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Guide RNA structure design enables
combinatorial CRISPRa programs for
biosynthetic profiling

Jason Fontana 1,2,3,8, David Sparkman-Yager1,3,8, Ian Faulkner 1,3,8,
Ryan Cardiff 1,2,3, Cholpisit Kiattisewee 1,2,3, Aria Walls 1,3,
Tommy G. Primo 1,4, Patrick C. Kinnunen 5,6,7, Hector Garcia Martin 5,6,7,
Jesse G. Zalatan 1,2 & James M. Carothers 1,3

Engineering metabolism to efficiently produce chemicals from multi-step
pathways requires optimizing multi-gene expression programs to achieve
enzyme balance. CRISPR-Cas transcriptional control systems are emerging as
important tools for programming multi-gene expression, but poor predict-
ability of guide RNA folding can disrupt expression control. Here, we correlate
efficacy ofmodified guideRNAs (scRNAs) for CRISPR activation (CRISPRa) in E.
coliwith a computational kinetic parameter describing scRNA folding rate into
the active structure (rS = 0.8). This parameter also enables forward design of
scRNAs, allowing us to design a system of three synthetic CRISPRa promoters
that can orthogonally activate (>35-fold) expression of chosen outputs.
Through combinatorial activation tuning, we profile a three-dimensional
design space expressing two different biosynthetic pathways, demonstrating
variable production of pteridine and human milk oligosaccharide products.
This RNA design approach aids combinatorial optimization of metabolic
pathways andmay accelerate routine design of effectivemulti-gene regulation
programs in bacterial hosts.

Synthetic biology and metabolic engineering have great potential for
enabling chemical bioproduction from sustainable feedstocks as part
of a circular bioeconomy1–3. Efficient microbial conversion of simple
substrates into valuable chemicals andmaterials often requires precise
expression control across multiple genes to optimize enzyme levels
and stoichiometry. Despite recent advances in gene expression tech-
nologies, it remains challenging to engineer and optimize multi-step
metabolic pathways4–6. CRISPR-Cas transcriptional control systems
have emerged as promising routes for programming the precise
expression ofmultiple genes, which could accelerate the development
of engineered organisms for a wide variety of applications7–10. We

recently developed an approach for the construction of multi-gene
CRISPR transcriptional control programs in bacteria, with activation
(CRISPRa) or repression (CRISPRi) functions specified through the
regulated expression of multiple guide RNAs (gRNAs)11,12. Recent
demonstrations of dynamic multi-layer CRISPRa/i gene regulatory
network designs in E. coli13,14 and CRISPR-based metabolic pathway
engineering in the soil microbe Pseudomonas putida15–17 highlight the
versatility of these systems for programmable multi-gene control.
However, gaps in knowledge and technique continue to prevent the
routine design of CRISPRa/i programs capable of quantitatively tuning
activated expression frommultiple bacterial genes at the same time9,18.
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Quantitatively tunable multi-gene expression programs are par-
ticularly useful for microbial metabolic engineering applications19. It is
important to identify gene expressionprograms thatminimize enzyme
imbalances in multi-gene heterologous pathways and tune endogen-
ous networks to redirect metabolic flux towards the desired
output4,6,20. Balanced enzyme expression helps minimize bottlenecks,
prevent excess metabolic burden, and avoid accumulation of toxic
intermediates. Identifying these programs is challenging, in part
because we lack tools to systematically explore large, multi-
dimensional spaces of gene expression programs. Addressing this
challenge with CRISPRa/i systems requires reliable and tunable reg-
ulation of gene expression, in turn requiring predictive gRNA design
tools for bacterial hosts. Significant progress has been made in gRNA
design using folding energetics predictions, cell-based screens, and
machine learning, although these methods have been applied pri-
marily for gene editing applications in mammalian cells21. General
design strategies for tunable CRISPRi with modified gRNAs have been
reported for both mammalian and bacterial systems19,22. However,
many bacterial CRISPRa systems use gRNAs with additional structured
elements11,12,23, and it is unknown whether design rules for effective
gRNA function are generalizable across applications and organisms.

Here, we identify structural properties that enable routine guide
RNA design for tunable multi-gene bacterial CRISPRa programs. Our
CRISPRa system uses modified single guide RNAs (sgRNAs) that are
extended with hairpin sequences, termed scaffold RNAs (scRNAs), to
recruit the transcriptional activator SoxS upstream of a promoter11,12.
This recruitment results in activation of a weak minimal promoter to
high expression levels. To identify design variables affecting CRISPRa,
we investigate a set of thermodynamic and kinetic guide RNA folding
parameters.We find that the largest impact comes from the size of the
energy barrier separating the most stable scRNA structure from the
active scRNA structure: this single kinetic parameter accurately pre-
dicts about 80% of the variation in CRISPR-activated expression. By
comparison, we find that commonly used computational tools for
gRNA design cannot consistently identify scRNAs for effective bac-
terial CRISPRa. We expect that our computational approach could be
generalized to identify effective gRNAs for a broad range of CRISPR
applications, because the parameters are intrinsic to the RNA
sequence. Starting from highly effective and orthogonal scRNAs, we
then generate predictable variations in gene activation by truncating

scRNA spacer sequences. Using these design strategies, we engineer
multi-guide programs that simultaneously direct tunable variations in
CRISPRa from multiple promoters independently. We apply a combi-
natorial set of these CRISPRa programs to drive the design of engi-
neered metabolic pathways producing valuable biopterins and
oligosaccharide molecules in E. coli. Screening productive variants
from these multi-gene programs is a simple method of engineering
efficient microbial bioproduction, here indicating enzyme expression
combinations producing up to 2.3-fold higher titer than that produced
by maximal expression. This approach to biosynthetic profiling
enables quantitative tuning of various pathways, and therefore is a
versatile approach for a broad range of bioproduction applications.
Furthermore, the capacity to reliably implement tunable, multiplexed
gene expression will improve the ability to precisely implement per-
turbations computationally predicted24,25 to optimize production
strains.

Results
scRNA target site sequences have variable effects on gene
activation
To build multi-gene CRISPRa programs for metabolic engineering,
we need promoters that can be selectively targeted for activation
through the expression of a matched, or cognate, scRNA (Fig. 1). The
rules for effective CRISPRa from bacterial promoters are known to
be complex12. In particular, the 20 bp scRNA target site must be
precisely positioned relative to the transcription start site for
effective gene activation. We previously identified a highly effective
promoter (J3) with an appropriately-positioned target site12. By
altering only the target site sequence of the J3 promoter, we
expected to generate orthogonal promoters that retain high levels
of gene expression.

We modified the J3 target site sequence to generate 14 additional
synthetic promoters with fully randomized target sites, each paired
with its cognate scRNA (Fig. 2a). Targeting theCRISPRa complex in this
way to each of the 15 promoters activated expression of a downstream
fluorescent reporter gene (Fig. 2b) in E. coli MG1655 (Supplementary
Table 1). All of the promoter variants showed measurable activation
compared to the off-target scRNA control (Supplementary Fig. 1), but
there was significant variability over a 3-fold range in expression levels
(Fig. 2b). Consistent with previous findings12, these results suggest that
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Fig. 1 | Structure-based guide RNA design and synthetic promoters enable
design space mapping with tunable CRISPRa. Computational analysis of scRNA
sequence identified a kinetic parameter describing the rate of conversion between
the most stable structure and the active structure for CRISPRa, and scRNAs
screened using this parameter predictably activated bacterial expression from a set
of synthetic promoters. Tuning the activation of these promoters by truncating

their scRNA spacer sequences—and again computationally verifying their efficacy—
allows combinations of activation level at each promoter. The promoters can be
paired with chosen output ORFs, including metabolic pathways. This method of
controlling pathway gene expression allows for profiling of pathway design spaces
for metabolic engineering using a combinatorial library of CRISPR-activated
expression levels.
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the target site sequence identity can have unexpectedly large effects
on gene activation.

The kinetic folding barrier predicts scRNA activity for CRISPRa
Variable activation from the orthogonal synthetic promoters could
occur if the corresponding 20 base scRNA spacer sequences have
different effects on folding. Changes to the spacer sequence could lead
to scRNAmisfolding that disrupts binding todCas9, recruitment of the
SoxS activator, or binding to DNA. We reasoned that the kinetic and
thermodynamic properties associated with the conversion of a mis-
folded scRNA into the correctly-folded structure could be important
determinants of CRISPRa activity. Scaffold RNAs could be more
effective in a kinetic sense if they readily transition to the correctly-
folded state, or could be more effective in a thermodynamic sense if
they are more likely to occupy the correctly-folded state.

To test these possibilities, we developed two coarse-grained
parameters that describe the energetics of scRNA folding: Folding
Barrier to capture kinetic properties and Folding Energy to capture
thermodynamic properties (Fig. 2c and Supplementary Fig. 2). We
defined the Folding Energy as the free energy difference between the
most stable scRNA structure (Minimum Free Energy, or MFE) and the
correctly-folded, CRISPR-active structure. The Folding Energy is large

when the correctly-folded structure is less stable than the MFE, and
approaches zeroas the correctly-folded structure increases in stability.
The Folding Barrier is the height of the activation energy barrier
separating the MFE structure from the correctly-folded structure.
When theMFE structure can easilyovercome thisbarrier and rearrange
into the correctly-folded structure, the Folding Barrier is low. The
correctly-folded structure was defined as the conformation in which
the spacer is unstructuredand theCas9-bindinghandle adopts the fold
observed in the crystal structure of the Cas9-sgRNA-DNA complex26.
Energetic parameters were calculated using custom algorithms that
apply programs in the ViennaRNA folding package27,28 (see “Methods”
section).

To probe the relationships between our calculated parameters
and CRISPR-activated RFP expression, we experimentally tested a set
of 39 scRNA-promoter pairs. This set includes the original J3 sequence,
the 14 randomly selected targets described above, and 24 additional
scRNAs designed to have Folding Barriers ranging from 5 to 35 kcal/
mol (Supplementary Data 1 and SupplementaryMethod 1). High levels
of CRISPR-activated expression correlated with smaller Folding Ener-
gies (rs = 0.7) and lower Folding Barriers (rs =0.8) (Fig. 2d and Sup-
plementary Fig. 3). Consistently, the MFE structures of the highest-
activation scRNAs in our set closely resembled the active scRNA
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Fig. 2 | CRISPRa is sensitive to scRNA target sequence. a Experimental system for
testing the role of scRNA target site sequence on CRISPRa activity. Orthogonal
20bp target sequences (Supplementary Data 1) were selected at random from the
human genome. These sequences replaced the J306 target sequence in the pre-
viously described J3 promoter12, and the cognate scRNAs contained the com-
plementary spacer sequences. b CRISPR-activated RFP expression from each
promoter variant. In the presence of the cognate scRNA, sequence-dependent
expression variation was measured across the set. Bars (blue for g1-J106, green for
J306) represent the Fluorescence/OD600 of strains harboring each synthetic pro-
moter and the cognate scRNA. The gray bar (OT) represents the baseline expres-
sion of the J3 promoter, obtained by expressing an off-target scRNA (J206).
c Folding Barrier (FB) as a critical parameter determining CRISPR-activated
expression. Additional kinetic and thermodynamic parameters are described in
Supplementary Fig. 2 and Supplementary Method 1. Folding Barrier can be calcu-
lated as the height of the energy barrier separating theminimum free energy (MFE)

secondary structure of a scRNA from the active structure for CRISPRa. d Folding
Barrier predicts the CRISPR-activated expression of promoter-scRNA pairs based
on sequence. In addition to the 15 promoters from panel b, 24 new synthetic
promoter-scRNA pairs were designed with FBs ranging from 4.7 kcal/mol to
32.7 kcal/mol (Supplementary Data 1). The y-axis values represent Fluorescence/
OD600 of strains harboring each promoter variant and expressing the cognate
scRNA, relative to the Fluorescence/OD600 of the J3 promoter and the J306 scRNA
(green). Blue and red dots respectively indicate the values of the strains expressing
the J506 and J606 scRNAs targeting their cognate promoters (Fig. 3). The blue line
represents aHill function fit to the data, and the gray dotted lines represent the 95%
confidence interval for the fit. R2 represents the coefficient of determination for the
fit. Values in panels b and d represent the average ± standard deviation calculated
from n = 3 biologically independent samples. Source data are provided as a Source
Data file.
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conformations, whereas the least effective scRNAs misfolded exten-
sively (Supplementary Fig. 4 and Supplementary Table 2). Interest-
ingly, we found that Folding Barrier alone may be sufficient for
identifying highly effective scRNAs. The most effective scRNA in our
39-member set had the smallest Folding Barrier. In contrast, three of
the worst-performing scRNAs, which generated 95% less gene activa-
tion than the J306 scRNA, had the largest FoldingBarriers in the set.We
also considered other thermodynamic and kinetic parameters for use
in predicting scRNA folding, but found that Folding Barrier was the
most effective predictor of CRISPRa function, with Folding Energy and
Net Binding Energy providing limited additional predictive power for
low-FB scRNAs. (Supplementary Figs. 3 and 5, and Supplementary
Method 1).

Our data suggest that Folding Barrier analysis could be used to
drive the design of scRNAswith a lower chance of weak activity. Out of
the 24 rationally designed scRNAs, the 15 scRNAs with the lowest
Folding Barrier all yielded effective CRISPRa (at least 50% of J306
output, or about 18-fold activation), and their CRISPR-activated
expression levels showed less variability than those of the 15
randomly-designed scRNAs (Coefficient of variation = 12% vs. 31% for
the random set) (Supplementary Fig. 5). We observed in our promoter
set that high-performing scRNAs tended to have Folding Barriers
≤10 kcal/mol, and all defective scRNAs (<50% of J306 activation) were
>10 kcal/mol. Therefore, a Folding Barrier threshold of <10 kcal/mol
could provide a useful computational screening metric for rapid
development of novel scRNAs (Supplementary Fig. 6 and Supple-
mentary Table 3).

To further evaluate this kinetic parameter as a screening tool to
design highly effective scRNAs, we compared Folding Barrier with pre-
existing models currently in wide use for gRNA design. A common
approach to analyze gRNAs involves calculating the free energy of
binding a correctly-folded gRNA to its target DNA29,30 (termed Binding
Energy in Supplementary Fig. 2a). In this approach, gRNAs with more
negative Binding Energies have unstructured spacer sequences that
should favor the DNA-bound state, and should therefore be more
active. In our study, however, the scRNAs with the lowest Binding
Energy included a significant fraction of defective scRNAs (33%), sug-
gesting that Binding Energy is not sufficient to account for CRISPRa
functionality (Supplementary Fig. 3 and Supplementary Fig. 5a). These
failuresmight be explained by interactions between the spacer and the
dCas9-binding handle, which are not accounted for in Binding Energy
but are included in Folding Energy and Folding Barrier due to con-
sideration of the entire scRNA sequence. The Folding Barrier metric
correctly predicts these failures within the low-Binding-Energy set:
defective scRNAs had relatively high Folding Barriers averaging
17.6 kcal/mol. Effective (≥50% of J306) scRNAs in this set had an aver-
age Folding Barrier of 9.3 kcal/mol, further supporting the use of a
Folding Barrier threshold to screen functional scRNAs.

Several machine learning models have also been developed to
predict gRNAactivity21,31–36. Thesemodelswere trainedwith supervised
learning to extract gRNA design rules from large gene editing datasets
and are widely used to aid the selection of gRNA target sites. Among
the models we tested, none yielded predictions strongly correlated
with observed CRISPR-activated expression from the scRNAs in our
set. For example, the widely used Azimuth, Doench ‘1621, and Moreno-
Mateos31 tools had correlation coefficients (rs) of 0.22, 0.02, and 0.09,
respectively, and incorrectly selected several defective guides as the
best (Supplementary Figs. 3 and 5). The top 15 scRNAs predicted by
these tools contained both defective scRNAs (with consistently higher
Folding Barriers, e.g. 21.6 kcal/mol average using Azimuth) and effec-
tive ones (7.3 kcal/mol average using Azimuth). Differences between
gRNA-directed editing and scRNA-directed activationmay account for
the poor performance of these models in this application. A machine
learningmodel trainedon scRNAs used in bacteria couldpotentially be
effective, but generating large enough bacterial CRISPRa datasets for

such a model to account for the stringent target site requirements12

might be impractical. Given the predictive success and ease of calcu-
lation of the Folding Barrier, we proceededwith this kinetic parameter
as a strategy to rapidly design highly effective scRNAs for bacterial
CRISPRa.

Tunable CRISPRa expression from orthogonal synthetic
promoters
By forward engineering scRNAs through computational folding
design, our tools provide an avenue for developing synthetic pro-
moters driving high levels of CRISPR-activated expression. To be
useful for programming combinatorial variations in multi-gene
expression, as in a metabolic engineering application, two additional
capabilities are needed. First, the synthetic promoters must exhibit
orthogonality with no cross-activation from other non-cognate
scRNAs expressed in the cell. Second, a strategy is needed to tune
expression levels from each of the promoters by independently
modulating CRISPRa activity at each site. In this section, we show that
promoter orthogonality is readily obtainable and that 5′ spacer
sequence truncations enable quantitative and independent tuning of
CRISPRa levels.

To construct three sequence-orthogonal synthetic promoters, we
selected threehigh-performing scRNAs from the set identified through
folding design. Because most randomly selected 20 base sequences
will be orthogonal, we did not apply any explicit filters for orthogon-
ality to select these sequences. The sequences included two new
scRNAs, termed J506 and J606, and the previously described
J306 scRNA with its cognate J3 promoter. All three scRNAs have low
Folding Barriers (≤10 kcal/mol), consistent with the threshold criterion
for effective scRNA selection. To construct cognate synthetic pro-
moters for J506 and J606, termed J5 and J6, we inserted each target site
at the optimal position 81 bases upstreamof the transcription start site
(Fig. 3a). To minimize repeating sequence elements between the pro-
moters, we inserted distinct sequences in the intervening 26 bases
between the target site and the minimal promoter (termed the UP-
element), using sequences previously screened to permit high CRIS-
PRa activity in this context12,37 (Supplementary Method 2). We also
randomized about 120 bases upstream of the target site PAM in J5 and
J6, without introducing additional dCas9 PAMs. From the new J5 and J6
promoters, we observe high levels of CRISPR-activated RFP expres-
sion, similar to the expression level from the J3 promoter (Fig. 3b). To
confirm orthogonality of J3/J5/J6, we measured the response of each
promoter paired with either non-cognate scRNA and observed no
activation (Fig. 3b).

To generate independently tunable expression from our ortho-
gonal CRISPRa promoters, we consideredmultiple strategies. Several
approaches have been described, generally either by modulating
gRNA expression level or by direct modification of gRNA sequence.
For example, CRISPRi or CRISPRa activity can be tuned using dif-
ferent strengths of constitutive promoters to drive gRNA
expression23,38. Alternatively, introducing mismatches in the gRNA
spacer sequence can modulate CRISPRi gene repression39–42, and
truncating the gRNA target sequence from the 5’ end has also been
shown to reduce CRISPRi activity39. Here, we reasoned that
truncation-based tuning would yield a more predictable response
than spacer mismatches, and would allow us to keep the same con-
stitutive promoter strength expressing each scRNA. This approach
simplifies cloning and decreases the risk of dCas9-binding competi-
tion effects43,44.

We screened J3-, J5-, and J6-targeted scRNAs truncated 1–9 bases
from the 5’ end to identify guides that encode discrete intermediate
levels of CRISPR-activated gene expression. Across all three pro-
moters, scRNA spacer truncation gradually reduced CRISPR-activated
expression (Fig. 3c), and from those functions we selected high,
medium, and low activation levels. The folding parameters predict
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similarly high efficacy for all truncations (Folding Barrier ≤10 kcal/
mol), while the Net Binding Energy generally becomes less favorable
with truncation (Supplementary Table 4). This effect is consistent with
the smaller number of RNA bases available to pair with the DNA target,
and loosely correlates with output activation (Supplementary Fig. 7).
Specifically, the full-length J306 scRNA with a 20 base spacer gener-
ated 38-fold activation, and truncated scRNAs with 17, 14, or 11 base
spacers tuned CRISPRa to 27-fold, 15-fold, and 7-fold activation,
respectively. For the J506 and J606 scRNA truncations, the expected
monotonically decreasing trends were observed, although the precise
truncations to achieve similar activation levels were not the same
(Fig. 3c). In particular, the J606 scRNAwasmore sensitive to truncation
than J306 and J506. For instance, the 14-base J606 truncation activated
gene expression byonly 2-fold, while the 14-base J306 and J506 scRNAs
activated their promoters by 15-fold and 11-fold, respectively. Con-
sistent with previous work investigating DNA-level sequence context
effects on CRISPRa37, sequences adjacent to the spacer targets in the
J3/J5/J6 promoters might affect truncation response. Even if the ener-
getic parameters here do not quantitatively explain the sensitivity of
each promoter’s truncation response (Supplementary Fig. 7), they

generally reflect the rank order of the tuned outputs (rs =0.83 for J306,
rs = 1 for J506, rs =0.94 for J606).

Interestingly, the J306 scRNA with a 19 base spacer generated
higher activation than the 20 base spacer (46-fold vs. 38-fold) even
though the Net Binding Energy for the 20 base spacer (−32.3 kcal/mol)
was similar to that of the 19 base spacer (−31.4). Taken together, the
energetic parameters do not indicate impaired folding of the 20 base
spacer or any other indication that the 19 base spacer should perform
better for CRISPRa. It is possible that spacer truncations could affect
transcription of the scRNA itself or could introduce scRNA folding
characteristics not captured by our screening parameters. For prac-
tical applications, however, we can empirically choose the appropriate
scRNA spacer length from within the truncation datasets to obtain
tunable high, medium, or low activation from each of the three
promoters.

Combinatorial CRISPRa library enables tuning of multi-gene
expression programs
Encoding expression levels directly in multi-scRNA programs creates a
straightforward way to implement combinatorial variations in the
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Fig. 3 | CRISPR activation of orthogonal synthetic promoters can be tuned
using truncated scRNAs. a Orthogonal CRISPR activation was achieved for the J3,
J5, and J6 synthetic promoters by the sequence orthogonality of their cognate
scRNAs (J306, J506, J606, respectively). While J3 was previously described12, J5 and
J6 were selected from our set of 38 synthetic promoters (Fig. 2d) because they
generated similar CRISPR-activated expression levels as J3. b Synthetic promoters
for CRISPRa can be selectively activated by expressing their cognate scRNAs. Bars
represent the Fluorescence/OD600 of strains harboring the J3, J5, or J6 promoters
and expressing the cognate or non-cognate scRNAs. cCRISPR-activated expression
from the J3, J5, and J6 promoters can be tuned with truncated scRNAs by removing

nucleotides from the 5′ end of the spacer. Bars represent the Fluorescence/OD600

of strains harboring J3, J5, or J6 and expressing the cognate scRNAs truncated to 19,
18, 17, 14, and 11 bases. Gray bars represent the baseline expression of the pro-
moters, obtained from strains expressing an off-target scRNA (J206). Labels above
bars indicate the spacer length chosen to encode high, medium, low and off
expression levels in the combinatorial scRNA library (Fig. 4). Values in panels b and
c represent the average ± standard deviation calculated from n = 3 biologically
independent samples. The full sequences of the J3, J5, and J6 promoters are
described in Supplementary Table 5 and Supplementary Data 4. Source data are
provided as a Source Data file.
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expression of multi-gene systems. Genes of interest can be cloned
under the control of a set of synthetic CRISPRa promoters and tuned
by simply changing the identity of the scRNAs transcribed in the cell.
For example, driving the expression of three genes with the J3, J5, and
J6 promoters and expressing a combination of a J306 scRNAwith an 11
base spacer, J506with a 20base spacer and J606with an 18base spacer
would result in low, high, and medium expression of the corre-
sponding genes. By extending such a strategy to encompass all pos-
sible combinations of truncated J306, J506, and J606 scRNAs, we can
rapidly explore large combinatorial spaces of gene expression under
the control of CRISPRa promoters (Fig. 4a).

We demonstrate the immediate utility of this design strategy by
creating a set of genetic tools for combinatorial gene expression
profiling. We constructed a library of multi-scRNA plasmids

(program plasmids) (Supplementary Data 2 and Supplementary
Fig. 8) that encode the expression levels from the set of synthetic
CRISPRa promoters, which control a set of desired genes on an
output plasmid. Three-gene combinatorial expression profiling is
then enabled by simply combining an output plasmid with each
member of the program library (Fig. 1), allowing the same scRNA
library to be used for arbitrary outputs. We constructed a full library
of scRNA plasmid variants to encode all possible combinations of
high, medium, low (Fig. 3c) and basal expression of three target
genes. Basal expression from each of the targeted promoters was
minimal and resulted from an off-target scRNA. Together, the library
is composed of 64 plasmids (43) that can be combined with any
construct containing genes driven by the J3, J5, and J6 synthetic
promoters, resulting in strains encoding 64 different combinations
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Fig. 4 | Multi-gene expression can be rapidly tuned using combinatorial
CRISPRa programs. a Combinatorial library encoding all combinations of four
CRISPR-activated expression levels across three genes. The library expresses three
scRNAs (variants of J306, J506, and J606). Each scRNA is present in the library in
three truncation variants to generate high, medium and low levels of expression of
their target promoters (J3, J5, and J6, respectively). In addition to the three trun-
cation variants, the library contains strains with an off-target scRNA in placeof each
of the J306, J506, and J606 scRNAs to encode a condition in which the target
promoter remains unactivated. The lengths of the J306 scRNA variants are 20, 14,
and 11 bases. The J506 scRNA variants are 20, 18, and 14 bases. The J606 scRNA
variants are 20, 18, and 17bases.bUse of the combinatorial scRNA library to specify
the expressionofmultiple genes independently. Eachmember of the combinatorial
scRNA librarywasdelivered to a strainharboring aplasmidexpressing J3-gfp, J5-bfp,
and J6-rfp reporters, generating 64 strains expressing different combinations of the

threefluorescentproteins. Points represent theflowcytometrymedianofGFP, BFP,
and RFP from each strain, normalized to the average of the maximum strain across
the experiment. The heatmap table below the plot indicates the encodedpromoter
expression for each strain, asdescribedon thebottom right. Dashed lines represent
the Relative Fluorescence/OD600 of strains harboring only one of the three fluor-
escent reporters and only the cognate scRNA (tested with RFP output; see Sup-
plementary Data 2 for plasmids and Supplementary Fig. 9a for variation in single-
channel expression), again normalized to the maximum value. Bars in panel
b represent the average ± standard deviation calculated from n = 3 biologically
independent samples, except strain #9, for which only n = 2 samples grew suc-
cessfully. The sequence of each scRNA in the combinatorial library can be found in
Supplementary Data 1. The sequence of the reporter plasmid expressing J3-gfp, J5-
bfp, and J6-rfp is included in Supplementary Data 4. Source data are provided as a
Source Data file.
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of multi-gene expression (Supplementary Table 5 and Supplemen-
tary Data 3).

As an initial validation of our strategy,we tested the combinatorial
multi-scRNA library using fluorescent reporter expression. We deliv-
ered each of the 64 constructs from the library to an E. coli strain
containing GFP, BFP, and RFP reporters under the control of the J3, J5,
and J6 promoters, respectively. The resulting strains displayed every
combination of high, medium, low, and basal expression for the three
reporters. Across this set, the strains displayed variations in relative
expression levels consistent with the multi-scRNA programs they
contained (Fig. 4b and Supplementary Figs. 9 and 10). However, we
also observed that tuning one gene could affect expression of the
other genes. First, we found that total expression was reduced by
30–40%whenhigh activationwas simultaneously encoded for all three
reporters, suggesting that high heterologous gene expression is lim-
ited by host expression capacity. Although these effects will vary with
different target genes and ribosome binding site strengths, they indi-
cate that maximal expression of multiple genes in a pathway can have
unintended consequences that may result in suboptimal behavior.
Second, we observed that high expression specifically of RFP had a
deleterious effect on GFP and BFP levels (Supplementary Fig. 11). It is
well-established that expression burden, metabolic burden, or toxicity
can have effects on gene expression levels that are difficult to
predict45,46. Our findings underscore the importance of systematically

exploring the combinatorial design spaces of multi-gene expression
programs to optimize engineered systems. Using this strategy, we
applied ourCRISPRa tools to build combinatorial expressionprograms
to optimize flux through two engineered metabolic pathways.

Biosynthetic profiling of an engineered tetrahydrobiopterin
pathway with combinatorial CRISPRa programs
To determine if combinatorial optimization would be effective for
metabolic engineering, we applied our CRISPRa promoters and library
approach to regulate tetrahydrobiopterin (BH4) biosynthesis through
a biopterins production pathway. BH4 is a central cofactor in aromatic
amino acid metabolism and a treatment for life-threatening metabolic
disorders, including a form of phenylketonuria47. It can be produced
from a three-enzyme pathway48–50 using the E. coli gtpch andM. alpina
ptps and sr genes, as described previously15. Production can be mon-
itored with a fluorimetric assay48–50, providing a convenient model
system for combinatorial screening. We placed codon-optimized
gtpch, ptps, and sr genes in a BH4 pathway plasmid with enzyme
expression controlled by the J3, J5, and J6 synthetic promoters,
respectively (Fig. 5a, b). Co-transforming the BH4 pathway plasmid
into E. coliwith eachmember of our combinatorialmulti-scRNA library
resulted in 64 new strains, each encoding a different combination of
high,medium, low, and basal expression of the BH4 pathway enzymes.
We monitored biosynthetic flux through this pathway by measuring
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Fig. 5 | Combinatorial CRISPRa programs can be applied to tune biosynthetic
pathways. a Tetrahydrobiopterin (BH4) production was tuned by delivering the
combinatorial scRNA library to an E. coli strain harboring a BH4 pathway plasmid.
BH4 is synthesized fromGTP by expressing the gtpch gene from E. coli and the ptps
and sr genes from M. alpina. BH4 then undergoes two oxidative decomposition
steps yieldingdihydrobiopterin (BH2) andbiopterin. The BH4pathwayplasmidwas
constructed by placing the gtpch, ptps and sr genes under control of the J3, J5, and
J6 promoters, respectively.bTuning gene expression in newbiosynthetic pathways
only requires constructing a new pathway plasmid. The new plasmid is then
cotransformed with the same scRNA library from Fig. 4. c Combinatorial tuning of
BH4pathway expression reveals that gtpch activity is limiting and that the sr gene is
expressed in excess. Bars represent the average biopterins production of each
strain in the combinatorial library harboring the BH4 pathway plasmid. Variations

in biopterins production were measured by fluorescence (excitation: 340nm,
emission: 440nm; see Supplementary Fig. 19). Baseline-subtracted normalized
fluorescence values were converted into BH2 concentrations using the calibration
curve in Supplementary Fig. 19a. The concentration values are given as BH2 con-
centration because >80% of the fluorescence signals generated from BH4 pro-
duction strains have been previously shown to correspond to the BH2 oxidation
state15. The x-axis heatmap is color coded to indicate the encoded promoter
expression for each strain, as described on the bottom right. Values in panel
c represent the average ± standard deviation calculated from n = 3 biologically
independent samples. The sequence of the pathway plasmid containing J3-gtpch,
J5-ptps and J6-sr is included in Supplementary Data 4. Source data are provided as a
Source Data file.
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the fluorescence of the spontaneous BH4 oxidation products dihy-
drobiopterin (BH2) and biopterin15.

We observed the highest production—211mg/L BH2—in strains
with high expression of the first enzyme in the pathway, GTPCH,
indicating that gtpch expression is a sensitive control point in this
system (Fig. 5c). Reducing J3-gtpch activation from high to low
decreased production by an average of 66%. Changes in expression of
the second enzyme, PTPS, had relatively little impact on production
across the whole set of combinatorial programs (J5-ptps high to low
reduced production by an average of 29%), except for conditions in
which its expressionwasbasal (high to basal reduced production by an
average of 59%). Interestingly, basal expression of the SR enzyme was
not only sufficient for biopterins production, but increasing its
expression led to reduction in product titers. For example, increasing
J6-sr activation from off-target to high reduced production by an
average of 51%. This reduction was widespread and consistent, with 14
out of 16 J6-high strains producing significantly less biopterins than
their off-target counterparts. Previous kinetic characterization of SR
renders this result unsurprising51, because even basal SR expression
provides a vast excess of activity relative to the flux delivered by the
upstream pathway. Additional SR beyond the basal level presumably
only contributes additional expression burden without increasing
overall pathway flux. Taken together, these results identify effective
enzyme levels for BH4biosynthesis through thispathway andhighlight
that maximal expression of all enzymes is not optimal.

Applying biosynthetic profiling for efficient production of a
human milk oligosaccharide
We next applied our CRISPRa system to perform combinatorial
expression analysis of amulti-genepathway forproducing the valuable
oligosaccharide lacto-N-tetraose (LNT)52,53. Human milk oligosacchar-
ides (HMOs) are major components of human milk54 with substantial
effects on infant immune development55, microbiome
establishment56,57, anti-inflammation58,59, and more60. Microbial pro-
duction may provide routes to obtain scalable quantities of HMOs for
research, nutrition, and therapeutic applications that are otherwise
difficult to obtain using traditional chemical synthesis61,62. LNT is a
highly abundant HMO, a valuable formula additive, and a core struc-
ture of several other structurally diverse HMOs61,63.

A three-gene pathway consisting of the LacY lactose permease
and two heterologous enzymes, LgtA64 and WbgO65, can produce LNT
in E. coli52,53 (Fig. 6a). Starting from a lactose feedstock supplied in the
media,E. coli LacY imports the lactose into the cell, where LgtA, aβ−1,3-
N-acetylglucosaminyltransferase from Neisseria meningitidis, pro-
duces the intermediate metabolite lacto-N-triose II (LNT II) using the
hexose sugar from endogenous UDP-N-acetylglucosamine. WbgO, a β
−1,3-galactosyltransferase from E. coli O55:H7, then produces LNT
using LNT II and endogenous UDP-galactose. Knocking out endogen-
ousβ-galactosidase activity (lacZ) is alsonecessary to prevent cleavage
of the lactose feedstock into its constituent monosaccharides glucose
and galactose, which would divert flux away from LNT biosynthesis
and toward glycolysis52,61,66–69.

To establish CRISPRa control of LNT production, we generated an
output plasmid in which expression of the codon-optimized lacY, lgtA
and wbgO genes are independently controlled by the J3, J5, and J6
synthetic promoters, respectively (Fig. 6a). We delivered this LNT
pathway plasmid, together with our existing multi-scRNA library, to
the lacZ knockout E. coli strain JM109. Using HPLC to quantify accu-
mulation in the culture supernatant of LNT and intermediate meta-
bolite LNT II, we found a wide range of extracellular titers across the
library, from zero to nearly 600μMLNT (nearly 425mg/L) (Fig. 6b and
Supplementary Figs. 12 and 13). Amajority of the strains produced low
or no LNT in supernatant, including some of the highest-expressing
variants. For example, the strain with maximal expression (high-lacY,
high-lgtA, high-wbgO) produced only 252μM LNT (178mg/L), while a

strain with reduced lacY activation (medium-lacY, high-lgtA, high-
wbgO) produced 576μM LNT (408mg/L). In general, we found that
LNTproductionwas compromised in the strainswhere lacYexpression
was highest, with only two out of 16 high-lacY strains producing
>50μM LNT (Fig. 6b, left). This finding is consistent with toxic proton
transport resulting from LacY activity70,71, and exemplifies an under-
lyingmechanismof non-monotonic genotype-phenotype relationship.
When lacY is reduced to medium levels, there is a large spread in LNT
production, with eight out of 16 strains producing >50μM LNT
(Fig. 6b). The J3-lacY local maximum highlights the importance of
exploring a wide combinatorial space of enzyme expression, and the
high variation of medium-lacY LNT production indicates the need for
additional optimization of the other enzymes.

To understand the relative importance of LgtA and WbgO, we
focused on the subset of medium lacY strains. In the medium-lacY
sublibrary (Fig. 6c), LNT production appeared to be more sensitive to
variation of J6-wbgO expression than to variation of J5-lgtA expression.
High LNT production (>400 uM) required high wbgO expression,
indicating a steep expression-production relationship. For lgtA, high
production was possible at high or medium expression, indicating a
more gradual expression-production relationship. Reducing wbgO
expression from high to low decreased titer from 576μM to 56μM
(90.3% reduction compared to the maximum), but reducing lgtA
expression from high to low only decreased titer to 182μM (68.4%
reduction) (Fig. 6c). Inmost of these expression combinations, we also
observed significant extracellular accumulation of the LNT II inter-
mediate, the substrate for WbgO to convert into LNT. This accumu-
lationwasonly avoidedwhen lgtAwas not activated (basal expression).
When LNT II did accumulate, its titer did not depend strongly on low,
medium, or high lgtA activation (Fig. 6c). High LNT II titers were much
more widespread across the library than high LNT titers (35 strains
with LNT II titer above 25% maximal, compared to 10 strains for LNT)
(Supplementary Fig. 12). Taken together, these results suggest that
limited β−1,3-galactosyltransferase activity of WbgO is a metabolic
bottleneck in this pathway, confirming previous observations53. Our
use of a combinatorial library to profile a multi-enzyme design space
allowed us to easily characterize bottlenecks by probing for sensitive
control points in the pathway.

A machine-learning analysis further validated the wbgO bottle-
neck. We used scRNA truncation levels from the library strains as
inputs to theAutomatedRecommendationTool (ART)72 topredict LNT
production as a response variable, achieving high prediction accuracy
(R2 = 0.71, Supplementary Fig. 14) after training with the experimental
LNT production data from the library. ART then used the predictions
and uncertainties to make recommendations of the most productive
enzyme expression levels. The most highly recommended strains
consistently prioritizedmaximalwbgO expression to achieve high LNT
production. ART did not provide similarly stringent recommendations
for lacY and lgtA (Fig. 6d and Supplementary Fig. 15), allowing sub-
stantial expression variation among LNT-productive strain recom-
mendations. In agreement with the experimental library screen, these
recommendations identify the wbgO bottleneck as a high priority for
optimization, despite ART being unaware of LNT II accumulation.
Furthermore, when allowed to recommend any spacer length up to 21
nucleotides, whether tested experimentally or not, ART frequently
recommended wbgO levels above the highest experimentally tested
level. Collectively, these data underscore the idea that WbgO (β−1,3-
galactosyltransferase) activity should be increased beyond maximal
CRISPR activation of wbgO in this context.

To increase β−1,3-galactosyltransferase activity, we replaced
WbgO with the GalT enzyme from Chromobacterium violaceum
(CvGalT), an enzymewith faster turnover73. We placed CvGalT under J6
control in the LNT pathway plasmid and paired it with the previously
highest-producing scRNA library strain (medium-lacY, high-lgtA, high-
CvGalT). Compared to the corresponding WbgO strain, the CvGalT
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strain produced a 5- to 10-fold increase in supernatant LNT titer, while
LNT II accumulation decreased 5- to 20-fold, with the precise effect
depending on the feedstock concentration (Fig. 6e). These paired
effects reflect the higher ability of CvGalT to bind and convert LNT II
before it is exported to accumulate in the supernatant74. The highest
supernatant titer achieved from the CvGalT-containing system
increased to 2.52mM LNT (1.78 g/L), compared to 0.576mM (0.407 g/

L) from theWbgO-containing system. This improvement reflects a 4.4-
fold increase in mol/mol yield on lactose from 0.099 to 0.432.
Relieving the bottleneck identified by our biosynthetic profiling
approach therefore resulted in significantly more LNT production by
improving the efficiency of the β−1,3-galactosyltransferase reaction.

Biosynthetic profiling of the LNT pathway by combinatorial
CRISPRa indicated both the effects of lacY overexpression and the
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relative sensitivity of production to wbgO expression, demonstrating
the potential of this approach to rapidly optimize enzyme expression
levels. Crucially, the library is readily portable to different pathways.
Applying combinatorial CRISPRa to a different pathway only requires a
new output plasmid with the pathway enzymes expressed by the
existing synthetic promoters, followed by cotransformation with the
existing library of scRNA program plasmids.

Discussion
Synthetic biology and metabolic engineering offer a route for sus-
tainable bioproduction of chemicals from renewable feedstocks.Many
of theseproducts aremetabolically complex, requiring precise control
over multi-gene networks to effectively redirect metabolic flux. Com-
binatorial CRISPRa programs can provide precise control over multi-
ple targets, but require predictable scRNAefficacy. Developing general
bacterial gRNA design rules and avoiding the typical trial-and-error
validation of gRNA functionality will be an important factor in advan-
cing multi-gene regulation programs. By combining computational
RNA folding and experimental analyses, we uncovered strong corre-
lations (rs =0.7–0.8) betweenCRISPR-activated expression and a set of
thermodynamic and kinetic scRNA folding parameters75,76. Among the
parameters examined, kinetic parameters associated with post-
transcriptional RNA folding have the largest impacts on CRISPRa.

We found that a single kinetic parameter, Folding Barrier, can
accurately predict bacterial CRISPRa across a broad range of expres-
sion levels, with a failure rate of zero for the set of 39 scRNA designs
tested. We speculate that the predictive value of Folding Barrier may
be higher than that of Folding Energy because binding to dCas9 may
stabilize the active scRNA structure (Supplementary Figs. 2 and 3). The
kinetic barrier to access the active structure determines the likelihood
of dCas9 trapping the RNA in that structure, and is potentially more
important than the intrinsic thermodynamic stability of the free RNA
structure. dCas9 binding should also provide some resistance to RNA
degradation77. The high predictability of scRNA design supplied by
Folding Barrier should significantly facilitate the forward engineering
of complex bacterial CRISPRa/i systems. Multi-guide applications that
have remained inefficient or impractical with current gRNA failure
rates, such as combinatorial expression screening78 or model- and
data-driven strain engineering and optimization18, can therefore be
accelerated. Recent metabolic engineering successes in related sys-
tems emphasize the value of predictive gRNA design22,79.

The Folding Barrier metric outperformed current state-of-the-art
gRNAdesign tools in its ability topredict CRISPRa activity21,31. There are
many possible explanations for the inability of existing models to
apply to bacterial CRISPRa systems. It remains an open question
whether guide RNA design rules derived from one function in one
system, most commonly genome editing in eukaryotes, can be trans-
ferred to other functions and systems such as CRISPR gene regulation
in prokaryotes. First, many of these models account for genome

structure, which will vary greatly between eukaryotes and
prokaryotes80,81. Second, in regression models trained on large gene
editing datasets, it is difficult to decouple gRNA efficiency from feed-
back on gene expression as part of the overall gene regulatory net-
work, and therefore thepredictions of thesemodelsmaynot be readily
transferable between organisms. Third, the models underlying these
gRNA design tools were trained on unmodified gRNAs and do not
capture potential folding effects of extended RNA elements included
in scRNAs for bacterial CRISPRa. These models could likely be
improved by incorporating biophysical parameters in their predic-
tions. Finally, considerations of nucleic acid interactions in gRNA
design models tend to focus on the thermodynamics of spacer-DNA
interactions, and neglect other important aspects of gRNA folding30.
For instance, a number of studies that model the thermodynamics of
gRNA-Cas9-DNA complex formation employ parameters describing
the impact of structure within the spacer sequence (e.g. ΔGU) and of
spacer-target hybridization (e.g. ΔGH)

30,82,83. Here, the conceptually
similar parameter Binding Energy does not predict bacterial CRISPRa
as well as Folding Energy and Net Binding Energy, which consider the
spacer sequence in the context of the full scRNA sequence and struc-
ture (Supplementary Figs. 2-4). Developing models that combine
solely sequence-based kinetic folding parameters with heuristics from
large-scale functional screening should further improve our ability to
design modified guide RNAs for bacterial CRISPRa.

Optimal multi-gene pathway expression could be influenced by
many factors, possibly including total burden, enzyme imbalance, or
toxic enzyme or metabolite effects. The difficulty in predicting these
systems-level interactions means that finding global production
optima often requires exploring large design spaces84. Toward this
end, we successfully developed a scRNA library that can implement all
combinations of four truncation-definedexpression levels across three
chosen genes, totaling 64 possible expression programs. For each of
the pathways we examined, we found the optimal production to occur
at non-maximal expression levels in at least one channel of expression
(rfp, sr, and lacY in Figs. 4, 5, and 6, respectively). Production from
these pathways therefore maps ruggedly to the underlying design
space of enzyme expression, and systematically profiling these effects
revealed high-producing strains and also pathway bottlenecks poten-
tially sensitive to optimization. Pursuing bottleneck optimization in
the LNT pathway with an improved enzyme variant pushed test-tube-
scale titers into g/L magnitude (1.78 g/L). At the scale of test tubes
typical of early-stage strain development, Sugita and Koketsu reported
2.96 g/L LNT74, a similar but higher titer than observed here. Notably,
the previous study used 10 g/L lactose feedstock (0.143mol/mol yield
on lactose) compared to only 2 g/L in the present work (0.432mol/
mol), representing a 3-fold higher yield from the combinatorial CRIS-
PRa system.

Well-tuned multi-gene expression programs identified through
biosynthetic profiling provide starting points for later-stage

Fig. 6 | Combinatorial CRISPRa library applied to an HMO biosynthesis path-
way identifies high-producing strains and pathway bottlenecks. a The LNT
pathway consists of lacY, lgtA, and wbgO overexpression controlled by the J3, J5,
and J6 promoters, respectively. The substrates UDP-GlcNAc and UDP-Gal come
from endogenous metabolism. b HPLC analysis of supernatant from singlicate
cultures indicates LNT production levels across the scRNA library. The highest
producing strain (#17, black arrow) was used in the galactosyltransferase com-
parison in e. The x-axis heatmap is color coded to indicate the encoded promoter
expression for each strain, as described on the bottom right. The no-pathway
culture carries an empty vector. For comparison, LNT II levels are shown in Sup-
plementary Fig. 12. c Dependence of LNT (top) and LNT II (bottom) production on
lgtA and wbgO activation highlights sensitivity to wbgO activation and accumula-
tion of LNT II. Only medium-lacY strains are shown here, due to their rich variance
across the subset (box plot in b: center line, median; box limits, upper and lower
quartiles; whiskers, range). The arrow again indicates strain #17. d Computational

strain recommendations from the Automated Recommendation Tool (ART) and
their predicted LNT titers. Strains are defined by their scRNA spacer lengths
(measured in nucleotides), which determine degree of CRISPR activation (lower
right). The 20 strains with highest predicted titer are highlighted in color on each
subgraph, with the rest shown in gray. The same 32 strains are shown on each
subgraph. Spacer lengths defined as high, medium, and low expression in experi-
mental data are indicated as vertical lines. Points ind represent each recommended
strain’s specific truncation for that scRNA,while error bars indicate the 95%credible
interval of the predictive posterior distribution. See Supplementary Fig. 15 for how
recommendations are combinedwithineach strain.eAmoreactive enzyme fromC.
violaceum73 (right) resolves accumulation of LNT II (left), at various initial feedstock
concentrations. The horizontal line indicates LNT titer fromWbgO and 2 g/L initial
lactose; CvGalT achieves similar titer using only 0.05–0.2 g/L initial lactose. Bar
values in e represent the average ± standard deviation calculated from n = 3 bio-
logically independent samples. Source data are provided as a Source Data file.
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optimization through genome engineering and process
development25. A major challenge for the field is to effectively and
efficiently optimize production from such starting points. Although
beyond the scope of the current study, groups applying such efforts
have often achieved 1–5 g/L LNT production titers in shake flasks and
5–50g/L production in fed-batch bioreactors85. As an illustration,
8-fold increases in LNT titer (from 3.11 g/L to 25.4 g/L) and >2-fold
increases in LNT yield on lactose (from 0.301mol/mol to 0.773mol/
mol) were seen when scaling up a strain from 25mL shake flask cul-
tures to 1 L fed-batch bioreactor conditions, respectively86. We expect
that similar increases in titer could be achieved by cultures of our
optimized strain scaled up to similar fed-batch conditions.

Broadly speaking, biosynthetic profiling using trans-acting
scRNAs can greatly reduce the time needed to tune multi-gene pro-
grams, compared to traditional cis-acting tools like promoter, RBS, or
ribozyme libraries87,88. We expect that the combinatorial scRNA library
described here will provide a straightforward approach to identifying
production maxima and optimizing burdensome pathways or toxic
intermediate accumulation, ahead of later-stage optimization. In the
future, this approach could be extended to non-model hosts with
metabolic and physiological capabilities suitable for next-generation
bioproduction applications89–91.

Many bioproduction pathways and circuits of interest will require
expression programs with more than three synthetic promoters or a
combination of heterologous pathway control and genomic targeting.
The scRNA design rules from this work can be applied alongside
CRISPRa promoter design principles37 to generate a virtually unlimited
supply of new, high dynamic range, CRISPR-activatable promoters.
Beyond the three spacer targets that we focused on here (J306, J506,
and J606), there are 16 additional scRNA spacer sequences with >75%
of J306 activity (Fig. 2d and Supplementary Data 1) that are available
for immediate use (Supplementary Fig. 16 and Supplementary
Method 2). If desired, an arbitrary number of new scRNA spacer
sequences can be designed using the Folding Barrier screening metric
in the code accompanying this publication. Thus, additional nodes of
heterologous control can be added as new scRNA-promoter pairs. In
parallel, nodes of endogenous control can be added as scRNAs
(CRISPRa) or gRNAs (CRISPRi) that target native genes.

Expanding beyond the three-node programs used here would
allow activation of larger pathways, endogenously-targeted
CRISPRa/i16,92 for flux optimization, or dynamic gene regulation
through biosensors93,94. Combinatorial CRISPRa programs could also
be extended to increase expression variation resolution or use alter-
native tuning methods19,22,95. There may be a practical limit on the size
of functional scRNA/gRNA arrays, perhaps due to binding competition
for a shared dCas9pool43,44. Principles of gRNA design, including those
reported in this work, and some autoregulatory circuit designs96 could
be used to increase this limit and build larger multi-guide programs.
Guide RNA engineering that minimizes the need for trial-and-error
verification of CRISPR function should enable the construction of lar-
ger programs, which in turn should enable CRISPR control of larger
metabolic pathways.

For large combinatorial libraries of genetic circuits, higher-
throughput screening methods like biosensing technologies would
be needed to screen through the added diversity18,97,98. For design
spaces too large for current screening methods, data-driven and
model-guided approaches like ART can be used to explore the full
design space, informed by experimental efforts focused only on the
most likely subsets of design parameters (Supplementary Fig. 17). An
optimal subset size depends on the complexity of the pathway to be
optimized, but the experimental CRISPRa profiling approach can ease
the construction of these subsets.

Iterative cycles of model-guided optimization and data-driven
model refinement present a promising path forward for rapid gen-
eration and optimization of biosynthetic pathways. The value of this

approach is especially demonstrated when used together with com-
binatorial CRISPRa/i programs to access model predictions and build
iteratively improved strains. Optimized metabolic engineering pro-
grams can help realize a circular bioeconomy that decreases our reli-
ance on fossil feedstocks for production of industrial chemicals and
materials. To helpmeet this challenge, synthetic biologists can use the
tools presented in this work to rapidly optimize strains for biopro-
duction of valuable chemicals from renewable feedstocks.

Methods
Bacterial strains and plasmid construction
Bacterial strains used in this study are described in Supplementary
Table 1. JM109 was a gift from Joachim Messing (Addgene plasmid
#49761)99. Plasmids were cloned using standard molecular biology
protocols and are described in Supplementary Data 2. Guide RNA
target sequences are provided in Supplementary Data 1. Orthogonal
target sequences replacing J306 were 20bp sequences selected at
random from the human genome. Plasmids expressing the CRISPRa
components (dCas9, the activation domain MCP-SoxS, and one or
more scRNAs)wereconstructedusing ap15Avector.S. pyogenesdCas9
(Sp-dCas9) was expressed using the endogenous Sp.pCas9 promoter.
The MCP-SoxS activation domain containing mutant SoxS (R93A and/
or S101A; see Supplementary Data 2)12 was expressed using the
BBa_J23107 promoter (http://parts.igem.org). The scRNAs were
expressed using either the BBa_J23119 promoter or the BBa_J23105
(Supplementary Fig. 8), unless otherwise noted. scRNAs used the b2
design, in which the endogenous tracr terminator hairpin upstream of
MS2 is removed11. Plasmids expressing target genes for CRISPRa were
constructed using a low-copy pSC101** vector. mRFP1, sfGFP,
mTagBFP2, ormetabolic pathwaygeneswere expressed from theweak
BBa_J23117 minimal promoter preceded by synthetic DNA sequences
containing the CRISPRa target sites. Pathway gene RBSs were selected
from a previously reported list100 and predicted to have high
strength101 in the new context. Transcriptional terminators used for
scRNAs and output genes are listed in Supplementary Table 6.

Computational analysis of scRNA activity
Energetic parameters were generated using the RNAfold, RNAeval,
RNAduplex, and Findpath programs from the ViennaRNA Package
version 2.3.527. Sequences of full scRNAs were input to a custom script
that returned the following parameters. Folding Barrier was calculated
by using the folding trajectories identified by Findpath28 to predict the
barrier height for the direct refolding pathway from theMFE structure
to the active structure (Supplementary Fig. 2). The active structure is
defined as the structure in which the Cas9-binding handle is correctly
folded and the spacer is unstructured. Binding Energy was calculated
by evaluating theRNA-RNA free energy of the spacer sequencebinding
to its reverse-complement sequence using RNAduplex. The Folding
Energy, or free energy difference between the MFE structure and the
active structure, was evaluated using RNAfold with constraint folding.
Folding Energy was then added to the Binding Energy in order to
estimate the net energetics of binding to a single-stranded target
sequence. This sum yields the Net Binding Energy, or the free energy
difference between theMFE and the bound state. All scRNA sequences
were verified to have a prediction of correct folding of the MS2 apta-
mer at the 3’ end, to avoid confounding cases of target occupancy
without bound MCP-SoxS.

For the purpose of comparison to this work’s scRNA efficacy
predictions, the Doench ‘16, Azimuth in vitro, and Moreno-Mateos
tools for CRISPR guide design and evaluation were implemented using
the CRISPOR webserver (http://crispor.tefor.net/)102. The 20bp vari-
able target sites for scRNA-directed CRISPRa flanked by 50bp of
upstream and 50 bp of downstream sequence (120bp total) were used
as target DNA inputs (Upstream flanking sequence, variable target site,
PAM site, downstream flanking sequence: CCCTAGGACTGAGCTAGC
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TGTCAATCTATAATCGCAACTTCAAGACGACGNNNNNNNNNNNNNN
NNNNNNAGGAGAAGTGAGGAGACGAGCGAACGCGTCGTACGAGCTT
TATGCATCTT). Analysis was carried out with the default settings for
“NoGenome” andProtospacerAdjacentMotif (PAM) set to “20bp-NGG
- SpCas9, SpCas9-HF1, eSpCas9 1.1”. Each 20 bp target was evaluated
using the “predicted guide efficiency” outputs generated by the
respective CRISPR guide design tools.

Construction of combinatorial scRNA library
To encode high, medium, and low activation of the J3, J5, and J6 pro-
moters, we selected the 20, 14, and 11 nucleotide variants of J306; the
20, 18, and 14 nucleotide variants of J506; and the 20, 18, and 17
nucleotide variants of J606, respectively. For all three promoters, a
fourth, unactivated condition was included via an off-target scRNA
with a spacer sequence not complementary to any of the synthetic
promoters. In the CRISPRa component plasmid library, a three-
member array of scRNA expression, each with its own BBa_J23105
promoter and terminator, was constructed for every possible combi-
nation of the J306, J506, and J606 truncation variants. Including the
off-target versions, this resulted in a 64-member combinatorial library
of CRISPRa component plasmids, accounting for all combinations of
high, medium, low, and baseline expression of all three synthetic
promoters (Supplementary Data 3).

Plate reader experiments
Single colonies from LB-agar plates were inoculated in triplicate in
500μL EZ-RDM (Teknova, M2105) with 2 g/L glucose supplemented
with appropriate antibiotics and grown in 96-deep-well plates at 37 °C
and shaking on a microplate orbital shaker (Heidolph Titramax 1000)
overnight. For mRFP1 detection, 150μL of the overnight culture were
transferred into a flat, clear-bottomed black 96-well plate and the
OD600 and fluorescence (excitation wavelength: 540 nm; emission
wavelength: 600nm) were measured in a Biotek Synergy HTX plate
reader for Figs. 2 and 3, and Supplementary Figs. 1, 3, 5–8, and 9a. For
sfGFP (ex 485 nm, em 528 nm), mTagBFP2 (ex 400nm, 455 nm), and
mRFP1 (ex 540nm, em 600nm) detection in Supplementary Fig. 9b,
150 µL of the overnight culture were transferred into a flat, clear-
bottomed black 96-well plate and measured in a monochromator-
equipped plate reader (Biotek Synergy H1). Kinetic growth data in
Supplementary Fig. 10 were obtained from 200 µL cultures set up in a
flat, clear-bottomed black 96-well plate, avoiding edge wells, and
measured in the Biotek Synergy H1 plate reader at 37 °C with shaking
for 18 h.

Flow cytometry
Single colonies from LB-agar plates were inoculated in triplicate in
500μL EZ-RDM (Teknova, M2105) with 2 g/L glucose supplemented
with appropriate antibiotics and grown in 96-deep-well plates at 37 °C
and shaking on a microplate orbital shaker (Heidolph Titramax 1000).
Overnight cultures were diluted in 1:100 in DPBS and analyzed on a
MACSQuant VYB flow cytometer (Miltenyi Biotec) using the following
strategy to gate for single cells11. A side scatter threshold trigger (SSC-
H) was applied to enrich for single cells. A narrow gate along the
diagonal line on the SSC-H vs SSC-A plot was selected to exclude the
events where multiple cells were grouped together. Within the selec-
ted population, events that appeared on the edges of the FSC-A vs.
SSC-A plot and the fluorescence histogram were excluded. We
observed that this cytometer offered clearer separation and quantifi-
cation of the three colors than a monochromator-equipped plate
reader (Biotek Synergy H1) (Supplementary Fig. 18). For sfGFP detec-
tion, the excitation wavelength was 488 nm and emission wavelength
was 525 nm (50 nmbandpass). FormTagBFP2 detection, the excitation
wavelength was 405 nm and emission wavelength was 450 nm (50nm
bandpass). FormRFP1detection, the excitationwavelengthwas561 nm
and emission wavelength was 615 nm (20 nm bandpass). Data were

analyzed using FlowJo 10.0.7. Median values were normalized to the
highest observed value within each channel and were baseline-
subtracted using a strain lacking the genes encoding the fluorescent
proteins.

Biopterin production experiments
Single colonies from LB-agar plates were inoculated in triplicate in
500μL EZ-RDM (Teknova, M2105) with 2 g/L glucose supplemented
with appropriate antibiotics and grown overnight in 96-deep-well
plates at 37 °C with shaking. 100μL of the overnight culture were
transferred into a flat, clear-bottomed black 96-well plate and the
OD600 and fluorescence (excitation wavelength: 340 nm; emission
wavelength: 440 nm) were measured in a monochromator-equipped
plate reader (Tecan Infinite M1000) to assess pteridine
production15,103–105. Fluorescence values were normalized across dif-
ferent experimental days (Supplementary Fig. 19), then baseline-
subtracted using a strain harboring an empty output plasmid. In a
previous report15, themajority of BH4produced from this pathwaywas
found to be spontaneously oxidized into BH2 (>80%). Therefore, we
attributed all of the fluorescence output to BH2 species and used
spiked-in standards to calculate BH2 concentration. Standard curves
were generated by spiking the commercially available BH2 standard
(Cayman Chemical, 81882) into cultures of the strain harboring an
empty output plasmid (Supplementary Fig. 19).

Lacto-N-tetraose production experiments
Single colonies from LB-agar plates were inoculated in singlicate in
2mL EZ-RDM (Teknova, M2105) with 10 g/L glucose, 2 g/L lactose and
supplemented with appropriate antibiotics. For the JM109 strain, agar
plates used 100μg/mL chloramphenicol and 100μg/mL carbenicillin
to avoid slightly chloramphenicol-resistant background growth, but
liquid cultures used the more typical concentrations of 25μg/mL
chloramphenicol and 100μg/mL carbenicillin. Cultures were grown in
14mL polypropylene culture tubes at 37 °C with shaking for 48 h.
500μL of supernatant from each culture were loaded onto 10 kDa
microcentrifuge filters (Millipore, UFC501096) and spun for 20min at
14,000 rcf. 1μL of filtered supernatants were assayed with a Shimadzu
HPLC using UV-vis detection at 210 nm. Lacto-N-tetraose (LNT) was
separated using a Rezex ROA-Organic Acid H+ column (Phenomenex,
00H-0138-K0) and a 20mMH2SO4 isocratic mobile phase. A standard
curve was prepared by spiking known amounts of LNT or LNT II into
supernatants derived from cultures of JM109 E. coli transformed with
empty vectors. Product LNT was observed at 10.6minutes, and inter-
mediate LNT II, a triose, was observed at 11.4minutes. LNT and LNT II
peak areas were normalized by the area of an endogenous peak
observed at 9.1minutes. Normalized peak areas were baseline-
subtracted using a control strain lacking the pathway genes. Cell pel-
lets also contained significant LNT, as previously reported53 and ver-
ified in pellets lysed by boiling, but the difficulty of consistently
quantifying lysis efficiency and the rich variation in supernatant titers
led us to consider mainly supernatant data for comparative analysis.

ART predictions and recommendations
The Automated Recommendation Tool (ART)72 was trained on the 64
experimental LNT strains, with J3-lacY, J5-lgtA, and J6-wbgO CRISPRa
variations as input variables and LNT production as the response
variable. ART is an ensemble model that linearly combines a variety of
machine learning models. Models are cross-validated individually on
the data, and the weight for each model represents its performance
(higher for better-performing models, lower for worse-performing
ones). These weights are considered as random variables with prob-
ability distributions obtained through Monte Carlo sampling. This
approach enables quantification of both the prediction mean and
uncertainty for any given input data. Predictions are possible at any
point in the possible design space, not limited to the discrete high,
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medium, low, and off-target activation levels comprising the experi-
mental library. ART was trained, however, using the exact activation
levels from the experimental library, expressed as spacer length in
nucleotides (e.g. 20 for high, 14 for medium, and 11 for low in the J3
case). In all cases, off-target spacers were expressed as an input of 0.
Cross-validation correlations were also computed using exact library
activation levels.

For the strain recommendations, strains are defined by their
recommended input levels, expressed in scRNA spacer length for that
channel. ART was allowed to recommend any spacer length from 0 to
21 nucleotides (non-integers allowed), with the constraint that new
designs had to be at least one nucleotide away (in at least one
dimension) from other recommendations and from training data. The
32 recommended strains resulting in the highest predicted LNT con-
centration were obtained from ART. In this work, recommendations
were fully exploitative (α = 0), meaning that they prioritized max-
imizing LNT as opposed to minimizing the uncertainty in LNT
predictions.

Statistics
Statistical significance was calculated using two-tailed unpaired
Welch’s t-tests. Quantitative correlations are expressed as Pearson
correlations. Rank-order correlations are expressed as Spearman cor-
relations. Hill function (Fig. 2d) was fitted as the following nonlinear
function in GraphPad Prism 8.4.3.686, using least squares regression:

y=
Bmax * x

h

Kd
h + xh

ð1Þ

Dose-response function (Supplementary Fig. 8) was fitted as the
following nonlinear function in GraphPad Prism, using least squares
regression:

y= ymin + x
ðymax � yminÞ
EC50 + x

ð2Þ

Simple linear and exponential fits (Supplementary Figs. 1, 7, 13,
and 17a) were performed using default settings in GraphPad Prism or
Microsoft Excel 15.17.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
A reporting summary for this article is available as a Supplementary
Information file. Data supporting the findings of this work are available
within the paper and its Supplementary Information files. Source data
are provided with this paper.

Code availability
Custom Python code to analyze input RNA and generate the energetic
parameters described in this work is available on GitHub [https://
github.com/carothersresearch/gRNA_screen_docker]106 and canbe run
directly in that environment using a Codespace or locally using a
Docker image. Jupyter notebooks to view and reproduce the ART
results from this paper are available on GitHub [https://github.com/
carothersresearch/art_lnt]107. These notebooks can be viewed on
GitHub or run in an ARTDocker container after acquiring a license. See
https://github.com/JBEI/ART for software and licensing details.
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