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Abstract

Ischemic strokes are caused by one or more blood clots that typically obstruct one of the major 

arteries in the brain, but frequently also result in leakage of the blood-brain barrier and subsequent 

hemorrhage. While it has long been known that the enzyme 12/15-lipoxygenase (12/15-LOX) is 

up-regulated following ischemic strokes and contributes to neuronal cell death, recent research has 

shown an additional major role for 12/15-LOX in causing this hemorrhagic transformation. These 

findings have important implications for the use of 12/15-LOX inhibitors in the treatment of 

stroke.
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Strokes are typically classified into two major subtypes. Of these, ischemic strokes caused 

by blockage of a major artery account for around 85% of cases, while the remainder are 

caused by hemorrhage which can be either intracerebral or subarachnoid, depending on the 

location of the vessel rupture. However, even among the ischemic strokes a substantial 

number go on to include subsequent bleeding, leading to increased brain injury. This 

hemorrhagic transformation frequently occurs when tissue plasminogen activator (tPA) is 

used to lyse the obstructive blood clot, contributing to catastrophically low usage of this 
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potentially lifesaving therapy - only a minor percentage of ischemic stroke patients receive 

thrombolytic treatment. Mechanisms involving the enzyme 12/15-lipoxygenase (12/15-

LOX) contribute to the hemorrhagic transformation of ischemic strokes both in the presence 

and absence of tPA, as will be discussed in this mini-review.

The liberation of polyunsaturated fatty acids including arachidonic acid in the brain 

following a stroke has been recognized since the early 1970s1. These give rise to a dizzying 

spectrum of eicosanoids and related compounds produced by lipoxygenases, 

cyclooxygenases, and cytochromes P450, including prostaglandins, leukotrienes, and 

hydroxyeicosatetraenoic acids (HETEs). Increased levels of 12-HETE were found along 

with leukotrienes C4 and D4 in gerbil brains following an experimental stroke2. We have 

similarly seen massively increased levels of 12-HETE specifically on the infarcted side of 

the brain in mice both 12 and 24 hours after onset of ischemia (Figure 1). Therapeutically, 

initially 5-LOX was seen as the most promising target, mostly due to a much better 

understanding of leukotriene biology compared to the much less studied 12/15-LOX. 

However, two independent findings changed this perception: In 2004, a Japanese study 

found that Alox5 knockout mice developed the same level of ischemic injury following 

experimental stroke as matched wild type mice3. Around the same time, the group of 

Chandan Sen at Ohio State University4 and our group5, 6 found that Alox15 knockout mice 

were protected against the consequences of an experimental stroke, developing smaller 

infarct sizes (Sen group 90% reduction 72h after stroke onset, van Leyen group 40% infarct 

size reduction measured 24h after initiation of experimental stroke). Moreover, subsequent 

studies from our lab found that the mRNA encoding 12/15-LOX was up-regulated 2.2 fold 

in mice 24h after an experimental stroke7. Immunohistochemistry showed the increased 

12/15-LOX signal both in neurons, and in endothelial cells8. Early work focused on injury to 

neurons, initially with the discovery that 12/15-LOX contributes to a form of cell death 

termed oxidative glutamate toxicity or oxytosis in neuronal cells9. More recently, a related 

redox pathway termed ferroptosis was introduced, which is characterized by the loss of 

glutathione peroxidase 4 (Gpx-4) activity10 and in which 12/15-LOX is also involved. The 

commonalities and differences between these two pathways have yet to be clearly 

defined10–12. Glutathione as the major intracellular antioxidant in neurons is clearly 

important for both pathways, and glutathione levels also drop on the ischemic side of the 

brain following stroke, which presumably contributes to the activation of 12/15-LOX. The 

function of 12/15-LOX in this neuronal cell death pathway is to damage mitochondria and 

other organelles, for which the 12/15-LOX is uniquely qualified: in stress reticulocytes 

produced during severe anemia, as well as when incubated in vitro, the enzyme attacks 

mitochondrial membranes13–16, priming the mitochondria for further degradation via the 

ubiquitin/proteasome system. This is one of three pathways by which reticulocytes lose their 

organelles during maturation to become functioning erythrocytes, the others being 

degradation via autophagic vacuoles and exosome formation17, 18. The redundancy of these 

pathways may be the reason why no outright defects in erythropoiesis were found in Alox15 

knockout mice19.

Beyond causing cell death in neurons, however, it has in recent years become clear that 

12/15-LOX also contributes to vessel injury in rodent models of stroke. Alox15 knockout 

mice develop 51% less edema following experimental stroke than their wild type 
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counterparts, and 30% less immunoglobulin G (representative of blood proteins) 

extravasates into the brain parenchyma8. Several years later, we made the striking 

observation in a mouse model of thrombotic stroke that tPA infusion intended to lyse the 

occluding thrombus led to massive brain hemorrhage in these mice, which was reduced by 

82% through simultaneous administration of a 12/15-LOX inhibitor, LOXBlock-120 (Figure 

2). We have expanded on these results by investigating the effects of 12/15-LOX inhibition 

on both bleeding and infarct size in this thrombosis model, and found that LOXBlock-1 also 

improved behavioral scores in the mice21.

This finding led us to systematically study mouse models of stroke where reperfusion 

following the ischemic event is associated with increased bleeding. In the classical filament 

model of transient focal ischemia, a filament is inserted into the internal carotid artery to 

partially block the middle cerebral artery on one side of the brain, which leads to a reduction 

of blood flow and ischemia in the striatum and cortex. The filament is then removed after a 

pre-specified time to allow for reperfusion. When the mouse is sacrificed after 24 hours an 

infarct is detected, the size of which is determined by the duration of the ischemia. Typically, 

this model does not lead to significant bleeding, but so called hemorrhagic transformation of 

the ischemic stroke can be induced, for example when mice are fed with the anticoagulant 

warfarin22, 23. Warfarin is a vitamin K inhibitor that is frequently given to patients with atrial 

fibrillation to reduce their risk of blood clot formation and subsequent stroke. While 

warfarin reduces the risk of stroke in these patients, this anticoagulant can cause excessive 

bleeding leading to increased injury when a stroke does occur. Moreover, thrombolysis with 

the clotbuster tissue plasminogen activator (tPA) is contraindicated in effectively 

anticoagulated patients on warfarin (international normalized ratio of coagulation time (INR) 

> 1.7) because tPA itself has bleeding as a side effect, thus eliminating the only drug 

currently approved by the FDA as a treatment option. Mice pretreated with warfarin via their 

drinking water for 24 hours prior to experimental stroke develop severe hemorrhage both 

when the mice receive a tPA infusion following removal of the filament, or in the absence of 

tPA when the stroke is severe enough (3 hours of filament occlusion; Figure 2)23. Along 

with the increased hemorrhage, we also found 25% higher levels of 12/15-LOX in the brains 

of the warfarin-treated mice. The increase was seen mostly in the vasculature, consistent 

with the idea that the increased vessel leakage following warfarin pretreatment is due to 

12/15-LOX.

Consistent with the idea of 12/15-LOX as contributor to hemorrhage, 41% less bleeding was 

seen following warfarin pretreatment in Alox15 knockout mice23. In wild type mice, a 

similarly drastic reduction in hemorrhage by 38% was detected when the mice were treated 

with the second generation 12/15-LOX inhibitor ML35124, administered intraperitoneally at 

the time of reperfusion, 3 hours after onset of ischemia. The reduction in bleeding remained 

significant even when the results were adjusted to account for the reduced infarct size in the 

ML351-treated mice, confirming that there is a specific effect on hemorrhage. When ML351 

was administered along with tPA in warfarin pretreated mice, hemorrhage was similarly 

reduced by 59%. Taken together, these results demonstrated that increased 12/15-LOX in the 

brain vasculature can contribute to excessive bleeding in the brain, which is reduced by 

treatment with a 12/15-LOX inhibitor.
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Much work remains to be done to elucidate the mechanism by which 12/15-LOX contributes 

to increased hemorrhage after an ischemic stroke. Important open questions include the 

selective up-regulation of 12/15-LOX in brain vascular endothelial cells following warfarin 

administration, both with and without subsequent tPA infusion. Is this a direct effect of 

warfarin and/or tPA, or are intermediate factors involved? Also, in neurons signal 

transducers and activators of transcription (STATs), specifically STAT1 and STAT6 are 

involved in up-regulating 12/15-LOX under ischemic conditions7. Are the same STATs 

active here, or is a different form of regulation relevant? Finally, what happens after 12/15-

LOX is up-regulated in the endothelial cells and how does this lead to vessel rupture? In 

addition to destroying endothelial cells of the brain vasculature by damaging mitochondria, 

there may be a second injury mechanism induced by the signaling function of 12/15-LOX 

via metabolites of arachidonic acid. Both 12-HETE and its immediate precursor 12-HPETE 

are known as second messengers25, activated along the semaphorin pathway26, 27. In 

neurons, this can lead to axon retraction28, 29, but under some conditions also to cell death30. 

Semaphorin 3A has also been reported to increase vascular permeability in experimental 

stroke models31. Downstream of 12-HETE and 12-HPETE, secretion of destabilizing matrix 

metalloproteinases (MMPs) may play a role32. Both the molecular details of this signaling 

pathway, and the relative contributions of both pathways to vascular injury require further 

study.

Because 12/15-LOX contributes to both neuronal cell death and to vessel leakage following 

a stroke, 12/15-LOX inhibition appears to be a particularly promising approach to stroke 

therapy by targeting two separate modes of injury, killing two birds with one stone. Both our 

group20, 23, 24, 33, 34 and others35, 36 have in recent years focused on developing improved 

inhibitors of 12/15-LOX, and it will be exciting to see if these novel molecules can turn the 

tide in the seemingly endless war to combat stroke. The finding that we can reduce bleeding 

subsequent to an ischemic stroke in the rodent model broadens the spectrum of patients that 

could be treated with a 12/15-LOX inhibitor. In addition to its use as a stand-alone 

neuroprotective treatment that could already be given in the ambulance on the way to the 

hospital, 12/15-LOX inhibition could also be combined with tPA thrombolysis to make the 

use of tPA safer. By removing the most serious side effect of tPA, this approach may lead to 

significantly more patients receiving tPA treatment. Furthermore, the recently introduced 

endovascular treatment in which a stent retriever is used to remove the obstructing blood clot 

could also be rendered more effective by adding a 12/15-LOX inhibitor, because even after 

thrombus removal cognitive deficits are seen in many patients who could benefit from the 

added neuroprotection37. Finally, besides the more common ischemic strokes there may also 

be a place for 12/15-LOX inhibition in the treatment of hemorrhagic strokes. We have 

recently completed a study to investigate the function of 12/15-LOX in subarachnoid 

hemorrhage, where we found increased 12/15-LOX in the brains of mice 24 hours after 

hemorrhage induction (92 ± 60 12/15-LOX positive cells/field vs. 2 ± 2 in sham-operated 

controls, p<0.05)38. In this case, 12/15-LOX expression was detected mostly in 

macrophages however, rather than in neurons and endothelial cells; the injury mechanism 

may thus differ from that in ischemic stroke. Regardless, Alox15 knockout mice developed 

72% less injury than wild type mice, and 12/15-LOX inhibition also reduced injury by 55% 

compared to vehicle-treated mice in this model of hemorrhagic stroke.
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In conclusion, despite different triggers - in the presence or absence of anticoagulant, with or 

without tPA treatment - 12/15-LOX is activated in various models of stroke-related 

hemorrhage. In addition to its benefits in infarct size reduction, 12/15-LOX inhibition may 

thus independently reduce hemorrhagic conversion of ischemic strokes by protecting the 

vasculature.
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Figure 1: 
A. 12-HETE was significantly increased in the infarcted ipsilateral hemisphere of mice both 

12 and 24 hours after transient focal ischemia, compared to sham-operated mice (*p < 0.05, 

***p < 0.001; sham, n = 6 brains; 12 hours, n = 3 brains; 24 hours, n = 5 brains). B. The 

identity of 12-HETE was confirmed by high-performance liquid chromatography (HPLC)/

mass spectrometry analysis. The smaller peak for 15-HETE in the HPLC profile (top panel) 

is also a 12/15-LOX product. Reprinted with permission from reference 20.
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Figure 2: 
Examples of stroke models associated with increased hemorrhage. A. Thrombosis was 

induced when 10% ferric chloride solution was topically applied to the brain. An infusion of 

tissue plasminogen activator (tPA) two hours later led to distinct hemorrhage in vehicle-

treated mice after 24 hours, visible both on the surface of the brain (top) and in sections 

(below). In contrast, when mice were intraperitoneally injected with the 12/15-LOX 

inhibitor LOXBlock-1 (50 mg/kg), significantly less hemorrhage was detected in the brain. 

B. Pretreatment of mice for 24 hours with the anticoagulant warfarin added to the drinking 

water causes massive hemorrhage following a severe form of experimental ischemic stroke 

with 3 hours of occlusion of the middle cerebral artery. This is again visible both on the 

surface, as well as in brain sections. Mice treated with the 12/15-LOX inhibitor ML351 (50 

mg/kg) develop far less hemorrhage (bottom right). Quantitation graphs represent 

hemorrhage area measured in brain sections and are reprinted with permission from 

references 20 (top) and 23 (bottom).
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