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Even Faster Exact Exchange for Solids via Tensor

Hypercontraction

Adam Rettig,†,‡ Joonho Lee,∗,¶ and Martin Head-Gordon∗,†,‡

†Department of Chemistry, University of California, Berkeley, California 94720, USA

‡Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

94720, USA

¶Department of Chemistry, Columbia University, New York, New York 10027, USA

E-mail: joonholee@g.harvard.edu; mhg@cchem.berkeley.edu

Abstract

Hybrid density functional theory (DFT) remains intractable for large periodic sys-

tems due to the demanding computational cost of exact exchange. We apply the

tensor hypercontraction (THC) (or interpolative separable density fitting) approxima-

tion to periodic hybrid DFT calculations with Gaussian-type orbitals. This is done

to lower the computational scaling with respect to the number of basis functions (N),

and k-points (Nk). Additionally, we propose an algorithm to fit only occupied orbital

products via THC (i.e. a set of points, NISDF) to further reduce computation time

and memory usage. This algorithm has linear scaling cost with k-points, no explicit

dependence of NISDF on basis set size, and overall cubic scaling with unit cell size.

Significant speedups and reduced memory usage may be obtained for moderately sized

systems, with additional gains for large systems. Adequate accuracy can be obtained
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using THC-oo-K for self-consistent calculations. We perform illustrative hybrid density

function theory calculations on the benzene crystal in the basis set and thermodynamic

limits to highlight the utility of this algorithm.

1 Introduction

Density functional theory (DFT) has dominated the field of quantum chemistry for the last

several decades due to its combination of satisfactory accuracy and relatively low O(N3−N5)

computational cost, where N is the number of basis functions. Within density functional

theory, hybrid functionals, which include Hartree-Fock “exact exchange” (shown in Eq. (1)),

Kµν =
∑
λσ

(µλ|σν)Pλσ (1)

have emerged as the most accurate and widely used functionals in nearly all applications for

molecules,1–4 with only a mild increase in the computational cost compared to local density

functionals. Unsurprisingly, hybrid density functional theory accounts for a large portion of

quantum chemical studies performed on molecules today.

Hybrid functionals are known to offer large improvements in accuracy for some systems

under periodic boundary conditions (PBC) as well.5–9 Despite this, local (or pure) density

functionals account for the majority of PBC studies due to their computational efficiency.

Periodic calculations are often significantly more expensive than typical molecular studies

because one needs to reach the thermodynamic limit (TDL). By virtue of translational

symmetry, one may reach TDL results by numerically integrating over the first Brillouin zone

(i,e, by sampling k-points). This approach leads to lower scaling than equivalent supercell

approaches. In local DFT, different k points can be treated independently, leading to an

extra factor in the computational scaling equal to the number of k points, Nk. Hybrid density

functional theory incurs an extra penalty as the different k points are coupled through the
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periodic exact exchange, shown in Eq. (2).

Kk
µν =

∑
λσk′

(φkµφ
k′

λ |φk
′

σ φ
k
ν)P

k′

λσ. (2)

This leads to an extra computational scaling factor of N2
k , giving an overall computational

scaling for periodic exact exchange of O(N2
kN

3) compared to the O(NkN
3) of local func-

tionals. k-point calculations yield a massive reduction in computational cost for both lo-

cal and hybrid functionals compared to equivalent supercell calculations that would scale

as O(N3
kN

3) in this notation. Despite the computational speedup of k-point calculations,

hybrid functionals remain considerably more expensive than local functionals for periodic

systems with an additional overhead of Nk. Furthermore, hybrid functionals converge slower

to the TDL than local functionals, necessitating even larger k-point calculations, further

adding to the computational cost.

Efficient exact exchange computation for molecular systems has been the subject of con-

siderable study over the last few decades; many of these ideas have also been transferred

to periodic systems. For sufficiently large systems, the number of nonzero elements in the

two-electron integral tensor increases only quadratically with the system size, motivating

sparsity-aware approaches to lower the scaling of exact exchange to O(N) for gapped sys-

tems.10–14 In practice, this asymptotic region is hard to reach, limiting the usefulness of such

approaches. Approximate factorization of the two-electron integral tensors into lower rank

tensors has proved more successful, leading to the pseudospectral method15 (and the closely

related chain of spheres method16,17), Cholesky decomposition,18,19 the resolution of the

identity (RI) or density fitting approximation,20–22 and tensor hypercontraction (THC).23,24

Of these, RI, has emerged as the most popular in both exact exchange and correlated wave-

function theory due to its large speedup and its relatively robust, low error of ∼ 50µEH per

atom (which also often cancels in energy differences).
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Many periodic codes utilize plane waves as a basis set in contrast to the Gaussian-type

orbitals (GTO) used in the molecular case, complicating the direct application of these al-

gorithms to periodic calculations. The adaptively compressed exchange (ACE) algorithm,

similar to the occ-RI-K algorithm developed for molecular systems, has become the most

common way to speed up exact exchange evaluation in planewave-based periodic quantum

chemistry codes.25 More recently, the interpolative separable density fitting (ISDF)26–28 ap-

proach to THC has been shown to offer considerable speedup for both gamma point and

k-point plane wave calculations.29–32

We use GTOs for periodic calculations via the Bloch orbital framework, allowing for a

more direct application of molecular-based exact exchange algorithms. Our crystalline GTO

basis functions are given by:

φk
µ(r) =

1√
Nk

∑
R

eik·Rφ̃µ(r−R) =
1√
Nk

eik·rukµ(r) (3)

where R are direct lattice vectors, k is the crystalline momentum, and φ̃µ(r) is an atomic

orbital. ukµ(r) is the cell periodic part of the Bloch orbital, which is periodic along the lattice

(i.e., ukµ(r) = ukµ(r + R)), and is given by:

ukµ(r) =
1√
Nk

∑
R

eik·(R−r)φ̃µ(r−R) (4)

Recently, our group showed the extension of the molecular occ-RI-K algorithm33 to GTO-

based PBC calculations leads to significant speedups for large basis sets, up to two orders

of magnitude for the systems studied.34 ISDF approaches have also been developed for both

GTO and numerical atomic orbital (NAO) based Γ-point PBC calculations.35,36

In this study, we propose a THC algorithm for periodic exact exchange with k-point

sampling in a GTO basis utilizing ISDF. Similar to the analogous plane wave implementa-
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tion,30 the use of ISDF can reduce the computational scaling of exact exchange with respect

to the number of k-points. We will additionally propose a new ISDF approach by fitting

only products of occupied orbitals, as is done in ACE-ISDF in plane waves to realize fur-

ther computational savings. We illustrate the scaling improvements of these algorithms and

perform an illustrative hybrid DFT study of the benzene crystal cohesive energy.

2 Theory

2.1 Review of Molecular and Γ-point ISDF

In molecular and Γ-point periodic ISDF, the products of atomic orbitals are approximated

by a sum of interpolation vectors {ξP (r)} weighted by the orbitals evaluated at a set of NISDF

interpolation points {rP}:

φµ(r)∗φν(r) ≈
NISDF∑
P

φµ(rP )∗φν(rP )ξ
[nn]
P (r) (5)

In the above, we have labeled the interpolation vectors with the [nn] superscript to denote

that these functions are fit to products of two atomic orbitals.

The set of interpolation points {rP} can be selected in numerous ways; commonly, either

a QR decomposition with column pivoting29 or a centroidal Voronoi tessellation (CVT) k-

means algorithm28 is used. The number of interpolation points is set via a parameter c
[nn]
ISDF:

N
[nn]
ISDF = c

[nn]
ISDFN. (6)

After the interpolation points are chosen, the interpolation vectors ξ
[nn]
P (r) are determined
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via a least squares fit24,37 to the orbital products desired:

∑
Q

S
[nn]
PQ ξ

[nn]
Q (r) =

∑
µν

φµ(r)∗φν(r)φν(rP )∗φµ(rP ) (7)

In the above, S represents the ISDF metric matrix (not to be confused with the AO overlap

matrix):

S
[nn]
PQ =

∑
µν

φµ(rP )∗φµ(rQ)∗φν(rP )∗φν(rQ) (8)

The exchange matrix may then be computed using only the basis functions evaluated

at a set of interpolation points and the two-electron integrals between interpolation vectors,

MPQ, of which there are only N2
ISDF.

MPQ =

∫ ∫
dr1dr2

ξP (r1)ξQ(r2)

r12
(9)

MPQ, given in Eq. (9) may be computed in reciprocal space according to the GPW algorithm.

The cost of computing MPQ is O(NgN
2
ISDF) due to the contraction of the two interpolation

vectors in reciprocal space.

MPQ can be very expensive to compute for large systems, but needs only be computed

once at the start of a calculation. It may then be used each iteration to compute Kµν

according to Eq. (10).

Kµν =
∑
λσ

φµ(rP )∗φλ(rP )MPQφσ(rQ)∗φν(rQ)Pλσ (10)

This is done most efficiently by first contracting φλ(rP )φσ(rQ)∗Pλσ and taking a Hadamard

(element-wise) product with MPQ. This intermediate is then contracted with φµ(rP )∗ and

then φν(rQ), which is the bottleneck at O(NN2
ISDF) cost. As N << Ng, the per iteration

cost is significantly less than the initial formation of MPQ. Sharma et al. showed that large
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speedups were possible with this algorithm for periodic Γ-point calculations.35

2.2 Periodic k-point ISDF

We first examine the extension of the Γ-point algorithm presented above to k-point GTO-

based calculations. We do this by fitting the ISDF interpolation vectors to only the cell

periodic part of our basis functions, ukµ(r):30

ukµ(r)∗uk
′

ν (r) ≈
∑
P

ukµ(rP )∗uk
′

ν (rP )ξ
[nn]
P (r) (11)

The full product of basis functions may then be approximated by adding in the Bloch phase

factors:

φk
µ(r)∗φk′

ν (r) ≈
∑
P

ukµ(rP )∗uk
′

ν (rP )eiq·rξ
[nn]
P (r) (12)

In the above we have defined q = k′−k. Note that our interpolation vectors do not depend

on k-points.

The interpolation functions are once again determined via a least squares fit, but we now

must include a sum over k-points:

∑
Q

S
[nn]
PQ ξ

[nn]
Q (r) =

∑
µνkk′

ukµ(r)∗uk
′

ν (r)uk
′

ν (rP )∗ukµ(rP ) (13)

The S matrix will similarly include a sum over k points. The k-point K matrix may then

be computed as:

Kk
µν =

∑
λσqPQ

ukµ(rP )∗uk+q
λ (rP )Mq

PQu
k+q
σ (rQ)∗ukν (rQ)P k+q

λσ (14)

We have folded the Bloch phase factors included in our basis functions into our definition of
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M, so that it now has a q-dependence:

Mq
PQ =

∫ ∫
drdr′

eiq·r1ξP (r1)
∗e−iq·r2ξQ(r2)

r12
(15)

However, M depends only on q, rather than both k and k′. The number of unique two-

electron integrals is, therefore, linear in the number of k-points. M can be computed via

GPW in O(NkN
2
ISDFNg) time. However, this intermediate may be computed once, and stored

for reuse in each iteration.

Naively, evaluating Eq. (14) would lead to O(N2
kNN

2
ISDF) scaling. However, we write

k′ as k + q to emphasize that the sum over q done in the contraction of Mq
PQ with

uk+q
λ (rP )uk+q

σ (rQ)∗P k+q
λσ is a convolution in k space. Convolutions may be done utilizing

FFT in O(Nklog(Nk)) time. Using this trick, we can lower the computational scaling of this

algorithm, which we term THC-AO-K, to O(Nklog(Nk)NN
2
ISDF) per iteration. The rate-

limiting step of this algorithm is therefore computing M due to the large value of Ng. In this

way, significant savings can be realized for large k-point calculations - the exchange may be

computed only cubically in system size and linearly in Nk. A summary of the THC-AO-K

algorithm is shown in Algorithm 1.

While this algorithm is overall cubic scaling, a significant prefactor is associated with

computing the M matrix. This prefactor was so significant in molecular cases that the THC

algorithm does not become competitive with higher scaling approaches unless extremely

large systems are studied.27 In this study, we will analyze the timing of this algorithm to see

if the added benefit of reduced k-point scaling will lead to a crossover at useful system sizes.

Additionally, one must be concerned with memory usage, as storing the M matrix requires

O(N2
ISDFNk) space; this can quickly become impractical to store for large systems and large

basis sets.
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Algorithm 1 THC-AO-K algorithm

{rP} ← CVT k-means

Compute ξ
[nn]
P (r)

ξ
[nn]
P (G)← FFT(ξ

[nn]
P (r))

Mq
PQ ←

∑
G

ξ
[nn]
P (G)V q(G)ξ

[nn]
Q (G)

while SCF unconverged do
Xk
PQ ←

∑
iq

uk+q
i (rP )Mq

PQu
k+q
i (rQ)∗ (FFT Convolve)

Kk
µν ←

∑
PQ

ukµ(rP )∗Xk
PQu

k
ν (rQ)

end while

2.3 THC-oo-K

Further reduction in compute time and storage requirements can be realized by fitting only

products of occupied orbitals via ISDF as seen in Eq. (16):

uki (r)∗uk
′

j (r) ≈
∑
P

uki (rP )∗uk
′

j (rP )ξ
[oo]
P (r) (16)

Accordingly, we label the interpolation vectors with the [oo] superscript to indicate that

these functions are fit to products of two occupied orbitals. This approach is similar to

what is done with plane-wave ISDF codes using the ACE procedure in an algorithm we

term THC-oo-K. THC-oo-K is motivated by the fact that the exchange energy depends only

on occupied orbitals. Of course, the orbital gradient contributions due to exact exchange

depend on the virtual orbitals, but they can be computed by directly differentiating the

THC-oo-K energy function. In THC-oo-K, the interpolation vectors fit far fewer quantities

- which scale only with the number of occupied orbitals (i.e., independent of basis size!). We

therefore define the number of ISDF points similarly to Eq. 6 via:

N
[oo]
ISDF = c

[oo]
ISDFNocc, (17)
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with the expectation that N
[oo]
ISDF << N

[nn]
ISDF (where nn refer to atomic orbitals). The ISDF

exchange energy is then computed as before via:

EX = −
∑

ijkqPQ

uki (rP )∗uk+q
j (rP )Mq

PQu
k+q
j (rQ)∗uki (rQ) (18)

While the potential memory and computational savings arising from the decrease in

NISDF seem very promising at first glance, there are several complications that arise from this

approach. First, the occupied orbitals change each iteration, necessitating the recalculation

of ξP (r) and therefore Mq
PQ on each iteration. Second, the orbital gradient of the exchange

energy is no longer as simple as the THC-AO-K case seen in Eq. (10) due to the dependence

of M on the occupied orbitals. The first point shows that there will be a tradeoff in compute

time - the computation of M is much cheaper due to the decrease in NISDF. However, one

must compute M each iteration compared to only once for THC-AO-K. We will subsequently

investigate whether this tradeoff is favorable for THC-oo-K in normal use cases.

The second point can be addressed by deriving the analytical expression for the vo block

of the exchange matrix, given by:

Kk
ai =

∑
jk2PQ

uka(rP )∗uk2
j (rP )Mq

PQu
k2
j (rQ)∗uki (rQ)

+
∑

jk2qPQRr

W q
PQV

q
P (r)S−1QR

[
uka(rR)∗uki (r)uk2

j (r)∗uk2
j (rR) + uka(r)∗uki (rR)uk2

j (rR)∗uk2
j (r)

]
−

∑
jk2qPQST

W q
PQS

−1
QSM

q
PT

[
uka(rS)∗uki (rT )uk2

j (rS)∗uk2
j (rT ) + uka(rT )∗uki (rS)uk2

j (rT )∗uk2
j (rS)

]
(19)

In the above equation, W q
PQ =

∑
ijk

uki (rP )∗uk+q
j (rP )uk+q

j (rQ)∗uki (rQ) where the convolution

over k-points may be done using FFT once again. The dependence of M on the occupied

orbitals leads to additional two terms in the K matrix, but they are relatively easy to

compute as most pieces are needed during the computation of the first term anyway. The
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effect of these extra terms is an additional prefactor of ∼ 3 in the computation time in our

experience. These terms may be contracted in a similar manner to THC-AO-K, leading to

an overall scaling of O(NkN
2
ISDFNg) once again. A summary of the THC-oo-K algorithm is

given in Algorithm 2.

In this study, we will investigate the accuracy of both THC-AO-K and THC-oo-K as a

function of NISDF and analyze their relative computation times across a variety of system

sizes.

Algorithm 2 THC-oo-K algorithm

{rP} ← CVT k-means
while SCF unconverged do

Compute ξ
[oo]
P (r)

ξ
[oo]
P (G)← FFT(ξ

[oo]
P (r))

Mq
PQ ←

∑
G

ξ
[oo]
P (G)V q(G)ξ

[oo]
Q (G)

Xk
PQ ←

∑
iq

uk+q
i (rP )Mq

PQu
k+q
i (rQ)∗ (FFT Convolve)

Compute ∂M
∂θkia

Kk
ij ←

∑
PQ

uki (rP )∗Xk
PQu

k
j (rQ)

Kk
ia ←

∑
PQ

uki (rP )∗Xk
PQu

k
a(rQ) + ∂M

∂θkia

end while

3 Computational Details

Calculations were performed using the SZV-GTH, DZVP-GTH, TZV2P-GTH, QZV2P-

GTH, unc-def2-QZVP38 basis sets designed for use in periodic systems with the Goedecker,

Teter, Hutter (GTH) pseudopotentials. The GTH-PBE pseudopotential39,40 was used for all

DFT calculations, while the GTH-HF pseudopotential was used for all HF calculations.

All calculations were performed using the Gaussian Plane Wave (GPW) algorithm41,42

for computing 2-electron integrals. A sufficient kinetic energy cutoff for the auxiliary basis
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was used to fully converge all computations below 10−6 Hartrees. To treat the divergence of

the exact exchange, we use a Madelung correction.43

Calculations for the benzene system were performed with a counterpoise correction in-

cluding basis functions for a (2,2,2) supercell. Cohesive energies for varying k-point mesh

sizes and extrapolated to the thermodynamic limit via:

ETDL =
ENk2

N−1k1 − ENk1
N−1k2

N−1k1 −N
−1
k2

(20)

All calculations were performed in the Q-Chem software package.34,44

4 Results and Discussion

4.1 THC Accuracy

We first investigate the accuracy of both THC algorithms to determine acceptable values of

cISDF. In the molecular case, it was found that c
[nn]
ISDF = 20−40 was sufficient to reproduce the

RI-level of accuracy of 50 µEH per atom for several datasets including thermochemistry and

noncovalent interactions.27 Such a large c
[nn]
ISDF was needed to avoid non-variational collapse to

spurious solutions (found with smaller c
[nn]
ISDF). While we did not observe any non-variational

collapse in PBC calculations, we found that a similar value is needed for c
[nn]
ISDF as we will

see. The interpolation vectors must now represent orbital pairs at multiple k-points however

so we expect this value to increase slightly as more k-points are used, although it should

eventually plateau.30 Additionally, we seek to determine an appropriate value for c
[oo]
ISDF, so

that the efficiency of THC-AO-K and THC-oo-K can be meaningfully compared.

We first investigate the accuracy of the THC energy computed for both algorithms. In

Figure 1a we show the absolute error per atom in the THC energy computed for diamond

(8 electrons total) with a (2,2,2) k-point mesh given the converged SCF density for several

12



different basis sets. We see that THC-AO-K can accurately represent the energy using

c
[nn]
ISDF = 25 for all bases other than SZV-GTH. SZV-GTH is the smallest basis and from Eq.

6, we see that the same c
[nn]
ISDF parameter gives rise to smaller numbers of ISDF points for

smaller basis sets. The smallest useful c
[nn]
ISDF = 25 value will therefore depend somewhat on

basis set size. Importantly, we see that the THC-AO-K energy is systematically improvable,

so one may increase the number of points used if a more accurate energy is desired. We

do observe a some fluctuations in the error as c
[nn]
ISDF is increased - the error is not strictly

monotonically decreasing; this is likely due to the randomness inherent to the CVT algorithm

used to select ISDF points.

In Figure 1b, we show the root mean square of the orbital gradient for the same system.

As we are using non-THC converged orbitals, we expect this value to be zero if there were

no ISDF error. We see that at c
[nn]
ISDF = 25, the gradient still has a magnitude of ∼ 10−3

for some basis sets, suggesting that the THC-AO-K orbitals are slightly different than the

converged non-THC algorithms, due to the ISDF factorization error. This is also system-

atically improvable through the c
[nn]
ISDF parameter and will eventually converge to the exact

solution once enough points are used. Consistent with the discussion of the energies, we see

that typically (though not always due to ISDF point selection as already mentioned) a given

value of c
[nn]
ISDF leads to larger RMS gradients for the smaller basis sets.

We show similar plots for THC-oo-K in figure 1c and 1d. We see that a larger value of

c
[oo]
ISDF = 50 is needed to reach an acceptable error for this algorithm. It should, however,

be pointed out that the number of ISDF points for this algorithm is determined by scaling

Nocc (Eq. 17), and this leads to significantly fewer points than THC-AO-K despite the

higher cISDF. Accordingly, this means that the number of ISDF points used in THC-oo-

K for each of the basis sets tested is the same! THC-oo-K is, therefore, highly effective

at compactly representing the HF exchange energy for large basis sets. On the other hand,

looking at the gradient in figure 1d, we see that the THC-oo-K orbital gradient is significantly

13
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Figure 1: Error in the THC-AO-K HF energy (a), THC-AO-K orbital gradient (b), THC-oo-K
HF energy (c), THC-oo-K orbital gradient (d), for diamond with a (2,2,2) k-point mesh, given the
converged density computed without the ISDF quadrature error. The numbers of ISDF interpola-

tion points used for THC-AO-K and THC-oo-K are related to the parameters c
[nn]
ISDF and c

[oo]
ISDF via

Eqs. 6 and 17 respectively.

larger than that of THC-AO-K and the convergence with increasing c
[oo]
ISDF seems to be quite

slow. Moreover, there seems to be a degree of basis set dependence as a larger basis set

has many more degrees of freedom; the SZV-GTH basis has a much smaller error in the

gradient, DZVP-GTH, TZV2P-GTH, and QZV2P-GTH all have roughly similar errors. This

inaccuracy in the gradient could be due to fluctuations in the THC error over the entire energy

surface and could potentially lead to SCF convergence issues. We will next investigate self-

consistent energies obtained via THC-K algorithms to address this.
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We next investigated the error in the HF energy for the converged density - i.e. we

optimize orbitals using the THC algorithms. In figure 2a, we show the error in the HF

self-consistent total energy using THC-AO-K as a function of c
[nn]
ISDF for diamond in the

QZV2P-GTH and SZV-GTH bases, as well as AlN (16 electrons total) in the GTH-QZV2P

basis, all with a (2,2,2) k-point mesh. We see that our suggested value of c
[nn]
ISDF = 25 holds

up pretty well for the QZV2P-GTH systems, although diamond in the SZV-GTH basis does

have a noticeably higher error in this case. A similar plot for THC-oo-K can be seen in

figure 2b. We see that despite possible concerns arising from significant deviations in the

orbital gradient when evaluated with exact converged density, the THC-oo-K algorithm also

yields adequately accurate self-consistent solutions for these systems. Most encouragingly,

the c
[oo]
ISDF parameter is evidently transferable across different systems and basis sets.
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Figure 2: Absolute Error per atom in the unit cell in the self-consistent HF energy using (a)
THC-AO-K vs cnnISDF (see Eq. 6) and (b) THC-oo-K vs. cooISDF (see Eq. 17) for both diamond and
AlN using varying basis set sizes and a (2,2,2) k-point mesh. The dashed line represents 50 µEH
/ atom accuracy.

We next investigate the accuracy as the k-point mesh is increased. Our algorithms rely

on the fact that the number of ISDF points required to yield an accurate solution will plateau

quickly with the k-mesh size. In Figure 3, we show a plot of the absolute error in the self-

consistent HF energy of diamond in the QZV2P-GTH basis computed with THC-oo-K for

15



several different k-point meshes. We see that there is a very steep increase in the number

of ISDF points required when going from gamma point to a (2,2,2) k-point mesh; evidently,

it is much more difficult to represent products of occupied orbitals at multiple k points

than at a single k point. However, increasing the mesh further has very little effect. It

therefore appears that the c
[oo]
ISDF = 50 value is adequate for all k-point mesh sizes, although

a significantly lower value may likely be sufficient for Γ-point calculations.

10 20 30 40 50 60 70 80 90
c[oo]

ISDF

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Er
ro

r /
 n

at
om

 (E
H
)

k-points (1,1,1)
k-points (2,2,2)
k-points (3,3,3)
k-points (4,4,4)
k-points (5,5,5)

Figure 3: Absolute Error in the HF energy using THC-oo-K, as a function of cooISDF for diamond
in the QZV2P-GTH basis with several k-point meshes.

We therefore tentatively recommend starting with values c
[nn]
ISDF = 25, c

[oo]
ISDF = 50. One

may verify this is adequate on a case-by-case basis by increasing the parameters and ensuring

little variation in overall results. We note that this study analyzed the absolute energies,
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which leaves out the effect of error cancellation in observables such as the lattice energy or

band gaps. Error cancellation could lead to more leniency in the cISDF parameters, neces-

sitating fewer interpolation points. Additionally, we showed errors in the HF energy here,

which includes 100% exact exchange. When using a hybrid density functional with a small

fraction of exact exchange or short-range exact exchange, the THC errors will therefore be

further scaled down. Indeed, this was observed in our molecular study.27 We therefore believe

that our recommended coefficients are conservative.

4.2 Computational scaling

We found that both periodic THC-AO-K and THC-oo-K require more interpolation points

than their molecular counterparts when using k-point sampling. However, even molecular

THC was seen to require too many interpolation points to be computationally competitive

except for very large systems. We therefore investigate the K build time for both THC-AO-K

and THC-oo-K to see if ISDF-based algorithms are useful for small to medium-sized periodic

systems. In the following calculations, we use c
[nn]
ISDF = 25 and c

[oo]
ISDF = 55. Additionally,

we will compute the average THC-AO-K iteration time by assuming 10 iterations, as the

majority of the computational cost of this algorithm is the M build step which is performed

only once, i.e. we add one-tenth of the M build time into the per iteration cost. If more

than 10 iterations are required (i.e., the initial guess was poor), THC-AO-K will be more

favorable than shown here, and vice versa.

In Fig. 4a, we plot the K build time for AlN in the QZV2P-GTH basis as a function of the

number of k-points for both THC-AO-K and THC-oo-K. We see two important conclusions

from this plot. First, as anticipated, the THC-K algorithms are linear with the number of

k-points due to the FFT convolution. By contrast, occ-RI-K exhibits quadratic scaling with

number of k-points. Second, the THC-K algorithms have a large prefactor which causes

occ-RI-K to be the more efficient approach for small k-point meshes. The linear k-point
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Figure 4: (a) Average K build time per cycle and (b) breakdown of the THC initial cycle timings
vs the number of k-points for AlN in the QZV2P-GTH basis.

scaling makes THC-oo-K extremely effective at reducing compute time for large k-point

calculations, and the algorithm becomes more efficient than occ-RI-K between a (4,4,4) and

(5,5,5) k-point mesh. Due to the large basis set and therefore large N
[nn]
ISDF, the THC-AO-K

algorithm is significantly slower than both other algorithms, and could not be run for k-point

meshes larger than (4,4,4) due to memory requirements.

We present a breakdown of the THC-AO-K and THC-oo-K first cycle computation time

(the full THC-AO-K M build time is included) for the AlN system in Fig. 4b. We see that

the THC-AO-K time is dominated by the initial single M build, making the per iteration

cost to contract of M to form K according to Eq. (14) negligible. The THC-oo-K M is

significantly cheaper (note the 10x scale difference) to form, but the computation of the

orbital gradient adds an extra factor of 2-3 to the per-iteration compute cost.

We additionally investigated the computational scaling of THC-K with basis set size.

We previously saw the occ-RI-K algorithm was largely independent of basis set size, making

it very effective for large basis calculations (with small numbers of k-points). We expect

THC-oo-K to have this same property, as NISDF is independent of the basis size, shown by

fig. 2b. We, therefore, expect THC-oo-K to become more efficient than THC-AO-K as the

basis set size increases. In figure 5, we show the average K matrix build time as a function of
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Figure 5: Average K build time per cycle vs the number of basis functions for diamond with a
(7,7,7) k-point mesh.

the basis set size for the diamond system with a (7,7,7) k-mesh. THC-AO-K is more efficient

than THC-oo-K and occ-RI-K for the smallest two basis sets used, SZV-GTH and DZVP-

GTH; the bottleneck of this algorithm is precomputing the M matrix, which is fairly small

for smaller basis set sizes. occ-RI-K is slightly better than THC-AO-K for TZV2P-GTH

and QZV2P-GTH as it is independent of basis size. THC-oo-K evidently does not become

competitive with THC-AO-K until the very large unc-def2-QZVP-GTH basis set is used.

Finally, we note that the THC algorithms can offer significantly reduced memory usage

compared to occ-RI-K. For both THC algorithms, we store only ξP (r) and Mq
PQ, i.e. no

quantities that scale with both the grid and number of k-points. This is in contrast to
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Figure 6: Memory usage for the occ-RI-K, THC-AO-K, and THC-oo-K algorithms as a function
of the number of k-points for the diamond system using the QZV2P-GTH basis.
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the occ-RI-K algorithm which stores the basis functions (linear in Nk) and coulomb kernel

(quadratic in Nk) on the grid by our default in Q-Chem. Using an integral direct approach to

occ-RI-K will eliminate this memory requirement34 but results in much slower performance,

making it less competitive with the THC algorithms. We highlight this in figure 6 by plotting

the memory requirements for each algorithm for the diamond system in the QZV2P-GTH

basis as a function of the number of k-points. We see that the large number of ISDF points

required for THC-AO-K leads to larger memory consumption than occ-RI-K for k-point

meshes smaller than (6,6,6), however, the linear scaling in Nk eventually wins out at k-point

meshes larger than this. THC-oo-K offers a huge reduction in memory usage over THC-AO-

K due to a large reduction in the number of ISDF points. For this diamond QZV2P-GTH

example, with a (9,9,9) k-point mesh, THC-oo-K requires only 9 GB compared to 430 GB

for occ-RI-K!

We can now define specific use cases for each algorithm studied here. For small k-point

meshes, we recommend using the occ-RI-K algorithm as it will be faster than all THC

algorithms. For large k-point meshes we recommend using THC-AO-K if using a small basis

set and THC-oo-K for large basis sets. Across all system sizes and k-point mesh sizes, if the

suggested algorithm requires too much memory, we recommend using THC-oo-K instead.

It is particularly well-suited for implementation on memory-constrained computing devices,

such as graphical processing units.

4.3 Molecular Crystals

Finally, we perform an illustrative computation of the cohesive energy of the benzene crystal

as a rigorous test of the limits of THC-K. Accurate theoretical estimates of this value are

available via high-order wavefunction theory calculations performed via fragment-based ap-

proaches.45–47 Periodic calculations have thus far been fairly limited as HF and pure density

functionals are known to fail for binding purposes48 and higher order wavefunction theo-
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ries are very expensive for periodic studies of benzene. Local density functionals have been

shown to yield reasonable results when dispersion corrections are utilized,49 and recent stud-

ies using periodic MP2 have been performed.50,51 However, these periodic calculations are

generally limited to small k-point meshes or small basis sets, or both due to computational

constraints. Only a few hybrid functionals have been tested for benzene49,52–55 due to the

computational difficulty of obtaining exact exchange energies in the thermodynamic limit.

We, therefore, decided to utilize the THC-oo-K algorithm to benchmark hybrid functional

for cohesive energies in order to compare with theoretical best estimates.

We investigated the dispersion-corrected pure functional B97M-rV56,57 and the hybrid

functionals PBE0-D3,58,59 MN15,60 M06-2X,61 SCAN0-D3,62 ωB97X-rV,63 and ωB97M-

rV.64 We attempted to converge our results to both the complete basis set (CBS) limit

and the TDL, including counterpoise corrections (see Sec. 3). We cover hybrid functionals

utilizing both the D3 and rVV10 dispersion corrections and empirical functionals parame-

terized to include dispersion. We note that MN15 and M06-2X are not dispersion-corrected

but their performance on molecular data sets of non-covalent interaction was found to be

quite accurate.1 The cohesive energies computed for varying sizes of k-point meshes can be

seen in table 1. We performed our calculations using the QZV2P-GTH basis.

Compared to the theoretical best estimate (TBE) of -54.58 kJ/mol,45 we see a great

variance in the performance of DFT. As expected, the dispersion treatment is paramount

to obtaining accurate, cohesive energies. The DFT-D3 treatment of dispersion yields quite

accurate results, with the global hybrid functionals PBE0-D3 and SCAN0-D3 performing

well, giving errors of 3.4 and 2.0 kJ/mol, respectively. MN15 and M06-2X, parameterized

to implicitly treat dispersion, yield extremely different results; MN15 is the most accurate

of the functionals tested with an error of 1.1 kJ/mol while M06-2X performs substantially

worse than all other functionals, giving an error of 13 kJ/mol. Use of the rVV10 dispersion

correction yields unsatisfactory results as well; the pure functional B97M-rV overbinds by 9.0
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kJ/mol while the range separated hybrids ωB97M-rV and ωB97X-rV, which are among the

most accurate functionals for molecular systems,1 perform only slightly better with errors

of 7.2 and 8.0 kJ/mol respectively. The consistent overbinding of these three VV10-based

functionals suggests that rVV10 is the main source of their errors.

The trends seen in our data are in line with previous studies on dispersion corrections for

benzene and the X23 dataset. DFT-D3 is known to perform quite well,49 while the failure

of rVV10 for molecular crystals has previously been attributed to the lack of screening (i.e.,

many-body dispersion) effects.65–67 Notably, by comparing B97M-rV to ωB97M-rV, we find

that the addition of exact exchange makes a minor improvement of 1 kJ/mol.

We see that with a (3,3,3) k-point mesh, pure functionals are essentially converged,

whereas the hybrid functionals are still up to 5 kJ/mol off from the TDL. The convergence

of the hybrid functionals is demonstrated in figure 7, where the convergence rate is dependent

on the fraction of exact exchange in the functional - highlighting the difficulty of periodic

hybrid DFT. Nonetheless, the size extrapolation using 1/Nk works well for this system,

making reliable hybrid functional calculations accessible.

Table 1: Error in the benzene crystal cohesive energy in kJ/mol for several density functionals as
a function of the k-point mesh size.

Nk B97M-rV HF PBE0-D3 MN15 M06-2X SCAN0-D3 ωB97X-rV ωB97M-rV
13 -10.97 -55.87 -37.18 -62.59 -59.70 -32.38 -139.54 -141.48
23 -8.29 58.48 -7.44 -8.81 4.09 -2.33 -23.70 -24.74
33 -8.98 -4.59 -3.76 10.33 0.54 -12.42 -13.40
TDL -8.98 74.81 -3.38 -1.63 12.95 1.75 -7.68 -8.62

We see that for the benzene crystal, including exact exchange can lead to modest improve-

ments in accuracy, but the treatment of dispersion is much more important. More in-depth

analysis is required to evaluate general trends of hybrid functionals for periodic applications.

Still, the discrepancy between molecular1 and periodic cases suggests that further functional

development may be beneficial for hybrids applied to periodic applications.

23



0.0 0.2 0.4 0.6 0.8 1.0
1/Nk

200

175

150

125

100

75

50

25

0

25

E c
oh

es
iv

e (
kJ

/m
ol

)

HF
PBE0-D3
MN15
M06-2X
SCAN0-D3

B97X-rV
B97M-rV

Figure 7: Cohesive energy of the benzene crystal as a function of k-point sampling for several
hybrid functionals. The dashed line indicates the reference value.

24



5 Conclusions

To summarize, we have presented an extension of the ISDF approximation for exact exchange

for use with periodic k-point calculations using GTOs. We additionally presented a new

algorithm, THC-oo-K, by fitting only the product of occupied orbitals via the ISDF approach,

which is all that is needed for the energy. While this means that errors in THC-oo-K orbital

gradients (which involve occupied-virtual products) are larger than for the energy, the effect

on the self-consistently optimized energy is still small. We have shown that these algorithms

reduce the computational scaling for exact exchange to cubic in system size and linear with

the number of k-points; the THC-oo-K algorithm has the additional advantage of THC

dimension scaling independently of basis set size. Initial investigation showed that these

algorithms provide substantial computational savings for large k-point meshes; THC-oo-K

additionally provides computational savings over occ-RI-K at even medium-sized k-point

meshes and huge reductions in memory usage in all cases, at only a minor compromise in

overall accuracy. We believe this cost reduction will make periodic studies using hybrid

functionals more feasible, which we illustrated via a study of the benzene lattice energy,

computed with the QZV2P-GTH basis up to a (3,3,3) k-point mesh.

Further reduction in error may be obtained by fitting only one side of the two-electron

integral tensor via ISDF, termed robust fit THC.35,68 This reduces the error in the energy

to quadratic in the THC fit error rather than linear. We performed preliminary studies of

this approach for the THC-AO-K algorithm. Still, we found that while the robust fit did

reduce error substantially, it significantly increased memory requirements to an intractable

degree due to the requirement of storing V q
P (r), the potential due to interpolating function

ξP (r) which increases the memory usage of the already expensive THC-AO-K by a factor

of Nk; additionally, the number of expensive FFTs for the GPW algorithm is increased

by a factor of Nk, significantly increasing the compute time. Nonetheless, a multi-node
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MPI implementation may increase the available memory enough to make this approach

tractable.35 For the THC-oo-K algorithm, there is no need to store V q
P (r) each iteration,

so it is possible to batch over this quantity and avoid storing the entire thing; the increase

in the number of FFTs will however still lead to a significant increase in compute cost. A

robust fit THC-oo-K algorithm is therefore an interesting direction for future development,

but the trade-off in compute time may turn out to be unfavorable.

All work presented here was used with the GPW algorithm, which only applies to pseu-

dopotential calculations. A big advantage of Gaussian orbitals in PBC calculations compared

to the more popular plane waves basis is the ability to model core orbitals. It would be in-

teresting to investigate all-electron versions of these algorithms. This extension should be

possible using the projector augmented-wave method (PAW),69 density fitting,70,71 or similar

approaches, by selecting ISDF points from Becke grids as is done for molecular codes.27

Finally, we note that this approach offers a general framework for approximating the two-

electron integrals and its usefulness is not limited to exact exchange. The same intermediates

may be used to speed up the computation of matrix elements necessary for Møller-Plesset

theory, coupled cluster theory, and other correlated wavefunction methods. This has already

proved successful for molecular ISDF.27,72,73 The extension of this algorithm to correlated

wavefunction theory would allow for much larger k-point calculations.
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