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Chromatin accessibility underlies
synthetic lethality of SWI/SNF subunits in
ARID1A-mutant cancers
Timothy W R Kelso1, Devin K Porter1, Maria Luisa Amaral2, Maxim N Shokhirev2,
Christopher Benner3, Diana C Hargreaves1*

1Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies,
California, United States; 2The Razavi Newman Integrative Genomics and
Bioinformatics Core Facility, Salk Institute for Biological Studies, California, United
States; 3Department of Medicine, University of California San Diego, California,
United States

Abstract ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, is frequently

mutated in cancer. Deficiency in its homolog ARID1B is synthetically lethal with ARID1A mutation.

However, the functional relationship between these homologs has not been explored. Here, we use

ATAC-seq, genome-wide histone modification mapping, and expression analysis to examine

colorectal cancer cells lacking one or both ARID proteins. We find that ARID1A has a dominant role

in maintaining chromatin accessibility at enhancers, while the contribution of ARID1B is evident only

in the context of ARID1A mutation. Changes in accessibility are predictive of changes in expression

and correlate with loss of H3K4me and H3K27ac marks, nucleosome spacing, and transcription

factor binding, particularly at growth pathway genes including MET. We find that ARID1B

knockdown in ARID1A mutant ovarian cancer cells causes similar loss of enhancer architecture,

suggesting that this is a conserved function underlying the synthetic lethality between ARID1A and

ARID1B.

DOI: https://doi.org/10.7554/eLife.30506.001

Introduction
Mutations in ARID1A have recently been identified in diverse cancer types, including ovarian, endo-

metrial, and colorectal cancer (Kadoch et al., 2013). The ARID1A protein is the largest subunit of

the multi-protein SWI/SNF chromatin remodeling complex, with two mammalian homologs, ARID1B

and ARID2, also found in this complex; ARID1A and ARID1B associate with the BAF complex, and

ARID2 with the PBAF complex (Wang et al., 1996). Interestingly, compared to ARID1A, mutations

in ARID1B and ARID2 are rare in cancer, apart from in neuroblastoma and hepatocellular carcinoma

(Fujimoto et al., 2012; Sausen et al., 2013). ARID1A and ARID1B are often co-expressed and are

mutually exclusive in the SWI/SNF complex (Wang et al., 2004), with each containing an ARID

domain considered to facilitate non-specific DNA binding (Chandler et al., 2013; Wilsker et al.,

2004). ARID1B is synthetic lethal with ARID1A mutation in cancer cell lines and fibroblasts, consis-

tent with the presence of intact ARID1B-containing complexes (Helming et al., 2014; Mathur et al.,

2017). The reason for the selectivity for ARID1A mutations in cancer is not understood, and the func-

tional basis for the synthetic lethal relationship between ARID1A and ARID1B has not yet been

determined.

SWI/SNF chromatin remodeling complexes disrupt DNA-histone contacts to rearrange the nucle-

osome landscape, utilizing energy from ATP hydrolysis to remodel nucleosomes in vitro (Côté et al.,

1994; Imbalzano et al., 1994; Kwon et al., 1994; Owen-Hughes et al., 1996; Pazin et al., 1994;
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Whitehouse et al., 1999) and in vivo (Bao et al., 2015; Bossen et al., 2015; John et al., 2008;

Takaku et al., 2016; Weinmann et al., 1999). Bound extensively across the genome at promoters

and enhancers, these complexes can both activate and repress gene expression (Ho et al., 2009),

and ARID proteins can have cooperative and antagonistic roles in expression, with frequent instan-

ces of co-binding at promoters and enhancer elements (Raab et al., 2015).

A recent study by Mathur and colleagues characterized SWI/SNF genomic occupancy in HCT116

colorectal carcinoma cells with wild-type ARID1A or homozygous truncating ARID1A mutations

(Mathur et al., 2017). Despite widespread binding of SWI/SNF to promoters and enhancers,

removal of ARID1A caused specific loss of the complex at enhancers of developmental genes, with

the H3K27ac mark of active enhancers diminished at these sites. Similarly, in demonstrating that loss

of ARID1A can initiate neoplastic transformation in non-tumorigenic cells, Lakshminarasimhan and

colleagues identified a small number of changes in gene expression, which correlated with altera-

tions in histone modifications but no significant change in accessibility at transcription start sites

(TSSs) or CTCF insulator sites (Lakshminarasimhan et al., 2017). To date, the in vivo role of ARID

proteins in chromatin remodeling at a genome-wide level has not been directly explored.

To study this question, we made use of isogenic wild-type and ARID1A homozygous mutant

HCT116 lines. We further subjected these lines to ARID1B knockdown to study the role of ARID1B in

the ARID1A wild-type and mutant context. We performed the Assay for Transposase Accessible

Chromatin with high-throughput sequencing (ATAC-seq) to assess genome-wide changes in DNA

accessibility, which provides a direct measure of chromatin remodeling activity by SWI/SNF com-

plexes (Buenrostro et al., 2013). We find that loss of ARID1A in wild-type HCT116 cells results in

dramatic changes in chromatin accessibility, while ARID1B knockdown has no effect. In contrast,

ARID1B knockdown in ARID1A mutant cells results in further up or down-regulation of accessibility

at ARID1A-dependent and unique sites. Regions sensitive to ARID1A or ARID1B loss are predomi-

nantly found at enhancers and distal regulatory sites, where ARID1A and ARID1B are required for

the maintenance of active enhancer histone marks. Additionally, ARID1A and ARID1B are critical for

the binding of AP-1 family members at enhancers, consistent with diminished nucleosome spacing

around AP-1 motifs upon loss of ARID1A and ARID1B. These alterations are highly correlated with

changes in gene expression upon loss of one or both ARID proteins and we observe significant

changes in the expression of genes encoding signaling intermediates in cell growth and adhesion,

including MET. Applying similar techniques in a naturally occurring ARID1A-mutant ovarian cancer

cell line, we find that knockdown of ARID1B results in loss of accessibility and active histone marks

around AP-1 motifs at enhancers, suggesting a common mechanistic function for ARID proteins

across cancer types. Our results demonstrate a role for ARID1A and ARID1B in maintaining chroma-

tin accessibility and define nucleosome remodeling as a critical function underlying the tumor sup-

pressor role of ARID1A and the synthetic lethal relationship of ARID1A and ARID1B.

Results

ARID1A and ARID1B have unique functional roles in the maintenance of
chromatin accessibility
We employed isogenic HCT116 colorectal carcinoma cells that are wild-type for ARID1A (WT) or

engineered for homozygous ARID1A protein loss (ARID1A-/-) by introduction of an early stop codon

(Q456*) by gene trap (Horizon Discovery). We further infected these lines with vectors for shRNA

knockdown of ARID1B (ARID1B KD) or a scrambled control (WT or ARID1A-/-). We performed two

independent lentiviral infections as biological replicates to control for viral integration. As expected,

ARID1A protein was abundantly expressed in WT HCT116 cells and completely absent in ARID1A-/-

HCT116 cells (Figure 1—figure supplement 1A). Knockdown of ARID1B resulted in a 70–90%

reduction in normal protein levels in both WT and ARID1A-/- HCT116 cells compared to a scrambled

control (Figure 1—figure supplement 1B). We analyzed chromatin accessibility in these cells using

ATAC-seq (Buenrostro et al., 2013). Loss of ARID1A in WT HCT116 cells dramatically altered over-

all chromatin accessibility, resulting in thousands of increased and decreased sites, while ARID1B KD

surprisingly had no effect (Figure 1A). In contrast, ARID1B KD in ARID1A-/- HCT116 cells resulted in

hundreds of changed sites, primarily at regions where accessibility was lost (Figure 1A). These

results are consistent with the synthetic lethal relationship observed for ARID1A and ARID1B in
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Figure 1. ARID1A and ARID1B have unique and shared roles in the maintenance of chromatin accessibility. (A) Differential peak calls from ATAC-seq in

HCT116 WT cells expressing shRNAs to scrambled control (WT) or ARID1B (ARID1B KD), or HCT116 ARID1A-/- cells expressing shRNAs to scrambled

control (ARID1A-/-) or ARID1B (ARID1A-/- ARID1B KD). These cells were validated for the expression, complex association, and function of ARID1A and

ARID1B (Figure 1—figure supplement 1A–D). Blue and red dots represent differential ATAC-seq peaks whose read density increased or decreased by

Figure 1 continued on next page
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cancer cell proliferation (Helming et al., 2014; Mathur et al., 2017). Indeed, ARID1B loss had no

effect on WT HCT116 cells but strongly repressed proliferation of ARID1A-/- HCT116 cells (Fig-

ure 1—figure supplement 1C). Overall, deficiency in both ARID1A and ARID1B led to decreased

accessibility at 12,623 sites (12.5%) and increased accessibility at 5264 (5.2%) of 101,140 total acces-

sible sites (Figure 1A, Figure 1—figure supplement 2A). We observed high correlation between

biological replicates for all cell genotypes (Figure 1—figure supplement 2B) and our ATAC-seq

accessibility patterns were consistent with the DNAseI hypersensitive profile of HCT116 cells from

the ENCODE project (Figure 1—figure supplement 2C). Semi-quantitative measurements revealed

that ARID1A is approximately 7-fold more abundant than ARID1B in WT HCT116 cells (data not

shown). However, loss of ARID1A did not affect ARID1B transcript levels (Figure 1B) or protein

abundance by western blot (Figure 1C), indicating that the effect of ARID1B KD in ARID1A-/-

HCT116 cells is not due to compensatory upregulation of ARID1B. Our results suggest that loss of

ARID1A and ARID1B predominantly represses accessibility at thousands of sites, implying an impor-

tant role for these factors in maintaining open chromatin.

To explore how accessible sites are controlled by different ARID subunits, we clustered peaks

from WT, ARID1A-/- and ARID1A-/- ARID1B KD HCT116 cells based on peak width and ARID1A

dependence (Figure 1D). This generated 7 clusters that displayed distinct changes in accessibility

caused by loss of ARID1A and ARID1B (Figure 1E). As shown, ARID1B knockdown had a negligible

effect on accessibility in WT HCT116 cells for any cluster. Clusters 1–3 exhibit increased accessibility

upon loss of ARID1A alone or both ARID1A and ARID1B; sites in Cluster 1 gain accessibility in

ARID1A-/- ARID1B KD cells, sites in Cluster 2 gain accessibility in ARID1A-/- cells, but lose this acces-

sibility upon ARID1B knockdown, and sites in Cluster 3 gain accessibility in ARID1A-/- cells, which is

maintained with ARID1B knockdown. In contrast, Clusters 4 and 6 contain sites that lose accessibility,

with unique dependence on ARID1A alone or in combination with ARID1B. Specifically, accessibility

at Cluster 4 sites is dramatically reduced in ARID1A-/- HCT116 cells, with minimal further reduction in

ARID1A-/- ARID1B KD cells, while accessibility at Cluster 6 sites is slightly reduced in ARID1A-/- cells,

and this residual accessibility is completely ARID1B-dependent. Accessible sites in Clusters 5 and 7

are primarily unchanged. Overall, our data demonstrate that ARID1A and ARID1B regulate chroma-

tin accessibility at shared and unique sites across the genome. ARID1A affects a greater proportion

Figure 1 continued

1.5 fold or more (FDR < 0.05), respectively, in two independent biological replicates. Numbers in the upper left and lower right corners refer to

numbers of called peaks increased or decreased in accessibility. Percent of changed sites was calculated from total number of accessible sites

(Figure 1—figure supplement 2A). Replicate experiments showed strong correlation (Figure 1—figure supplement 2B) and overlap with DNAseI

Hypersensitivity data (Figure 1—figure supplement 2C). (B) FPKM expression of ARID1A and ARID1B quantified by RNA-seq of two biological

replicates from wild-type (WT) and ARID1A-/- (ARID1A-/-) HCT116 cells. (C) ARID1B protein expression in wild-type (WT) and ARID1A-/- (ARID1A-/-)

HCT116 cells expressing shRNAs to scrambled control (scr) or ARID1B (KD1, KD2). ARID1B levels are quantified relative to TBP control (Figure 1—

figure supplement 1B). Values shown are averages from three biological replicates where error bars indicate standard deviation. (D) k-means clustering

analysis of ATAC-seq read density (log2) from WT, ARID1B KD, ARID1A-/-, and ARID1A-/- ARID1B KD HCT116 cells. Reads are centered on the middle

of the accessible peak ±0.5 kb. (E) Average ATAC-seq read density in WT, ARID1B KD, ARID1A-/-, and ARID1A-/- ARID1B KD HCT116 cells centered on

accessible peaks from Clusters 1–7. (F) Fold change in RNA expression relative to WT HCT116 cells for the top 25% of expressed genes nearest to

called accessible peaks from Clusters 1–7. Ns, not significant; *p<0.05; **p<0.01; ***p<0.001, ****p<0.0001. Gene Set Enrichment analysis of hallmark

gene sets was performed on annotated sites from Clusters 1–7 (Figure 1—figure supplement 3).

DOI: https://doi.org/10.7554/eLife.30506.002

The following source data and figure supplements are available for figure 1:

Source data 1. ARID1B protein expression in WT and ARID1A-/- HCT116 cells with ARID1B knockdown.

DOI: https://doi.org/10.7554/eLife.30506.006

Source data 2. Proliferation of WT and ARID1A-/- HCT116 cells with ARID1B knockdown.

DOI: https://doi.org/10.7554/eLife.30506.007

Figure supplement 1. Knockdown of ARID1B is synthetically lethal with ARID1A deletion in HCT116 cells.

DOI: https://doi.org/10.7554/eLife.30506.003

Figure supplement 2. Quality control of ATAC-seq datasets.

DOI: https://doi.org/10.7554/eLife.30506.004

Figure supplement 3. Hierarchical clustering of enrichment p-values (loge) using Gene Set Enrichment Analysis (GSEA) with Hallmark gene sets.

DOI: https://doi.org/10.7554/eLife.30506.005
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of total accessible regions and maintains open chromatin in ARID1B-deficient cells, whereas ARID1B

has a significant function only when ARID1A is lost.

Strikingly, ATAC-seq Clusters positively correlated with significant changes in RNA expression by

RNA-seq (Figure 1F), highlighting the importance of accessibility in regulating gene transcription.

We subjected annotated sites from each cluster group to hierarchical clustering of Hallmark gene

sets following Gene Set Enrichment Analysis (Liberzon et al., 2015). We found that Clusters 2, 4,

and 6 grouped together, consistent with downregulation in ARID1A-/- ARID1B KD cells. These Clus-

ters were enriched for genes involved in KRAS signaling, TNFa signaling via NF-kB, estrogen

response, TGFb signaling, Hedgehog signaling, and epithelial mesenchymal transition (Figure 1—

figure supplement 3). Notably, HCT116 cells have activating mutations in KRAS and PIK3CA, which

share common targets with these gene sets through activation of PI3K/Akt/mTOR, MAPK, and NF-k

B pathways that regulate cell cycle progression and proliferation. Clusters 1 and 3 clustered together

with prominent enrichment in Hypoxia, while Clusters 5 and 7 were enriched for housekeeping pro-

cesses, including metabolic and protein homeostasis. These data demonstrate that ARID1A and

ARID1B specifically regulate chromatin accessibility and expression of genes that may be crucial for

the observed synthetic lethality in HCT116 colorectal cancer cells.

Requirement for ARID1A or ARID1B is determined by SWI/SNF
complex occupancy
To determine whether accessible sites are enriched for SWI/SNF complex occupancy, we overlapped

our ATAC-seq data with binding of SMARCA4 or SMARCC1 subunits from ChIP-seq experiments in

HCT116 cells (Mathur et al., 2017). We found that the majority of SMARCA4 and SMARCC1 bind-

ing occurred in accessible regions (Figure 2A), consistent with previous reports showing strong over-

lap between chromatin remodelers and DNA accessibility (Bao et al., 2015; Morris et al., 2014).

Strikingly, SMARCA4 and SMARCC1 binding in WT HCT116 cells was preferentially enriched at

decreased sites in Clusters 4 and 6, indicating that SWI/SNF occupancy is a key determinant for sen-

sitivity to ARID1A/1B loss (Figure 2B). Previous reports have shown that while the majority of SWI/

SNF complex binding sites are lost in ARID1A-/- HCT116, residual ARID1B-containing complexes are

intact in ARID1A-/- HCT116 cells (Figure 1—figure supplement 1D) and likely contribute to stable

and gained SWI/SNF binding in ARID1A-/- HCT116 cells (Mathur et al., 2017). To determine if

changes in SWI/SNF complex binding are predictive of changes in accessibility, we categorized

SMARCA4 and SMARCC1 sites that are lost, gained, or unchanged in ARID1A-/- HCT116 cells

according to accessibility cluster (Figure 2C). Of the small number of gained SWI/SNF binding sites,

the majority are found in Clusters 2 and 3, consistent with a role for SWI/SNF complexes in opening

chromatin. Sites that lose SWI/SNF binding fall within Clusters 4 and 6, while stable sites are

enriched in Clusters 4, 6 and 7 (Figure 2C). Thus, changes in SWI/SNF complex binding correlate

with changes in accessibility in WT versus ARID1A-/- HCT116 cells. Furthermore, the residual binding

of SWI/SNF complexes was predictive of ARID1B dependence in ARID1A-/- HCT116 cells. For exam-

ple, while SWI/SNF binding is dramatically reduced at Cluster 4 sites in ARID1A-/- HCT116 cells,

there is residual binding of SMARCA4 and SMARCC1 at Cluster 6 sites, consistent with a require-

ment for both ARID1A and ARID1B (Figure 2B). Genome-wide, we find that accessibility at

SMARCA4 or SMARCC1-bound accessible sites is highly sensitive to loss of both proteins

(Figure 2D). These data indicate that dependency on ARID1A or ARID1B is determined by SWI/SNF

complex binding in WT and ARID1A-/- HCT116 cells, respectively. Increased accessible sites gain

SWI/SNF complex binding in ARID1A-/- HCT116 cells, while decreased accessible sites have the

highest enrichment of SWI/SNF complex binding in both settings. This characteristic may engender

these sites as particularly vulnerable to loss of ARID1A or ARID1B.

ARID1A/1B-dependent accessible sites are primarily located in
enhancers
To gain a clearer picture of how ARID1A- and ARID1B-dependent accessible sites are distributed

across the genome, we examined the overlap of Clusters 1–7 with ChIP-seq peak calling of histone

modifications (Figure 3A). Strikingly, we observed that decreased accessible sites in Clusters 4 and

6 are highly enriched for H3K4me and H3K27ac enhancer marks, but depleted for promoter-specific

H3K4me3, suggesting that loss of ARID1A/1B primarily affects accessibility at enhancers. In contrast,
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increased accessible sites in Clusters 1 and 3 and unchanged sites in Clusters 5 and 7 were enriched

for H3K4me3 found at promoters (Figure 3A and B). None of the clusters is enriched for

H3K27me3, consistent with little overlap of this repressive mark with accessible chromatin. We then

examined whether the requirement for ARID1A/1B-dependent remodeling is associated with

enhancer activity. Specifically, H3K27ac has been used to distinguish poised enhancers (H3K27ac-)

from active enhancers (H3K27ac+) and super enhancers (H3K27ac high) (Rada-Iglesias et al., 2011;

Whyte et al., 2013). Based on these criteria, we find that sites with decreased accessibility in

ARID1A-/- ARID1B KD HCT116 cells are enriched at all three enhancer classes, but primarily at

poised and active enhancers, while increased accessible sites are enriched at promoters and 5’

untranslated regions (Figure 3B and C). We then profiled nascent transcription at distal sites or pro-

moters against the change in accessibility in WT versus ARID1A-/- ARID1B KD HCT116 cells by

referencing published GRO-seq data in HCT116 cells (GSE38140, Galbraith et al., 2013)
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accessible sites.

DOI: https://doi.org/10.7554/eLife.30506.008
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Figure 3. ARID1A/1B maintain accessibility at enhancers. (A) Proportion of accessible sites in Clusters 1–7 that directly overlap with ChIP-seq regions

for histone 3 lysine 27 acetylation (H3K27ac), histone 3 lysine 4 monomethylation (H3K4me), histone 3 lysine 4 trimethylation (H3K4me3), and histone 3

lysine 27 trimethylation (H3K27me3) in WT HCT116 cells. Overlaps �0.5 were marked in red; overlaps �0.1 were marked in blue. Intergenic GRO-seq

signal at Clusters 1–7 reveals bi-directional transcription at accessible sites (Figure 3—figure supplement 1). (B) Percent of unchanged, increased, and

Figure 3 continued on next page
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(Figure 3D). Nascent transcription giving rise to enhancer RNAs (eRNAs) has been observed at

active enhancers and is thought to facilitate gene transcription through direct and indirect mecha-

nisms (Arner et al., 2015; Hah et al., 2013; Maruyama et al., 2014; Mousavi et al., 2013). As

observed, ARID1A/1B-dependent decreased accessible sites exhibit high levels of SMARCA4 and

SMARCC1 binding, as well as strong enrichment for H3K4me and H3K27ac marks (Figure 3D). In

addition, downregulated sites are enriched for nascent transcription, indicating that ARID1A/1B loss

impacts accessibility at actively transcribing enhancers. After parsing intergenic sites in Clusters 1–7,

we found that Cluster 6 intergenic regions have higher levels of nascent transcription than Cluster 4

sites, consistent with the notion that Cluster 4 sites are less active than Cluster 6 sites (Figure 3—fig-

ure supplement 1). Sensitivity at these sites may be due to their stronger dependence on the SWI/

SNF remodeling function.

ARID1A/1B are necessary to maintain active enhancer architecture
We next asked whether loss of ARID1A and ARID1B directly affects properties of enhancer or pro-

moter architecture. To this end, we performed ChIP-seq for H3K27ac, H3K4me, and H3K4me3 in

WT, ARID1B KD, ARID1A-/-, and ARID1A-/- ARID1B KD HCT116 cells. Overall, there were thousands

of differential H3K27ac and H3K4me sites that increased or decreased between WT and ARID1A-/-

ARID1B KD HCT116 cells, while only a handful of sites showed differential H3K4me3 marking

(Figure 3E, Figure 3—figure supplement 2). We found that ARID1A and ARID1B-dependent acces-

sible sites in Clusters 4 and 6 had reduced H3K4me and H3K27ac marks in ARID1A-/- ARID1B KD

HCT116 cells, while unaltered accessible sites in Cluster 7 did not change (Figure 3F and G). Consis-

tent with the strong dependence of Cluster 4 accessible sites on ARID1A, H3K4me and H3K27ac

were markedly reduced in ARID1A-/- cells, and further reduced with ARID1B loss. In contrast,

ARID1A removal repressed H3K27ac but not H3K4me at Cluster 6 accessible sites, while knockdown

of ARID1B in ARID1A-/- cells caused loss of both marks (Figure 3F and G). Small changes in H3K4me

are evident at sites in Clusters 1–3, which become more accessible in ARID1A-/- or ARID1A-/- ARID1B

KD HCT116 cells (Figure 3—figure supplement 3). These data support a role for ARID1A and

ARID1B in maintaining accessibility and active histone marks at enhancer regions. Although the SWI/

SNF complex has previously been implicated in maintaining H3K27ac (Bao et al., 2015;

Mathur et al., 2017; Raab et al., 2015), a function for ARID1B in accessibility and H3K27ac marks at

Figure 3 continued

decreased accessible sites called from WT versus ARID1A-/- ARID1B KD HCT116 cells present in promoters, poised enhancers, active enhancers, super

enhancers, or other genomic elements. (C) Observed/expected enrichment of unchanged, increased, and decreased accessible sites called from WT

versus ARID1A-/- ARID1B KD HCT116 cells at promoters, 5’ and 3’ untranslated regions (UTR), introns, intergenic regions, transcription termination sites

(TTS), poised enhancers, active enhancers, and super enhancers. (D) Accessible sites sorted by log2 fold change in accessibility in WT versus ARID1A-/-

ARID1B KD HCT116 cells at distal sites and promoters, where distal is defined as greater than 3 kb from the nearest TSS. Corresponding H3K4me,

H3K27ac, H3K4me3, GRO-seq, SMARCA4, and SMARCC1 tag density from WT HCT116 cells is displayed. Reads are centered on middle of accessible

region ±3 kb. (E) Differential peak calls from H3K27ac, H3K4me, or H3K4me3 ChIP-seq from HCT116 WT cells expressing shRNAs to scrambled control

(WT) versus HCT116 ARID1A-/- cells expressing shRNAs to ARID1B (ARID1A-/- ARID1B KD). Blue and red dots represent differential ChIP-seq peaks

whose read density increased or decreased by 1.5 fold or more (FDR < 0.05), respectively, from two independent biological replicates. Numbers in the

upper left and lower right corners refer to numbers of increased and decreased peaks. Breakdown of H3K4me3 changes in Clusters 1–7 can be found in

Figure 3—figure supplement 2A,B. (F) Normalized average ChIP-seq tag density for H3K4me from two independent biological replicates at

accessible sites in Clusters 4, 6, and 7 from HCT116 WT, ARID1A-/-, ARID1B KD, and ARID1A-/- ARID1B KD cells. Reads are centered on middle of

accessible region ±1.5 kb. Data for all 7 clusters can be found in Figure 3 – Figure Supplement 3A, B. (G) Normalized average ChIP-seq tag density

for H3K27ac from two independent biological replicates at accessible sites in Clusters 4, 6, and 7 from HCT116 WT, ARID1A-/-, ARID1B KD, and

ARID1A-/- ARID1B KD cells. Reads are centered on middle of accessible region ±1.5 kb. Data for all 7 clusters can be found in Figure 3—figure

supplement 3C,D.

DOI: https://doi.org/10.7554/eLife.30506.009

The following figure supplements are available for figure 3:

Figure supplement 1. GRO-seq signal from intergenic sites in Clusters 1–7 centered on the middle of the accessible region ±2 kb.

DOI: https://doi.org/10.7554/eLife.30506.010

Figure supplement 2. Analysis of H3K4me3 ChIP-seq reads at accessible sites in Clusters 1-7,

DOI: https://doi.org/10.7554/eLife.30506.011

Figure supplement 3. Analysis of H3K4me and H3K27ac ChIP-seq reads at accessible sites in Clusters 1-7,

DOI: https://doi.org/10.7554/eLife.30506.012
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enhancer regions is unprecedented. Similarly, clustering accessible sites by strength of ARID1A and

ARID1B regulation has revealed novel roles for SWI/SNF in maintenance of H3K4me, consistent with

the requirement for SWI/SNF complex remodeling at both poised and active enhancers.

ARID1A/1B are required for binding of AP-1 complex family members
SWI/SNF complexes are generally recruited by transcription factors and facilitate further transcrip-

tion factor binding, altering nucleosome spacing to increase chromatin accessibility around these

sites. We therefore sought to determine whether occupancy of transcription factors is disrupted at

ARID1A- and ARID1B-dependent sites. We performed hierarchical clustering of enriched motifs from

clustered accessible sites (Figure 4—figure supplement 1). We identified motifs for AP-1 members

FRA1, FOSL2, and ATF3 as significantly enriched in both Cluster 4 and 6 (Figure 4A and B), while

CTCF motifs were enriched in all Clusters (Figure 4—figure supplement 1). Using ChIP-seq data for

FRA1, JUND, CTCF, and ATF3 available from ENCODE, we found that FRA1, JUND, ATF3, and

CTCF were bound at 41%, 39%, 16%, and 19% of decreased accessible sites, respectively

(Figure 4C). Indeed, FRA1 and JUND had the strongest binding at Cluster 4 and 6 sites and CTCF

binding was present throughout, but depleted in Cluster 4 (Figure 4D). Accessible sites found at

FRA1 or JUND binding sites from Cluster 4 and 6 showed reduced accessibility in ARID1A-/- cells

and ARID1A-/- ARID1B KD cells, consistent with overall dependence of Cluster 4 and 6 sites on

ARID1A alone or in combination with ARID1B (Figure 4E and F). We next investigated accessibility

around AP-1 motifs to determine if loss of SWI/SNF binding influences nucleosome architecture. We

measured nucleosome spacing around the AP-1 motif at Cluster 4 and 6 sites by selecting mononu-

cleosome-sized ATAC-seq reads from each genotype. This analysis revealed a stepwise reduction in

distance between nucleosome peaks with ARID1A loss and further ARID1B removal (Figure 4G). A

total 37–40 base pair reduction in the distance between mononucleosome peaks was observed at

ARID1A- and ARID1B-dependent accessible sites, suggesting a reduction of nucleosome spacing

around the AP-1 motif. Consistent with diminished opening, FRA1 occupancy was severely reduced

at Cluster 4 and 6 sites in ARID1A-/- and ARID1A-/- ARID1B KD HCT116 cells at TGFA, NRIP1, PLAU,

and CALB2, which are downregulated in ARID1A-/- ARID1B KD cells (Figure 4H). These data suggest

that the SWI/SNF complex controls occupancy of the AP-1 transcription factor, potentially by influ-

encing chromatin accessibility, and implies cooperation of these two complexes in regulating expres-

sion of nearby target genes.

ARID1A and ARID1B regulate gene expression by maintaining active
enhancer architecture
To understand how ARID1A/1B-dependent changes influence gene expression, we examined differ-

entially expressed genes between WT and ARID1A-/- ARID1B KD cells (Figure 5A). Loss of ARID1A

and ARID1B significantly reduced expression of 1947 genes and enhanced expression of 1311

genes. 48% of the differentially called down genes had at least one decreased accessible site that

mapped to the TSS in the ARID1A-/- ARID1B KD cells, while 23% of the upregulated genes had at

least one increased accessible site. We next examined how many genes are affected by ARID1A/1B-

dependent changes in accessibility and H3K27ac at sites directly bound by SWI/SNF and FRA1,

focusing on downregulated accessible sites due to their stronger concordance with gene expression

(Figure 1F). Specifically, 4909 (39%) of differentially decreased ATAC sites overlapped with SWI/

SNF binding (Figure 5B). Of these, 2156 sites also exhibited reduced H3K27ac marks and a further

1709 were also bound by FRA1. We annotated these co-regulated sites by mapping to the nearest

TSS, and found that 377 of these overlapped with genes downregulated in ARID1A-/- ARID1B KD

cells. This number is likely an underestimate as it does not include genes that did not meet our 1.5

fold, FDR < 0.05 threshold. This subset includes active enhancer regulatory regions engaged in

eRNA transcription, as demonstrated by higher GRO-seq signal at co-regulated sites (ATAC Down,

H3K27ac Down, SWI/SNF Bound, FRA1 Bound) than at decreased accessible sites that lack SWI/

SNF, H3K27ac, and FRA1 binding (Figure 5C). We next used RNA Pol II ChIA-PET data from the

ENCODE project to determine whether co-regulated sites directly interact with gene promoters and

other regulatory regions to affect gene expression. We compared how often co-regulated sites are

coupled to a change in accessibility, H3K27 acetylation, or transcription at an interacting site

(Figure 5D). Co-regulated sites are enriched for interactions with sites that lose accessibility or
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Figure 4. ARID1A/1B are required for the binding of AP-1 transcription factors at accessible sites. (A) Significance of motif enrichment of known motifs

on Cluster 4 and 6 accessible sites. Motif enrichment for Clusters 1–7 can be found in Figure 4—figure supplement 1. (B) Known FRA1 and CTCF

motif from HOMER database. (C) Proportion of decreased accessible sites in WT versus ARID1A-/- ARID1B KD HCT116 cells with overlapping ChIP-seq

peaks for FRA1, JUND, CTCF and ATF3 from ENCODE ChIP-seq datasets. (D) FRA1, JUND, and CTCF ChIP-seq occupancy at accessible sites in

Clusters 1–7. (E) ATAC-seq tag density at FRA1 and JUND binding sites in Clusters 4 and 6 from WT, ARID1B KD, ARID1A-/-, and ARID1A-/- ARID1B KD

Figure 4 continued on next page
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H3K27ac, but anti-correlated with sites that gain these features. In addition, co-regulated sites are

more likely to interact with TSSs of genes that lose expression, as shown for TGFA, TGFBR2, PLAU,

and EGFR (Figure 5—figure supplement 1), but not gain expression. The inverse is true for

increased accessible sites, which are more likely to interact with sites with increased accessibility,

increased H3K27ac, and increased expression (Figure 5D, Figure 5—figure supplement 2). These

data indicate that ARID1A/1B-dependent changes in accessibility and H3K27ac at enhancers

strongly impact gene expression as a result of looping interactions with TSSs and other regulatory

regions.

ARID1A/1B maintain transcription of genes in cancer growth promoting
pathways, including MET
We then profiled up and downregulated genes from all four genotypes (Figure 5E), focusing on sig-

nificant changes between ARID1A-/- and ARID1A-/- ARID1B KD cells to uncover factors that could

contribute to the synthetic lethal phenotype observed between these SWI/SNF subunits. Hierarchical

clustering grouped ARID1B KD with the WT expression profile as expected, while ARID1A-/- and

ARID1A-/- ARID1B KD expression profiles clustered together, suggesting that ARID1B KD largely

enhances the effect of ARID1A loss. However, an additional 16 genes were differentially upregulated

and 96 genes downregulated between ARID1A-/- and ARID1A-/- ARID1B KD cells. KEGG analysis of

ARID1A/1B targets revealed enrichment in Pathways in Cancer, with specific identification of Adhe-

rens junction, Ras/Rap1 signaling pathway, ECM-receptor interaction, PI3K-AKT signaling pathway,

and ErbB signaling pathway (Figure 5—figure supplement 3). In particular, growth response path-

ways through receptor tyrosine kinases (RTKs) were significantly downregulated in ARID1A-/- ARID1B

KD cells, including genes encoding ligands and receptors in the EGFR pathway and related MET,

IGFR, VEGFR, PDGFR, FGFR, AXL, and IL6R pathways as well as signaling intermediates of the

downstream KRAS and PI3K pathways, like PIK3R1 (Figure 5E). Reduced KRAS/PI3K-dependent sig-

naling corresponded with downregulation of activated transcription factors including JUN, JUND,

FOSB, MYC, and ETS1/2, and reduced expression of proliferation genes CCND1 and CDK6 and

anti-apoptotic factors BCL2 and BCL2L1.

We treated these genes as potential key contributors to the observed synthetic lethal phenotype

in ARID1A-/- ARID1B KD cells. Specifically, we surveyed the genes most strongly reduced by ARID1B

KD in ARID1A-/- cells and identified MET, a known driver of proliferation, as a potentially crucial tar-

get of ARID1A and ARID1B in colorectal cancer. MET codes for the MET receptor tyrosine kinase,

which is activated by hepatocyte growth factor (HGF) and recruits downstream signaling intermedi-

ates including PI3K, SRC and STAT3 (Boccaccio et al., 1998; Ponzetto et al., 1994; Zhang et al.,

2002). MET is highly expressed in ~67% of primary colorectal carcinomas (Gayyed et al., 2015) and

overexpression is associated with tumor progression and metastasis (Baldus et al., 2007; Luo and

Xu, 2014; Zeng et al., 2004). MET is necessary for proliferation of colorectal carcinomas (Li et al.,

2014), and selective inhibition of MET with small molecule inhibitors is effective in reducing prolifer-

ation of HCT116 cells (Larsen and Dashwood, 2010). In HCT116 cells, we identified multiple acces-

sible regions from Clusters 4 and 6 that are co-bound by the AP-1 complex and the SWI/SNF

Figure 4 continued

HCT116 cells. (F) Genome browser tracks of ATAC-seq data (top four tracks) from WT, ARID1B KD, ARID1A-/-, and ARID1A-/- ARID1B KD HCT116 cells

and ChIP-seq data from WT HCT116 ENCODE data (bottom two tracks). Representative Cluster 4 and Cluster 6 sites overlapping FRA1 and JUND

binding sites are indicated with a black box. (G) Nucleosome spacing for mononucleosome fragments at AP-1 motifs in Clusters 4 and 6. Distance

between mononucleosome peaks in ARID1B KD, ARID1A-/-, and ARID1A-/- ARID1B KD HCT116 cells was calculated relative to WT HCT116 cells. (H)

FRA1 binding by ChIP-qPCR at two Cluster 4 sites (TGFA, NRIP1) and two Cluster 6 sites (CALB2, PLAU) in ARID1B KD, ARID1A-/-, and ARID1A-/-

ARID1B KD HCT116 cells relative to WT HCT116 cells. Values shown are averages from two biological replicates where error bars indicate standard

deviation.

DOI: https://doi.org/10.7554/eLife.30506.013

The following source data and figure supplement are available for figure 4:

Source data 1. FRA1 occupancy by ChIP-qPCR in WT and ARID1A-/- HCT116 cells with ARID1B knockdown.

DOI: https://doi.org/10.7554/eLife.30506.015

Figure supplement 1. Heatmap of motif enrichment p values (loge) in Clusters 1–7.

DOI: https://doi.org/10.7554/eLife.30506.014
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Figure 5. ARID1A/1B regulate gene expression of cell growth pathway genes by maintaining active enhancer architecture. (A) Differentially expressed

genes in WT versus ARID1A-/- ARID1B KD HCT116 cells. Blue and red dots represent differential RNA-seq expression increased or decreased by 1.5

fold or more (FDR < 0.05), respectively, from two independent biological replicates. Numbers in upper left and lower right hand corners indicate

number of differentially expressed genes. (B) Genomic locations with reduced accessibility in ARID1A-/- ARID1B KD HCT116 cells (ATAC Down) were

Figure 5 continued on next page
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complex within and downstream of the MET gene (Figure 5F, data not shown). These areas exhib-

ited bi-directional GRO-seq signal and looping interactions back to the promoter and other regula-

tory sites. We focused on two regions (R1 and R2) with reduced accessibility in ARID1A-/- cells that

was completely abolished by ARID1B loss, consistent with greater than 70% reduction in RNA

expression (Figure 5G) and total protein level (Figure 5—figure supplement 4A,B). A previous

study has shown that the MET gene is transactivated by the AP-1 complex (Seol et al., 2000), and

here loss of ARID1A and ARID1B proteins inhibited binding of FRA1 at two regulatory regions

(Figure 5H), similar to the effects we observed at four other ARID1A/1B-dependent genes

(Figure 4H). Enhancer RNA expression was also strongly reduced in ARID1A-/- and ARID1A-/-

ARID1B KD cells (Figure 5I). Forced expression of MET (Figure 5—figure supplement 4C,D) led to

a significant increase in the proliferation of ARID1A-/- ARID1B KD cells (Figure 5J), suggesting that

loss of MET expression is a contributing factor to the synthetic lethal phenotype. However, rescue of

MET alone was insufficient to completely counteract the proliferation defect caused by ARID1A and

Figure 5 continued

overlapped with SMARCA4 and/or SMARCC1 binding sites identified in WT HCT116 cells (SWI/SNF Bound). Common positions (ATAC Down, SWI/SNF

Bound) were then overlapped with reduced H3K27ac sites in ARID1A-/- ARID1B KD cells (H3K27ac Down) and FRA1-bound sites identified in WT

HCT116 cells (FRA1 Bound). Co-regulated sites (ATAC Down, H3K27ac Down, SWI/SNF Bound, FRA1 Bound) were annotated and overlapped with

genes downregulated in ARID1A-/-/ARID1B KD cells (RNA Down). 377 genes were identified with SWI/SNF- and FRA1 binding and decreased

accessibility, H3K27ac and RNA expression. Examples of co-regulated down sites in and around TGFA, TGFBR2, PLAU, and EGFR can be found in

Figure 5—figure supplement 1. (C) GRO-seq signal at co-regulated sites (ATAC Down, H3K27ac Down, SWI/SNF Bound, FRA1 Bound) compared to

sites that are not bound by SWI/SNF or FRA1 but demonstrated reduced accessibility (ATAC Down Only). (D) Observed/expected enrichment ratio

(log2) for interactions between transcription start sites (TSSs) and regulatory regions through chromatin looping. Sites bound by SWI/SNF and FRA1

and exhibiting reduced accessibility and H3K27ac (Co-regulated Down) were compared to sites with decreased/increased accessibility (ATAC Down/

Up), sites with decreased/increased H3K27ac (H3K27ac Down/Up), or TSSs of genes with decreased/increased expression (RNA Down/Up). Examples of

interacting co-regulated down sites in and around TGFA, TGFBR2, PLAU, and EGFR can be found in Figure 5—figure supplement 1. The same

analysis was applied to sites exhibiting increased accessibility and H3K27ac (Co-regulated Up). Examples of interacting co-regulated up sites in and

around ANXA10, BMP4, WLS, and OBFC1 can be found in Figure 5—figure supplement 2. (E) Hierarchical clustering of 7890 genes increased or

decreased by �1.5 fold gene expression from RNA-seq of WT, ARID1B KD, ARID1A-/-, and ARID1A-/-ARID1B KD HCT116 cells. KEGG pathway analysis

of affected genes can be found in Figure 5—figure supplement 3. (F) Regulatory regions in and around the MET gene. Gray boxes indicate sites with

decreased accessibility in ARID1A-/- ARID1B KD HCT116 cells that are bound by the AP-1 complex and have GRO-seq signal. Not shown: ChIP-seq

tracks demonstrating that gray boxed sites are also bound by SMARCA4 and SMARCC1 and have decreased H3K27ac in ARID1A-/- ARID1B KD HCT116

cells. (G) MET expression from RNA-seq. Error bars indicate standard deviation for two independent replicates. (H) FRA1 ChIP levels determined by

ChIP-qPCR at R1 and R2 (see 5F) within MET. Averages from two independent experiments are shown with standard deviation. (I) Enhancer RNA levels

determined by RT-qPCR at R1 and R2 (see 5F) within MET. Averages from three independent experiments are shown with standard deviation. (J)

Growth of WT and ARID1A-/- ARID1B KD cells with forced expression of MET (MET-V5) or empty vector (Empty) as control. Protein expression of MET

and V5 is shown in Figure 5—figure supplement 4. Averages from three replicates from two different infections. *p<0.05; **p<0.01.

DOI: https://doi.org/10.7554/eLife.30506.016

The following source data and figure supplements are available for figure 5:

Source data 1. FRA1 occupancy by ChIP-qPCR at MET regions in WT and ARID1A-/- HCT116 cells with ARID1B knockdown.

DOI: https://doi.org/10.7554/eLife.30506.021

Source data 2. eRNA level at MET regions in WT and ARID1A-/- HCT116 cells with ARID1B knockdown.

DOI: https://doi.org/10.7554/eLife.30506.022

Source data 3. Proliferation of cells with forced MET expression in WT and ARID1A-/- HCT116 cells with ARID1B knockdown.

DOI: https://doi.org/10.7554/eLife.30506.023

Source data 4. MET protein expression in WT and ARID1A-/- HCT116 cells with ARID1B knockdown.

DOI: https://doi.org/10.7554/eLife.30506.024

Source data 5. MET protein expression in WT and ARID1A-/- HCT116 cells with ARID1B knockdown with forced MET expression.

DOI: https://doi.org/10.7554/eLife.30506.025

Figure supplement 1. Genome browser tracks of representative downregulated genes in ARID1A-/- ARID1B KD cells.

DOI: https://doi.org/10.7554/eLife.30506.017

Figure supplement 2. Genome browser tracks of representative upregulated genes in ARID1A-/- ARID1B KD cells.

DOI: https://doi.org/10.7554/eLife.30506.018

Figure supplement 3. KEGG pathway analysis of ARID1A/1B-dependent genes reveals enrichment in Ras/PI3K-Akt signaling pathways.

DOI: https://doi.org/10.7554/eLife.30506.019

Figure supplement 4. MET protein expression is ARID1A/1B-dependent in HCT116 cells, but can be reconstituted by forced expression of MET.

DOI: https://doi.org/10.7554/eLife.30506.020
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ARID1B loss, which is likely due to the downregulation of multiple factors. Taken together, these

data suggest that ARID1A and ARID1B maintain proliferation of colorectal cancer cells at least in

part by sustaining MET oncogenic signaling, specifically by controlling accessibility, transcription fac-

tor occupancy, and eRNA transcription at multiple regulatory regions within the MET gene.

In all, these results demonstrate a role for SWI/SNF complexes in maintaining accessibility for

transcription factor binding and the deposition of active histone marks at enhancers (Figure 6). The

absence of SWI/SNF complexes dysregulates these processes, resulting in altered expression of key

genes in cancer pathways, consistent with reduced cancer cell growth observed upon loss of ARID1A

and ARID1B.

ARID1B regulates accessibility and active histone modifications at
enhancers in ARID1A mutant ovarian cancer cells
A synthetic lethal relationship between ARID1A and ARID1B has previously been observed for prolif-

eration of ovarian clear cell carcinoma cells (OCCCs) (Helming et al., 2014). We therefore asked

whether the mechanism of ARID1A and ARID1B synthetic lethality in HCT116 colorectal carcinoma

cells identified in our study is conserved in OCCCs with naturally occurring ARID1A mutations. To

this end, we performed ATAC-seq in the ARID1A-mutant TOV21G cell line infected with shRNAs to

ARID1B (ARID1B KD) or with a scrambled control (scr). Knockdown of ARID1B led to a 70–80%

reduction in ARID1B protein, which impaired cancer cell growth as previously reported (Figure 7—

figure supplement 1A and B) (Helming et al., 2014). By ATAC-seq, we identified 1896 sites with

increased accessibility and 1028 sites with decreased accessibility by 1.5 fold or greater upon

ARID1B knockdown (FDR < 0.05) (Figure 7A). Changes in accessibility were predictive of significant

alterations in gene expression for both up- and down-regulated sites (Figure 7B). To better under-

stand the mechanism of gene regulation by ARID1B in this context, we further characterized accessi-

ble sites altered by ARID1B KD. Consistent with our results in the HCT116 cell line, we found that

decreased sites are enriched at active and poised enhancers, but depleted at promoters, while

increased sites are enriched at promoters and active enhancers (Figure 7C and D). Motifs for AP-1

family members FRA1, ATF3, BATF, and FOSL2 (Figure 7E) were significantly enriched at decreased

accessible sites, similar to decreased sites in HCT116 cells. Accordingly, accessibility at AP-1 motif

sites was also decreased in TOV21G cells following ARID1B knockdown (Figure 7F).

To determine how ARID1B knockdown influences histone modifications in OCCCs, we performed

ChIP-seq analysis of H3K27ac, H3K4me, and H3K4me3 in scrambled control or ARID1B KD TOV21G

cells. We identified thousands of sites with enhanced or repressed modification levels upon ARID1B

loss (Figure 7G). Decreased accessible sites have high levels of enhancer-associated H3K4me and

H3K27ac marks, which are lost upon ARID1B knockdown; in contrast, H3K4me3 levels are initially

low and do not change (Figure 7H). Increased accessible sites, on the other hand, are high for

H3K4me3 and H3K27ac marks that are found at promoters and active enhancers, but the levels of

Figure 6. Summary of ARID1A/1B dependent changes in Clusters 1–7. Blue arrows indicate increased, red arrows indicate decreased. Signal strength

is represented as negative (-�), low (+), moderate (++), and high (+++).

DOI: https://doi.org/10.7554/eLife.30506.026
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Figure 7. ARID1B function at enhancers is conserved in ARID1A mutant ovarian clear cell carcinoma cells. (A) ATAC-seq differential peaks in TOV21G

cells expressing shRNAs to scrambled control (scrambled) or ARID1B (ARID1B KD). Cell lines were validated for ARID1B expression and function

(Figure 7—figure supplement 1). Blue and red dots represent differential ATAC-seq peaks whose read density is increased or decreased by 1.5 fold or

more, FDR < 0.05, respectively, from two independent biological replicates. Numbers in the upper left and lower right corners refer to numbers of

Figure 7 continued on next page
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these modifications do not change in ARID1B KD TOV21G cells (Figure 7—figure supplement 2).

Pathway analysis of decreased H3K27ac sites revealed an enrichment of ErbB and PI3K-Akt signal-

ing, pathways in cancer, along with ECM-receptor interaction, focal adhesion, and proteoglycans in

cancer (Figure 7I). The enrichment of genes in pro-proliferative pathways among sites dysregulated

by ARID1B loss suggests that ARID1B maintains accessibility and active enhancer architecture at reg-

ulatory regions that control OCCC cell proliferation. Indeed, when we compared ARID1B-dependent

genes in TOV21G cells to the differential gene expression profile of primary human OCCCs com-

pared to normal ovaries (GSE6008, Gene Expression Omnibus), we found that genes that are highly

upregulated in OCCC and downregulated with ARID1B knockdown (Group 3) were enriched for cell

cycle terms (Figure 7J). Genes that were downregulated in OCCCs but upregulated with ARID1B

knockdown (Group 1) contained genes involved in cellular response to stress and EGFR inhibitor

resistance, suggesting a potential compensatory response to the effect of ARID1B on growth path-

ways. Together these data suggest that the role of the SWI/SNF complex in maintenance of accessi-

bility and enhancer marks is conserved in colorectal carcinomas and OCCCs. Repression of OCCC-

upregulated genes by ARID1B KD in TOV21G cells, including those involved in cell cycle progres-

sion, may contribute to the synthetic lethality observed with ARID1A mutation in this context.

Discussion
Inactivating ARID1A mutations have been detected across a range of diverse cancer types

(Kadoch et al., 2013), including 9.4% of colorectal carcinomas (Cancer Genome Atlas Network,

2012) and up to 60% of OCCCs (Jones et al., 2010; Wiegand et al., 2010). In the current study,

after confirming the synthetic lethal relationship between ARID1A and ARID1B in colorectal carci-

noma proliferation, we uncovered the mechanistic basis underlying this phenomenon by examining

chromatin accessibility across the genome. Clustering of accessible sites revealed a range of geno-

mic regions with diverse responses to ARID1A and ARID1B loss (Figure 6). ARID1A maintains open

chromatin, enhancer marks, and gene expression, while ARID1B also modulates these features, but

only in the absence of ARID1A. Although the effects of ARID1B knockdown are limited in

Figure 7 continued

called peaks increasing or decreasing in accessibility. (B) Log2 fold change in RNA expression for genes nearest to differentially called accessible sites.

Changes are shown for top 10% of genes from increased, decreased, or unchanged (NC) accessible sites for ARID1B KD cells relative to scrambled

TOV21G cells. Ns, not significant; **, p<0.01. (C) Percent of unchanged, increased, and decreased accessible sites called from scrambled versus

ARID1B KD TOV21G cells present in promoters, poised enhancers, active enhancers, super enhancers, or other genomic elements. (D) Enrichment of

unchanged, increased, and decreased accessible sites called from scrambled versus ARID1B KD TOV21G cells at promoters, poised enhancers, active

enhancers, super enhancers, 5’ and 3’ untranslated regions (UTR), introns, intergenic regions, and transcription termination sites (TTS). (E) Motif

enrichment in decreased accessible sites from scrambled versus ARID1B KD TOV21G cells. (F) ATAC-seq tag density at AP-1 motifs in scrambled and

ARID1B KD TOV21G cells. (G) Differential peak calls from H3K27ac, H3K4me, or H3K4me3 ChIP-seq from TOV21G cells expressing shRNAs to

scrambled control (scr) versus shRNAs to ARID1B (ARID1B KD). Blue and red dots represent differential ChIP-seq peaks whose read density increased

or decreased by 1.5 fold or more, FDR < 0.05, respectively, from two independent biological replicates. Numbers in the upper left and lower right

corners refer to numbers of increased and decreased peaks. (H) Normalized average ChIP-seq tag density for H3K4me, H3K27ac and H3K4me3 from

two independent biological replicates at decreased accessible sites from WT and ARID1B KD TOV21G cells. Reads are centered on middle of

accessible region ±1.5 kb. Normalized ChIP-seq tag density for H3K4me, H3K27ac and H3K4me3 at increased accessible sites from WT and ARID1B KD

TOV21G cells can be found in Figure 7—figure supplement 2. (I) Pathway analysis for accessible sites with reduced H3K27ac in ARID1B KD TOV21G

cells. (J) k-means clustering of 4878 differentially expressed genes in TOV21G cells expressing shRNAs to scrambled control (scrambled) or ARID1B

(ARID1B KD1, KD2) from two independent biological replicates compared to expression in ovarian clear cell carcinoma versus normal ovaries (CC vs

WT Ovary).

DOI: https://doi.org/10.7554/eLife.30506.027

The following source data and figure supplements are available for figure 7:

Source data 1. Proliferation of TOV21G cells with ARID1B knockdown.

DOI: https://doi.org/10.7554/eLife.30506.030

Figure supplement 1. Knockdown of ARID1B is synthetically lethal with ARID1A mutation in ovarian clear cell carcinoma.

DOI: https://doi.org/10.7554/eLife.30506.028

Figure supplement 2. Normalized average ChIP-seq tag density for H3K4me, H3K27ac, and H3K4me from two independent biological replicates at

increased accessible sites from scrambled or ARID1B KD TOV21G cells.

DOI: https://doi.org/10.7554/eLife.30506.029
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comparison, our findings show that the ability of ARID1B to regulate accessibility underpins its abso-

lute requirement for proliferation of ARID1A-deficient colorectal carcinoma cells and mutant

OCCCs.

Our results demonstrate that maintenance of chromatin accessibility is central to the tumor sup-

pressor function of ARID1A. Specifically, the effects of ARID1A versus ARID1B loss on the accessible

genome (Figure 1A) are consistent with a higher frequency of ARID1A mutations in colorectal and

ovarian carcinoma (Cancer Genome Atlas Network, 2012; Jones et al., 2010; Wiegand et al.,

2010). The underlying cause of ARID1A dominance over ARID1B is not clear. These homologs are

similar in molecular weight and protein sequence, with 60% homology and comparable distribution

of protein domains (Patsialou et al., 2005; Wilsker et al., 2005), and do not exhibit differences in

their DNA binding ability (Wilsker et al., 2004). In HCT116 cells, ARID1A mRNA and protein is

more abundant than ARID1B (Figure 1B and data not shown), suggesting that there are more SWI/

SNF complexes containing ARID1A than ARID1B in the nucleus. The relative abundance of ARID1A

may partially account for its dominant role in tumor suppression, although complex composition

and/or unique regulatory interactions of ARID1A-containing complexes may also contribute to the

selective advantage of ARID1A mutations in human cancer. In contrast, in ARID1A-mutant cells,

residual ARID1B-containing complexes ensure that the minimal requirement for SWI/SNF complex

remodeling is met at ARID1A-dependent sites. ARID1B thus serves a compensatory role in HCT116

cells, consistent with limited redistribution of SWI/SNF complexes to new sites upon loss of ARID1A

(Mathur et al., 2017). We did observe increased accessibility and expression in ARID1A-/- cells for a

subset of genes reported to gain SWI/SNF binding and H3K27ac by Mathur and colleagues, how-

ever the expression of these genes was not ARID1B dependent (Figure 5—figure supplement 2).

Our data do not address whether ARID1B is retargeted to new sites upon loss of ARID1A in ovarian

epithelium, or whether it provides residual, stable binding at predominantly ARID1A-dependent

sites. Nevertheless, we find that the role of ARID1B in maintaining accessibility and active histone

marks at enhancers in ARID1A-deficient cells is conserved and mechanistically describes its essential

role in the ARID1A-deficient setting.

Along with decreases in accessibility across the genome, we found that loss of SWI/SNF subunits

results in a significant number of increased accessible sites (Figure 1A, Figure 7A). SWI/SNF com-

plex recruitment can lead to the direct eviction of Polycomb Repressive Complexes (PRC2), resulting

in the loss of H3K27me3 modification and acquisition of accessibility (Kadoch et al., 2017;

Stanton et al., 2017). While we observed that sites with gained SMARCA4/SMARCC1 binding gen-

erally overlap with sites that gain accessibility in ARID1A-/- HCT116 cells (Figure 2C), there are far

fewer new SWI/SNF binding sites than newly accessible regions. In addition, there was no enrich-

ment of H3K27me3 at Cluster 1–3 sites (Figure 3A), indicating that eviction of PRC2 complexes can-

not fully account for the increased accessibility that we observe. Notably, loss of ARID1A has been

shown to release repression mediated by HDACs at gene promoters, which may be an alternative

mechanism by which accessibility is gained in ARID1A-/- HCT116 cells (Chandler et al., 2015;

Kim et al., 2016).

Genome-wide binding assays for subunits of the SWI/SNF complex have revealed that SWI/SNF

is widely bound to promoters and 5’ regulatory regions of actively expressed genes, as well as

intronic and distal regulatory elements (Euskirchen et al., 2011; Mathur et al., 2017; Morris et al.,

2014; Raab et al., 2015). SWI/SNF complexes are often co-bound with other remodeling complexes

at these regulatory regions (de Dieuleveult et al., 2016; Morris et al., 2014). Amidst this backdrop

of regulatory complexity, we find that ARID1A and ARID1B preferentially regulate chromatin accessi-

bility at enhancers (Figure 3A–D, Figure 7C and D). Loss of accessibility likely affects the recruit-

ment of histone readers and writers that deposit H3K27ac and H3K4me active enhancer marks, as

direct interactions between modifiers and the SWI/SNF complex have been previously reported

(Alver et al., 2017; Huang et al., 2003; Nagl et al., 2007; Ogiwara et al., 2011). Accordingly, we

observe a reduction in active enhancer marks at ARID1A/1B-dependent accessible sites in colorectal

and OCCC lines (Figure 3F and G, Figure 7G and H). Interestingly, sites with relatively low basal

accessibility and typical enhancer marks exhibit greater dependence on ARID1A and ARID1B func-

tion (Figure 1D and E, Figure 3A–D, Figure 7C and D), while super enhancer regions, active pro-

moters, and sites with higher basal accessibility are less affected by ARID1A and ARID1B loss.

Additional chromatin remodelers, such as PBAF, CHDs, and Mi-2b/NuRD complexes, may maintain

chromatin architecture at unaffected sites in the absence of SWI/SNF. In contrast, we find that SWI/

Kelso et al. eLife 2017;6:e30506. DOI: https://doi.org/10.7554/eLife.30506 17 of 29

Research article Genes and Chromosomes

https://doi.org/10.7554/eLife.30506


SNF complex binding is most enriched at ARID1A/1B-dependent sites (Figure 2B and Figure 3D),

suggesting that SWI/SNF-mediated regulation of accessibility is correlated with SWI/SNF complex

density.

Accessible genomic regions maintained by ARID1A and ARID1B are bound by subunits of the

AP-1 complex (Figure 4A–C, Figure 7E and F). These findings are in agreement with previous

reports demonstrating the enrichment of the AP-1 motif at SWI/SNF binding sites (Mathur et al.,

2017; Morris et al., 2014; Raab et al., 2015). In vitro, the AP-1 transcription factor complex is

known to directly bind and recruit SWI/SNF through interaction with the BAF60A subunit, resulting

in transactivation of AP-1 target genes (Ito et al., 2001). We observed diminished binding of this

transcription factor complex concomitant with diminished mononucleosome spacing at sites with

repressed accessibility following ARID1A and ARID1B loss, suggesting that SWI/SNF remodels

nucleosomes to facilitate AP-1 binding (Figure 4G and H). AP-1 and SWI/SNF could cooperate in

chromatin opening, as AP-1 has the ability to potentiate accessibility and prime sites for binding of

additional transcription factors (Biddie et al., 2011). Together this implies an important relationship

between chromatin remodeling and transcription factor complexes in controlling gene expression,

one that may involve both eRNA transcription and enhancer-promoter looping. Indeed, ARID1A/1B-

dependent sites bound by AP-1 exhibit active transcription (Figure 5C) and interactions with TSSs of

downregulated genes via RNA Pol II (Figure 5D), indicating that SWI/SNF complexes cooperate

with transcription factors at distal regulatory sites to impact gene expression.

ARID1A/1B-dependent accessible regions were uncovered within the MET gene, consistent with

loss of MET expression in ARID1A-/- ARID1B KD HCT116 cells. MET expression moderately

enhanced the proliferation of ARID1A-/- ARID1B KD cells, but did not fully rescue the proliferation

defect caused by ARID1A/1B loss (Figure 5J). Thus, loss of MET expression is a contributing factor,

but cannot fully explain the dependence of ARID1A-/- HCT116 cells on ARID1B. Rather, the alter-

ation of multiple compensatory factors likely accounts for the synthetic lethality observed between

these SWI/SNF subunits. Indeed, loss of ARID1A/1B profoundly affected the expression of many

RTKs and their ligands, as well as downstream signaling adapters in the Ras and PI3K-Akt pathways

and transcription factors of the AP-1 family (Figure 5—figure supplement 3, Figure 7I). Our data

suggest that by regulating enhancer accessibility, active enhancer histone modifications, and tran-

scription factor binding, ARID1A/1B maintain expression of genes involved in these pro-proliferative

pathways. Given the importance of these pathways in a broad range of cancer types, including colo-

rectal and epithelial ovarian cancer profiled in this study, our data argue for SWI/SNF inhibition as a

potential therapeutic approach for ARID1A mutant cancers independent of cancer type. Further, a

direct interaction between SWI/SNF and AP-1 could be crucial for initiating and/or maintaining onco-

genic signaling, and disruption of binding by specific chemical inhibition represents a potential strat-

egy for inhibiting SWI/SNF function for therapeutic effect.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

cell line (Homo sapiens) HCT116 WT Horizon Discovery ATCC: CCL-247 Human colorectal carcinoma
cell line

cell line (H. sapiens) HCT116 ARID1A-/- Horizon Discovery Horizon Discovery:
HD104-049

Human colorectal carcinoma cell
line with homozygous
ARID1A knockout by knockin
of premature stop codon (Q456*)

cell line (H. sapiens) TOV21G ATCC ATCC: CRL-11730 Human ovarian clear
cell carcinoma cell line

transfected construct
(H. sapiens)

scrambled shRNA Dharmacon, GE RHS4346 scrambled shRNA
control

transfected construct
(H. sapiens)

shARID1B#1 Dharmacon, GE V2LHS_201002 shRNA targeting human
ARID1B

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

transfected construct
(H. sapiens)

shARID1B#2 Dharmacon, GE V3LHS_306691 shRNA targeting human
ARID1B

recombinant DNA
reagent

pLX304
(Gateway vector)

Addgene;
Yang et al., 2011

Addgene: #25890 Gift from David Root

recombinant DNA
reagent

pDONR223-MET
(Gateway donor)

Addgene;
Johannessen et al., 2010

Addgene: #23889 Gift from William
Hahn and David Root

recombinant DNA
reagent

pLX-MET pLX304, pDONR223-MET Created by Gateway
cloning using pLX304 and
pDONR223-MET

antibody anti-ARID1A
(mouse monoclonal)

Santa Cruz Biotechnology sc-32761 (1:1000)

antibody anti-ARID1B
(mouse monoclonal)

Abcam ab57461 (1:1000)

antibody anti-TBP
(mouse monoclonal)

Thermo Scientific MA1-21516 (1:2000)

antibody anti-Brg1
(mouse monoclonal)

Santa Cruz Biotechnology sc-17796 (1:1000)

antibody anti-Brm
(rabbit polyclonal)

Bethyl Laboratories A301-015A (1:1000)

antibody anti-BAF60A
(mouse monoclonal)

Santa Cruz Biotechnology sc-135843 (1:1000)

antibody anti-BAF57
(rabbit polyclonal)

Bethyl Laboratories A300-810A (1:1000)

antibody anti-BAF53A
(rabbit polyclonal)

Novus Biologicals NB100-61628 (1:1000)

antibody anti-BAF180
(rabbit polyclonal)

Bethyl Laboratories A301-591A (1:1000)

antibody anti-MET
(rabbit monoclonal)

Cell Signaling Technology #8198 (1:1000)

antibody anti-H3K27ac
(rabbit polyclonal)

Abcam ab4729

antibody anti-H3K4me
(rabbit polyclonal)

Abcam ab8895

antibody anti-H3K4me3
(rabbit monoclonal)

Millipore #05–745

antibody anti-H3K27me3
(rabbit polyclonal)

Active Motif #39155

antibody anti-FRA1
(rabbit polyclonal)

Santa Cruz Biotechnology sc-183x

antibody anti-V5
(mouse monoclonal)

Biorad MCA1360 (1:2000)

antibody Alexa 488 goat
anti-mouse secondary

LI-COR 926–68070 (1:20,000)

antibody Alexa 555 goat
anti-rabbit secondary

LI-COR 926–32211 (1:20,000)

sequence-based
reagent

TGFA F Eton Bioscience CTCTACCAGGGCCGAGTTC

sequence-based
reagent

TGFA R Eton Bioscience TCAAGGCCTCGTGTCACAG

sequence-based
reagent

NRIP1 F Eton Bioscience GGACACCCAAACCTTCATCC

Continued on next page

Kelso et al. eLife 2017;6:e30506. DOI: https://doi.org/10.7554/eLife.30506 19 of 29

Research article Genes and Chromosomes

https://doi.org/10.7554/eLife.30506


Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

sequence-based
reagent

NRIP1 R Eton Bioscience CAGTAAGACCCTGGCAGCAT

sequence-based
reagent

CALB2 F Eton Bioscience ACTGAACTCATCCCACCAGG

sequence-based
reagent

CALB2 R Eton Bioscience CATTTCCCGTTTCCTGGGTG

sequence-based
reagent

PLAU F Eton Bioscience GGACCAGCTTTAGTTCCCCT

sequence-based
reagent

PLAU R Eton Bioscience GGAGGGAGGCAGCATTCTT

sequence-based
reagent

MET R1 F Eton Bioscience AAGTCACATCTCCAGCGTCC

sequence-based
reagent

MET R1 R Eton Bioscience CAGGAGTAGCTGAGCCCTTG

sequence-based
reagent

MET R2 F Eton Bioscience TCAGACATTTGGCACCTCTG

sequence-based
reagent

MET R2 R Eton Bioscience TCATTTTCCCAATGGTAGCC

sequence-based
reagent

Negative region F Eton Bioscience GGACAACTCAGGGATGCAAT

sequence-based
reagent

Negative region R Eton Bioscience GCAGAAGAGAGCCAACCAAC

software, algorithm HOMER v4.8 Heinz et al., 2010 http://homer.salk.edu

software, algorithm STAR alignment tool (V2.5) Dobin et al., 2013 Used within HOMER v4.8

commercial assay or kit CellTiter-Glo Promega G7571

chemical compound,
drug

Tagment DNA Enzyme Illumina 15027865 Part of Nextera DNA
Library Prep kit
(FC-121–1031, Illumina)

Cell culture
HCT116 and HCT116 ARID1A-/- cells were purchased from Horizon Discovery with cell line authenti-

cation information provided (STR Profile: Amelogenin: X, Y; CSF1PO: 7, 10; D13S317: 10, 12;

D16S539: 11, 13; D5S818: 10, 11; D7S820: 11, 12; THO1: 8, 9; TPOX: 8, 9; vWA: 17,22; ATCC). Both

lines were used within six months of receipt. HCT116 ARID1A-/- cells were generated by knock-in of

a premature stop codon at Q456 (Horizon Discovery). HCT116 and HCT116 ARID1A-/- cells were

grown in RPMI1640 media (Corning CellGro) supplemented with 10% FBS (Omega Scientific, Inc.)

and 1% Penicillin/Streptomycin (Life Technologies). TOV21G cells were purchased from ATCC with

cell line authentication information provided (STR Profile: Amelogenin: X; CSF1PO: 13, 15; D13S317:

11, 12; D16S539: 10, 12; D5S818: 12, 13; D7S820: 12; THO1: 7, 9.3; TPOX: 8, 11; vWA: 17; ATCC).

Cells were used within six months of receipt. TOV21G cells were grown in 1:1 mixture of Medium

199 (Life Technologies) containing 2.2 g/L sodium bicarbonate and MCDB 105 (Life Technologies)

containing 1.5 g/L sodium bicarbonate, supplemented with 15% FBS and 1% Penicillin/Streptomycin.

All cells were grown at 37˚C with 5% CO2. All cell lines were negative for mycoplasma when tested

by MycoAlert Mycoplasma Detection Kit (Lonza, Basel, Switzerland)

shRNA knockdown
Lentiviral GIPZ shRNAs (Dharmacon, GE) targeting ARID1B (shARID1B#1: V2LHS_201002, shAR-

ID1B#2: V3LHS_306691) or scrambled control (RHS4346) were used to infect HCT116 and TOV21G

cells. Infected cells were selected with puromycin (HCT116: 2 mg/ml; TOV21G: 4 mg/ml) for up to 7

days before performing further experiments.
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Forced expression of MET
MET expression was forced by lentiviral transduction of a blasticidin-resistant plasmid containing

MET, generated using the Gateway cloning system with pDONR223-MET (Johannessen et al.,

2010) and pLX304 (Yang et al., 2011). pDONR223-MET was a gift from William Hahn and David

Root (Addgene plasmid # 23889). pLX304 was a gift from David Root (Addgene plasmid # 25890).

CellTiter-Glo assay
Cells were harvested by trypsinisation and plated as single cells at 100 cells/well in 96-well plates.

Triplicate wells were plated for each condition and media was replaced every 3 days. For prolifera-

tion analysis, 25 ml CellTiter-Glo reagent (Promega) was added to each well and cells incubated for 2

min on orbital shaker before resting for 10 min prior to analysis. Luminescence was then measured

using Tecan Infinite M1000 Pro plate reader.

Antibodies
Primary antibodies used for western blotting are as follows: ARID1A (Santa Cruz Biotechnology, sc-

32761), ARID1B (Abcam, ab57461), TBP (Thermo Scientific, MA1-21516), Brg1 (Santa Cruz Biotech-

nology, sc-17796), Brm (Bethyl Laboratories, A301-015A), BAF60A (Santa Cruz Biotechnology, sc-

135843), BAF57 (Bethyl Laboratories, A300-810A), BAF53A (Novus Biologicals, NB100-61628),

BAF180 (Bethyl Laboratories, A301-591A), MET (Cell Signaling Technology, #8198), V5 (Biorad,

MCA1360). Antibodies used for ChIP: H3K27ac (Abcam, ab4729), H3K4me (Abcam, ab8895),

H3K4me3 (Millipore, #05–745), H3K27me3 (Active Motif, #39155), FRA1 (Santa Cruz Biotechnology,

sc-183x).

Immunoblotting
Nuclear fractions were prepared by incubation on ice in buffer A (25 mM HEPES, pH 7.6, 5 mM

MgCl2, 25 mM KCl, 0.05 mM EDTA, 10% glycerol, 0.1% NP-40, 1 mM DTT, supplemented with pro-

tease inhibitors). After collection by centrifugation, pellets were resuspended in RIPA buffer (50 mM

Tris, pH 8.0, 150 mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% NP-40, 5 mM EDTA, 1 mM

DTT, supplemented with protease inhibitors) and incubated on ice for 10 min. Whole cell lysates

were prepared by incubation in RIPA buffer on ice for 10 min. Lysates were cleared by centrifugation

and supernatants transferred to new tubes before measuring protein concentration by BCA assay.

Equal protein amounts were added to loading buffer and samples then loaded onto 8–12% Bis-Tris

gels. Following transfer, blots were incubated with primary and secondary antibodies before detec-

tion using Odyssey Imaging system (LI-COR Biosciences).

Glycerol gradient sedimentation
Nuclei were isolated from cells by incubation in buffer A (25 mM HEPES, pH 7.6, 5 mM MgCl2, 25

mM KCl, 0.05 mM EDTA, 10% glycerol, 0.1% NP-40, 1 mM DTT, supplemented with protease inhibi-

tors) on ice, centrifuging 1000xg for 5 min to collect. Nuclei were incubated in buffer C (10 mM

HEPES, pH 7.6, 3 mM MgCl2, 100 mM KCl, 0.05 mM EDTA, 10% glycerol, 1 mM DTT, supplemented

with protease inhibitors) and ammonium sulfate added to 0.3M final concentration before incubating

at 4˚C for 30 min. Lysates were cleared by ultracentrifugation at 100,000 rpm (MLA-150 rotor).

Supernatants were collected and 0.3 g/ml ammonium sulfate powder added before incubating on

ice for 20 min, mixing once after 10 min. Proteins were pelleted by ultracentrifugation as above. Pel-

lets were resuspended in HEMG 0 buffer (25 mM HEPES, pH 7.9, 12.5 mM MgCl2, 100 mM KCl, 0.1

mM EDTA, 1 mM DTT, supplemented with protease inhibitors) and protein amounts quantitated. 10

ml 10–30% Glycerol gradients were prepared as previously described (Dykhuizen et al., 2013) and

600 mg protein overlaid before centrifugation in a SW40 swing bucket rotor at 40,000 rpm for 16 hr

at 4˚C. Twenty 0.5 ml fractions were then collected for immunoblotting analysis.

ATAC-seq
ATAC-seq was performed as previously described (Buenrostro et al., 2013). Briefly, 50,000 cells

were washed with cold PBS, collected by centrifugation then resuspended in resuspension buffer (10

mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2). After collection, cells were lysed in lysis buffer (10

mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% NP-40) and collected before incubating in
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transposition mix containing Tn5 transposase (Illumina). Purified DNA was then ligated with adapt-

ers, amplified and size selected for sequencing. Library DNA was sequenced with paired end 42 bp

reads.

Chromatin immunoprecipitation (ChIP)
Cells were harvested and crosslinked in 1% formaldehyde for 10 min before quenching with glycine

for 5 min on ice. Cells were pelleted by centrifugation and snap frozen in dry ice before storage at

�80˚C. Pellets were thawed on ice and resuspended in rinse buffer 1 (50 mM HEPES pH 8.0, 140

mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP40, 0.25% Triton X100), collected by centrifugation

then resuspended in rinse buffer 2 (10 mM Tris pH 8.0, 1 mM EDTA, 0.5 mM EGTA, 200 mM NaCl).

Cells were washed and resuspended in shearing buffer before sonication using Covaris E220 (0.1%

SDS, 1 mM EDTA, pH 8, 10 mM Tris HCl, pH 8). For ChIPs using antibodies for histone modifica-

tions, 106 cells in 1 ml shearing buffer were added to 1 ml Covaris tubes and sheared for 12 mins at

140W with 10% duty factor. For FRA1 ChIPs, cells were sheared for 8 mins at 140W with 5% duty

factor. DNA was then made up to 1x IP buffer (50 mM HEPES/KOH pH 7.5, 150 mM NaCl, 1 mM

EDTA, 1% Triton X100, 0.1% DOC, 0.1% SDS, supplemented with protease inhibitors) and 3 mg anti-

body added for overnight incubation with rolling at 4˚C. Antibody bound DNA was recovered using

a 1:1 mixture of Protein A and Protein G beads, washed and treated with Proteinase K and RNAse

A. Purified ChIP DNA was then used for ChIP-qPCR or library generation for ChIP-seq.

ChIP-qPCR
Primers used for ChIP-qPCR were as follows: TGFA: F: CTCTACCAGGGCCGAGTTC, R:

TCAAGGCCTCGTGTCACAG; NRIP1: F: GGACACCCAAACCTTCATCC, R: CAGTAAGACCC

TGGCAGCAT; CALB2: F: ACTGAACTCATCCCACCAGG, R: CATTTCCCGTTTCCTGGGTG; PLAU:

F: GGACCAGCTTTAGTTCCCCT, R: GGAGGGAGGCAGCATTCTT; MET R1: F: AAGTCACATC

TCCAGCGTCC R: CAGGAGTAGCTGAGCCCTTG; MET R2: F: TCAGACATTTGGCACCTCTG R:

TCATTTTCCCAATGGTAGCC; Negative region: F: GGACAACTCAGGGATGCAAT, R: GCAGAAGA-

GAGCCAACCAAC. 0.5 ml ChIP DNA was analysed with primers (200 mM) and FastStart Universal

SYBR Green Master (Roche) on BioRad CFX Connect real-time PCR machine.

ChIP-seq library prep
5 ng ChIP DNA was used to prepare libraries using the NuGen Ovation Ultralow Library System V2

following the manufacturer’s instructions. Briefly, DNA ends were repaired before ligation of adapt-

ers for sequencing. Following bead purification, libraries were amplified by PCR then purified and

size-selected for sequencing with single end 50 bp reads.

RNA isolation and RNA-seq library preparation
RNA from 106 cells was isolated using Quick-RNA Miniprep Kit (Zymo Research). mRNA was then

isolated using NEBnext Poly(A) mRNA Magnetic Isolation Module (New England BioLabs) with 5 mg

input RNA according to the manufacturer’s guidelines. Libraries were prepared for RNA-seq using

NEBnext Ultra RNA Library Prep Kit for Illumina following the manufacturer’s instructions. mRNA

was fragmented and purified before first strand and second strand synthesis. Double-stranded

cDNA was then purified and ends repaired before dA tailing and adapter ligation. After cleanup and

size selection, cDNA libraries were amplified and purified before sequencing with single end 50 bp

reads.

RNA preparation for eRNA analysis
RNA from 106 cells was isolated using Quick-RNA Miniprep Kit (Zymo Research). cDNA synthesis

was performed with Superscript III Reverse Transcriptase (ThermoFisher Scientific) following the

manufacturer’s protocol with 2.5 mg input RNA and 50 ng/ml random hexamers to enrich for small

RNAs. The resulting cDNA was used for RT-PCR analysis with primers used in ChIP-qPCR (see

above).
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Data analysis and datasets used
Data were processed using HOMER v4.8 (http://homer.salk.edu/) (Heinz et al., 2010). Sequencing

metrics for datasets generated in the current study are provided in Supplementary file 1. Datasets

for DNAse I hypersensitivity (ENCODE: ENCSR000ENM), SMARCA4 and SMARCC1 (Mathur et al.,

2017), GRO-seq (Galbraith et al., 2013), FRA1, JUND, CTCF, ATF3 (ENCODE: ENCSR000BTE,

ENCSR000BSA, ENCSR000BSE, ENCSR000BUG), POL2RA ChIA-PET (ENCODE: ENCSR000BZX),

human ovarian clear cell and normal ovary microarray (GSE6008, Gene Expression Omnibus) were

used.

ATAC-seq clustering analysis
Paired end 42 bp reads were aligned to hg38 using STAR alignment tool (V2.5) (Dobin et al., 2013).

ATAC-seq peaks were called using the findPeaks program within HOMER using parameters for

DNAse-seq (-style dnase). Peaks were called when enriched >4 fold over local tag counts.

Differential peaks were found using edgeR (Robinson et al., 2010) by merging peaks from con-

trol and experiment groups and called using getDifferentialPeaks with fold change �1.5 or ��1.5,

FDR < 0.05. Peaks were annotated by mapping to nearest TSS using the Homer annotatePeaks tool.

Clustering analysis
Common peaks shared by two biological replicates in WT, ARID1A-/-, and ARID1A-/- ARID1B KD

samples were merged and used to generate clusters based on peak shape in WT sample. k-means

clustering was used to group according to peak tag density changes in ARID1A-/- vs. WT cells. Tag

densities from ARID1B KD and ARID1A-/- ARID1B KD samples were then overlaid on these clusters.

Heatmaps were created for accessible sites using annotatePeaks with -ghist parameter in HOMER.

Window width was set as 1000 bp (±500 bp). Clustering by k-means was performed using Gene

Cluster 3.0 (http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm) using Correlation (cen-

tered) for the Similarity Metric. Clusters were visualized using Java Treeview v1.1.6r4.

Motif analysis
Sequences within 100 bp of peak centers were compared to known motifs in the HOMER database

using the findMotifsGenome.pl command with default parameters.

Nucleosome spacing
We isolated paired-end ATAC-seq fragments between 180 and 247 bp (Buenrostro et al., 2013)

and plotted the mean dyad density at single nucleotide resolution around AP-1 motifs. The nucleo-

tide of greatest tag density up- and downstream of the motif was found and the spacing between

mononucleosomes was determined.

ChIP-seq analysis
Single-end 50 bp reads were aligned to hg38 using STAR alignment tool (V2.5) (Dobin et al., 2013).

ChIP-seq peaks were called using the findPeaks program within HOMER using default parameters

for histone ChIP-seq (-style histone). Peaks were called when enriched >2 fold over input controls

and >4 fold over local tag counts, with FDR < 0.001. ChIP-seq peaks within a 1000 bp range were

stitched together to form ChIP-seq regions. Regions were annotated by mapping to nearest TSS

using annotatePeaks.pl. Differential regions were found using edgeR by merging peaks from control

and experiment groups and called using getDiffExpression.pl with fold change �1.5 or ��1.5,

FDR < 0.05.

Identification of enhancer classes
Enhancer sites were defined as H3K4me + regions that are at least 1 kb away from the nearest anno-

tated TSS or H3K4me3 peak. These sites were divided into poised (H3K27ac-) and active (H3K27ac

+) (Creyghton et al., 2010). We separated H3K4me1 + H3K27ac + peaks into active enhancers and

super-enhancers using a modified approach of the original method (Whyte et al., 2013). Specifi-

cally, we ranked H3K4me1 + H3K27ac + regions at least 1 kb away from the nearest annotated TSS

or H3K4me3 peak by H3K27ac + ChIP seq tag density and used the tangent of the curve to call

super-enhancers (Whyte et al., 2013).
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RNA-seq analysis
Single-end 50 bp reads were aligned to hg38 using STAR alignment tool (V2.5) (Dobin et al., 2013).

HOMER analyzeRepeats was used to quantify gene expression normalized for length and sequenc-

ing depth (FPKM) across the biological replicates. Differential expression analysis was carried out on

raw read counts with the edgeR package (Robinson et al., 2010) using independent biological repli-

cates to estimate coefficients of biological variation.

RNA-seq expression of nearest TSS for annotated accessible sites
ATAC-seq peaks were annotated to the closest TSS and the associated FPKM values were deter-

mined. For each ATAC-seq cluster, the top 25% expressed genes were used to calculate log2 fold

change compared to WT.

GRO-seq analysis
We used GRO-seq data (Galbraith et al., 2013, GSE38140) from WT HCT116 cells to find putative

TSSs. These were then compared to accessible sites in ATAC-seq clusters to determine percentage

overlap. Intergenic GRO-seq signal for comparison with ATAC-seq clusters was generated by taking

intergenic sites at least 3 kb from promoters and excluding transcription termination sites (TTSs).

Pathway enrichment analysis
Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway analysis was performed on annotated

peaks using HOMER Gene Ontology (GO) analysis. Gene Set Enrichment Analysis was carried out

using Hallmark gene sets using default parameters (Subramanian et al., 2005).

Pairwise comparison with ChIA-PET
We used ChIA-PET interaction data with POL2RA in HCT116 cells (ENCODE Project:

ENCSR000BZX). ChIA-PET read pairs were aligned to the hg38 genome using bowtie2. Only interac-

tion read pairs spanning between 5 kb and 1 Mb and containing the same experiment UMI barcode

were considered in the analysis. Interaction end-points were assigned to genomic features (i.e. regu-

lated gene TSS, ATAC-seq peaks, etc.) if found within 3 kb of annotated features. Pairwise enrich-

ments between features joined at opposite ends of an interaction were calculated relative to the

number of expected interactions based on the randomization of each feature across potential inter-

action end-points.
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