (standard deviation)

Although similar basis sets and methods have been used before in literature,^{51–54} we sought to validate the relative calculated energies and bond lengths presented here. Two basis sets with a lower level of theory were used for geometry optimization and frequency calculations, 6-31+G(d,p) and D95V. Additionally, the B3P86 functional was used with the D95V basis set. All calculations were performed using the LANL2dz effective core potential. The free energies relative

to A using different methods are compared in Figure **1.27**. The same general trend for the difference in free energy among the 4 protonation states holds fairly well among all methods. The equatorial tungsten hydride, C, is the lowest in energy in every case. Using the D95V basis set, the equatorial hydride was much lower in energy by 7.3 kcal/mol compared to only 0.9 kcal/mol for the 6-31+g(d,p) basis set.

Figure 1.27: Plot of relative energies of the various protonation states of $WS(S_2C_2(CH_3)_2)_2H$ using various basis sets and an alternate method. B3LYP GENECP experiments were performed with the LANL2dz basis set and core potential on the tungsten center with the other specified basis set on all other atoms.

In all of the basis sets and the two methods tried, the energy for the equatorial tungsten hydride was always lowest in energy in the likely oversimplified ligand set that we chose to model the FDH system. Presumptively, Fontecave and coworkers were unable to perform CO₂ reduction with their Mo^{IV} oxo system that has a more complicated bisdithiolene set that more closely models

the molybdopterin cofactor (Scheme **1.5**). However, they were able to show both electrochemical and photochemical H_2 evolution that, through DFT studies, was proposed to go through a protonation of the oxo as the first step, but also subsequent metal reduction and protonation of the metal, forming a Mo(OH)H compound.^{55,56} To study the contribution of the ligand and the metal to the location of first protonation, preliminary studies were performed in the same fashion as before with the dimethyldithiolene ligand (L_{CH_3}) replaced with a dicyanodithiolene (mnt) or a diisopropyldithiolene (L_{iPr}), and in another set of calculations, W was replaced with Mo.

Scheme 1.5: Published work by Fontecave and coworkers and alternate ligand sets for DFT studies

Geometry optimization and energy calculations were performed using B3LYP, LANL2DZ core potential and basis set on the metal, and 6-311+G(d,p) on all other atoms as before on three variations of the W bisdithiolene compound. The DFT-calculated relative energies for the three selected protonation states is shown in Figure **1.28**. The axial hydride that was modeled in previous experiments was excluded because of its significantly higher energy in all other cases. In

comparison with the L_{CH_3} compound, using the L_{iPr} ligand showed essentially no change in the relative energies of the protonation states. Methyl groups and isopropyl groups have very similar hammet parameters,⁵⁷ so intramolecular sterics probably have no effect on the protonation site.

When the mnt ligand, containing cyano groups, is modeled (orange, Figure **1.28**), the relative energies change significantly. Being moderately electron-withdrawing, the cyano group pulls electron density from the rest of the ligand, yielding a less basic metal thiolate by 3.9 kcal/mol compared to L_{CH_3} (yellow, Figure **1.28**). This electron-withdrawing effect extends to the W center where the calculated energy difference between the two hydrides is 6.0 kcal/mol, yielding a W-H optimized structure that is 4.3 kcal/mol higher in energy than the W-SH, meaning that the terminal sulfido has become the most basic site. Further, when the W is replaced with Mo (blue, Figure **1.28**), the energy of the hydride is 12.0 kcal/mol higher than the W-SH. Similar Mo compounds have been synthesized,⁵⁸ but we expect the Mo analogue to be even less stable to protonation than the W compound. While the **1a** and **1c** exhibited reversible electrochemical processes for both the W^{VI/V} and the W^{IV/V} redox couples, the similar molybdenum compounds only show reversibility of the Mo^{IV/V} redox couple at scan rates > 300 mV/s.⁵⁸

Figure 1.28: Relative DFT-calculated energies of various compounds similar to 1a

Six-Coordinate FDH Analogues

In the 5-coordinate tungsten studies, the guiding principle was to investigate the interconversion of a synthetic analogue of both the oxidized and formate-reduced FDH enzyme active site. The W^{IV} compound studied was in the proper oxidation state but deprotonated in comparison to the formate-reduced active site. Additionally, while it bears some structural resemblance to the enzyme active site, it is missing a thiolate or selenolate ligand that would be structurally similar to the cysteinate or selenocysteinate ligand. To investigate the consequences of this 6th ligand, some preliminary studies were performed on the 6-coordinate W^{VI} compound, [Et₄N]W(S)(SAd)[S₂C₂(CH₃)₂]₂ in an attempt to generate an analogue of the FDH active site formate-reduced and protonated form (Scheme **1.6**). Previous work by Holm and coworkers⁵⁹ showed that this reaction product was relatively unstable and consistently decomposed to the previously discussed W^V-W^V dimer during attempts to grow diffraction quality crystals. Nonetheless, hydride transfer reactions were attempted with Bu₄NHCO₂, Et₄NBH₄, and LiBHEt₃.

Scheme 1.6: Potential structure of hydride-reduced 6-coordinate tungsten compound

The W^{VI} compound (Sample 1, Figure **1.29**) displays only three resonances in the ¹H NMR spectrum, two broad resonances corresponding to the adamantyl protons, and a sharp resonance at 2.28 ppm (red box, , Figure **1.29**) corresponding to the methyl protons on the dithiolene ligand; other resonances in the spectrum at 3.11 and 1.18 ppm belong to the Et_4N^+ countercation. Decomposition was monitored over 11 days (Sample 2, Figure **1.29**). Significant decomposition can be seen in the ¹H-NMR spectrum with multiple resonances appearing over the course of monitoring, including one resonance at 2.26 ppm (blue highlight, Figure **1.29**), ascribed to the aforementioned W^v-W^v dimer (**2**). Surprisingly, when any of the hydride donors are added, the

only new resonance in the 2.1-2.5 ppm region is the one corresponding to the dimer. The fate of the adamantyl thiolate group is unknown in the cases with reductants, we speculate that by reducing each tungsten by one electron, the thiolate dimerizes as well (Scheme 1.7)

Table 1.9: NMR studies of 6-coordinate W^{VI} compounds

Figure 1.29: ¹H-NMR spectra of the reaction of $[Et_4N]W(S)(SAd)[S_2C_2(CH_3)_2]_2$ with hydride donors in CD_3CN

Scheme 1.7: Proposed reaction pathway for the decomposition of [Et₄N]W(S)(SAd)[S₂C₂(CH₃)₂]₂

Conclusions and Outlook

The protonation of the W^{IV} monomeric salt,[K(crypt)]₂W(S)[S₂C₂(CH₃)₂]₂, yields a dimeric formally W^V-W^V species. Crystallographically, it is very similar to the published structure which contains a Et₄N⁺ countercation. By mass balance, an equivalent of H₂ is formed. DFT studies, IR analysis, and EXAFS suggest the direct product of protonation is a W^{VI} hydride. Without clean conversion via NMR-scale protonation studies or other structural information, showing first order reaction kinetics and inconclusive hydride transfer studies, we note that the direct product of protonation may be a mixture of products or one not considered here. In the studies of the 6-coordinate tungsten compound, the W^v-W^v dimer once again was the major product of the reaction, showing definitively that the dimeric compound is a thermodynamic sink that is difficult to overcome in studying the reactivity of these compounds.

The possibility of finding a system that forms a stable W^{IV}-SH is nonetheless existent. DFT calculations suggest that electron-withdrawing groups may be able to stabilize the protonated product of the reaction, however, dimerization will likely continue to be an issue. Future experiments on this work could involve extending to the more stable group 6 metal oxos, which should be less susceptible to dimerization.

Crystallographic Information

Crystallographic Information for 1b

The data for jyy186 were collected from a shock-cooled single crystal at 88(2) K on a Bruker SMART APEX II three-circle diffractometer with a sealed X-ray tube using a equatorial mounted graphite as monochromator and a Bruker Apex II CCD detector. The diffractometer was equipped with a low temperature device and used Mo K_a radiation ($\lambda = 0.71073$ Å). All data were integrated with SAINT and a multi-scan absorption correction using SADABS was applied.^{60,61} The structure was solved by direct methods using SHELXS and refined by full-matrix least-squares methods against F^2 by SHELXL-2018/3 using ShelXle.^{62,63} All non-hydrogen atoms were refined with anisotropic displacement parameters. All C-bound hydrogen atoms were refined isotropic on calculated positions using a riding model with their U_{iso} values constrained to 1.5 times the U_{eq} of their pivot atoms for terminal sp³ carbon atoms and 1.2 times for all other carbon atoms. Disordered moieties were refined using bond lengths restraints and displacement parameter restraints. This report and the CIF file were generated using FinalCif.⁶⁴

Refinement Details:

All non-hydrogen atoms were refined anisotropically. Most were refined without restraints or constraints. Part of the crown ethers was disordered with an approximate ratio of 85:15. ADPs for O11, C12, and C13 were restrained to similar values to O11b, C12b, and C13b. All hydrogen atoms were refined using a riding model with disorder refined on the methyl groups on the ditihiolene ligand.

Crystallographic Information for 1c

The data for jyy187 were collected from a shock-cooled single crystal at 133(2)K on a Bruker SMART APEX II three-circle diffractometer with a fine-focus sealed tube using a equatorial mounted graphite as monochromator and a Bruker Apex II CCD detector. The diffractometer was equipped with a low temperature device and used Mo K_{α} radiation ($\lambda = 0.71073$ Å). All data were integrated with SAINT and a multi-scan absorption correction using SADABS was applied.^{60,61} The structure was solved by direct methods using SHELXS and refined by full-matrix leastsquares methods against F^2 by SHELXL-2018/3 using ShelXle.^{62,63} All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were refined isotropically on calculated positions using a riding model with their U_{iso} values constrained to 1.5 times the U_{eq} of their pivot atoms for terminal sp³ carbon atoms and 1.2 times for all other carbon atoms. This report and the CIF file were generated using FinalCif. ⁶⁴

Refinement Details:

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were refined using a riding model.
Crystallographic Information for 2

The data for jyy191 were collected from a shock-cooled single crystal at 133(2) K on a Bruker SMART APEX II three-circle diffractometer with a fine-focus sealed tube using a equatorial mounted graphite as monochromator and a Bruker Apex II CCD detector. The diffractometer was equipped with a low temperature device and used Mo K_{α} radiation ($\lambda = 0.71073$ Å). All data were integrated with SAINT and a multi-scan absorption correction using SADABS was applied.^{60,61}The structure was solved by direct methods using SHELXS and refined by full-matrix least-squares methods against F^2 by SHELXL-2018/3 using ShelXle.^{62,63} All non-hydrogen atoms were refined with anisotropic displacement parameters. All C-bound hydrogen atoms were refined isotropic on calculated positions using a riding model with their U_{iso} values constrained to 1.5 times the U_{eq} of their pivot atoms for terminal sp³ carbon atoms and 1.2 times for all other carbon atoms. This report and the CIF file were generated using FinalCif. ⁶⁴

Refinement Details:

All non-hydrogen atoms were refined anisotropically with no constraints or restraints. All hydrogen atoms were refined using a riding model. SQUEEZE,⁶⁵ implemented in Platon,^{66,67} was used to remove what appeared to be a heavily disordered partial occupancy acetonitrile molecule.

Table 1.10: Crystallographic data for 1b, 1c, and 2

	1b	1C	2
Empirical formula	$C_{32}H_{60}Na_2O_{12}S_5W$	$C_{50}H_{93}K_2N_7O_{12}S_5W$	$C_{52}H_{96}K_2N_4O_{12}S_{10}W_2$
Formula weight	1026.93	1406.66	1735.82
Temperature [K]	88(2)	133(2)	133(2)
Crystal system	monoclinic	monoclinic	triclinic
Space group (number)	$P2_{1}/n$ (14)	$P2_{1}/n$ (14)	P1 (2)
a [Å]	12.0912(5)	13.7869(8)	12.2383(11)
b [Å]	15.3159(6)	23.2461(13)	13.1315(12)
c [Å]	22.6502(9)	20.2756(12)	13.3719(12)
α [°]	90	90	117.2007(13)
β[°]	94.1743(6)	96.5522(9)	93.0683(15)
γ[°]	90	90	99.6978(14)
Volume [ų]	4183.4(3)	6455.7(6)	1863.0(3)
Z	4	4	1
$ ho_{ m calc} \left[gcm^{-3} ight]$	1.630	1.447	1.547
$\mu [mm^{-1}]$	3.087	2.139	3.529
F(000)	2096	2920	878
Crystal size [mm³]	0.242×0.229×0.124	0.414×0.249×0.208	0.300×0.257×0.215
Crystal color	brown	brown	purple
Crystal shape	prism	prism	irregular
Radiation	MoK _α (λ =0.71073 Å)	$MoK_{\alpha} (\lambda = 0.71073 \text{ Å})$	$MoK_{\alpha} (\lambda = 0.71073 \text{ Å})$
2θ range [°]	3.21 to 63.01	2.68 to 61.59	3.41 to 61.05
	(0.68 Å)	(0.69 Å)	(0.70 Å)
Index ranges	$-17 \le h \le 17$	$-19 \le h \le 19$	$-17 \le h \le 17$
	−22 ≤ k ≤ 22	$-33 \le k \le 33$	$-18 \le k \le 18$
	$-31 \le l \le 32$	–29 ≤ l ≤ 29	−19 ≤ l ≤ 19
Reflections collected	66114	99430	45889
Independent reflections	13122	19467	10927
	$R_{int} = 0.0281$	$R_{int} = 0.0362$	$R_{int} = 0.0572$
	$R_{sigma} = 0.0238$	$R_{sigma} = 0.0262$	$R_{sigma} = 0.0433$
Completeness to	100.0 %	100.0 %	100.0 %
$\theta = 25.242^{\circ}$			
Data / Restraints /	13122/18/514	19467/0/701	10927/0/376
Parameters			
Goodness-of-fit on F^2	1.044	1.029	1.065
Final R indexes	$R_1 = 0.0201$	$R_1 = 0.0203$	$R_1 = 0.0228$
$[l \ge 2\sigma(l)]$	$wR_2 = 0.0390$	$wR_2 = 0.0474$	$wR_2 = 0.0549$
Final R indexes	$K_1 = 0.0243$	$R_1 = 0.0247$	$R_1 = 0.0248$
[all data]	$WR_2 = 0.0403$	$WR_2 = 0.0490$	$WR_2 = 0.0558$
Largest peak/hole	0.89/-1.24	0.95/-0.33	0.83/-0.93
[eA ⁻³]			

References

- Laurenczy, G.; Fellay, C.; Dyson, P. Hydrogen Production from Formic Acid. US20100068131A1, March 18, 2010. https://patents.google.com/patent/US20100068131A1/en?q=Laurenczy%2c+C. (accessed 2019-10-14).
- Fellay, C.; Dyson, P. J.; Laurenczy, G. A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst. *Angewandte Chemie International Edition* 2008, 47 (21), 3966–3968. https://doi.org/10.1002/anie.200800320.
- (3) Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.;
 Gascon, J.; Kapteijn, F. Challenges in the Greener Production of Formates/Formic Acid,
 Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes. *Chem. Rev.* 2017, *117* (14), 9804–9838. https://doi.org/10.1021/acs.chemrev.6b00816.
- (4) An, L.; Chen, R. Direct Formate Fuel Cells: A Review. *Journal of Power Sources* 2016, 320, 127–139. https://doi.org/10.1016/j.jpowsour.2016.04.082.
- Wiedner, E. S.; Chambers, M. B.; Pitman, C. L.; Bullock, R. M.; Miller, A. J. M.; Appel, A.
 M. Thermodynamic Hydricity of Transition Metal Hydrides. *Chem. Rev.* 2016, *116* (15), 8655–8692. https://doi.org/10.1021/acs.chemrev.6b00168.
- Niks, D.; Hille, R. Molybdenum- and Tungsten-Containing Formate Dehydrogenases and Formylmethanofuran Dehydrogenases: Structure, Mechanism, and Cofactor Insertion. *Protein Science* 2019, *28* (1), 111–122. https://doi.org/10.1002/pro.3498.
- Schilter, D.; Camara, J. M.; Huynh, M. T.; Hammes-Schiffer, S.; Rauchfuss, T. B.
 Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. *Chem. Rev.* 2016, *116* (15), 8693–8749. https://doi.org/10.1021/acs.chemrev.6b00180.

- Popov, V. O.; Lamzin, V. S. NAD+-Dependent Formate Dehydrogenase. *Biochemical Journal* 1994, 301 (3), 625–643. https://doi.org/10.1042/bj3010625.
- (9) Bassegoda, A.; Madden, C.; Wakerley, D. W.; Reisner, E.; Hirst, J. Reversible Interconversion of CO2 and Formate by a Molybdenum-Containing Formate Dehydrogenase. J. Am. Chem. Soc. 2014, 136 (44), 15473–15476. https://doi.org/10.1021/ja508647u.
- Maia, L. B.; Fonseca, L.; Moura, I.; Moura, J. J. G. Reduction of Carbon Dioxide by a Molybdenum-Containing Formate Dehydrogenase: A Kinetic and Mechanistic Study. J. Am. Chem. Soc. 2016, 138 (28), 8834–8846. https://doi.org/10.1021/jacs.6b03941.
- (11) Goddard, C. A.; Holm, R. H. Synthesis and Reactivity Aspects of the Bis(Dithiolene) Chalcogenide Series [WIVQ(S2C2R2)2]2- (Q = O, S, Se). *Inorg. Chem.* 1999, *38* (23), 5389–5398. https://doi.org/10.1021/ic9903329.
- (12) Lim, B. S.; Donahue, J. P.; Holm, R. H. Synthesis and Structures of Bis(Dithiolene)Molybdenum Complexes Related to the Active Sites of the DMSO Reductase Enzyme Family. *Inorg. Chem.* 2000, *39* (2), 263–273. https://doi.org/10.1021/ic9908672.
- (13) Sung, K.-M.; Holm, R. H. Substitution and Oxidation Reactions of Bis(Dithiolene)Tungsten Complexes of Potential Relevance to Enzyme Sites. *Inorg. Chem.* **2001**, 40 (18), 4518–4525. https://doi.org/10.1021/ic010421x.
- Lim, B. S.; Holm, R. H. Bis(Dithiolene)Molybdenum Analogues Relevant to the DMSO Reductase Enzyme Family: Synthesis, Structures, and Oxygen Atom Transfer Reactions and Kinetics. J. Am. Chem. Soc. 2001, 123 (9), 1920–1930. https://doi.org/10.1021/ja003546u.

- (15) Enemark, J. H.; Cooney, J. J. A.; Wang, J.-J.; Holm, R. H. Synthetic Analogues and Reaction Systems Relevant to the Molybdenum and Tungsten Oxotransferases. *Chem. Rev.* 2004, *104* (2), 1175–1200. https://doi.org/10.1021/cr020609d.
- (16) Jiang. J.: Holm. R. Η. An Expanded Set of Functional Groups in Bis(Dithiolene)Tungsten(IV,VI) Complexes Related to the Active Sites of Tungstoenzymes, Including WIV-SR and WVI-O(SR). Inorg. Chem. 2004, 43(4), 1302-1310. https://doi.org/10.1021/ic030301k.
- Groysman, S.; Wang, J.-J.; Tagore, R.; Lee, S. C.; Holm, R. H. A Biomimetic Approach to Oxidized Sites in the Xanthine Oxidoreductase Family: Synthesis and Stereochemistry of Tungsten(VI) Analogue Complexes. J. Am. Chem. Soc. 2008, 130 (38), 12794–12807. https://doi.org/10.1021/ja804000k.
- (18) Seo, J.; Shearer, J.; Williard, P. G.; Kim, E. Reactivity of a Biomimetic W(IV) Bis-Dithiolene Complex with CO2 Leading to Formate Production and Structural Rearrangement. *Dalton Trans.* 2019, 48 (47), 17441–17444. https://doi.org/10.1039/C9DT03906F.
- (19) Yang, J. Y.; Kerr, T. A.; Wang, X. S.; Barlow, J. M. Reducing CO2 to HCO2- at Mild Potentials: Lessons from Formate Dehydrogenase. J. Am. Chem. Soc. 2020, 142 (46), 19438-19445. https://doi.org/10.1021/jacs.0c07965.
- Barlow, J. M.; Yang, J. Y. Thermodynamic Considerations for Optimizing Selective CO2 Reduction by Molecular Catalysts. ACS Cent. Sci. 2019, 5 (4), 580–588. https://doi.org/10.1021/acscentsci.9b00095.
- (21) Cunningham, D. W.; Barlow, J. M.; Velazquez, R. S.; Yang, J. Y. Reversible and Selective
 CO2 to HCO2– Electrocatalysis near the Thermodynamic Potential. *Angewandte Chemie*

 International
 Edition
 2020,
 59
 (11),
 4443-4447.

 https://doi.org/10.1002/anie.201913198.
 59
 (11),
 4443-4447.

- (22) Schrauzer, G. N.; Mayweg, V. P. Preparation, Reactions, and Structure of Bisdithio-α-Diketone Complexes of Nickel, Palladium, and Platinum1,2. *J. Am. Chem. Soc.* 1965, *87* (7), 1483–1489. https://doi.org/10.1021/ja01085a014.
- (23) Lau, N.; Zakharov, L. N.; Pluth, M. D. Modular Tripodal Receptors for the Hydrosulfide
 (HS-) Anion. Chem. Commun. 2018, 54 (19), 2337-2340. https://doi.org/10.1039/C7CC09405A.
- (24) Tate, D. P.; Knipple, W. R.; Augl, J. M. Nitrile Derivatives of Chromium Group Metal Carbonyls. *Inorg. Chem.* **1962**, *1* (2), 433–434. https://doi.org/10.1021/ic50002a052.
- (25) Sung, K.-M.; Holm, R. H. Substitution and Oxidation Reactions of Bis(Dithiolene)Tungsten Complexes of Potential Relevance to Enzyme Sites. *Inorg. Chem.* **2001**, 40 (18), 4518–4525. https://doi.org/10.1021/ic010421x.
- (26) Tshepelevitsh, S.; Kütt, A.; Lõkov, M.; Kaljurand, I.; Saame, J.; Heering, A.; Plieger, P. G.;
 Vianello, R.; Leito, I. On the Basicity of Organic Bases in Different Media. *European Journal of Organic Chemistry* 2019, 2019 (40), 6735–6748. https://doi.org/10.1002/ejoc.201900956.
- (27) Zanello, P. Inorganic Electrochemistry; 2003. https://doi.org/10.1039/9781847551146.
- (28) Kubin, M.; Guo, M.; Kroll, T.; Löchel, H.; Källman, E.; L. Baker, M.; Mitzner, R.; Gul, S.; Kern, J.; Föhlisch, A.; Erko, A.; Bergmann, U.; Yachandra, V.; Yano, J.; Lundberg, M.; Wernet, P. Probing the Oxidation State of Transition Metal Complexes: A Case Study on How Charge and Spin Densities Determine Mn L-Edge X-Ray Absorption Energies. *Chemical Science* **2018**, *9* (33), 6813–6829. https://doi.org/10.1039/C8SC00550H.

- (29) Ghosh, G.; Greer, A. A Fluorinated Phosphite Traps Alkoxy Radicals Photogenerated at the Air/Solid Interface of a Nanoparticle. *Journal of Physical Organic Chemistry* 2020, 33 (12), e4115. https://doi.org/10.1002/poc.4115.
- (30) Yamamoto, N.; Sato, Y.; Kayaki, Y.; Ikariya, T. Synthesis and Reactivity of Cp*IrIII Complexes with a C–S Chelate Displaying Metal/Sulfur Bifunctionality. *Organometallics* 2018, *37* (19), 3342–3352. https://doi.org/10.1021/acs.organomet.8b00562.
- (31) Chen, Y.; Li, J.; Jiang, W.; Zhao, J.; Zhu, H.; Muhammed, S.; Parameswaran, P.; Roesky, H. W. A C2-Linked Bis-Silene Formed without Using Metals and the Transformation into the Bis-Silyl and Bis-Silylium C4-Cumulenes. *Organometallics* 2020, *39* (23), 4282–4286. https://doi.org/10.1021/acs.organomet.oc00368.
- (32) Berning, D. E.; Noll, B. C.; DuBois, D. L. Relative Hydride, Proton, and Hydrogen Atom Transfer Abilities of [HM(Diphosphine)2]PF6 Complexes (M = Pt, Ni). *J. Am. Chem. Soc.* 1999, *121* (49), 11432–11447. https://doi.org/10.1021/ja991888y.
- (33) Ilic, S.; Alherz, A.; Musgrave, C. B.; Glusac, K. D. Thermodynamic and Kinetic Hydricities of Metal-Free Hydrides. *Chem. Soc. Rev.* 2018, 47 (8), 2809–2836. https://doi.org/10.1039/C7CS00171A.
- (34) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.

J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian[~]16 Revision C.01, 2016.

- (35) Dennington, R.; Keith, T. A.; Millam, J. M. GaussView Version 6, 2019.
- (36) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B* 1988, *37* (2), 785–789. https://doi.org/10.1103/PhysRevB.37.785.
- (37) Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations.
 Potentials for the Transition Metal Atoms Sc to Hg. J. Chem. Phys. 1985, 82 (1), 270–283.
 https://doi.org/10.1063/1.448799.
- (38) Dunning, Thom. H.; Hay, P. J. Gaussian Basis Sets for Molecular Calculations. In *Methods* of *Electronic Structure Theory*; Schaefer, H. F., Ed.; Modern Theoretical Chemistry; Springer US: Boston, MA, 1977; pp 1–27. https://doi.org/10.1007/978-1-4757-0887-5_1.
- (39) McLean, A. D.; Chandler, G. S. Contracted Gaussian Basis Sets for Molecular Calculations.
 I. Second Row Atoms, Z=11-18. J. Chem. Phys. 1980, 72 (10), 5639-5648. https://doi.org/10.1063/1.438980.
- (40) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72 (1), 650–654. https://doi.org/10.1063/1.438955.
- (41) Andersson, M. P.; Uvdal, P. New Scale Factors for Harmonic Vibrational Frequencies
 Using the B3LYP Density Functional Method with the Triple-ζ Basis Set 6-311+G(d,p). J.
 Phys. Chem. A 2005, *109* (12), 2937–2941. https://doi.org/10.1021/jp045733a.

- (42) Iwasa, K.; Seino, H.; Mizobe, Y. Syntheses of New Mo(II) and W(II) Mono(Hydrosulfido)
 Complexes and Their Conversion into Di- and Tetranuclear Sulfido-Bridged
 Heterobimetallic Complexes. *Journal of Organometallic Chemistry* 2009, 694 (23),
 3775–3780. https://doi.org/10.1016/j.jorganchem.2009.07.032.
- (43) Smith, S. J.; Whaley, C. M.; Rauchfuss, T. B.; Wilson, S. R. MS2(Me2PC2H4PMe2)2 (M = Mo, W): Acid–Base Properties, Proton Transfer, and Reversible Protonolysis of Sulfido Ligands. *Inorg. Chem.* 2006, *45* (2), 679–687. https://doi.org/10.1021/ic051443c.
- (44) Cho, H.-G.; Andrews, L.; Marsden, C. Infrared Spectra of CH₃–CrH, CH₃–WH, CH₂WH₂, and CH:WH₃ Formed by Activation of CH₄ with Cr and W Atoms. *Inorg. Chem.* 2005, 44 (21), 7634–7643. https://doi.org/10.1021/ic051090h.
- (45) H. Green, M. L.; Parkin, G.; Mingqin, C.; Prout, K. Trimethylphosphine-Tungsten Chemistry: Hydrido, Silyl, Fluoro, Hydroxy, and Aquo Derivatives: Crystal Structure of [W(PMe 3) 4 H 2 (OH 2)F]F. Journal of the Chemical Society, Chemical Communications 1984, 0 (21), 1400-1402. https://doi.org/10.1039/C39840001400.
- (46) Wang, X.; Andrews, L.; Infante, I.; Gagliardi, L. Infrared Spectra of the WH4(H2)4
 Complex in Solid Hydrogen. J. Am. Chem. Soc. 2008, 130 (6), 1972–1978.
 https://doi.org/10.1021/ja0773220.
- (47) Kaesz, H. D.; Saillant, R. B. Hydride Complexes of the Transition Metals. *Chem. Rev.* 1972, 72 (3), 231–281. https://doi.org/10.1021/cr60277a003.
- (48) Martin, J. T. Organometallic Nitrosyl Hydrides of Tungsten, University of British Columbia, Vancouver, 1987.
 https://open.library.ubc.ca/media/stream/pdf/831/1.0060388/1.
- (49) van der Eide, E. F.; Piers, W. E.; Romero, P. E.; Parvez, M.; McDonald, R. Reaction of Bis(Pentafluorophenyl)Borane with Methylidyne Complexes: Synthesis and

Characterization of a Cationic Tungsten(VI) Borylalkylidyne Hydride. *Organometallics* **2004**, *23* (3), 314–316. https://doi.org/10.1021/om034318m.

- (50) Dobbs, D. A.; Schrock, R. R.; Davis, W. M. Reactions of [(Me3SiNCH2CH2)3N]WH with Dihydrogen, Olefins, Acetylenes, Carbon Monoxide, n-Butylisocyanide and Azobenzene. *Inorganica Chimica Acta* 1997, *263* (1), 171–180. https://doi.org/10.1016/S0020-1693(97)05647-8.
- (51) Ryde, U.; Schulzke, C.; Starke, K. Which Functional Groups of the Molybdopterin Ligand Should Be Considered When Modeling the Active Sites of the Molybdenum and Tungsten Cofactors? A Density Functional Theory Study. *J Biol Inorg Chem* 2009, *14* (7), 1053– 1064. https://doi.org/10.1007/s00775-009-0548-y.
- (52) Hofmann, M. Density Functional Theory Studies of Model Complexes for Molybdenum-Dependent Nitrate Reductase Active Sites. *J Biol Inorg Chem* 2007, *12* (7), 989–1001. https://doi.org/10.1007/s00775-007-0271-5.
- (53) Fritscher, J.; Hrobárik, P.; Kaupp, M. Computational Studies of EPR Parameters for Paramagnetic Molybdenum Complexes. II. Larger MoV Systems Relevant to Molybdenum Enzymes. *Inorg. Chem.* **2007**, *46* (20), 8146–8161. https://doi.org/10.1021/ic070341e.
- (54) Leopoldini, M.; Russo, N.; Toscano, M.; Dulak, M.; Wesolowski, T. A. Mechanism of Nitrate Reduction by Desulfovibrio Desulfuricans Nitrate Reductase—A Theoretical Investigation. *Chemistry – A European Journal* 2006, 12 (9), 2532–2541. https://doi.org/10.1002/chem.200500790.
- (55) Porcher, J.-P.; Fogeron, T.; Gomez-Mingot, M.; Derat, E.; Chamoreau, L.-M.; Li, Y.;
 Fontecave, M. A Bioinspired Molybdenum Complex as a Catalyst for the Photo- and
 Electroreduction of Protons. *Angew. Chem. Int. Ed.* 2015, *54* (47), 14090–14093.
 https://doi.org/10.1002/anie.201505607.

- (56) Porcher, J.-P.; Fogeron, T.; Gomez-Mingot, M.; Chamoreau, L.-M.; Li, Y.; Fontecave, M.
 Synthesis and Reactivity of a Bio-Inspired Dithiolene Ligand and Its Mo Oxo Complex.
 Chem. Eur. J. 2016, *22* (13), 4447–4453. https://doi.org/10.1002/chem.201504373.
- (57) Hansch, C.; Leo, A.; Taft, R. W. A Survey of Hammett Substituent Constants and Resonance and Field Parameters. *Chemical Reviews* 1991, 91 (2), 165–195. https://doi.org/10.1021/cr00002a004.
- (58) Sugimoto, H.; Tano, H.; Suyama, K.; Kobayashi, T.; Miyake, H.; Itoh, S.; Mtei, R. P.; Kirk, M. L. Chalcogenidobis(Ene-1,2-Dithiolate)Molybdenum(IV) Complexes (Chalcogenide E = O, S, Se): Probing MoE and Ene-1,2-Dithiolate Substituent Effects on Geometric and Electronic Structure. *Dalton Trans.* 2011, 40 (5), 1119–1131. https://doi.org/10.1039/CoDToo871K.
- (59) Groysman, S.; Holm, R. H. Synthesis and Structures of Bis(Dithiolene)Tungsten(IV,VI)
 Thiolate and Selenolate Complexes: Approaches to the Active Sites of Molybdenum and
 Tungsten Formate Dehydrogenases. *Inorg. Chem.* 2007, *46* (10), 4090–4102.
 https://doi.org/10.1021/ico62441a.
- (60) Bruker. SAINT.
- (61) Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. Comparison of Silver and Molybdenum Microfocus X-Ray Sources for Single-Crystal Structure Determination. J Appl Cryst 2015, 48 (1), 3–10. https://doi.org/10.1107/S1600576714022985.
- (62) Sheldrick, G. A Short History of SHELX. Acta Crystallographica Section A 2008, 64 (1), 112–122. https://doi.org/doi:10.1107/S0108767307043930.
- (63) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Cryst C 2015, 71 (1), 3–8. https://doi.org/10.1107/S2053229614024218.

- (64) Kratzert, D. FinalCif. HTTPS://dkratzert.de/finalcif.html.
- (65) Spek, A. L. PLATON SQUEEZE: A Tool for the Calculation of the Disordered Solvent Contribution to the Calculated Structure Factors. *Acta Cryst C* 2015, *71* (1), 9–18. https://doi.org/10.1107/S2053229614024929.
- (66) Spek, A. L. Single-Crystal Structure Validation with the Program PLATON. J Appl Cryst **2003**, 36 (1), 7–13. https://doi.org/10.1107/S0021889802022112.
- (67) Spek, A. L. Structure Validation in Chemical Crystallography. *Acta Cryst D* 2009, *65* (2), 148–155. https://doi.org/10.1107/S090744490804362X.

Chapter 2: Studies of Cobalt Macrocyclic Compounds for CO₂ Reduction

Introduction

Many enzymes in nature exhibit reversible catalysis, including carbon monoxide dehydrogenases (CODHs)^{1,2} and formate dehydrogenases (FDHs).^{3,4} By the principle of microscopic reversibility, reversible catalysts must operate near the thermodynamic potential, or the standard Gibbs free energy, of the reaction.⁵ However, performing these reactions reversibly using synthetic complexes has proven to be difficult. There are currently only two examples of synthetic homogeneous catalysts capable of both oxidizing HCO₂- and reducing CO₂ at significant rates, a bi-directional CO₂ reduction by Kang and co-workers⁶ and our recently published reversible platinum bisdiphosphine catalyst.⁷ Both of these complexes interconvert CO₂ and HCO₂-, a potentially useful energy storage medium. The difference, however, between reversible and bidirectional distinguishes the two catalysts from each other in a significant way. Reversible catalysts are a subset of bidirectional catalysts, catalysts that can function in both directions for a given reaction. Reversible catalysts operate with significant rates near the thermodynamic potential for said reaction in both directions, thus functioning with a minimal overpotential.⁵ In Kang's example, the peak potentials for CO₂ reduction and HCO₂⁻ oxidation with their Ir pincer compound differed by ~1 V.6 In our example, with an electrode potential of -1.64 V vs. $Fe(C_5H_5)_2^{+/o}$, the difference in energy from products to reactants, which can be thought of as a type of overpotental, was only 1.1 kcal/mol or 48 mV.^{7,8}

While the reversible interconversion of CO_2 and HCO_2^- showed that using these thermodynamic considerations in rational design of the catalytic systems, HCO_2^- has limited applicability in an industrial setting. In order to utilize reduced CO_2 in chemical processes, a more useful product is CO, which can be mixed with H₂ to make synthesis gas, a feedstock for industrial chemical processes as well as a precursor to chemical fuels.⁹

One process commonly used today to produce carbon monoxide is the water gas shift reaction, described in Equation 1. This reversible reaction is carried out at high temperatures on various metal oxide and some noble metal catalysts.¹⁰ Two major issues arise from the H_2 required for the reaction: first, it is most commonly sourced from the steam reforming of methane, a greenhouse gas itself and a fossil fuel. Second, high temperatures and pressures are required to convert methane to H_2 .¹¹ The chemical equation for steam reforming of methane is shown in Equation 2.

(1)
$$CO_2 + H_2 \rightleftharpoons CO + H_2O$$

(2) $CH_4 + H_2O \rightleftharpoons CO + 3H_2$

In order to avoid the use of hydrogen as a starting material for the reduction of CO_2 to CO_2 protons and electrons can be used as an equivalent of H_2 . CODH enzymes perform CO_2 to CO reduction reversibly with the use of proton and electron equivalents rather than molecular hydrogen, shown in Equation 3.

(3)
$$CO + H_2O \rightleftharpoons CO_2 + 2H^+ + 2e^-$$

Our group has shown that leveling the energy landscape, minimizing the overall energy change of any step in a catalytic cycle, is an effective means of achieving reversible catalysis, so I set out to attempt this on the 2 H⁺, 2 e⁻ reduction of CO₂ to CO and H₂O. Several cobalt and nickel macrocyclic complexes have shown promise as CO₂ reduction electrocatalysts since 1980^{12–14} after their syntheses in the 1970s by Busch and coworkers.^{15,16} Interestingly, Lewis and coworkers showed that not only are many of these competent CO₂ reduction catalysts, but in certain solvent conditions, they also reversibly bind CO₂.¹⁷ This reversible binding of CO₂ gives us a thermodynamic handle to start with in the development of a reversible CO₂ reduction catalyst.

The complexes for this study are shown in Scheme **2.1** along with a proposed mechanism for CO₂ reduction using similar Co macrocycle complexes in Scheme **2.2**.¹⁸

Scheme 2.2: Proposed mechanism for the reversible reduction of CO_2 using a Co(TIM) species as a template

Experimental

General Methods

All manipulations were carried out under an N_2 atmosphere in a Vacuum Atmospheres glovebox. All chemicals were used as received from the supplier unless otherwise noted. All electrochemical analysis was performed in dry and degassed solvents that were purified by sparging with argon and passing over an alumina column using a solvent purification system (JC Meyer Solvent Systems) and stored over 3Å molecular sieves. [$^{n}Bu_{4}N$][PF₆] was purified by 3x recrystallization from hot EtOH and dried overnight in a vacuum oven. Ferrocene was purified by sublimation. Synthesis of triflic acid salts, ^tBu-P₁-Pyrr•HOTf, BEMP•HOTF, TBD•HOTf, were performed on a Schlenk line by adding triflic acid (1.05 equiv.) dropwise to the base dissolved in dry Et₂O, filtered in air, and dried under vacuum overnight before transferring to the inert atmosphere glove box. Synthesis of tetrafluoroboric acid salts, DBU•HBF₄, pyrrolidine•HBF₄, Et₃N•HBF₄, and pyridine•HBF₄, were synthesized by adding newly purchased 50% HBF₄•OEt₂ in Et₂O to the base dissolved in dry Et₂O. Use of older HBF₄ solutions yielded sticky oils.

Table 2.1: Structures of conjugate bases used in this chapter

Abbreviation	Py ¹⁹	Et ₃ N ¹⁹	Pyrr ¹⁹	DBU ¹⁹	TBD ¹⁹	BEMP ¹⁹	^t Bu-P ₁ -Pyrr ²⁰
p <i>K</i> ₄ THF	5.5	12.5	13.5	16.9	21.0	19.0	20.2
p <i>K</i> ₄ CH₃CN	12.53	18.83	19.62	24.31	26.02	27.63	28.42

Note: pK_as are reported as the pKa of the conjugate acid, B•HOTf or B•HBF₄. Values in THF do not include effects of ion pairing.

Physical Methods

NMR data were collected on a Bruker DRX500 spectrometer with BBO probe, a Bruker DRX500 spectrometer with TCI cryoprobe, or a Bruker AVANCE600 Spectrometer with CBBFO cryoprobe and normalized to the proteo solvent impurity of the respective deuterated solvent.²¹ UV-Visible spectra were collected on a Agilent Cary-60 spectrophotometer using fiber optic feed throughs to a nitrogen-filled glovebox.

Electrochemical Techniques

All electrochemical experiments were performed on a Pine Wavedriver 10 bipotentiostat under an atmosphere of N_2 or CO_2 . All cyclic voltammetry (CV) experiments were performed with 1 mM equivalent initial amount of Co complex in solution in 100 mM [nBu_4N][PF₆] in CH₃CN or THF

(tetrahydrofuran) as noted on a 1 mm diameter glassy carbon disk electrode, glassy carbon rod counter electrode, and a quasireference electrode which consisted of a silver wire in a jacketed tube with a Vycor frit tip and filled with 100mM [$^{n}Bu_{4}N$][PF₆] in CH₃CN or THF, and the CVs were referenced to the $E_{1/2}$ of the $Fe(C_5H_5)_2^{+/o}$ couple using a ferrocene internal standard. All cyclic voltammograms are shown at a scan rate of 100 mV/s unless otherwise noted. Bulk electrolysis experiments were performed in an H-shaped cell with a fine glass frit separating the two compartments and sealed with Teflon-lined caps with seals around the electrodes. Carbon fabric electrodes were used for both the working and counter electrodes, and the quasireference electrode described above. A drop of Hg was included in the working electrode side to amalgamate any Co^o particles. On the counter electrode side, 10 equivalents of ferrocene (with respect to the total amount of the Co complex, dissolved and undissolved) was added. Significant solubility issues arose with all of the Co complexes in THF, which made the true concentration of analyte in THF solution less than 1 mM and are henceforth labeled as saturated solutions of Co complex. Spectroelectrochemical analysis was performed using the aforementioned spectrophotometer setup using a Pine quartz cell and honeycomb electrode setup using the above described quasireference electrode rather than the built in Ag^{+/o} reference.

Synthesis of Co(TIM)Br₂PF₆

Diaminopropane•2HBr (19.45 g) was synthesized fresh from diaminopropane (8.8 g) and excess 48% HBr resulting in a 69% yield. 19.45 g of diaminopropane•2HBr was suspended in 50 mL of methanol and cooled in an ice bath. 7.10 g of biacetyl was added to the cold solution in 20 mL of methanol. KOH (4.63 g) was dissolved in 50 mL of methanol and added dropwise to the biacetyl/diaminopropane solution ensuring the temperature stayed below 5°C. After the addition was complete, it was allowed to stir while cooled by the ice bath for 15 minutes. A solution of $Co(OAc)_2•4H_2O(10.46 \text{ g})$ in 100 mL of methanol was added to the reaction mixture. The resulting mixture was stirred overnight. NH_4PF_6 (6.72 g) was added, and the solution was cooled and

filtered, yielding 6.16 g (24% yield) of dark green Co(TIM)Br₂PF₆. UV-vis λ_{max}, nm (ε, M⁻¹cm⁻¹) 283 (56700), 400 (3270), 601 (83). ¹H NMR (CD₃CN, 600 MHz) 4.12 (8H, m), 2.71 (12H, s) 2.58 (4H, m).

Synthesis of Co(SIM)Br₂PF₆

5.3g of Co(TIM)Br₂PF₆ was suspended in 350 mL of methanol. 4.4 mL of 50% hypophosphorous acid was added to the suspension. The solution rapidly turned to a dark purple, then brown, then eventually green. After 1 hour of stirring, 5 mL HBr and 5 g NH₄PF₆ was added to precipitate Co(SIM)Br₂PF₆ (0.81 g, 39% yield). ¹H-NMR (500MHz, CD₃CN, ppm): 5.23 (2H, s), 3.91 (2H, s), 3.87 (4H, s), 3.11 (4H, t), 2.68 (2H, m), 2.40 (2H, s), 2.34 (6H, s), 1.61 (6H, d). UV-vis λ_{max} , nm (ϵ , M⁻¹cm⁻¹) 210 (21900), 262 (10500), 312(16500), 387 (3220), 661 (68).

Synthesis of Co(DIM)Br₂ClO₄

Synthesized by Alessandra Zito according to literature procedure.¹⁵ ¹H NMR (CD₃CN, 600 MHz) 5.45 (2H, s), 4.29 (2H, d), 3.77 (2H, t), 3.15 (2H, q), 2.96 (2H, dd), 2.84 (4H, m), 2.71 (6H, s), 2.40 (2H, dd), 2.11 (2H, m). UV-vis λ_{max} , nm (ϵ , M⁻¹cm⁻¹) 210 (32300), 260 (18100), 300 (32200), 389 (3450), 636 (133).

Results and Discussion

Synthesis and Characterization

Co(TIM)Br₂PF₆,¹⁵ Co(SIM)Br₂PF₆,¹⁶ and Co(DIM)Br₂ClO₄²² were synthesized according to modified literature procedures to form the dibromides rather than the published dichloride analogues. ¹H and ¹³C-NMR spectra of Co(SIM)Br₂PF₆ matched the NMR spectra of the same complexes that were fully characterized by Alessandra Zito, and the others matched literature reports.

Electrochemical Analysis

In order to explore the electrochemical properties of Co(TIM)Br₂PF₆, Co(SIM)Br₂PF₆, and Co(DIM)Br₂ClO₄, cyclic voltammograms of each complex are shown in Figure **2.1**. Each of the electrochemical experiments were performed in tetrahydrofuran (THF) with 100 mM $[^{n}Bu_{4}N][PF_{6}]$ as a supporting electrolyte and referenced to the $Fe(C_{5}H_{5})_{2}^{+/0}$ couple. Co(TIM)Br₂PF₆, Co(SIM)Br₂PF₆, and Co(DIM)Br₂ClO₄ are sparingly soluble in THF, so 5 mg of each were added to the electrolyte solution forming a saturated solution of each. Later studies on Co(SIM)Br₂PF₆ showed the maximum concentration in THF to be no more than 0.063 mM.

The cyclic voltammogram of Co(TIM)Br₂PF₆ (blue trace, Figure **2.1**) shows three reductive events centered at -0.590, -0.864, and -2.030 V vs. Fe(C₅H₅)₂^{+/0}. Cyclic voltammograms of Co(SIM)Br₂PF₆ (black trace, Figure **2.1**) show two quasi-reversible couples, which are attributed to the Co^{III/II} and Co^{II/I} couples at -0.587 and -1.880 V vs. Fe(C₅H₅)₂^{+/0}, respectively. These potentials are consistent with previously reported values.¹⁷ Co(DIM)Br₂ClO₄ (red trace, Figure **2.1**) showed two reductive events centered at -0.556 and -1.42 V vs. Fe(C₅H₅)₂^{+/0} and an irreversible reduction (E_{pe}) at -2.09 V vs. Fe(C₅H₅)₂^{+/0}. Lewis and coworkers assigned the Co^{III/I} reduction events at -0.76, -1.80, and -1.31 V for the Co(TIM), Co(SIM), and Co(DIM) complexes, respectively, but given their potentials and similar ligand environment, it is likely that the reductive events in all of the complexes near -0.6 and -2.0 V vs. Fe(C₅H₅)₂^{+/0} are metal based, while the third intermediate reductive event seen in Co(TIM)Br₂PF₆ and Co(DIM)Br₂ClO₄ are likely ligand-based due to the conjugated pi system in the ligand being easy to reduce in both the TIM and DIM ligands²³ while no such conjugation exists in the SIM ligand.

Figure 2.1: Cyclic voltammograms of saturated solutions of $Co(TIM)Br_2PF_6$ (Blue), $Co(SIM)Br_2PF_6$ (Black), and $Co(DIM)Br_2ClO_4$ (Red) in 100 mM [nBu_4N][PF₆] in THF

Table 2.2: Measured reduction potentials and CO2 binding constants of Co complexes

Complex	$E_{1/2}$	$E_{1/2}$	$E_{1/2}$	$E_{1/2}Co^{II/I}$	K _{CO2} (THF)	K _{CO2} (DMSO)17
	$Co^{III/II}$	$L^{o/-1}$	Co ^{II/I}	under CO ₂		
$Co(TIM)Br_2PF_6$	-0.590	-0.864	-2.03	-1.97	310	<4
$Co(SIM)Br_2PF_6$	-0.601	N/A	-1.91	-1.75	73000	$1.0(3) \cdot 10^{5}$
Co(DIM)Br ₂ ClO ₄	-0.556	-1.42	-2.09			<4
K values reported in N	M ^{−1} ,					
$E_{1/2}$ values reported in	ı V vs. Fe(C	$_{5}H_{5})_{2}^{+/0}$				

CO₂ Binding

 CO_2 was previously reported to reversibly bind to $Co(TIM)Br_2PF_6$, $Co(SIM)Br_2PF_6$, and $Co(DIM)Br_2CIO_4$, when they are in the formal Co^I oxidation state.¹⁷ In the proposed mechanism for CO_2 reduction to CO in Scheme **2.2**, CO_2 binds the metal center first, followed by protonation, cleavage of the C-O bond, and eventual release of CO from the Co^{III} center. Lewis and coworkers determined that the binding constants for CO_2 were <4 M⁻¹ for both $Co(TIM)Br_2PF_6$ and $Co(DIM)Br_2CIO_4$, and 1.0 x 10⁵ for M⁻¹ $Co(SIM)Br_2PF_6$ in DMSO.¹⁷ Equation 4 is based on the Nernst equation, where q is the number of CO_2 molecules bound to the reduced species. The $E_{1/2}$ of the $Co^{II/1}$ couple of the complex with 1 atmosphere of CO_2 ($E_{1/2}$) and the E1/2 of the $Co^{II/1}$ couple under an atmosphere of N₂ ($E^{0'}$) were used to estimate the binding constant of CO_2 to the complex (K_{CO_2}) through a single point measurement.

Figure 2.2: Cyclic voltammograms of Co(TIM)Br₂PF₆ (A), Co(SIM)Br₂PF₆ (B), and Co(DIM)Br₂ClO₄ (C) in THF (black traces) and under CO₂ (blue traces) in 100mM [ⁿBu₄N][PF₆].

(4)
$$E_{1/2} = E^{\circ\prime} + \frac{RT}{n\mathcal{F}}ln(K_{CO_2}) + q\frac{RT}{n\mathcal{F}}ln[CO_2]$$

In order to better understand the interaction of the three cobalt complexes with CO_2 , CVs were performed of $Co(TIM)Br_2PF_6$, $Co(SIM)Br_2PF_6$, and $Co(DIM)Br_2ClO_4$ under an atmosphere of CO_2 and are shown in Figure **2.2** compared to the CVs under N_2 . CO_2 was bubbled through each solution for 5 minutes using a THF pre-bubbler in order to minimize the loss of THF from the solution of analyte. The concentration of CO_2 in solution was estimated to be 340 mM, which is the maximum concentration of CO_2 in a solution of THF at 25°C.²⁴

The cyclic voltammograms of Co(TIM)Br₂PF₆, Co(SIM)Br₂PF₆, and Co(DIM)Br₂ClO₄ under CO₂ show a shift in the potential of the Co^{II/I} redox couple. Using Equation 4, the binding constants of CO₂ to each complex were estimated in THF based on single point measurements at the CO₂ concentration of 340 mM assuming that only one CO₂ molecule binds per cobalt center and are compiled in Table **2.2**. While the CO₂ binding constant calculated here in THF for the reduced Co(SIM) compound (7.3 • 10⁵ M⁻¹) lies close to the value reported by Lewis and coworkers in DMSO (1.0(3) • 10⁵ M⁻¹), our calculated binding constant for the reduced Co(TIM) compound (310 M⁻¹) is significantly higher than that estimated by others (<4 M⁻¹) based on the our suggested reassignment of the Co^{II/I} couple. Further studies on CO₂ binding with these compounds should include the variation of CO₂ concentration in order to minimize error in the highly reduction potential-dependent calculation.

Electrocatalytic Studies

After showing the shift in potential that is associated with CO_2 binding, the next step in the proposed catalytic mechanism is to protonate the bound CO_2 . Two weak acids were chosen for this study, 'Bu-P₁-Pyrr•HOTf and BEMP•HOTf because of their minimal interaction with the reduced Co(SIM) species (Figure **2.3**). While a slight increase in current is seen with BEMP•HOTf (red trace), no current increase is observed with 'Bu-P₁-Pyrr•HOTf (blue trace). Use of stronger acids, DBU•HBF₄ and Pyrr•HOTf, showed large increases in current along with an anodic shift in onset potential, which is consistent with catalytic hydrogen evolution. The increase in current upon addition of BEMP•HOTf was deemed insignificant in this situation because the Co^{II/I} couple in the presence of CO₂ occurs at a potential that is about 160 mV more positive than under N₂. We hypothesize that hydrogen evolution may be disfavored when these more positive potentials are used.

Figure 2.3: Cyclic voltammograms of a saturated solution of $Co(SIM)Br_2PF_6$ with acids in 100 mM $[^nBu_4N][PF_6]$ in THF under an atmosphere of N_2 . Acids were sequentially added in 10 equivalents based on a target 1 mM concentration. Note: Due to issues with the potentiostat, currents below $-1 \mu A$ are not shown.

Co(SIM)Br₂PF₆ was chosen for the major part of these studies for a few reasons: there are no ligand centered reductions that complicate analysis and more reversible reductions under both N₂ and CO₂. It also has the highest relative solubility of the three complexes in THF. Previous studies by Dr. Steven Chabolla and Alessandra Zito have observed that the Co^{II/I} is more reversible in THF than in CH₃CN. The CVs of Co(SIM)Br₂PF₆ under CO₂ in the presence of 'Bu-P₁-Pyrr•HOTf ($pK_a = 20.2$) and BEMP•HOTf ($pK_a = 19.0$) (two weak phosphazine acids) are shown in Figure **2.4**. Upon adding CO₂, a slight increase in current is noted at about –2.3 V, which could be associated with the reduction of the Co^{II}(SIM)CO₂ species or onset of catalysis. Adding varying concentrations and strengths of acids, the current continues to increase, suggesting that the CO₂ bound species is indeed reacting with the acids in solution and converting the CO₂ to a reduced species.

Figure 2.4: Cyclic voltammograms of $Co(SIM)Br_2PF_6$ with CO_2 and weak acids in 100 mM [nBu_4N][PF₆] in THF. Experiments were performed under an atmosphere of N_2 (black trace) or CO_2 (all other traces) and $^tBu-P_1$ -Pyrr•HOTf (blue), BEMP•HOTf (red).

Cyclic voltammograms of Co(TIM)Br₂PF₆ and Co(DIM)Br₂ClO₄ were performed under similar conditions, and they are plotted in Figure 2.5 and Figure 2.6, respectively. Each compound has a shift in the peak potential of the Co^{II/I} reduction that indicates CO₂ binding. The lack of a pronounced return oxidation wave as with the parent compound indicates irreversibility, making this an ErCirr process (a reversible electrochemical process followed by a irreversible chemical process).²⁵ This irreversibility may be caused by tight binding of CO₂ to the metal center or additional chemical processes after reduction. Both compounds have an increase in current after CO₂ addition, which led to a far more pronounced reductive event in Co(DIM)Br₂ClO₄. Addition of the weak acids to these solutions of Co complexes led to further increases in current that may also be indicative of catalysis. Additionally, in the Co(DIM) case, there was a 57 mV positive shift in peak potential of what we are attributing to the ligand-centered reduction after the addition of acid to the CO₂ saturated solution. A possible explanation for the shift is a fast irreversible chemical step after reduction, likely protonation and possible reduction of the conjugated ligand backbone of DIM. The shift in the ligand reduction potential is not correlated with a shift in the Co^{II/I} couple, which actually shifts to slightly more negative peak potentials after the addition of the acids.

Figure 2.5: Cyclic voltammograms of $Co(TIM)Br_2PF_6$ with CO_2 and acids in 100 mM [${}^{n}Bu_4N$][PF₆] in THF. Experiments were performed under N_2 (black) or in the presence of CO_2 (gray) with ${}^{t}Bu-P_1$ -Pyrr•HOTf (blue) and BEMP•HOTf (red).

Figure 2.6: Cyclic voltammograms of $Co(DIM)Br_2ClO_4$ with CO_2 and acids in 100 mM [nBu_4N][PF₆] in THF. Experiments were performed under N_2 (black) or in the presence of CO_2 (gray) with $^tBu-P_1$ -Pyrr•HOTf (blue) and BEMP•HOTf (red).

Attempted Electrocatalytic CO₂ Reduction Using Co(SIM)Br₂PF₆

With the increase in current seen from the cyclic voltammetric experiments, electrocatalytic CO_2 reduction was attempted using $Co(SIM)Br_2PF_6$ as a catalyst. Chronoamperometric studies were performed under various conditions to assess the catalytic activity of $Co(SIM)Br_2PF_6$ in the presence of various acids in CH_3CN and THF. In each case, the potential was held at the potential at which the current was at its max for the $Co^{II/I}$ event, approximately -1.7 V vs. $Fe(C_5H_5)_{2^{+/0}}$ in all cases. Figure **2.7** shows the chronoamperometry traces of the bulk reduction of $Co(SIM)Br_2PF_6$ in the presence BEMP•HOTf and CO_2 . Each experiment shows a large initial current, both near 2 mA, passing 0.104 C and 0.179 C for the unfiltered and filtered solutions, respectively. After 1-2 minutes, the steady current is followed by a precipitous drop that decays to essentially zero in the case on the right. The only difference between the two traces is that the solution for the trace on the left was not filtered prior to reduction, which shows that the sustained supply of fresh $Co(SIM)Br_2PF_6$ into solution likely sustained a small amount of the current for longer.

Figure 2.7: Chronoamperograms of the bulk electrolytic reduction of $Co(SIM)Br_2PF_6$ in THF. Experiments were performed in stirred solutions of 100 mM [nBu_4N][PF₆] in THF in the presence of CO₂ and BEMP•HOTf. Red traces indicate current, blue traces indicate total charge passed, and the insets depict the first few minutes of the electrolysis where the current response was stable. On the left, solid remained suspended throughout the course of the electrolysis, and on the right, the solid Co(SIM)Br_2PF_6 was filtered off prior to electrolysis.

In CH₃CN (Figure **2.8**), the electrolyses had similar results, first showing a steady current of ~15 mA followed by a major drop off in current. The most likely cause of the drastic drop in current in all of these cases is the compound in solution reduces entirely and does such little turnover that there is no or nearly no steady state current after all of the compound in solution is reduced. Additionally, as the reduction proceeds, the solution turns from a green color to gray/colorless. Pre- and post-electrolysis UV-Visible spectra of Electrolysis 2 (Figure **2.7**, right) is shown in Figure **2.9**. The post-electrolysis spectrum, shown in red, is most consistent with a mixture of mostly Co¹(SIM)CO⁺ and with a small amount of Co¹(SIM)CO₂⁺, reported by Fujita and coworkers.¹⁴ They reported a high binding constant K > 10⁸ M⁻¹ for the yellow Co¹(SIM)-CO complex,¹⁴ which likely explains the massive drop in current even in the presence of acid. Under reductive conditions, the reduced cobalt center binds too tightly to CO, not allowing catalysis to proceed.

Figure 2.8: Chronoamperograms of the bulk electrolytic reduction of $Co(SIM)Br_2PF_6$ in CH₃CN. Experiments were performed in stirred solutions of 100 mM [nBu_4N][PF₆] in CH₃CN the presence of CO₂ and (A) Py•HBF₄ and (B) EtN₃•HBF₄. Red traces indicate current, blue traces indicate total charge passed, and the insets depict the first few minutes of the electrolysis where the current response was stable.

Figure 2.9: Pre- (black) and post-electrolysis (red) UV-Visible spectra of Electrolysis 2 (Table **2.3**). Light colored traces are raw data with points at 10 absorbance units (detector saturation point) removed, and (dark lines) 10 point adjacent averages of the remaining data.

Table 2.3 : I	Performance	of electro	lysis	attempts
----------------------	-------------	------------	-------	----------

Electrolysis	Solvent	Acid (concentration)	Charge Passed (time)	TON(CO)	$TON(H_2)$
1	THF	BEMP•HOTf (10 mM)	3.3 C (177 min.)	0.2	Trace
2	THF	BEMP•HOTf (10 mM)	0.57 C (80 min.)	Trace	0
3	CH ₃ CN	Et ₃ N•HBF ₄ (10 mM)	21.8 C (51 min.)	Trace	a
4	CH ₃ CN	Py•HBF ₄ (10 mM)	8.3 C (30 min.)	0.17	0.52
^a A large amount of H ₂ formed in this experiment, but it was not quantified due to instrument issues					

Spectroelectrochemical Characterization

In order to understand the increase in current in the cyclic voltammograms, it may be possible to characterize the products of reduction and protonation by the weak acids. One method of *in situ* characterization is spectroelectrochemistry, where reduction products can be characterized by UV-Visible spectroscopy by performing small scale bulk electrolyses of the solution in the path of the spectrophotometer. Figure **2.10** shows an attempt to ascertain the spectroelectrochemical profile of Co(SIM)Br₂PF₆ under an atmosphere of N₂ in 100 mM ⁿBu₄NPF₆ in THF. After polarization of the electrode to -215 mV vs. Fe(C₅H₅)₂^{+/o} for 10 minutes, the UVvisible spectrum of Co(SIM)Br₂PF₆ was collected, showing peaks at 400 nm and 320 nm. At this potential, consulting the cyclic voltammograms of Co(SIM)Br₂PF₆, the spectrum was consistent with the spectrum of the parent Co^{III} parent species. Upon polarization to -1.215 V vs. $Fe(C_5H_5)_2^{+/o}$, the spectrum showed no obvious growth of any peaks that would correspond to a reduced species. Upon further polarization to more negative potentials, again, no growth of any peaks was noted as shown by the green and blue traces in Figure 2.10. Although the solubility of the Co^{III} species has always been of concern (experimentally found to be <0.065 mM in THF), the lack of any peaks upon reduction suggests that the bands that would be associated with a reduced species do not have a sufficiently high molar absorptivity to be useful in THF or that there is significant decomposition of the metal complex leading to products that do not absorb in the UVvisible spectra. Consequently, work has been done to generate a more soluble Co(SIM)ⁿ starting material, and further work was performed in mixed CH₃CN and THF solutions, which dissolve $Co(SIM)Br_2PF_6$ much more readily without major changes to the $E_{1/2}$ potentials as shown in Figure 2.11 with tabulated reduction potentials in Table 2.4. If dilution of the metal complex was a major contributor to the electrochemical response, addition of CH_3CN (~20% by volume) would decrease, but because the solubility is so much greater in the mixed solutions, the current responses actually increase.

Figure 2.10: Spectroelectrochemistry of Co(SIM)Br₂PF₆ in THF. Experiments were performed in 100 mM $[^{n}Bu_{4}N][PF_{6}]$ in THF. Working electrode: Pt honeycomb. Counter electrode: Pt. Reference electrode: Ag^{+/o}.

Figure 2.11: Cyclic voltammograms of Co(SIM) Br_2PF_6 THF with increasing concentration of CH₃CN. Experiments were performed in initially 100 mM [$^{n}Bu_4N$][PF₆] in THF with increasing concentration of CH₃CN.

	Co ^{III/II}	$Co^{II/I}$
100% THF	-0.609	-1.924
$9\% CH_3 CN$	-0.591	-1.916
16% CH ₃ CN	-0.577	-1.907
100% CH ₃ CN	-0.441	-1.827

Table 2.4: Tabulated reduction potentials of Co(SIM)Br₂PF₆ in mixed THF and CH₃CN

The spectroelectrochemical profile of Co(SIM)Br₂PF₆ in CH₃CN under N₂ had an absorption spectrum with far more detail and are shown in Figure 2.12. Similar to observations seen by Fujita and coworkers,¹⁴ under an atmosphere of N₂, the Co(III) compound shows an intense peak near 310 nm with a shoulder at 376 nm and a weak d-d band at 656 nm. Upon reduction of the metal by one electron to the formally Co^{II} compound displays a peak at 273 nm and a shoulder at 369 nm. The peak at 317 nm in the Co^{II} spectrum under N₂ is likely from unreduced Co^{III}. Finally, upon reduction to Co^I, a drastic change occurs in the spectrum which now shows an intense band at 521 nm and a smaller one at 678 nm. Under CO₂, the UV-Visible spectrum appears similar in both the Co^{III} and Co^{III} states. When the compound is further reduced, it shows a spectrum much more similar to the Co^{II} and Co^{III} states, suggesting a chemical reaction between the CO₂ and Co¹, forming what has been called a cobalt(III) "carboxylate," (Co^{III}(CO₂²⁻)), though the term, "metal carboxylate," generally refers to metal-RCO₂- compounds. This and other $Co^{III}(CO_2^{2-})$ compounds have been suggested in literature,¹⁸ which is likely the case here. The $Co^{III}(CO_{2^{2^{-}}})$ mentioned is uncommon among this class of Co macrocycle complexes, however it is supported by many spectroscopic techniques including FT-IR, XANES, EXAFS, and flash photolysis.14,26-31 The unconventional oxidation state assignment tends to be the case mostly with Co macrocycles with trans-diimines with one exception, a monoimine. Studies have shown that the reduced CO_2 is stabilized by hydrogen bonding from the ligand.³¹ $M(CO_2^{2-})$ intermediates are invoked in the mechanism for the water-gas shift reaction.32

Figure 2.12: Spectroelectrochemistry of Co(SIM)Br₂PF₆ in CH₃CN under an atmosphere of N₂. Black: 0.5 V vs. Ag^{+/0}. Red: -0.5 V vs. Ag^{+/0}. Blue: -1.75 V vs. Ag^{+/0}. Light colored lines, raw data. Full colored lines, 10-point adjacent average.

Figure 2.13: Spectroelectrochemistry of Co(SIM)Br₂PF₆ in CH₃CN under an atmosphere of CO₂. Black: 0.5 V vs. Ag^{+/o}. Red: -0.5 V vs. Ag^{+/o}. Blue: -1.75 V vs. Ag^{+/o}. Light colored lines, raw data. Full colored lines, 10-point adjacent average.

Attempted Isolation of More Soluble Starting Materials

The solubility of the Co^{III} species has always been of concern (<0.065 mM in THF). While sufficient for standard voltammetric techniques, attempts at spectroelectrochemical analysis have failed due to the low concentration of Co(SIM)Br₂PF₆ in THF.

Reductions of Co(SIM)Br₂PF₆ has been used to generate a more soluble Co(SIM)ⁿ species Attempts have been made to generate both a Co(SIM)¹⁺ and a Co(SIM)²⁺ species. In one experiment, Co(SIM)Br₂PF₆ was treated with 2 equiv. of Na(Hg). During the experiment, the solution went from a pale green suspension of Co(SIM)Br₂PF₆ in 5:1 toluene:THF to brown and then to a deep blue/purple color overnight. From this solution, an orange/violet crystal was obtained by slow diffusion of pentanes into the reaction mixture. The crystal structure was determined to be of a new cobalt-containing species shown in Figure **2.14**. This structure was determined to be a formally Co(II) complex containing a single PF_6^- counteranion (removed for clarity). The SIM ligand contains two imines that are trans to each other across the metal center, and two amines that are also trans to each other. In this compound, one of the propylene backbones is oxidized to form a NacNac-like unit while reducing the two imines to single bonds. Overall, five hydrogen atom transfers were required to go from $Co^{III}(SIM)^{3+}$ to the newly formed and compound that we have called $Co^{II}(GIM)^+$. Three hydrogen atoms were lost, and two were gained, leaving the last equivalent likely leaving as half an equivalent of H_2 . A similar crystallographically characterized compound was seen with a Ni^{II} center (CSD: BAWKOA).^{33.34}

Figure 2.14: (Top) Solid state crystal structure of $Co^{II}(GIM)(THF)PF_6$ and (bottom) drawn structures of $Co(SIM)Br_2PF_6$ and $Co(GIM)PF_6$. Hydrogen atoms except amine hydrogens and counteranion omitted for clarity. Probability ellipsoids shown at 50%. Drawn structure of Co(GIM) compound is shown with the THF ligand removed for clarity.

Further attempts to generate reduced products have been made, using KC₈ and Na(Hg) as reductants in various solvents and solvent mixtures. All experiments have yielded multiple products. A common trait among most of the reductions seems to be the vacuum instability of the reduced products. In order to probe this vacuum instability, a sample of Co(SIM)Br₂PF₆ was reduced with 1 equivalent of KC₈ in 2-methyl-THF. Half of the sample was removed, and an EPR spectrum was obtained at 77K. The other half of the sample was held under vacuum for three hours, was redissolved in 2-methyl-THF, and its EPR spectrum was obtained. Both EPR spectra are shown in Figure **2.15**. The spectra show axial signals at g = 2.3, which correspond to S = 1/2systems. Additional features on the axial spectra could either correspond to cobalt (I = 7/2) hyperfine coupling or nitrogen (I = 1) superhyperfine coupling, or both. Thus far, the coupling in these spectra have been difficult to deconvolute; however, it does show that the spectrum of the reduced species that was held under vacuum is more axial, suggesting a less symmetric ligand environment around the metal center.

Figure 2.15: EPR spectra of $Co(SIM)Br_2PF_6$ treated with 1 equiv. of KC₈ in 2-Me-THF (black) and held under vacuum for 3 hours (red)

Conclusions and Outlook

So far, these studies have shown that along with previous literature on similar cobalt marocycle complexes, $Co(SIM)Br_2PF_6$ shows initial promise as a catalyst for CO_2 reduction. The first step, CO_2 binding, is has been reported to be reversible, but we show that under our conditions, though an equilibrium may exist, the CO_2 either does not release or releases very slowly after sweeping the reduction potential to more positive potentials. Using our knowledge of the thermodynamics of the system, we treated the cobalt complex under reductive conditions with very weak phosphazine acids to a much stronger acid, pyridinium, and showed a slight increase in reductive current even with the weakest acid. Disappointingly, electrocatalytic studies with these acids never produced more than 0.2 equivalents of CO to Co complex. Further spectroelectrochemical experiments in THF showed the compound was not soluble enough, and in CH_3CN , spectra were nearly identical to published reports.¹⁴ Attempts to reduce the cobalt complex to find more soluble starting materials have resulted in an unexpected product ($Co(GIM)(THF)PF_6$), which has not been studied further.

With the sensitivity of these Co macrocycles under reductive conditions, developing a wellsupported thermodynamic cycle to predict the reactivity in this system would be very difficult. Similar to other projects in the Yang group, we may be able to study the reactivity of bound CO_2 under reductive conditions using quinones, which also reversibly bind CO_2 , giving us a similar starting place. Other nucleophiles,^{35,36} including other metal-containing systems^{37,38} have been shown to reversibly bind CO_2 as well. While the outlook on the aims of this project look promising, a system that would facilitate the research has not yet been found.
Crystallographic Information for Co(GIM)(THF)PF₆

The data for jyy201 were collected from a shock-cooled single crystal at 93(2) K on a Bruker SMART APEX II three-circle diffractometer with a sealed X-ray tube using a equatorial mounted graphite as monochromator and a Bruker Apex II CCD detector. The diffractometer was equipped with a low temperature device and used MoK_a radiation ($\lambda = 0.71073$ Å). All data were integrated with SAINT and a multi-scan absorption correction using SADABS was applied.^{39,40} The structure was solved by direct methods using SHELXS and refined by full-matrix least-squares methods against F^2 by SHELXL-2018/3 using ShelXle.^{41,42} All non-hydrogen atoms were refined with anisotropic displacement parameters. All C-bound hydrogen atoms were refined isotropic on calculated positions using a riding model with their U_{iso} values constrained to 1.5 times the U_{eq} of their pivot atoms for terminal sp³ carbon atoms and 1.2 times for all other carbon atoms. Disordered moieties were refined using bond lengths restraints and displacement parameter restraints. This report and the CIF file were generated using FinalCif.⁴³

Refinement Details:

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were refined using a riding model. The thermal elipsoids of split atoms in disordered parts were constrained to the same values. C2, C8, C9, and C10 were restrained to more isotropic thermal elipsoids, and chemically equivalent bond lengths were restrained to similar values. Poor data quality required truncation of the data at 0.83 Å.

Empirical formula	C ₁₈ H ₃₅ CoF ₆ N ₄ OP
Formula weight	527.40
Temperature [K]	93(2)
Crystal system	monoclinic
Space group (number)	$P2_{1}/c$ (14)
a [Å]	8.8616(8)
b [Å]	24.350(2)
c [Å]	10.7669(9)
α [°]	90
β [°]	98.2053(15)
γ [°]	90
Volume [ų]	2299.5(3)
Ζ	4
ρ _{calc} [gcm ⁻³]	1.523
$\mu [{\rm mm}^{-1}]$	0.882
F(000)	1100
Crystal size [mm ³]	0.262×0.187×0.154
Crystal colour	orange
Crystal shape	plate
Radiation	MoKa
	(λ=0.71073 Å)
2θ range [°]	3.35 to 50.70
	(0.83 Å)
Index ranges	$-10 \le h \le 10$
	$-29 \le k \le 29$
	$-12 \le l \le 12$
Reflections collected	36514
Independent reflections	4207
	$R_{\rm int} = 0.0810$
Commission and to	$K_{\rm sigma} = 0.0546$
Completeness to $0 = a = a \pm a^{\circ}$	100.0 %
$\frac{\theta = 25.349^{\circ}}{\text{Data} / \text{Pastraints} / (\theta = 100 \text{ m})}$	400=/49/004
Data / Restraints /	420//48/324
Coodness of fit on E ²	1 110
Final <i>D</i> indexes	$\frac{1.110}{P - 0.0716}$
$[I > 9\sigma(I)]$	$K_1 = 0.0/10$ $W_1^R = 0.1222$
Final P indexes	R = 0.1333
[all data]	$M_1 = 0.1013$ $WR_2 = 0.1444$
uuuuu I argest neak/hale [eå-3]	$\frac{1}{0.62} - 0.1444$
Largest peak/note [eA 3]	0.03/-0.39

 Table 2.5: Crystal data for Co(GIM)(THF)PF6

References

- Can, M.; Armstrong, F. A.; Ragsdale, S. W. Structure, Function, and Mechanism of the Nickel Metalloenzymes, CO Dehydrogenase, and Acetyl-CoA Synthase. *Chemical Reviews* 2014, *114* (8), 4149–4174. https://doi.org/10.1021/cr400461p.
- (2) Wang, V. C.-C.; Ragsdale, S. W.; Armstrong, F. A. Investigations of the Efficient Electrocatalytic Interconversions of Carbon Dioxide and Carbon Monoxide by Nickel-Containing Carbon Monoxide Dehydrogenases. In *The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment*; Kroneck, P. M. H., Torres, M. E. S., Eds.; Metal Ions in Life Sciences; Springer Netherlands: Dordrecht, 2014; pp 71–97. https://doi.org/10.1007/978-94-017-9269-1_4.
- Reda, T.; Plugge, C. M.; Abram, N. J.; Hirst, J. Reversible Interconversion of Carbon Dioxide and Formate by an Electroactive Enzyme. *PNAS* 2008, *105* (31), 10654–10658. https://doi.org/10.1073/pnas.0801290105.
- (4) Bassegoda, A.; Madden, C.; Wakerley, D. W.; Reisner, E.; Hirst, J. Reversible Interconversion of CO2 and Formate by a Molybdenum-Containing Formate Dehydrogenase. J. Am. Chem. Soc. 2014, 136 (44), 15473-15476. https://doi.org/10.1021/ja508647u.
- (5) Fourmond, V.; Wiedner, E. S.; Shaw, W. J.; Léger, C. Understanding and Design of Bidirectional and Reversible Catalysts of Multielectron, Multistep Reactions. *J. Am. Chem. Soc.* 2019, *141* (28), 11269–11285. https://doi.org/10.1021/jacs.9b04854.
- (6) Bi, J.; Hou, P.; Kang, P. Single Iridium Pincer Complex for Roundtrip Electrochemical Conversion between Carbon Dioxide and Formate. *ChemCatChem* 2019, *11* (8), 2069– 2072. https://doi.org/10.1002/cctc.201900083.
- Cunningham, D. W.; Barlow, J. M.; Velazquez, R. S.; Yang, J. Y. Reversible and Selective
 CO2 to HCO2– Electrocatalysis near the Thermodynamic Potential. *Angewandte Chemie*

 International
 Edition
 2020,
 59
 (11),
 4443-4447.

 https://doi.org/10.1002/anie.201913198.
 59
 (11),
 4443-4447.

- (8) Cunningham, D. W.; Yang, J. Y. Kinetic and Mechanistic Analysis of a Synthetic Reversible
 CO2/HCO2- Electrocatalyst. *Chem. Commun.* 2020, *56* (85), 12965–12968.
 https://doi.org/10.1039/DoCC05556E.
- Davis, S. J.; Lewis, N. S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I. L.; Benson, S. M.; Bradley, T.; Brouwer, J.; Chiang, Y.-M.; Clack, C. T. M.; Cohen, A.; Doig, S.; Edmonds, J.; Fennell, P.; Field, C. B.; Hannegan, B.; Hodge, B.-M.; Hoffert, M. I.; Ingersoll, E.; Jaramillo, P.; Lackner, K. S.; Mach, K. J.; Mastrandrea, M.; Ogden, J.; Peterson, P. F.; Sanchez, D. L.; Sperling, D.; Stagner, J.; Trancik, J. E.; Yang, C.-J.; Caldeira, K. Net-Zero Emissions Energy Systems. *Science* **2018**, *360* (6396), eaas9793. https://doi.org/10.1126/science.aas9793.
- J, B. S. R.; Loganathan, M.; Shantha, M. S. A Review of the Water Gas Shift Reaction Kinetics. *International Journal of Chemical Reactor Engineering* 2010, 8 (1). https://doi.org/10.2202/1542-6580.2238.
- (11) Subramani, V.; Sharma, P.; Zhang, L.; Liu, K. Catalytic Steam Reforming Technology for the Production of Hydrogen and Syngas. In *Hydrogen and Syngas Production and Purification Technologies*; John Wiley & Sons, Ltd, 2009; pp 14–126. https://doi.org/10.1002/9780470561256.ch2.
- (12) Fisher, B. J.; Eisenberg, R. Electrocatalytic Reduction of Carbon Dioxide by Using Macrocycles of Nickel and Cobalt. *Journal of the American Chemical Society* 1980, *102* (24), 7361–7363. https://doi.org/10.1021/ja00544a035.
- (13) Tinnemans, A. H. A.; Koster, T. P. M.; Thewissen, D. H. M. W.; Mackor, A. Tetraaza-Macrocyclic Cobalt(II) and Nickel(II) Complexes as Electron-Transfer Agents in the Photo(Electro)Chemical and Electrochemical Reduction of Carbon Dioxide. *Recueil des Travaux Chimiques des Pays-Bas* 1984, 103 (10), 288–295. https://doi.org/10.1002/recl.19841031004.

- (14) Fujita, E.; Creutz, C.; Sutin, N.; Szalda, D. J. Carbon Dioxide Activation by Cobalt(I) Macrocycles: Factors Affecting Carbon Dioxide and Carbon Monoxide Binding. J. Am. Chem. Soc. 1991, 113 (1), 343–353. https://doi.org/10.1021/ja00001a048.
- Jackels, S. C.; Farmery, Keith.; Barefield, E. Kent.; Rose, N. J.; Busch, D. H. Tetragonal Cobalt(III) Complexes Containing Tetradentate Macrocyclic Amine Ligands with Different Degrees of Unsaturation. *Inorg. Chem.* **1972**, *11* (12), 2893–2901. https://doi.org/10.1021/ic50118a008.
- (16) Tait, A. Martin.; Busch, D. H. Reactions of Coordinated Ligands. Selective Hydrogenation of .Alpha.-Diimine Linkages in Complexes of Cobalt(III) with Macrocyclic Ligands. *Inorg. Chem.* 1977, *16* (4), 966–968. https://doi.org/10.1021/ic50170a057.
- (17) Schmidt, M. H.; Miskelly, G. M.; Lewis, N. S. Effects of Redox Potential, Steric Configuration, Solvent, and Alkali Metal Cations on the Binding of Carbon Dioxide to Cobalt(I) and Nickel(I) Macrocycles. J. Am. Chem. Soc. 1990, 112 (9), 3420-3426. https://doi.org/10.1021/ja00165a027.
- (18) Schneider, J.; Jia, H.; Muckerman, J. T.; Fujita, E. Thermodynamics and Kinetics of CO₂,
 CO, and H+ Binding to the Metal Centre of CO₂reductioncatalysts. *Chem. Soc. Rev.* 2012, *41* (6), 2036–2051. https://doi.org/10.1039/C1CS15278E.
- (19) Tshepelevitsh, S.; Kütt, A.; Lõkov, M.; Kaljurand, I.; Saame, J.; Heering, A.; Plieger, P. G.;
 Vianello, R.; Leito, I. On the Basicity of Organic Bases in Different Media. *European Journal of Organic Chemistry* 2019, 2019 (40), 6735–6748. https://doi.org/10.1002/ejoc.201900956.
- (20) Kaljurand, I.; Saame, J.; Rodima, T.; Koppel, I.; Koppel, I. A.; Kögel, J. F.; Sundermeyer, J.; Köhn, U.; Coles, M. P.; Leito, I. Experimental Basicities of Phosphazene, Guanidinophosphazene, and Proton Sponge Superbases in the Gas Phase and Solution. *J. Phys. Chem. A* 2016, *120* (16), 2591–2604. https://doi.org/10.1021/acs.jpca.6b01552.

- (21) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29 (9), 2176–2179. https://doi.org/10.1021/om100106e.
- (22) Lovecchio, F. V.; Gore, E. S.; Busch, D. H. Oxidation and Reduction Behavior of Macrocyclic Complexes of Nickel. Electrochemical and Electron Spin Resonance Studies. *J. Am. Chem. Soc.* 1974, *96* (10), 3109–3118. https://doi.org/10.1021/ja00817a016.
- (23) Vaddypally, S.; Tomlinson, W.; O'Sullivan, O. T.; Ding, R.; Van Vliet, M. M.; Wayland, B. B.; Hooper, J. P.; Zdilla, M. J. Activation of C–H, N–H, and O–H Bonds via Proton-Coupled Electron Transfer to a Mn(III) Complex of Redox-Noninnocent Octaazacyclotetradecadiene, a Catenated-Nitrogen Macrocyclic Ligand. *J. Am. Chem. Soc.* **2019**, *141* (14), 5699–5709. https://doi.org/10.1021/jacs.8b10250.
- (24) Lorimer, J. W. CARBON DIOXIDE IN NON-AQUEOUS SOLVENTS AT PRESSURES LESS THAN 200 KPA; Solubility Data Series; IUPAC: Oxford, UK, 1992; Vol. 50.
- (25) Zanello, P. Inorganic Electrochemistry; 2003. https://doi.org/10.1039/9781847551146.
- (26) Fujita, E.; van Eldik, R. Effect of Pressure on the Reversible Binding of Acetonitrile to the "Co(I)–CO2" Adduct To Form Cobalt(III) Carboxylate. *Inorg. Chem.* 1998, *37* (2), 360–362. https://doi.org/10.1021/ic971044k.
- (27) Fujita, E.; Furenlid, L. R.; Renner, M. W. Direct XANES Evidence for Charge Transfer in Co-CO2 Complexes. J. Am. Chem. Soc. 1997, 119 (19), 4549-4550. https://doi.org/10.1021/ja970151a.
- (28) Creutz, C.; Schwarz, H. A.; Wishart, J. F.; Fujita, E.; Sutin, N. Thermodynamics and Kinetics of Carbon Dioxide Binding to Two Stereoisomers of a Cobalt(I) Macrocycle in Aqueous Solution. J. Am. Chem. Soc. 1991, 113 (9), 3361–3371. https://doi.org/10.1021/ja00009a022.

- (29) Ogata, T.; Yanagida, S.; Brunschwig, B. S.; Fujita, E. Mechanistic and Kinetic Studies of Cobalt Macrocycles in a Photochemical CO2 Reduction System: Evidence of Co-CO2 Adducts as Intermediates. J. Am. Chem. Soc. 1995, 117 (25), 6708–6716. https://doi.org/10.1021/ja00130a009.
- (30) Fujita, Etsuko.; Szalda, D. J.; Creutz, Carol.; Sutin, Norman. Carbon Dioxide Activation: Thermodynamics of Carbon Dioxide Binding and the Involvement of Two Cobalt Centers in the Reduction of Carbon Dioxide by a Cobalt(I) Macrocycle. *J. Am. Chem. Soc.* **1988**, *110* (14), 4870–4871. https://doi.org/10.1021/ja00222a079.
- (31) Fujita, E.; Creutz, C.; Sutin, N.; Brunschwig, B. S. Carbon Dioxide Activation by Cobalt Macrocycles: Evidence of Hydrogen Bonding between Bound CO2 and the Macrocycle in Solution. *Inorg. Chem.* **1993**, *32* (12), 2657–2662. https://doi.org/10.1021/ic00064a015.
- (32) Lin, C.-H.; Chen, C.-L.; Wang, J.-H. Mechanistic Studies of Water–Gas-Shift Reaction on Transition Metals. J. Phys. Chem. C 2011, 115 (38), 18582–18588. https://doi.org/10.1021/jp2034467.
- (33) He, Y.; Kou, H.-Z.; Zhou, B.-C.; Wang, R.-J.; Li, Y.-D.; Wang, H.-G. Gaodeng Zuexiao Huaxue Xuebao 2002, 23, 2017.
- (34) He, Y.; Kou, H.-Z.; Zhou, B.-C.; Wang, R.-J.; Li, Y.-D.; Wang, H.-G. CCDC 219027: Experimental Crystal Structure Determination, 2004. https://doi.org/10.5517/CC7BXDV.
- (35) Villiers, C.; Dognon, J.-P.; Pollet, R.; Thuéry, P.; Ephritikhine, M. An Isolated CO2 Adduct of a Nitrogen Base: Crystal and Electronic Structures. *Angewandte Chemie International Edition* 2010, *49* (20), 3465–3468. https://doi.org/10.1002/anie.201001035.
- (36) Buß, F.; Mehlmann, P.; Mück-Lichtenfeld, C.; Bergander, K.; Dielmann, F. Reversible Carbon Dioxide Binding by Simple Lewis Base Adducts with Electron-Rich Phosphines. J. Am. Chem. Soc. 2016, 138 (6), 1840–1843. https://doi.org/10.1021/jacs.5b13116.
- (37) Vogt, M.; Nerush, A.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. Reversible CO2Binding Triggered by Metal-Ligand Cooperation in a Rhenium(I) PNP Pincer-Type

Complex and the Reaction with Dihydrogen. *Chem. Sci.* **2014**, *5* (5), 2043–2051. https://doi.org/10.1039/C4SC00130C.

- (38) Company, A.; Jee, J.-E.; Ribas, X.; Lopez-Valbuena, J. M.; Gómez, L.; Corbella, M.; Llobet, A.; Mahía, J.; Benet-Buchholz, J.; Costas, M.; van Eldik, R. Structural and Kinetic Study of Reversible CO2 Fixation by Dicopper Macrocyclic Complexes. From Intramolecular Binding to Self-Assembly of Molecular Boxes. *Inorg. Chem.* 2007, *46* (22), 9098–9110. https://doi.org/10.1021/ic700692t.
- (39) Bruker. SAINT.
- (40) Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. Comparison of Silver and Molybdenum Microfocus X-Ray Sources for Single-Crystal Structure Determination. J Appl Cryst 2015, 48 (1), 3–10. https://doi.org/10.1107/S1600576714022985.
- (41) Sheldrick, G. A Short History of SHELX. Acta Crystallographica Section A 2008, 64 (1), 112–122. https://doi.org/doi:10.1107/S0108767307043930.
- (42) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. *Acta Cryst C* 2015, *71* (1), 3–
 8. https://doi.org/10.1107/S2053229614024218.
- (43) Kratzert, D. FinalCif. HTTPS://dkratzert.de/finalcif.html.

Chapter 3: Development of an Electrochemical Catalytic System for the Reduction of CO₂ to Methanol

For further discussion on hydricity studies, showing reduction of methyl formate and formadehye, please see Steps Toward CO₂ Reduction to Methanol via Electrochemical Cascade Catalysis by Ian Mercer (MS, UCI, 2020)

Introduction

As the global need for energy continues to increase, the shift to greener energy sources has been partially responsible for an increase in intermittent electricity generation.^{1,2} The storage of energy in chemical bonds is an attractive option to store the excess energy when it is produced and use it when generation is lower than demand. For example, the energy density of methanol is 10x greater than that of Li-ion batteries.³

The thermodynamics for hydride transfer to CO_2 has been well studied in recent literature.^{4–6} The thermodynamics of the hydride transfer reaction has been used in the development of reversible⁷ and bidirectional⁸ catalysts that are competent for CO_2 reduction and HCO_2 - oxidation. Sanford and coworkers,⁹ and more recently, Goldberg and coworkers¹⁰ reported the first two cascade catalytic systems for the reduction of CO_2 to methanol through a hydrogenation pathway. Their work is a step forward to the development of an effective means of storing electrical energy C-H or C-C bonds. While their work was pivotal, in both cases, the reactions were run at high temperature and pressure, and the best performances were inhibited by the Lewis acid catalyst responsible for esterification of formic acid. In this work, we aim to develop an electrochemical cascade catalytic system using the thermodynamics of each elementary step as a guide. A proposed cascade catalytic cycle is shown in Scheme **3.1** where: (1) CO_2 undergoes reduction and protonation to formic acid, (2) esterification or amidation of the formic acid to yield an ester or amide, respectively, (3) followed by two hydride transfers and protonations, ending with the release of methanol.

In order to reduce CO_2 to HCO_2^{-} , the hydride donor must have a hydricity value equal to or less than those shown in Table **3.1** in various solvents. The reaction for the formation of a hydride from formate, forming CO_2 and a hydride is shown in Equation 1. A difficulty that arises under catalytic conditions is the propensity for the hydride to be protonated and released as H_2 gas. The heterolytic cleavage of H_2 is shown in Equation 2, and the associated solvent- and pHdependent free energy changes are shown in Table **3.1**. Importantly, in this thermodynamicsdriven method, the free energy change of formate production must be more negative than the free energy change of H_2 evolution under the given conditions.

(1)
$$\Delta G^{\circ}_{H^-}(HCO_2^-) = HCO_2^- \rightleftharpoons CO_2 + H^{\circ}$$

(2) $\Delta G^{\circ}_{H^-}(H_2) = H_2 \rightleftharpoons H^- + H^+$

Table 3.1:	Relevant	solvent	:-dej	penden	t emp	pirical	ly detei	rmined	const	ants
		~ 1				- > - 4		** .		

.

Solvent	$\Delta G^{\circ}_{H^-}(HCO_2^-)$ (kcal/mol)	$\Delta G^{\circ}_{H^{-}}(H_2)$ (kcal/mol) ⁴
H_2O	24.111	34.2
CH_3CN	44 ¹²	76.0
DMSO	42 ^{13,14}	60.7
THF	>44.7 ¹⁵	68.7

Applying these thermodynamic considerations to a cascade catalytic system and flattening the energy landscape to make it as energetically efficient as possible, we must first consider each elementary step, keeping in mind that each step in a one-pot cascade must be compatible with every other step. Here, I present experiments on the esterification and amidation of a formate salt and formic acid.

Experimental Methods

General Considerations

All manipulations with formic acid were carried out in open air. All experiments with ⁿBu₄N HCO₂ were prepared in an inert atmosphere glovebox and subsequently left to react in either a J. Young-type NMR tube or a parafilm-sealed NMR tube with standard cap. All deuterated solvents were dried over 3Å molecular sieves or CaH₂, distilled, and stored over 3Å molecular sieves. ⁿBu₄N HCO₂ was prepared by mixing equimolar quantities of fresh ⁿBu₄N OH and 88% formic acid in methanol and removing the solvent *in vacuo*. All amine acids were prepared by the addition of the conjugate acids (HOTf and HBF₄•Et₂O) to the amines dissolved in dry Et₂O. The resulting solids were filtered in air and dried *in vacuo*. Propylamine, dipropylamine, and 4-fluoroaniline were distilled prior to use. All other chemicals and reagents were used as received from the manufacturer. All temperatures are reported in °C.

NMR Experiments

NMR spectra were collected on a Bruker Avance 600 MHz with a cryoprobe. Conversion percentages were calculated according to the following formula:

The calculated % conversions should be considered as the best case, however, in all cases presented here, there was little ambiguity in the identity of the resulting products, ethyl formate,¹⁶ 4-fluoroformanilide,¹⁷ di-ⁿbutylformamide,¹⁸ and ⁿbutyl formate.¹⁹

Table 3.2: Relevant pKa values

Table 3.3: Diphosphine ligand abbreviations

Results and Discussion

Esterification and Amidation of HCO₂-

Initial studies focused on the conversion of formate salts into formate esters and formamides. Previous reports have demonstrated esterification of acetic acid with Brønsted acids²³ and Lewis acids.²⁴ Additionally, in previous CO₂ hydrogenation reports, Sc(OTf)₃ (-OTf = trifluoromethanesulfonate) was used as a catalyst for the esterification of the resulting formic acid product to a methyl⁹ or ethyl¹⁰ ester. We decided to begin our attempts with Lewis acid catalyzed esterifications, and the results are summarized in Table **3.4**. In each sample, after monitoring the reaction at room temperature for 15 hours in CD₃CN for any reactivity through ¹H-NMR, the sample was then heated for the reported time. In reports where the acetic acid (HOAc) was esterified using a Sc(OTf)₃ catalyst, the worst conversion in the presence of catalyst was 71% in 30 minutes in refluxing HOAc.²⁴ Using tetra-n-butylammonium formate ("Bu₄N HCO₂) as the electrophile, there is essentially no reactivity at room temperature and very little reactivity even

at 70°C for 27 hr. Considering the possibility that conversion to the formate ester may require a small equilibrium of protonated formate, a weak Brønsted acid, 4-CF₃-phenol, was added to the reaction mixtures (Entries 3 and 5) with small differences in conversion. In all of the examples labeled with <1% conversion, resonances belonging to the ethyl formate product were observed in the ¹H NMR, but any quantitation below 1% may be severely affected by dissimilarities in the baselines imposed on the spectrum. In entries labeled with 0%, no resonances attributable to the product were observed.

Comparing Entries 2 and 5, under very similar conditions, some product is observed in the former with none in the latter. The inconsistency may be due to a small amount of water present in one of the samples, but in both cases, the total conversion is extremely small.

0	ⁿ Bu ₄ N	+		0		
⊸Ң	+	EtOH	CD ₃ CN	EtO H	+	^{│ n} Bu₄N⁺ ⁻OH

Table 3.4: Esterification of ["Bu₄N][HCO₂] with EtOH using Lewis and Brønsted acid catalysts

Entry	Catalyst (mol%)	Time	Temperature	Conversion
1	Dy(OTf) ₃ (5%)	30 hr.	65	0%
2	Sc(OTf) ₃ (5%)	27 hr.	70	<1%
3	Sc(OTf) ₃ (5%) 4-CF ₃ -Phenol (2.5%)	27 hr.	70	<1%
4	$Al(OTf)_{3}(10\%)$	27 hr.	70	<1%
5	Al(OTf) ₃ (10%) 4-CF ₃ -Phenol (2.5%)	27 hr.	70	<1%
6	Sc(OTf) ₃ (5%)	30 hr.	75	0%

Even without any reactivity seen, the Sc³⁺, Al³⁺, and Dy³⁺ salts do appear to interact with formate in solution (Figure **3.1**). Compared to free ⁿBu₄N HCO₂, which has a formyl proton resonance at 8.72 ppm, the interaction with Sc³⁺ yields two new resonances at 8.69 and 8.50 ppm that integrate in a 2:1 ratio. For the Al³⁺ salt, the formyl proton resonance shifts to 8.62 ppm with a broad resonance likely consisting of multiple species at 8.26 ppm. Addition of the paramagnetic Dy³⁺ salt yields only one broad formyl proton signal that is centered at 8.68 ppm.

Figure 3.1: ¹H-NMR spectra of the formyl proton of tetra-n-butylammonium formate in CD₃CN (Top), with 5 mol% Sc(OTf)₃ (middle), and 10 mol% Al(OTf)₃ (bottom)

Entries 2-5 were monitored intermittently over another 12 days, and even after 13 total days at 70°C, there was very little conversion to the formate product. In Entry 2b, there was essentially no change in the ¹H NMR spectrum between the measurement at 27 hr and 13 days.

Entry	Catalyst (mol%)	Time	Temperature	Conversion
2b	Sc(OTf) ₃ (5%)	13 days	70	<1%
3b	Sc(OTf) ₃ (5%) 4-CF ₃ -Phenol (2.5%)	13 days	70	2.6%
4b	$Al(OTf)_{3}(10\%)$	13 days	70	1.8%
5b	Al(OTf) ₃ (10%) 4-CF ₃ -Phenol (2.5%)	13 days	70	1.1%

Table 3.5: Effect of heating reaction mixtures for 2 weeks

Seeing very little conversion in the previous reactions, we considered that ethanol (or possibly the conjugate base ethoxide) was too weak of a nucleophile to add in to the carbonyl carbon. As such, we chose two liquid amines to pursue further reactivity. Tertiary amines were excluded from these studies because of the necessity for deprotonation of the amine to form the secondary or tertiary formamide. Primary amine propylamine ($PrNH_2$) and secondary amine dipropylamine (Pr_2NH) were selected as they are both liquids and have identical R groups. Under similar conditions as with ethanol, the formate salt was treated with the amines, and the results

are summarized in Table **3.6**. Similar to before, over a shorter amount of time, no reactivity was seen with no visible change in the ¹H-NMR spectrum.

Table 3.6: Attempted amidations of $[^{n}Bu_{4}N][HCO_{2}]$ with dipropylamine and propylamine using Lewis acid

	ⁿ Bu ₄ N+			0		
	+	R ₂ NH	catalyst		+	[−] OH ⁿ Bu ₄ N⁺
ОН		(1' or 2' amine)		R ₂ N H		

catalysts

Entry	Substrate	Catalyst	Solvent	Time	Temperature	Conversion
7	Pr ₂ NH	$Dy(OTf)_3$	CD ₃ CN	30 hr	75	0%
8	PrNH ₂	$Dy(OTf)_3$	CD ₃ CN	30 hr.	75	0%
9	Pr ₂ NH	$Sc(OTf)_3$	CD ₃ CN	30 hr.	75	0%
10	PrNH ₂	$Sc(OTf)_3$	CD ₃ CN	30 hr.	75	0%
11	Pr₂NH	3Å Sieves	Toluene	23 hr.	80 ^a	0%

^aEntry 11 was allowed to react at room temperature for 20 hours, then heated to 60° C for 26 hours, then heated to 80° C for 23 hours.

As the amine nucleophile did not react with formate as desired, we next considered the protonation state of formate itself. In all of the acetic acid studies reported,²⁴ the reaction was completed on the protonated form. With the release of the final formamide, instead of an unstabilized hydroxide ion, water and a tetrabutylammonium salt is formed. Table **3**.7 shows a summary of the reaction of various acid salts with "Bu₄N HCO₂. Using NH₄PF₆ to first protonate, then perform nucleophilic addition into the formate carbonyl bond, was problematic at the start. Although NH₄⁺ has a p K_a of 16.46 in CH₃CN²¹ and H₂CO₂ has a p K_a estimated at 20.9,²⁵ addition of NH₄⁺ to H₂CO₂ results in precipitation of the saltNH₄HCO₂. Using 4-fluoroaniline • HOTf and pyrrolidine • HOTf, at least partial proton resonance consistent with the shift seen between "Bu₄N HCO₂ and H₂CO₂ in CD₃CN, but no reactivity is observed with the stronger acid. However, in the presence of pyrrolidinium, Entry 15, there was 3% conversion of formate to N-formylpyrrolidine. A potential explanation for the inconsistency is that the two aniline conjugate bases are less nucleophilic than pyrrolidine.

Table 3.7: Attempted amidations of ["Bu4N][HCO2] with ammonium salts

$$\begin{array}{c|c} & & & & & & \\ & & & & \\ - & & & \\ - & & & \\ - & & & \\ - & &$$

Entry	Substrate	Time	Temperature	Conversion
12	NH ₄ PF ₆	45 hr	25	0%
13	А	45 hr.	25	0%
14	В	45 hr.	25	0%
15	С	45 hr.	25	3%
	$A \xrightarrow{\dagger_{NH_3}}_{NH_2} NH_3$	2 CI− B	•NH3 OTf C	-NH ₂

With the aim of developing a catalytic system that functions at room temperature with reasonable turnover frequencies that may be applicable for industrial application $(10^{-2} - 10^2 \text{ s}^{-1})$,²⁶ the evidence that the protonation state of formate may be a limiting factor. Instead of using formate salts, formic acid (88% in H₂O, 10 equivalents with respect to nucleophile) was used for further esterification experiments to see if we could observe the desired reactivity. Additionally, water is present in the formic acid solution and is formed in the balanced reaction. To maximize the ability to exclude water from the reaction, considering a possible equilibrium between formic acid and the formamide/formate ester product, drying agents were employed in the toluene solvent. Ultimately, a 10-fold excess of formic acid was used in the reported esterification using Lewis acid catalysts used acetic acid as the solvent as well as the substrate.²⁴

The results of the initial experiments (Table **3.8**, Entries 16-18) were highly encouraging, showing a massive increase in product formation compared to the reactions with formate salts. In the presence of 3^{A} molecular sieves, over a day, Pr_2NH reacted with formic acid in refluxing toluene to form *N*,*N*-dipropylformamide with 28% conversion. Entries 16 and 17 were subjected to the same conditions simultaneously where first, they were left to react for 20 hr at room temperature (Entries 17a-19a), followed by heating to 60°C for 27 hrs (Entries 17b-19b), and

finally heated to 80°C and monitored over 4 days (Entries 17c-19c and 17d-19d). The time represents time spent at the given temperature, and the conversion represents the total conversion up to that point. Toluene appears to be the best solvent between the two conditions because an overall a higher conversion percentage was achieved, and the conversion at 60°C was 29% compared to 5% in CH₃CN. When under the same conditions as Entries 17 and 18, but *without* Sc(OTf)₃, conversion occurred slightly slower than with Sc(OTf)₃ present at 60°C. Surprisingly, without the Lewis acid, the total conversion after 96 hr at 80°C was 97% (Entry 19b), leaving very little free amine left in solution.

	Conditions	Solvent	Time	Temperature	Conversion
16	$Sc(OTf)_3$	Toluene	23 hr.	Reflux	28%
17a	$Sc(OTf)_3$	Toluene			1%
18a	$Sc(OTf)_3$	CH ₃ CN	20 hr.	25°C	<1%
19a		Toluene			<1%
17b	$Sc(OTf)_3$	Toluene			29%
18b	$Sc(OTf)_3$	CH ₃ CN	27 hr.	60°C	5%
19b		Toluene			19%
17c	$Sc(OTf)_3$	Toluene			59%
18c	$Sc(OTf)_3$	CH ₃ CN	22 hr.	80°C	21%
19c		Toluene			78%
17d	$Sc(OTf)_3$	Toluene			66%
18d	$Sc(OTf)_3$	CH ₃ CN	74 hr.	80°C	55%
19d		Toluene	-		97%

Under the impression that water had a deleterious effect on the N-formylation or esterification reaction, drying agents MgSO₄ and KHSO₄ were also considered, both of which can act as Lewis acids, and KHSO₄, which may act as both a Brønsted and Lewis acid (pK_a HSO₄⁻ (H₂O) = 2.0).²⁷ With the change in drying agents, compared to Entry 19d with molecular sieves,

the sample with MgSO₄ (Entry 20) showed a drop in conversion. When no drying agent was added (Entry 22), only a slight drop in conversion was noted over a similar amount of time at similar temperatures compared with molecular sieves as a drying agent (Entry 19d). When KHSO₄ (Entry 21) was added, reactivity entirely shut down which may be due to the very acidic HSO_4^- ion protonating the amine.

Counter to what was previously believed, when n-butanol, a weaker nucleophile, is used in the described reaction conditions, the conversion to n-butylformate occurs in 88% yield, comparable to dipropylamine. The success of the n-butanol formylation led us to attempt a reaction with a less-nucleophilic amine, 4-fluoroaniline. Entry 24 has a greater than 99% conversion over the course of 15 hours in refluxing toluene, which was by far the best conversion seen thus far.

Table 3.9: Amidations and esterification of formic acid in the presence of drying agents

Entry	Substrate	Drying Agent	Solvent	Time	Temp.	Conversion
20	Pr ₂ NH	MgSO ₄	Toluene	135 hr.	85	79%
21	Pr ₂ NH	KHSO ₄	Toluene	135 hr.	85	<1%
22	Pr ₂ NH		Toluene	135 hr.	85	89%
23	ⁿ Bu-OH	3Å Sieves	Toluene	135 hr.	85	88%
24	4-fluoroaniline		Toluene	15 hr.	Reflux	>99%

Note: For all samples, 100 μ L aliquots were removed from the stirring reaction and added to ~700 μ L of CD₃CN for NMR analysis.

With a major increase in the reactivity, 4-fluoroaniline was selected for further studies. 4-fluoroaniline was specifically selected because it has a diagnostic ¹⁹F-NMR spectrum with a triplet of triplets ($J_{F-H} = 8.9$ Hz, 4.6 Hz) at -131.14 ppm in CD₃CN where the ¹H NMR for aniline and any formylated aniline is complicated by multiple heavily coupled resonances in the aromatic region.

We performed a solvent screen with solvents that are compatible with electrochemical analysis. The results of the solvent screen are summarized in Table **3.10**. Formic acid (10 equivalents) was added to 1 equivalent of 4-fluoroaniline in various solvents, and the reactions were monitored by ¹⁹F-NMR. Interestingly, the ¹⁹F-NMR for the product, 4-fluoroformanilide, appears as two distinct resonances for each rotamer, similar to other formamides.²⁸ After 15 hours, CH₃CN (ε = 36.64)²⁹ and CH₃OH (ε = 33.0)²⁹ had similar conversion yields of 78% and 76%, respectively. Use of the more non-polar solvent, CH₂Cl₂ (ε = 8.93),²⁹ resulted in an increase in the conversion, and THF (ε = 7.52),²⁹ had the highest conversion with over 99%. Although a decrease in rate is to be expected when the concentration of one of the reagents is lowered, when the equivalents of formic acid is brought down to 1.3:1 (Entry 30), the conversion significantly slows to 87% over 48 hours. When a 1:1 sample is prepared (Entry 31), the reaction significantly slows again to only 3.6% conversion after 48 hours.

Entry	Ratio	Solvent	Time	Conversion
25	10:1	THF	2 hr.	68%
26	10:1	CH_3OH	15 hr.	78%
27	10:1	CH ₃ CN	15 hr.	76%
28	10:1	CH_2Cl_2	15 hr.	87%
29	10:1	THF	15 hr.	>99%
30	1.3:1	THF	48 hr.	87%
31	1:1	THF	48 hr.	3.6%

Figure 3.2: Two rotamers of a generic formamide. $\Delta G^{\ddagger} \approx 21 \frac{kcal}{mol}$ for dimethylformamide.¹³

As THF is the best solvent tested for facilitating the reactivity between formic acid and 4fluoroaniline, we sought to achieve the same reactivity with their conjugate base and conjugate acid, respectively. By achieving the reactivity with the conjugates, we could show that adding an exogenous acid source of a known pK_a , we may be able to design a system where the pK_a of the exogenous acid is not sufficient to protonate the metal hydride, leading to deleterious H_2 evolution. This exogenous acid may, however, maintain a small equilibrium of H_2CO_2 , allowing for amidation.

Attempting the amidation reaction between [$^{n}Bu_{4}N$][HCO₂] and 4-fluoroaniline • HOTf, the reaction was expected to proceed as before with formic acid and 4-fluoroaniline. Surprisingly, as summarized in Table **3.11**, very little reactivity was achieved in any of the reactions, which were all performed at room temperature. In varying the ratios of formate to anilinium, we attempted to recreate similar conditions to the previous studies to no avail. Adding 10 equivalents of water to the reaction mixture also showed no discernable conversion to the formanilide product. The only instances where some conversion to the amidated product occurred when an extra equivalent of acid was added to the solution, and the conversion to 1.5% occurred over 5 days rather than 15 hours to completion as before. **Table 3.11**: Attempted amidations of [ⁿBu₄N][HCO₂] with 4-fluoroanilinium triflate by varying ratios and adding Brønsted acids

Ratio

m

:

n

Entry	Ratio (m:n)	Additive	Time	Conversion
32	1:1		40 hr.	0%
33	10:1		40 hr.	0%
34	1:10		40 hr.	0%
35	10:1	H ₂ O	40 hr.	0%
36	1:10	H ₂ O	40 hr.	0%
37	1:1	Py • HOTf	126 hr.	1.4%
38	1:1	$Et_3N \bullet HBF_4$	126 hr.	1.1%
39	1:1	TBD • HOTf	126 hr.	0%

Again, considering that the solvent may have a negative effect on the conversion, the formate and anilinium salt reactions were tested in 5 different solvents. The only solvent to show a very small amount of conversion was the sample in toluene- d_8 with a trace amount of formanilide product detected by ¹⁹F NMR.

Table 3.12: Solvent screen for the attempted amidation of ["Bu4N][HCO2] with 4-fluoroanilinium triflate

0 ⁿ Bu₄N −0 H +	+ OTf	 ■ NH H	+ H ₂	0
	F			

Entry	Solvent	Conversion	Time
40	CD ₃ CN	0%	25 hr.
41	CD ₃ OD	0%	25 hr.
42	D_2O	0%	25 hr.
43	$(CD_3)_2SO$	0%	25 hr.
44	Toluene- <i>d</i> ₈	<1%	25 hr.

With the solvent, presence of water, presence of excess acid, excess formate salt, and excess anilinium salt, ruled out as major contributing factors to the reactivity, the final consideration was the salt that was used as the countercation or counteranion for the formate and anilinium, respectively. In all of the prior experiments, a tetra-n-butylammonium and triflate salts were used. Known to have a deleterious effect on the reactivity as well, a 1:1 ratio of formic acid to aniline was used in order to determine if we could completely stop reactivity in any case. Over the course of 40 hours at room temperature, low yields were seen across the board with [$^{n}Bu_{4}N$][OTf] having the lowest conversion of 2.4% and Li(OTf) having the highest conversion at this point of 6.4%, which is just over 2 σ above the average.

Table 3.13: Effect of salts on the amidation of formic acid and 4-fluoroaniline

Entry	Salt	Conversion
45	ⁿ Bu ₄ N OTf	2.4%
46	ⁿ Bu ₄ N BF ₄	5.6%
47	ⁿ Bu ₄ N PF ₆	4.7%
48	ⁿ Bu ₄ N ClO ₄	3.0%
49 *	ⁿ Bu ₄ N I	3.6%
50*	$(CH_3)_4N$ Cl	3.4%
51	Li OTf	6.4%
52*	Na BF ₄	3.4%
53 *	Na OTf	3.5%
54		3.7%

*Salts did not completely dissolve in these samples

With the low conversion yields after 40 hours, each of the reactions were heated to 60°C for 38 hours. The results are summarized in Table **3.14**. After heating, appreciable conversion yields occurred in all of the samples.

Table 3.14: Effect of heating amidation reactions with salts

*Salts did not completely dissolve in these samples

Figure **3.3** contains the compiled data from the addition of various salts to the reaction mixture of 4-fluoroaniline and formic acid. Most of the salts yielded very similar conversions, but notably, [${}^{n}Bu_{4}N$][OTf] had the lowest total conversion with 16%. The next lowest conversion was 26%, a 60% increase in conversion. In part, these data explain the inhibition of the reactivity of formic acid with the 4-fluoroaniline, however it is not immediately clear why, if LiOTf had the best conversion among the 9 added salts, and there was essentially no difference in the conversion with other ${}^{n}Bu_{4}N^{+}$ cations. With the differences in the cations and anions, I expect the reason [${}^{n}Bu_{4}N$][OTf] has the lowest conversion because it is the only source of "free" triflate ion. Schumann and coworkers³⁰ reported a crystallographically characterized (Li₂(OTf)₂(THF)₂)_n polymeric structure, and Anwander and coworkers³¹ similarly reported a Li₄(OTf)₄(THF)₆ monomer. These structures, NaOTf's low solubility, and knowing ion pairing to be very favorable in non-polar THF suggest that the major difference between the three triflate salts is whether the cation is expected to stay tightly bound when in THF solution. Frech and Huang³² showed that in

ethereal and other solvents, Li⁺ splits the doubly degenerate antisymmetric S-O stretching mode of the triflate anion into two distinct bands, revealing a strong interaction between cation and anion, while the band remains degenerate when [$^{n}Bu_{4}N$][OTf] is used. For the above reasons, in solutions of LiOTf and NaOTf, they should be considered ion paired, bound species, but in [$^{n}Bu_{4}N$][OTf] solutions, with relatively little cation-anion interaction, it should be considered as "free triflate."

Figure 3.3: Conversions of 4-fluoroaniline to 4-fluoroanilide in the presence of a salt at 25°C (blue) and 60°C (red)

The reason "free triflate" ([ⁿBu₄N][OTf]) decreases the rate and/or yield of the reaction is unclear. It is worth noting, however, that the p K_a of triflic acid in THF is far higher than expected, 7.83. As a result, triflate is more basic than aniline (anilinium p K_a = 5.2) or pyridine (pyridinium $pK_a = 5.5$) in the same solvent.²¹ A proposed mechanism for the amidation of formic acid and 4fluoroaniline is shown in Scheme **3.2**. Step 1 involves the nucleophilic attack of aniline on formic acid, although general organic principles state that carboxylic acids are poor electrophiles, formic acid (and possibly even acetic acid) is an exception to the common principles, as even a weak nucleophile like aniline can add in to the carbonyl carbon. Step 2 deprotonates the secondary amine resulting from the nucleophilic attack, and finally Step 3 protonates the hydroxyl, and it dissociates, leaving 4-fluoroformanilide, base, and water. A potential issue with free triflate in solution is in Step 3. Considering the contents of the solution, free triflate, but not ion-paired triflate, is likely to be the most basic site in solution other than methoxide. According to the proposed mechanism, an appreciable equilibrium must exist between the protonated hydroxyl and all other potential protonation states in solution. I hypothesize that of the salts chosen, triflate, but not Li⁺- or Na⁺-bound triflate, is too basic to allow for this equilibrium. There is some evidence that supports this possibility in Entries 37 and 38 where exogenous acids were added to the reaction with ["BU₄N][HCO₂] and 4-fluoroanilinium triflate and some conversion was noted.

Scheme 3.2: Plausible mechanism for the substitution of 4-fluoroaniline into formic acid

This proposed mechanism does not, however, explain the large difference in conversion when lower ratios of formic acid to aniline are used. Although a full explanation is difficult, there are reports of product-inhibited reactions where amides formed from the reaction bind tightly with the Lewis acid catalyst, necessitating the use of >1 equivalent of catalyst.³³ One example even required 4.5 equivalents of catalyst to 1 equivalent of reactant.³⁴

Conclusions and Outlook

Putting all of these elementary steps together to form a cascade catalytic system will likely be difficult. My studies have shown that activation of the formate anion is very slow in the best of cases. Once protonated, the resulting formic acid reacts readily with nucleophiles, but the reactivity of HCO₂⁻ is very difficult beyond simple protonation and hydride transfer, forming CO₂. I was able to find two examples of formate reacting with amines to generate formamides without the presence of formic acid in excess (many examples), acid chlorides (one example),³⁵ anhydrides (one example),³⁶ DCC (dicyclohexylcarbodiimide) (one example),³⁷ or other harsh reagents and conditions likely not compatible with a possible cascade catalytic system. The first example is by Hanzlik and coworkers³⁸ where NaH¹³CO₂ reacted with methylbenzylamine hydrochloride over 48 hours at 82°C, resulting in a 74% yield in the desired ¹³C-labeled formamide product. Second, Gescher and coworkers³⁹ showed a very similar reaction of trifluoroethylamine hydrochloride with sodium formate, distilled on a Kugelrohr apparatus, and isolated in 83% yield. Notably, both of the substrates treated with the formate salt were amine acids, and the first was performed in acetonitrile, and the second was performed neat. Without a doubt, the triflate salt used in my studies was detrimental to the overall reactivity, and heating improved the reactivity, as expected. It is likely that switching salts away from the triflate salt used will improve reactivity. One unavoidable limitation for which I have no explanation is the decrease in reactivity seen at lower molar ratios of formic acid to aniline. This result may prove to be a major limitation when applied to a cascade catalytic cycle.

Ultimately, to achieve the desired reactivity, my data show that to achieve the desired reactivity, formic acid will likely need to be the product of the reduction of CO₂, the first step in the proposed catalytic cycle. Formic acid is reactive enough to undergo nucleophilic addition while none of the experiments with formate showed any appreciable product yield. Formic acid, however, is thermodynamically disfavored compared to hydrogen evolution at all pHs. It may be

possible to kinetically select for formic acid with quick conversion to another intermediate, even in the presence of a very strong hydride needed for the following step.

When considering the reduction of the formamide or ester, the stability of the formamide or ester must be overcome to form a much less stable product, formaldehyde. Mercer's studies showed that the hydride affinity of methyl formate was low, only fully reacting with HRh(dmpe)₂ in THF. This rhodium bisdiphosphine compound is tied for the most hydridic ground state metal complex with a hydricity of 26.6 kcal/mol, which can even donate its hydride to triethylborane.⁴⁰ Electrocatalytic studies with this compound have not yet been performed, but the reduction potentials required for such catalysis are expected to be relatively extreme, yielding very large overpotentials for the very slightly exergonic 6 H⁺, 6 e⁻ CO₂ to methanol reaction.

References

- Sepulveda, N. A.; Jenkins, J. D.; de Sisternes, F. J.; Lester, R. K. The Role of Firm Low-Carbon Electricity Resources in Deep Decarbonization of Power Generation. *Joule* 2018, 2 (11), 2403–2420. https://doi.org/10.1016/j.joule.2018.08.006.
- (2) Sinsel, S. R.; Riemke, R. L.; Hoffmann, V. H. Challenges and Solution Technologies for the Integration of Variable Renewable Energy Sources—a Review. *Renewable Energy* 2020, 145, 2271–2285. https://doi.org/10.1016/j.renene.2019.06.147.
- (3) Godula-Jopek, Dr.-Ing. habil. A.; Westenberger, A. F. Fuel Cell Types: PEMFC/DMFC/AFC/PAFC//MCFC/SOFC/. In *Encyclopedia of Energy Storage*; Cabeza, L. F., Ed.; Elsevier: Oxford, 2022; pp 250–265. https://doi.org/10.1016/B978-0-12-819723-3.00056-1.
- (4) Ilic, S.; Alherz, A.; Musgrave, C. B.; Glusac, K. D. Thermodynamic and Kinetic Hydricities of Metal-Free Hydrides. *Chem. Soc. Rev.* 2018, 47 (8), 2809–2836. https://doi.org/10.1039/C7CS00171A.

- Wiedner, E. S.; Chambers, M. B.; Pitman, C. L.; Bullock, R. M.; Miller, A. J. M.; Appel, A. M. Thermodynamic Hydricity of Transition Metal Hydrides. *Chem. Rev.* 2016, *116* (15), 8655–8692. https://doi.org/10.1021/acs.chemrev.6b00168.
- (6) Waldie, K. M.; Ostericher, A. L.; Reineke, M. H.; Sasayama, A. F.; Kubiak, C. P. Hydricity of Transition-Metal Hydrides: Thermodynamic Considerations for CO2 Reduction. ACS Catal. 2018, 8 (2), 1313–1324. https://doi.org/10.1021/acscatal.7b03396.
- (7) Cunningham, D. W.; Barlow, J. M.; Velazquez, R. S.; Yang, J. Y. Reversible and Selective
 CO2 to HCO2– Electrocatalysis near the Thermodynamic Potential. *Angewandte Chemie International Edition* **2020**, *59* (11), 4443–4447. https://doi.org/10.1002/anie.201913198.
- Bi, J.; Hou, P.; Kang, P. Single Iridium Pincer Complex for Roundtrip Electrochemical Conversion between Carbon Dioxide and Formate. *ChemCatChem* 2019, *11* (8), 2069– 2072. https://doi.org/10.1002/cctc.201900083.
- Huff, C. A.; Sanford, M. S. Cascade Catalysis for the Homogeneous Hydrogenation of CO2 to Methanol. J. Am. Chem. Soc. 2011, 133 (45), 18122–18125. https://doi.org/10.1021/ja208760j.
- (10) Chu, W.-Y.; Culakova, Z.; Wang, B. T.; Goldberg, K. I. Acid-Assisted Hydrogenation of CO2 to Methanol in a Homogeneous Catalytic Cascade System. *ACS Catal.* 2019, *9* (10), 9317–9326. https://doi.org/10.1021/acscatal.9b02280.
- (11) Connelly, S. J.; Wiedner, E. S.; Appel, A. M. Predicting the Reactivity of Hydride Donors in Water: Thermodynamic Constants for Hydrogen. *Dalton Trans.* 2015, 44 (13), 5933–5938. https://doi.org/10.1039/C4DT03841J.
- (12) DuBois, D. L.; Berning, D. E. Hydricity of Transition-Metal Hydrides and Its Role in CO2 Reduction. *Applied Organometallic Chemistry* 2000, 14 (12), 860–862. https://doi.org/10.1002/1099-0739(200012)14:12<860::AID-AOC87>3.0.CO;2-A.

- (13) Tsay, C.; Livesay, B. N.; Ruelas, S.; Yang, J. Y. Solvation Effects on Transition Metal Hydricity. J. Am. Chem. Soc. 2015, 137 (44), 14114–14121. https://doi.org/10.1021/jacs.5b07777.
- Moret, S.; Dyson, P. J.; Laurenczy, G. Direct Synthesis of Formic Acid from Carbon Dioxide by Hydrogenation in Acidic Media. *Nat Commun* 2014, *5* (1), 4017. https://doi.org/10.1038/ncomms5017.
- Mathis, C. L.; Geary, J.; Ardon, Y.; Reese, M. S.; Philliber, M. A.; VanderLinden, R. T.;
 Saouma, C. T. Thermodynamic Analysis of Metal–Ligand Cooperativity of PNP Ru
 Complexes: Implications for CO2 Hydrogenation to Methanol and Catalyst Inhibition. J.
 Am. Chem. Soc. 2019, 141 (36), 14317–14328. https://doi.org/10.1021/jacs.9b06760.
- (16) Huff, C. A.; Kampf, J. W.; Sanford, M. S. Reversible Carbon–Carbon Bond Formation between Carbonyl Compounds and a Ruthenium Pincer Complex. *Chem. Commun.* 2013, 49 (64), 7147–7149. https://doi.org/10.1039/C3CC43517B.
- (17) Yin, J.; Zhang, J.; Cai, C.; Deng, G.-J.; Gong, H. Catalyst-Free Transamidation of Aromatic Amines with Formamide Derivatives and Tertiary Amides with Aliphatic Amines. *Org. Lett.* **2019**, *21* (2), 387–392. https://doi.org/10.1021/acs.orglett.8b03542.
- (18) Zhang, Q.; Hou, J.; Huang, Y.; Zhan, L.; Li, B. Visible Light-Promoted Synthesis of Ureas and Formamides from Amines and CO2. *Chem. Commun.* 2022, *58* (29), 4599–4602. https://doi.org/10.1039/D2CC00572G.
- (19) Liang, F.; Eda, K.; Okazoe, T.; Wada, A.; Mori, N.; Konishi, K.; Tsuda, A. Photo-on-Demand Synthesis of Vilsmeier Reagents with Chloroform and Their Applications to One-Pot Organic Syntheses. J. Org. Chem. 2021, 86 (9), 6504–6517. https://doi.org/10.1021/acs.joc.1c00334.
- (20) Kütt, A.; Selberg, S.; Kaljurand, I.; Tshepelevitsh, S.; Heering, A.; Darnell, A.; Kaupmees,K.; Piirsalu, M.; Leito, I. PKa Values in Organic Chemistry Making Maximum Use of the

Available Data. *Tetrahedron Letters* **2018**, *59* (42), 3738–3748. https://doi.org/10.1016/j.tetlet.2018.08.054.

- (21) Tshepelevitsh, S.; Kütt, A.; Lõkov, M.; Kaljurand, I.; Saame, J.; Heering, A.; Plieger, P. G.;
 Vianello, R.; Leito, I. On the Basicity of Organic Bases in Different Media. *European Journal of Organic Chemistry* 2019, 2019 (40), 6735–6748. https://doi.org/10.1002/ejoc.201900956.
- (22) Kütt, A.; Tshepelevitsh, S.; Saame, J.; Lõkov, M.; Kaljurand, I.; Selberg, S.; Leito, I. Strengths of Acids in Acetonitrile. *European Journal of Organic Chemistry* 2021, 2021
 (9), 1407–1419. https://doi.org/10.1002/ejoc.202001649.
- (23) Lunagariya, J.; Dhar, A.; L. Vekariya, R. Efficient Esterification of n -Butanol with Acetic Acid Catalyzed by the Brönsted Acidic Ionic Liquids: Influence of Acidity. *RSC Advances* 2017, 7 (9), 5412–5420. https://doi.org/10.1039/C6RA26722J.
- (24) Barrett, A. G. M.; Braddock, D. C. Scandium(III) or Lanthanide(III) Triflates as Recyclable Catalystsfor the Direct Acetylation of Alcohols with Acetic Acid. *Chem. Commun.* 1997, No. 4, 351–352. https://doi.org/10.1039/A606484A.
- (25) Stirling, M. J.; Sweeney, G.; MacRory, K.; Blacker, A. J.; Page, M. I. The Kinetics and Mechanism of the Organo-Iridium-Catalysed Enantioselective Reduction of Imines. *Org. Biomol. Chem.* **2016**, *14* (14), 3614–3622. https://doi.org/10.1039/C6OB00245E.
- (26) Introduction. In *Industrial Catalysis*; John Wiley & Sons, Ltd, 2005; pp 1–14. https://doi.org/10.1002/3527607684.ch1.
- (27) Perrin, D. D. Tables. In Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution (Second Edition); Perrin, D. D., Ed.; Pergamon, 1982; pp 1–138. https://doi.org/10.1016/B978-0-08-029214-4.50008-8.
- (28) Drakenberg, T.; Forsen, S. Barrier to Internal Rotation of Amides. I. Formamide. J. Phys. Chem. 1970, 74 (1), 1–7. https://doi.org/10.1021/j100696a001.

- (29) Haynes, W. M. CRC Handbook of Chemistry and Physics, 92nd ed.; CRC Press: Boca Raton, FL, 2011.
- (30) Schumann, H.; Meese-Marktscheffel, J. A.; Loebel, J. Die Kristall- und Molekülstruktur von Lithiumtrifluormethansulfonat Li[SO3CF3](THF). Zeitschrift für Naturforschung B, Chemical Sciences 45, 1304.
- (31) Schädle, C.; Meermann, C.; Törnroos, K. W.; Anwander, R. Rare-Earth Metal Phenyl(Trimethylsilyl)Amide Complexes. *European Journal of Inorganic Chemistry* 2010, 2010 (18), 2841–2852. https://doi.org/10.1002/ejic.201000220.
- (32) Frech, R.; Huang, W. Anion-Solvent and Anion-Cation Interactions in Lithium and Tetrabutylammonium Trifluoromethanesulfonate Solutions. J Solution Chem 1994, 23
 (4), 469–481. https://doi.org/10.1007/BF00972613.
- (33) Motiwala, H. F.; Fehl, C.; Li, S.-W.; Hirt, E.; Porubsky, P.; Aubé, J. Overcoming Product Inhibition in Catalysis of the Intramolecular Schmidt Reaction. J. Am. Chem. Soc. 2013, 135 (24), 9000–9009. https://doi.org/10.1021/ja402848c.
- (34) Milligan, G. L.; Mossman, C. J.; Aube, J. Intramolecular Schmidt Reactions of Alkyl Azides with Ketones: Scope and Stereochemical Studies. *J. Am. Chem. Soc.* 1995, *117* (42), 10449–10459. https://doi.org/10.1021/ja00147a006.
- (35) Ono, S.; Saitoh, A.; Iwakami, N.; Nakagawa, M.; Yamaguchi, S. N-Alkoxyalkyl-N,n-Dialkylamine Derivatives or Salts Thereof, and Remedies for Nerve Degeneration Diseases Containing the Same. EP1186594A1, March 13, 2002.
- (36) Gibson, K. R.; Jones, A.; Kemp, M. I.; Madin, A.; Stockley, M. L.; Whitlock, G. A.; Woodrow,M. D. Novel Compounds. WO2017141036A1, August 24, 2017.
- (37) Donets, P. A.; Cramer, N. Diaminophosphine Oxide Ligand Enabled Asymmetric Nickel-Catalyzed Hydrocarbamoylations of Alkenes. J. Am. Chem. Soc. 2013, 135 (32), 11772–11775. https://doi.org/10.1021/ja406730t.

- (38) Cerny, M. A.; Hanzlik, R. P. Cytochrome P450-Catalyzed Oxidation of N-Benzyl-N-Cyclopropylamine Generates Both Cyclopropanone Hydrate and 3-Hydroxypropionaldehyde via Hydrogen Abstraction, Not Single Electron Transfer. J. Am. Chem. Soc. 2006, 128 (10), 3346–3354. https://doi.org/10.1021/ja054938+.
- (39) Gate, E. N.; Threadgill, M. D.; Stevens, M. F. G.; Chubb, D.; Vickers, L. M.; Langdon, S. P.;
 Hickman, J. A.; Gescher, A. Structural Studies on Bioactive Compounds. 4. A StructureAntitumor Activity Study on Analogs of N-Methylformamide. *J. Med. Chem.* **1986**, *29* (6), 1046–1052. https://doi.org/10.1021/jm00156a024.
- (40) Mock, M. T.; Potter, R. G.; Camaioni, D. M.; Li, J.; Dougherty, W. G.; Kassel, W. S.; Twamley, B.; DuBois, D. L. Thermodynamic Studies and Hydride Transfer Reactions from a Rhodium Complex to BX3 Compounds. *J. Am. Chem. Soc.* 2009, *131* (40), 14454–14465. https://doi.org/10.1021/ja905287q.

Appendix A: Tables of Cartesian Coordinates for DFT-Optimized Structures

		Method/Basis Set				
Protonation State	B3LYP	B3LYP	B3LYP	B3P86		
	6-311g+(d,p)	6 - 31g+(d,p)	LANL2dz	LANL2dz		
A	1a	2a	3a	4a		
В	1b	2b	3b	4b		
С	10	2c	3c	4c		
D	1d	2d	3d	4d		

	Compound			
Protonation state	Mnt	L_{iPr}	Мо	
A	5a	6a	7a	
В	5b	6b	7b	
С	5c	6c	7c	

• -		1a	-	• -		1b	-
Atom	X	Y	Z	Atom	X	Y	Z
W	-0.002855	-0.000163	0.390189	W	-0.035555	-0.014504	0.390027
S	1.628781	1.547288	-0.320339	S	-1.730797	-1.559589	-0.214799
S	1.627092	-1.547291	-0.324821	S	-1.630262	1.556805	-0.416244
S	-1.649974	-1.555615	-0.252106	S	1.742949	1.559814	-0.40405
S	-1.648134	1.556227	-0.254545	S	1.583379	-1.587068	-0.436766
С	3.14208	0.672537	-0.729271	С	-3.240684	-0.641523	-0.574899
С	3.141237	-0.672801	-0.731503	С	-3.194946	0.695232	-0.679974
С	-3.14727	-0.671568	-0.711377	С	3.286801	0.604527	-0.584293
С	-3.146381	0.673077	-0.712641	С	3.161687	-0.725577	-0.666147
С	-4.289936	1.572997	-1.103887	С	4.297313	-1.668866	-0.963515
Н	-4.557809	2.243944	-0.281116	н	4.433831	-2.371498	-0.135822
Η	-4.013759	2.206159	-1.953604	Η	4.069753	-2.263981	-1.853161
Н	-5.183079	1.011828	-1.38079	Η	5.241706	-1.151851	-1.132905
С	-4.291953	-1.570787	-1.100974	С	4.512565	1.457838	-0.743251
Н	-4.560258	-2.240278	-0.277159	н	4.674828	2.082178	0.142464
Н	-5.184601	-1.009073	-1.378372	Η	5.407536	0.852515	-0.886838
Н	-4.016743	-2.205465	-1.949875	н	4.418	2.132572	-1.600379
С	4.299095	-1.573366	-1.075954	С	-4.344643	1.613029	-1.00421
Н	4.570677	-2.202979	-0.222028	Η	-4.551836	2.293213	-0.170737
Н	4.037643	-2.247341	-1.8981	Η	-4.11078	2.237969	-1.872724
Н	5.186456	-1.012228	-1.370942	н	-5.262488	1.065834	-1.223822
С	4.301006	1.572904	-1.07068	С	-4.45173	-1.518379	-0.761185
Н	4.572678	2.199949	-0.214896	н	-4.6798	-2.070479	0.157106
Н	5.188033	1.011765	-1.366672	Η	-5.339493	-0.94738	-1.036483
Н	4.040645	2.249361	-1.891134	н	-4.276509	-2.264117	-1.543969
S	0.122591	-0.001102	2.757896	S	0.059994	0.050564	2.562135
Н	-1.201563	-0.003686	3.03103	Η	2.04397	2.252241	0.715725

		1 C				1d	
Atom	X	Y	Ζ	Atom	X	Y	Ζ
W	0.000002	0.340974	0.373607	W	0.000002	-0.6423	-0.002376
S	1.929569	1.388709	-0.707137	S	1.72734	-0.000199	1.566047
S	1.53217	-1.57437	0.166108	S	1.727529	0.010716	-1.566529
S	-1.532237	-1.574335	0.166252	S	-1.727505	0.010751	-1.566539
S	-1.929546	1.388708	-0.707162	S	-1.727328	-0.000179	1.566049
С	3.283242	0.235463	-0.831077	С	2.875448	1.010334	0.682678
С	3.113425	-1.03695	-0.436683	С	2.875067	1.01552	-0.675923
С	-3.113452	-1.036919	-0.436641	С	-2.875064	1.015525	-0.675927
С	-3.283233	0.23548	-0.831099	С	-2.875451	1.010332	0.682675
С	-4.535221	0.841905	-1.412178	С	-3.809729	1.808515	1.557343
Н	-4.88718	1.682257	-0.805339	Η	-4.123631	1.220818	2.423945
Η	-4.3526	1.231202	-2.419214	Η	-3.313991	2.707821	1.938692
Η	-5.348844	0.119328	-1.480371	Η	-4.705477	2.124135	1.021889
С	-4.141437	-2.139429	-0.480562	С	-3.807765	1.821191	-1.545127
Η	-4.325592	-2.543673	0.519892	Η	-4.141013	1.232358	-2.403866
Н	-5.095468	-1.795989	-0.880624	Η	-4.691665	2.155083	-1.001322
Η	-3.799154	-2.972771	-1.102243	Η	-3.302592	2.709761	-1.938925
С	4.141391	-2.139478	-0.480612	С	3.807755	1.821198	-1.545127
Н	4.325503	-2.543765	0.519832	Н	4.141014	1.232366	-2.403863
Η	3.799114	-2.972789	-1.102338	Η	3.302568	2.709758	-1.93893
Н	5.095442	-1.79604	-0.880627	Н	4.691649	2.155107	-1.001322
С	4.535262	0.841891	-1.412085	С	3.809706	1.808537	1.557348
Н	4.887223	1.6822	-0.805188	Н	4.123617	1.220848	2.423953
Н	5.34887	0.119298	-1.480295	Η	4.70545	2.124175	1.021897
Н	4.352679	1.231248	-2.419104	Н	3.313948	2.707834	1.938694
S	0.000042	0.778109	2.49055	S	-0.000025	-2.881367	-0.007583
Η	0.000003	2.0065	0.076555	Η	0.000009	1.127683	0.004181

		2a				2b	
Atom	X	Y	Ζ	Atom	Χ	Y	Z
W	-0.002603	-0.000106	0.39182	W	-0.035545	-0.016264	0.398187
S	1.628195	1.547824	-0.317411	S	-1.72822	-1.558984	-0.213871
S	1.626004	-1.548194	-0.322446	S	-1.622373	1.556679	-0.415073
S	-1.64748	-1.555854	-0.249963	S	1.737416	1.560695	-0.394695
S	-1.644823	1.556465	-0.25462	S	1.577979	-1.587776	-0.433535
С	3.141358	0.675105	-0.728859	С	-3.235589	-0.642222	-0.584919
С	3.140208	-0.675952	-0.731617	С	-3.187366	0.700281	-0.690235
С	-3.144138	-0.67442	-0.713664	С	3.279727	0.608554	-0.595353
С	-3.142902	0.676024	-0.715822	С	3.154709	-0.727362	-0.677942
С	-4.287253	1.576829	-1.111777	С	4.290417	-1.671686	-0.984211
Н	-4.553479	2.255054	-0.291826	Н	4.428641	-2.380078	-0.15918
Η	-4.011245	2.205369	-1.967523	Н	4.059375	-2.263452	-1.877623
Η	-5.1835	1.014528	-1.384122	Н	5.236907	-1.154507	-1.153849
С	-4.289919	-1.574401	-1.107397	С	4.505909	1.463784	-0.764814
Η	-4.556413	-2.25112	-0.286306	Н	4.679834	2.084703	0.123514
Н	-5.185663	-1.011404	-1.37997	Н	5.400343	0.857838	-0.922996
Η	-4.015268	-2.204512	-1.962439	Н	4.401239	2.144419	-1.618635
С	4.299456	-1.577371	-1.079377	С	-4.335757	1.621299	-1.0208
Н	4.565441	-2.217901	-0.229349	Н	-4.539155	2.310782	-0.191485
Н	4.04087	-2.243606	-1.911401	Н	-4.100913	2.239453	-1.896448
Н	5.191531	-1.014587	-1.364143	Н	-5.257989	1.07524	-1.234472
С	4.302192	1.576177	-1.07224	С	-4.448749	-1.51867	-0.778458
Н	4.568686	2.212511	-0.219213	Н	-4.682511	-2.073048	0.139392
Н	5.193584	1.013301	-1.358951	Н	-5.336076	-0.945135	-1.05768
Н	4.045097	2.24653	-1.901406	Н	-4.271013	-2.265206	-1.562709
S	0.112444	-0.000472	2.75668	S	0.062217	0.049707	2.569527
Η	-1.210444	-0.004548	3.030685	Н	2.039561	2.24351	0.729077
		2 C				2d	
------	-----------	------------	-----------	------	-----------	-----------	-----------
Atom	X	Y	Z	Atom	X	Y	Z
W	-0.001742	-0.327133	0.400458	W	0.000018	-0.635981	-0.000681
S	-1.915926	-1.400752	-0.68094	S	-1.724902	0.006722	-1.568486
S	-1.520963	1.581888	0.12679	S	-1.72792	0.000085	1.565975
S	1.569786	1.558931	0.221591	S	1.724903	0.003447	1.568297
S	1.8918	-1.396875	-0.714453	S	1.728092	0.003006	-1.566144
С	-3.265642	-0.248654	-0.854784	С	-2.880183	1.00737	-0.682306
С	-3.097564	1.037291	-0.484359	С	-2.881607	1.004477	0.681887
С	3.116916	1.01379	-0.456354	С	2.880214	1.00587	0.68421
С	3.255318	-0.260913	-0.876173	С	2.881492	1.005837	-0.680009
С	4.483399	-0.878068	-1.502557	С	3.819482	1.806271	-1.55263
Н	4.841383	-1.729672	-0.911613	Н	4.147698	1.21395	-2.413383
Η	4.263252	-1.254845	-2.508865	Н	3.319424	2.699929	-1.947013
Η	5.302899	-0.161056	-1.586363	Η	4.70862	2.134782	-1.010117
С	4.16241	2.102156	-0.526897	С	3.816793	1.806258	1.558455
Η	4.388308	2.492312	0.472623	Η	4.138578	1.215964	2.422974
Н	5.095325	1.742792	-0.965851	Н	4.709896	2.129245	1.019099
Η	3.808878	2.946955	-1.129849	Н	3.318229	2.703325	1.946986
С	-4.124621	2.141768	-0.570205	С	-3.819989	1.80266	1.556201
Н	-4.324834	2.566723	0.420645	Н	-4.145115	1.209466	2.4175
Η	-3.767496	2.961258	-1.20526	Н	-3.321593	2.697643	1.949693
Н	-5.071883	1.786484	-0.980931	Н	-4.711049	2.128722	1.015333
С	-4.515528	-0.86401	-1.437866	С	-3.816553	1.809537	-1.555086
Н	-4.880699	-1.685387	-0.809746	Н	-4.143604	1.218744	-2.417333
Η	-5.32185	-0.13401	-1.536607	Н	-4.706455	2.137421	-1.013454
Н	-4.318623	-1.282724	-2.432359	н	-3.315576	2.70368	-1.947197
S	-0.022954	-0.737897	2.524258	S	-0.000089	-2.873478	-0.002022
Η	-0.001759	-1.98585	0.159504	Η	0.000404	1.143542	0.001032

Atom	X	3a Y	Z	Atom	X	3b Y	Z
W	-0.003806	-0.000041	0.352635	W	0.042484	0.019567	0.39677
S	1.659081	1.592523	-0.327124	S	1.758558	1.598934	-0.204734
S	1.657097	-1.592665	-0.331422	S	1.621502	-1.591529	-0.466912
S	-1.673456	-1.598036	-0.256988	S	-1.784715	-1.613644	-0.367669
S	-1.671722	1.598527	-0.260645	S	-1.581075	1.614357	-0.483606
С	3.240082	0.675793	-0.700153	С	3.318721	0.632552	-0.57819
С	3.239163	-0.676688	-0.702194	С	3.258053	-0.70909	-0.710331
С	-3.240244	-0.675405	-0.689742	С	-3.378054	-0.598015	-0.588663
С	-3.239351	0.676381	-0.691792	С	-3.232351	0.73605	-0.692161
С	-4.392571	1.592214	-1.044214	С	-4.355561	1.707863	-0.989088
Η	-4.63749	2.25457	-0.202677	Η	-4.467159	2.42309	-0.163736
Η	-4.132942	2.235626	-1.895959	Η	-4.12545	2.288691	-1.89183
Η	-5.296516	1.032775	-1.306512	Η	-5.315862	1.205835	-1.140708
С	-4.394717	-1.590907	-1.038934	С	-4.612383	-1.456693	-0.719751
Н	-4.639533	-2.250864	-0.195482	Η	-4.79092	-2.040847	0.19428
Н	-5.298353	-1.031229	-1.301783	Η	-5.501906	-0.845617	-0.901069
Н	-4.136519	-2.236775	-1.889256	Н	-4.514482	-2.169076	-1.54977
С	4.406811	-1.592315	-1.004286	С	4.397889	-1.65253	-1.03245
Н	4.64239	-2.223959	-0.136639	н	4.578225	-2.348236	-0.200847
Н	4.169253	-2.265924	-1.838716	Н	4.163018	-2.261543	-1.916305
Н	5.310388	-1.032652	-1.267296	Н	5.331902	-1.115722	-1.230182
С	4.408884	1.59076	-0.99981	С	4.54072	1.514239	-0.730712
Н	4.644491	2.220656	-0.130909	н	4.761369	2.043378	0.206945
Н	5.312089	1.030661	-1.263178	н	5.430175	0.939744	-1.010741
Н	4.172574	2.266067	-1.833231	н	4.375868	2.280197	-1.501136
S	0.106356	0.00015	2.758169	S	-0.050878	-0.046123	2.598224
Η	-1.234205	-0.002898	3.081611	Н	-2.10505	-2.286035	0.787358

		3c				3d	
Atom	Χ	Y	Ζ	Atom	X	Y	Z
W	-0.002412	-0.298438	0.450806	W	0.000003	-0.654756	-0.002983
S	-1.920438	-1.473082	-0.644493	S	-1.747881	-0.012617	-1.604956
S	-1.5433	1.607154	0.056639	S	-1.746855	-0.022524	1.604372
S	1.619916	1.579425	0.200421	S	1.747216	-0.022958	1.604258
S	1.894638	-1.476333	-0.668852	S	1.747945	-0.012708	-1.605045
С	-3.315904	-0.294426	-0.90198	С	-2.913519	1.058126	-0.679419
С	-3.159637	1.011253	-0.58711	С	-2.913015	1.05409	0.686135
С	3.188921	0.978737	-0.542702	С	2.913049	1.054	0.686066
С	3.303792	-0.314628	-0.92245	С	2.913458	1.058204	-0.679496
С	4.508846	-0.977892	-1.559177	С	3.830583	1.873668	-1.56858
Н	4.878081	-1.802597	-0.934893	н	4.240942	1.253234	-2.375276
Н	4.251322	-1.401284	-2.539299	Н	3.282191	2.700593	-2.040423
н	5.331318	-0.270598	-1.703429	н	4.668146	2.302917	-1.010947
С	4.234616	2.066961	-0.685907	С	3.829713	1.864587	1.580217
н	4.489756	2.496349	0.291929	н	4.22625	1.244032	2.393568
н	5.154859	1.685504	-1.138262	Η	4.676992	2.28247	1.028541
н	3.862265	2.886591	-1.314779	Η	3.285313	2.699383	2.042852
С	-4.183977	2.118016	-0.738393	С	-3.829791	1.864577	1.580249
н	-4.398506	2.587921	0.230652	Η	-4.226291	1.243988	2.393591
н	-3.8133	2.905948	-1.407531	Η	-3.285499	2.699444	2.042882
н	-5.126409	1.742587	-1.148216	Η	-4.677089	2.282366	1.028527
С	-4.556459	-0.957076	-1.466278	С	-3.830958	1.873263	-1.568487
н	-4.925461	-1.739204	-0.789266	Η	-4.241057	1.252693	-2.375208
Н	-5.365375	-0.236489	-1.621289	Η	-4.668699	2.302149	-1.010839
н	-4.340763	-1.436255	-2.430662	Η	-3.282887	2.700425	-2.040291
S	-0.046752	-0.557941	2.628338	S	-0.000167	-2.918741	-0.003659
Η	-0.005481	-1.987291	0.416495	Η	0.000233	1.117936	0.004172

		4a				4b	
Atom	X	Y	Ζ	Atom	X	Y	Ζ
W	-0.003378	-0.000054	0.352915	W	0.038251	0.01834	0.379957
S	1.63978	1.580147	-0.324399	S	1.733652	1.587912	-0.215763
S	1.637837	-1.580238	-0.328834	S	1.620878	-1.581681	-0.434703
S	-1.657215	-1.585587	-0.250909	S	-1.74689	-1.591715	-0.388843
S	-1.655498	1.586079	-0.254073	S	-1.573739	1.606502	-0.461823
С	3.212233	0.674486	-0.698164	С	3.294548	0.638874	-0.564883
С	3.21134	-0.675281	-0.700212	С	3.243906	-0.701995	-0.679525
С	-3.21455	-0.674047	-0.684663	С	-3.344268	-0.604189	-0.581284
С	-3.213658	0.675108	-0.686556	С	-3.212421	0.729516	-0.668446
С	-4.358937	1.586421	-1.041379	С	-4.338528	1.692084	-0.93919
Н	-4.607456	2.246703	-0.201131	Н	-4.448846	2.390637	-0.101213
Η	-4.095317	2.229735	-1.89014	Η	-4.119549	2.289886	-1.831869
Н	-5.260526	1.027371	-1.308316	Н	-5.295211	1.185646	-1.092166
С	-4.361137	-1.585	-1.0362	С	-4.563687	-1.468656	-0.718873
Н	-4.609981	-2.242325	-0.19372	Н	-4.729293	-2.071758	0.183497
Н	-5.262218	-1.025707	-1.30433	Н	-5.459869	-0.863865	-0.881499
Н	-4.098775	-2.231336	-1.883046	Н	-4.464515	-2.162065	-1.562956
С	4.371599	-1.58652	-1.00277	С	4.384747	-1.636084	-0.986568
Н	4.608305	-2.216843	-0.136292	Н	4.56417	-2.323932	-0.150234
Н	4.132082	-2.259243	-1.835511	Н	4.158185	-2.251187	-1.866678
Н	5.273757	-1.027383	-1.267542	Н	5.315545	-1.095151	-1.182803
С	4.373538	1.58511	-0.998597	С	4.504176	1.523261	-0.719
Н	4.609725	2.214589	-0.131381	Н	4.71778	2.058787	0.215029
Н	5.275587	1.025526	-1.262804	Н	5.397392	0.953275	-0.992321
Н	4.135451	2.258659	-1.831098	Н	4.33617	2.282004	-1.493816
S	0.113404	-0.000069	2.730979	S	-0.06904	-0.051227	2.56618
Н	-1.226188	-0.002758	3.056606	Н	-2.051133	-2.303011	0.746048

		4c				4d	
Atom	X	Y	Z	Atom	X	Y	Z
W	-0.002028	-0.28494	0.454608	W	-0.002028	-0.28494	0.454608
S	-1.891947	-1.471011	-0.615906	S	-1.891947	-1.471011	-0.615906
S	-1.529918	1.593803	0.046951	S	-1.529918	1.593803	0.046951
S	1.602778	1.56681	0.182793	S	1.602778	1.56681	0.182793
S	1.86064	-1.472159	-0.653205	S	1.86064	-1.472159	-0.653205
С	-3.282341	-0.310938	-0.897192	С	-3.282341	-0.310938	-0.897192
С	-3.132021	0.995951	-0.596602	С	-3.132021	0.995951	-0.596602
С	3.159436	0.963728	-0.554562	С	3.159436	0.963728	-0.554562
С	3.267335	-0.330593	-0.92314	С	3.267335	-0.330593	-0.92314
С	4.460481	-1.000978	-1.554745	С	4.460481	-1.000978	-1.554745
Н	4.826429	-1.821959	-0.926154	Н	4.826429	-1.821959	-0.926154
Н	4.198619	-1.428704	-2.53021	Η	4.198619	-1.428704	-2.53021
Н	5.28527	-0.299188	-1.705224	Н	5.28527	-0.299188	-1.705224
С	4.202504	2.041162	-0.708562	С	4.202504	2.041162	-0.708562
Η	4.463804	2.474445	0.26432	Η	4.463804	2.474445	0.26432
Н	5.117894	1.653083	-1.162756	Н	5.117894	1.653083	-1.162756
Н	3.830613	2.857054	-1.340019	Н	3.830613	2.857054	-1.340019
С	-4.151295	2.092982	-0.767627	С	-4.151295	2.092982	-0.767627
Н	-4.376768	2.570379	0.19362	Н	-4.376768	2.570379	0.19362
Н	-3.775761	2.874124	-1.439637	Н	-3.775761	2.874124	-1.439637
Н	-5.087401	1.711276	-1.183481	Н	-5.087401	1.711276	-1.183481
С	-4.509161	-0.979669	-1.461876	С	-4.509161	-0.979669	-1.461876
Н	-4.87878	-1.757379	-0.782474	Н	-4.87878	-1.757379	-0.782474
Н	-5.319193	-0.264101	-1.627106	Н	-5.319193	-0.264101	-1.627106
н	-4.284795	-1.463638	-2.420266	н	-4.284795	-1.463638	-2.420266
S	-0.037493	-0.522209	2.623684	S	-0.037493	-0.522209	2.623684
Η	-0.004479	-1.973496	0.45519	Η	-0.004479	-1.973496	0.45519

5 a						
Atom	X	Y	Z			
W	-0.003888	-0.002781	0.431208			
S	1.630547	1.587125	-0.193672			
S	1.622205	-1.586344	-0.229331			
S	-1.649258	-1.593239	-0.154769			
S	-1.63836	1.596385	-0.162455			
С	3.109313	0.682917	-0.568804			
С	3.105744	-0.680345	-0.5842			
С	-3.118786	-0.676097	-0.551152			
С	-3.113482	0.686369	-0.556744			
С	-4.258672	1.449985	-0.899107			
С	-4.270532	-1.434186	-0.883283			
С	4.257968	-1.442205	-0.90564			
С	4.264665	1.44545	-0.878306			
S	0.13477	-0.011869	2.755254			
Ν	-5.194437	-2.081251	-1.145917			
Ν	-5.177586	2.099778	-1.172117			
Ν	5.192046	2.094324	-1.123465			
Ν	5.183305	-2.090338	-1.15981			
Η	-1.191352	-0.016035	3.022739			

		5b	
Atom	X	Y	Ζ
\mathbf{W}	-0.03688	-0.020278	0.430575
S	-1.662459	-1.586216	-0.35287
S	-1.694633	1.602961	-0.107737
S	1.614908	1.629071	-0.242223
S	1.741026	-1.617483	-0.32231
С	-3.165946	-0.661775	-0.579151
С	-3.179917	0.695626	-0.467759
С	3.119549	0.736131	-0.516031
С	3.254066	-0.61617	-0.482822
С	4.45845	-1.311702	-0.707627
С	4.255752	1.550851	-0.803614
С	-4.359675	1.459916	-0.651379
С	-4.3317	-1.409125	-0.881228
S	0.018015	-0.128739	2.566461
Ν	5.15601	2.237525	-1.036325
Ν	5.43185	-1.918428	-0.874931
Ν	-5.26702	-2.048075	-1.125237
Ν	-5.305484	2.113583	-0.794646
Η	2.04845	-2.247707	0.831944

		6a	
Atom	X	Y	Z
S	-1.651031	-1.536984	-0.001938
S	-1.606707	1.549053	-0.046221
S	1.66226	1.543039	0.076818
S	1.619278	-1.55263	-0.045612
С	-3.1546	-0.655472	-0.448152
С	-3.131581	0.693753	-0.477432
С	3.15714	0.668443	-0.423107
С	3.136902	-0.679154	-0.479083
S	-0.106308	-0.046912	3.053613
С	-4.340345	-1.542176	-0.805501
С	-4.780599	-2.427134	0.376427
С	-4.078927	-2.393678	-2.062867
Н	-5.182354	-0.885654	-1.037753
Н	-5.00507	-1.82244	1.259348
Н	-5.680757	-2.990485	0.111989
Н	-4.001253	-3.144323	0.647171
Н	-3.805386	-1.765086	-2.914617
Н	-3.269188	-3.108306	-1.896149
Н	-4.978137	-2.957121	-2.330433
С	-4.284207	1.600752	-0.888163
С	-3.989436	2.359621	-2.196651
С	-4.694061	2.574661	0.232844
Н	-5.149505	0.962107	-1.081412
Н	-3.742731	1.667121	-3.005963
Н	-4.864847	2.941358	-2.501431
Н	-3.150573	3.049339	-2.074197
н	-4.935608	2.036897	1.153727
Н	-3.893172	3.284313	0.455875
Н	-5.577146	3.146198	-0.068916
С	4.331016	1.564646	-0.79631
С	4.771526	2.472101	0.367877
С	4.048067	2.394735	-2.063693
H	5.179171	0.915128	-1.026049
H	5.007634	1.88405	1.258968
H	5.665232	3.037853	0.087211
H	3.988983	3.187855	0.632528
H	3.780101	1.74988	-2.905002
H	3.226672	3.09707	-1.901005
H	4.935475	2.970163	-2.344996
C	4.289138	-1.57589	-0.912728
C	3.97484	-2.350338	-2.207209
C	4.73475	-2.5348	0.207963
H	5.142418	-0.929345	-1.131364
H	3.696369	-1.669103	-3.015785
H	4.852566	-2.919425	-2.528754
H	3.151468	-3.053322	-2.058735
H	4.996131	-1.984805	1.116154
H	3.944309	-3.246685	0.459506
H	5.6136	-3.104331	-0.109597
VV	0.002981	-0.009075	0.679686
H	1.21736	0.013157	3.321122

	5c							
Atom	X	Y	Z					
W	-0.000228	-0.40166	0.373759					
S	-1.981846	-1.511687	-0.545852					
S	-1.513475	1.573429	0.174117					
S	1.516647	1.572093	0.182524					
S	1.98095	-1.511835	-0.547463					
С	-3.287625	-0.331498	-0.627972					
С	-3.07966	0.978682	-0.317427					
С	3.080902	0.977349	-0.314479					
С	3.287404	-0.332209	-0.628823					
С	4.545555	-0.821274	-1.065725					
С	4.117925	1.946355	-0.40235					
С	-4.11605	1.948261	-0.405681					
С	-4.546778	-0.820756	-1.061884					
S	-0.001978	-0.781147	2.466725					
Ν	4.950906	2.747056	-0.46544					
Ν	5.561404	-1.244981	-1.425186					
Ν	-5.563377	-1.244652	-1.41897					
Ν	-4.94859	2.749401	-0.469129					
Η	-0.000299	-2.048002	0.058129					

			6c	
	Atom	Х	Y	Z
7	S	-1.908013	-1.590384	-0.22527
7	S	-1.539964	1.461546	0.189624
)	S	1.539872	1.461557	0.189441
5	S	1.90805	-1.590375	-0.225208
	C	-3.277773	-0.486814	-0.542292
)	C	-3.1175	0.837563	-0.349597
3	C	3.117502	0.837586	-0.34953
3	C	3.277827	-0.486796	-0.542139
2	S	0.000033	-0.497851	2.853866
L	C	-4.546287	-1.179802	-1.027943
-	Ċ	-5.148043	-2.113373	0.040204
}	Č	-4.338896	-1.926072	-2.359974
)	H	-5.285748	-0.398898	-1.217847
	н	-5.333854	-1.575087	0.073421
}	Н	-6.000341	-2.524558	-0.311125
)	н	-4.479633	-2.040804	0.250504
, L	Н	-3.030070	-1.258459	-3.12785
)	Н	-3.645614	-2.763046	-2.244995
,)	Н	-5.202388	-2.325327	-2.71860
7	C	-4.168717	1.914427	-0.598079
L	Č	-3.787264	2.84791	-1.76316
	Ċ	-4.498049	2.722168	0.67132
2	Ĥ	-5.086855	1.401186	-0.801158
}	Н	-3.587342	2.278748	-2.674876
)	Н	-4.605084	3.545033	-1.969155
}	H	-2.895426	3.433904	-1.527189
5	Н	-4.795023	2.063897	1.492089
)	н	-3.639045	3.310678	1.003428
2	Η	-5.323546	3.412322	0.472584
3	С	4.168695	1.914469	-0.598028
8	С	4.497701	2.722568	0.671222
Ĺ	С	3.787403	2.84762	-1.763433
3	Η	5.086938	1.401224	-0.890772
)	Н	4.79451	2.064535	1.492243
)	Н	5.323223	3.41269	0.472482
L.	Н	3.638608	3.311146	1.002977
L	Η	3.58777	2.278208	-2.675055
2	Н	2.895429	3.433549	-1.527807
3	Η	4.605175	3.544806	-1.969406
L	С	4.546382	-1.179774	-1.027691
2	С	4.33913	-1.925788	-2.35989
5	С	5.147933	-2.113575	0.040367
ŀ	Н	5.285921	-0.39888	-1.217332
7	н	3.939522	-1.257992	-3.127715
ł	Η	5.292629	-2.325104	-2.71852
5	н	3.645722	-2.762693	-2.245161
)	Н	5.333586	-1.575487	0.97373
5	Н	4.479487	-2.950141	0.259468
3	Н	6.099291	-2.524685	-0.310884
3	W	0.000003	-0.38579	0.688373
2	Н	-0.000009	-2.05899	0.656542

	6b	
	Y	Ζ
6701	1.554067	-0.183727
3849	-1.55048	-0.009107
3504	-1.570749	-0.181016
3503	1.571394	-0.116565
4316	0.702465	-0.497472
0110	0 600000	0 400616

Atom	X	Y	Z
S	1.616701	1.554067	-0.183727
Š	1.718849	-1.55048	-0.009107
S	-1.583504	-1.570749	-0.181016
S	-1.73503	1.571394	-0.116565
Č	3.184316	0.702465	-0.497472
Č	3.232112	-0.639329	-0.400616
С	-3.163447	-0.70934	-0.441468
C	-3.289004	0.624312	-0.348623
S	-0.023196	0.033271	2.825932
С	4.346163	1.619554	-0.855461
С	4.708653	2.584983	0.289599
С	4.100457	2.391404	-2.166388
Η	5.222188	0.987973	-1.02299
Н	4.920467	2.038647	1.212776
Η	5.597783	3.166838	0.026918
Η	3.893919	3.285071	0.491319
Η	3.885277	1.7071	-2.991684
Н	3.257154	3.07983	-2.070029
Η	4.986255	2.976809	-2.432092
С	4.460561	-1.511612	-0.625247
С	4.297644	-2.459449	-1.829414
С	4.861179	-2.296027	0.639015
Η	5.295647	-0.846777	-0.859583
Η	4.050115	-1.903314	-2.737768
Η	5.22874	-3.006276	-2.008399
Η	3.504884	-3.191079	-1.654723
Η	5.017595	-1.623399	1.486765
Η	4.090226	-3.018365	0.919079
Η	5.79185	-2.84506	0.464372
С	-4.319448	-1.641564	-0.79013
С	-4.634338	-2.626932	0.350553
С	-4.080934	-2.384437	-2.118701
H	-5.209805	-1.025478	-0.931873
H	-4.833421	-2.097257	1.285999
H	-5.521133	-3.215605	0.097936
H	-3.805353	-3.317371	0.520954
H	-3.880624	-1.683011	-2.93301
H	-3.234638	-3.070806	-2.045592
H	-4.969411	-2.965821	-2.382108
C	-4.52827	1.476709	-0.567821
C	-4.48932	2.230169	-1.911702
C	-4.810074	2.442901	0.599045
H	-5.375155	0.788227	-0.607334
H	-4.363798	1.537277	-2.747307
H	-5.421969	2.781873	-2.061504
H	-3.666621	2.949775	-1.940855
H U	-4.014571	1.918772	1.558369
п	-4.073998	3.25047	0.050905
	-5.789702	2.909178	0.403758
VV TT	0.04156	-0.015944	0.047018
п	-2.015881	2.100/22	1.049042

		7a				7 b	
Atom	Χ	Y	Ζ	Atom	Χ	Ŷ	Z
Мо	-0.00203	0.000702	0.511556	Мо	-0.047901	-0.016025	0.570579
S	-1.633617	-1.552833	-0.196607	S	-1.684155	-1.566409	-0.191244
S	-1.624008	1.55425	-0.217737	S	-1.572276	1.56565	-0.354899
S	1.630828	1.547457	-0.217169	S	1.805005	1.540404	0.042668
S	1.621118	-1.549893	-0.231067	S	1.583987	-1.604094	-0.260234
С	-3.109618	-0.672813	-0.683368	С	-3.153172	-0.638661	-0.640931
С	-3.104999	0.67599	-0.693364	С	-3.102317	0.702334	-0.730618
С	3.113226	0.67144	-0.682599	С	3.207382	0.611445	-0.639445
С	3.108354	-0.678019	-0.690111	С	3.100738	-0.726026	-0.662573
S	0.076443	0.004018	2.898124	S	-0.125776	0.024227	2.737675
С	4.250889	-1.574419	-1.096357	С	4.21774	-1.653744	-1.069392
Η	5.130745	-1.009176	-1.404941	Η	5.130657	-1.12301	-1.338152
Н	4.546918	-2.227809	-0.269259	Η	4.452184	-2.341429	-0.251261
Η	3.959023	-2.22385	-1.927889	Η	3.91113	-2.264958	-1.923215
С	4.262339	1.564471	-1.077649	С	4.379139	1.473759	-1.018199
Η	5.139787	0.996835	-1.388682	Н	5.193254	0.883772	-1.438575
Η	3.976908	2.223376	-1.903943	Н	4.090631	2.217417	-1.76943
Η	4.559783	2.208364	-0.243637	Н	4.767676	2.022294	-0.15404
С	-4.242815	1.57119	-1.115298	С	-4.229875	1.616319	-1.138227
Η	-5.130084	1.005941	-1.401867	Η	-5.126714	1.06614	-1.42552
н	-4.526115	2.249544	-0.304071	н	-4.50048	2.295351	-0.322499
Η	-3.952001	2.195318	-1.966531	Η	-3.934057	2.241603	-1.987318
С	-4.253203	-1.566503	-1.092865	С	-4.353208	-1.50815	-0.921155
Η	-5.141727	-0.999974	-1.372978	Η	-5.210817	-0.931903	-1.270325
н	-3.971447	-2.193847	-1.944866	н	-4.120594	-2.259039	-1.683478
Η	-4.530923	-2.241746	-0.277227	н	-4.659673	-2.052738	-0.021548
Н	-1.252875	-0.008482	3.141487	Η	1.511544	2.299453	-1.039175

	7 c							
Atom	X	Y	Z					
Мо	0.00169	-0.313309	0.500653					
S	1.541181	1.548198	0.076144					
S	1.887584	-1.496856	-0.515696					
S	-1.8619	-1.495011	-0.552597					
S	-1.588027	1.532264	0.17131					
С	3.108396	0.928995	-0.48171					
С	3.257472	-0.380627	-0.745944					
С	-3.2461	-0.394085	-0.767454					
С	-3.126329	0.907746	-0.452432					
S	0.020703	-0.610342	2.635632					
С	-4.18929	1.967496	-0.60708					
Н	-5.117667	1.558015	-1.005267					
Н	-4.414128	2.438525	0.354863					
Н	-3.853362	2.760076	-1.283086					
С	-4.468956	-1.077254	-1.32748					
Н	-5.293798	-0.379551	-1.474144					
Н	-4.249295	-1.544224	-2.292947					
Н	-4.816116	-1.870625	-0.657837					
С	4.501329	-1.059833	-1.262407					
Н	5.314792	-0.352013	-1.423568					
н	4.853493	-1.821262	-0.559163					
Н	4.304334	-1.566189	-2.212824					
С	4.153821	2.003204	-0.653119					
Н	5.096226	1.598906	-1.022706					
Н	3.815043	2.767579	-1.359574					
Н	4.353657	2.508829	0.296797					
Н	0.001115	-1.96501	0.361089					