UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Effects of Discrimination Difficulty on Peak Shift and Generalization

Permalink
https://escholarship.org/uc/item/4br7d85x

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors

Lee, Jessica C.
Cahyadi, Tamara
Lovibond, Peter

Publication Date
2024

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/4br7d85x
https://escholarship.org/uc/item/4br7d85x#author
https://escholarship.org
http://www.cdlib.org/

Effects of Discrimination Difficulty on Peak Shift and Generalization

Jessica C. Lee (jessica.c.lee @sydney.edu.au)
University of Sydney; University of New South Wales Sydney

Tamara Cahyadi (tamaralarissac @gmail.com)
University of New South Wales, Sydney

Peter F. Lovibond (p.lovibond @unsw.edu.au)
University of New South Wales, Sydney

René Schlegelmilch (r.schlegelmilch @uni-bremen.de)
University of Bremen

Abstract

In this paper, we test the effect of manipulating discrimina-
tion difficulty on subsequent generalization of learning and in
particular, on the peak shift effect. Participants learned a dis-
crimination where one stimulus led to an outcome (S+) and
another stimulus led to no outcome (S-). Difficulty was ma-
nipulated by varying the degree of similarity between the S+
and S- across groups (easy/medium/hard). In contrast to sim-
ilar studies in animals, we found that increasing the difficulty
of the discrimination resulted in less peak shift. Using a hierar-
chical mixture model, we characterize the effects of discrimi-
nation difficulty on relational- and similarity based responding,
and show for the first time, a similar mixture of responding on
stimulus identification gradients. We conclude that peak shift
on generalization and identification measures can be explained
by mixtures of participants responding in different ways.

Keywords: generalization; discrimination; peak shift; identi-
fication; similarity

Introduction

Stimulus generalization refers to the adaptive ability of ani-
mals and humans to transfer learned responses from familiar
stimuli to novel stimuli. In associative learning, the question
of how this is achieved has been the topic of theoretical and
empirical investigation for over 50 years. In everyday life, we
often have to integrate learning about multiple stimuli in order
to make accurate predictions. We can learn about stimuli that
predict an outcome (S+) as well as stimuli that do not predict
that outcome (S-). As the physical difference between the S+
and S- becomes smaller and smaller, discriminating between
the stimuli to make accurate predictions becomes more diffi-
cult. In this paper, we address the question of how the diffi-
culty of the discrimination (or the similarity between S+ and
S-) affects subsequent generalization to novel stimuli.

The first study addressing this question was by Hanson
(1959), who trained groups of pigeons by reinforcing a peck-
ing response at a keylight of a specific color (S+). One group
of pigeons were exposed to the S+ only, while other groups
of pigeons received additional exposure to a keylight where
responding was not reinforced (S-), at varying degrees of sim-
ilarity to the reinforced S+ keylight. In other words, the dis-
crimination difficulty (physical similarity between the S+ and
S-) differed between groups. To assess generalization, the
color of the keylight was varied along the wavelength dimen-

sion and the amount of responding was measured. The group sa1

that only received exposure to the S+ showed a peaked, sym-
metrical gradient with the highest responding at the S+ value.
The groups that had received discrimination training with an
additional S- showed a peak shift (for a review, see Purtle,
1973), where the peak of the gradient shifted from the S+ to a
value further along the dimension away from the S-. The de-
gree to which the peak shifted along the dimension was pro-
portional to the difficulty of the discrimination the pigeons
had learned. The harder the discrimination (i.e., the more
similar the S+ and S-), the larger the peak shift.

Peak shift has broad interest beyond conditioning proce-
dures as it describes a phenomenon that can occur whenever
there are two known stimuli with different outcomes produc-
ing a maximal response for a different stimulus with more
exaggerated features. Peak shift has been used in ethology
to explain sexual imprinting (ten Cate et al., 2006) and sig-
nal evolution (Lynn et al., 2005). Such shifts in responding
can be seen as adaptive since they minimize the likelihood of
misidentifying important stimuli such as predators or poten-
tial mates. Humans also display effects reminiscent of peak
shift in various perceptual and cognitive domains. For in-
stance, caricatures of faces are easier to recognize than actual
faces (e.g., Lewis, 1999), shifts in category representation
(idealization” effects) occur as a result of contrast (Davis
& Love, 2010), and we reproduce phonemes in a way that
exaggerates their differences compared to casual speech (the
hyperspace effect, Johnson et al., 1993). The pervasiveness
of peak shift across a range of tasks and species suggests that
the same underlying learning and generalization mechanisms
underlie basic forms of discrimination learning as well as the
formation of more abstract, conceptual knowledge.

In comparison to the extensive literature documenting the
peak shift phenomenon, there has been relatively little re-
search examining the relationship between discrimination
difficulty and peak shift. Hanson’s (1959) original report of
larger peak shifts with harder discriminations has been repli-
cated in animals by Thomas (1962), who additionally found
steeper generalization gradients with harder discriminations.
Furthermore, the effect (more peak shift with increasing dis-
crimination difficulty) is predicted by associative models that
assume that generalization results from the interaction of ex-
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citation from the S+ and inhibition from the S- (e.g., Blough,
1975; Ghirlanda & Enquist, 1998; McLaren & Mackintosh,
2002). The effect has also been found in humans (e.g., Baron,
1973; Derenne, 2006), however there have also been some
failures to replicate (e.g., Doll & Thomas, 1967), and some
evidence supporting the opposite relationship, with greater
peak shift with easier discriminations (e.g., Thomas et al.,
1973, 1991). Thomas (1993) has explained the contradictory
results by proposing that humans use a relational response
strategy involving comparison of the current stimulus with the
adaptation level, which is the average of all presented stimuli.
Participants then respond in different ways depending on the
relation (e.g., respond if bluer than average, do not respond if
greener than average).

J. C. Lee et al. (2018) also showed that relational learning
was critical in discrimination learning and in particular, for
obtaining peak shift. They found that one subgroup of partici-
pants generalized on the basis of physical similarity to the S+,
while another subgroup of participants generalized on the ba-
sis of relations between the stimuli (e.g., ’the bluer the stim-
ulus, the higher the likelihood of the outcome™), and these
gradients averaged to form a peak-shifted gradient at the ag-
gregate while each subgroup showed markedly different gra-
dient shapes. Therefore, peak shift can be accounted for by
mixtures of similarity and relational rules (see also J. Lee et
al., 2021). One implication of this account is that the effect
of discrimination difficulty on peak shift should be mediated
through its effect on similarity and relational rules. To test
this prediction, we conducted an experiment and used a mix-
ture model to separately estimate similarity- and relational-
based responding.

Experiment

The primary aims of the study were: 1) to test the effect of
manipulating discrimination difficulty on generalization gra-
dients and specifically, the magnitude of peak shift, and 2)
to test whether and how discrimination difficulty affects the
mixture of similarity and relational rules in generalization
gradients. The evidence regarding the effect of discrimina-
tion difficulty in humans is mixed, and is complicated by the
fact that the tasks that are typically employed are distinct
from a conditioning task where predictive associations are
learned between stimuli and outcomes. For example, Baron
(1973) instructed participants to make a response whenever
they heard the “’correct” tone (i.e., the S+), which is more like
an identification response than a conditioned response. For
this reason, we also included an identification test following
our generalization test, similar to that used by Lovibond et al.
(2020). Thus, our third aim was to test whether similar mix-
tures of responding could be found in identification gradients,
and thus, whether peak shift in identification was subject to
the same explanation proposed by J. C. Lee et al. (2018).

Method

Participants Two hundred and twenty-two Psychology stu-
dents (M age = 19.8, SD = 3.5, 143 females, 78 males, 1
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other) participated in exchange for partial course credit. The
total number of participants tested in each group were 68 in
the easy group, 62 in the medium group, and 92 in the hard
group. Additional participants were recruited for the hard
group since initial testing indicated that a larger proportion
of participants were failing the training criterion.

Materials The experiment was programmed using jspsych
(De Leeuw, 2015), hosted using JATOS (Lange et al., 2015),
and run online with participants’ own computer, mouse, and
keyboard. The stimuli were the same as Lovibond et al.
(2020) comprising 21 colored rectangles varying between
green (hue value 0.4) to blue (hue value 0.6) in equal in-
crements, with saturation and brightness fixed at 1 and .75
respectively.

Procedure The experiment was similar to Lovibond et al.
(2020), with an initial training phase, generalization test, rule
assessment, and an identification test. Participants were ran-
domly assigned to group Easy, Medium, or Hard. We manip-
ulated discrimination difficulty by fixing the identity of the
S+ along the dimension (at the midpoint) and including dif-
ferent S- in each group. Depending on group, the S- was
either 2 (Hard), 4 (Medium), or 6 (Easy) steps away from the
S+ (see Figure 1). The direction of the dimension, and there-
fore whether the S- was greener or bluer than the S+, was
counterbalanced between participants. A predictive learning
scenario was used where participants were asked to make pre-
dictions about whether a hypothetical shock outcome would
occur based on a “’signal” (i.e., the stimuli) that would appear
on the shock machine.

On each trial during the training phase, a stimulus (either
the S+ or S-) was presented, and 500ms later, text appeared
asking "What do you think will happen? SHOCK - press L
or NO SHOCK - press A”. After participants responded by
pressing A or L (no other keys would register), the stimulus
remained on screen and the text was replaced with feedback,
either "No Shock” text or "SHOCK!” text accompanied by
a picture of a lightning bolt. Feedback was presented for 2
seconds and each trial in this, and all subsequent phases, was
separated by a 2 second blank inter-trial interval (ITT). The
S+ and S- were each presented 12 times each, with the S+
followed by the shock 75% of the time, and the S- never fol-
lowed by the shock. Trials were randomized in blocks of 4
presentations of each stimulus, with the first S+ presentation
of each block always followed by the shock.

Participants then proceeded to the generalization test,
where they were asked to continue making predictions about
the shock outcome, but with feedback withheld. Participants
were presented with all 21 stimuli on the blue-green dimen-
sion once in randomized order, and made their ratings by
clicking on a visual analogue scale ranging from ~Certain NO
SHOCK (0% chance of shock)” to ”Certain SHOCK (100%
chance of shock)”, and then clicking on "Continue” to pro-
ceed to the next trial.

After the generalization test, participants were given a



three-alternative forced-choice question. Participants could
select from a similarity rule “The more SIMILAR the
color to AQUA (half blue/half green), the higher the
likelihood of SHOCK™), and two relational rules (“The
GREENER/BLUER the symbol, the higher the likelihood of
SHOCK”).

Participants then completed the identification test, where
all 21 stimuli were again presented once in randomized or-
der. On each trial, participants were asked “Is this symbol:
the SAME as the one that led to SHOCK in Phase 1 (press S)
or is it DIFFERENT (press D)”. Finally, participants were
asked to indicate whether they suffered from any form of
color-blindness by clicking “yes” or “no”.

Results

The data, code, and supplemental figures are available at
osf.i0/6f25s/.

Exclusion Criteria Participants were excluded if they indi-
cated that they were color-blind, if they selected the incon-
sistent relational rule in the forced-choice question, or if they
failed to pass the training criterion (average accuracy for the
CS+ and the CS- had to be > 50%). After exclusions, there
were 53 participants in the easy group, 52 in the medium
group, and 52 in the hard group (N=157 total).

Acquisition For brevity, the acquisition data will not be
presented. All three groups showed clear discrimination
in their predictions for the stimuli, with some differences
in speed of acquisition and terminal performance (expected
given the manipulation of discrimination difficulty).
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Figure 1: Aggregate generalization gradients in each group.

Modelling

Figure 1 shows the aggregate generalization gradients. In
contrast to the animal data, there is more apparent peak shift
with easier discriminations. To analyze the data, we employ a
latent class hierarchical modeling approach (see M. D. Lee &
Wagenmakers, 2014) used in previous research (J. C. Lee et
al., 2021; Schlegelmilch et al., 2023). As Figure 2 illustrates,
we assume a mixture of populations (rule vs. similarity), and
a model selection procedure estimates for each individual k,
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whether their gradient is purely rule-like (Sigmoid/standard
logistic function), or whether it should be augmented (i.e.,
combined) with a Gaussian downward trend once it surpasses
a specific color near the CS+ (i.e., if shock is less likely the
more distant from CS+). The selected function’s prediction is
then applied to the data via a Beta regression.
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N=69H Sigmoid vs. Gaussian Gradient N =69
1
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Figure 2: A) Bayesian model classification procedure and B)
generalization gradients in Sigmoid and Gaussian subgroups
(histograms = individual responses).

In this model (Fig.2B), we estimate three key dependent
population variables. The first variable is the probability of
strategy assignment (. ~ Gaussian(0, 1) (log-scale) in a given
condition ¢, and a categorical model index is sampled for each
individual, zz. ~ Binomial((1+ exp(¢.)~")) (O=rule-like vs.
1=similarity). If discrimination difficulty qualitatively af-
fects how participants render the shock estimates, this would
change (..

The second variable is the boundary between CS+ and
CS— defining the location at which participants respond
with 50% shock. This is captured by the parameter u? ~
Gaussian(0,1), sampled hierarchically at the individual levell.
Specifically, this parameter is part of the Sigmoid function
which we apply to all participants. However, if an individ-
ual’s model assignment is zz. = 1, the Sigmoid predictions
will be replaced by the Gaussian downward trend beginning
at the estimated peak location pg* ~ Gaussian(0,1), which is
the third variable of interest. This means that the boundary
uf is estimated based on all participants, but p% is only es-
timated for those for whom the Sigmoid is augmented by the
Gaussian downward trend.

Finally, we applied the probability estimates py, for each

IThe stimulus values are centered on CS+ = 0 in the model,
with standardized distances of 0.161 between stimuli (min/max =
—+1.61). Negative estimates = boundary left-hand to CS+-.



stimulus s and participant &, to the data y;, via Beta regres-
sion, yis ~ Beta(4 - pis,4 - (1 — pis). Note that the technical
implementation is slightly more complex than illustrated, but
we omit these details for brevity (see osf.i0/6f25s/ for further
details). We implemented the model using R (R Core Team,
2018) and the package JAGS (Plummer, 2023). It converged
on four chains in 20000 iterations with sampler adaptation in
5000 samples.

For testing between-group differences, we freely estimated
the Bayesian hyper posteriors (., uf’ , and pu& for each.
We then subtracted the Bayesian samples pair-wise between
groups to obtain mean differences and their 95% highest-
density intervals (HDIs). If an HDI excludes 0, we interpret
this as evidence for an effect.
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Figure 3: Generalization and Identification Results after
Bayesian Model Assignment. See text for explanation.

Generalization Phase As can be seen in Figure 2A, 69 par-
ticipants were classified into each strategy. 19 participants
were classified as guessing and were omitted from the anal-
yses. The individual assignments exceeded 80% certainty
(number of consistent z;. samples) for 93% of the partici-
pants. Of those participants verbally reporting a relational
rule strategy 67.5% were assigned to the Sigmoid, and of
those who reported a similarity strategy 74.1% were assigned
to the Gaussian, underlining the credibility of the modeling
procedure. Figure 3 illustrates the expectancy gradients for
each group, and assigned model, together with the group-
level posteriors.
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The bar graphs in Figure 3B show that the number of
rule participants (Sigmoid) increased with difficulty. The
assignment probability ((. converted to probability p) in-
creased from the easy (E: p = .415) to the hard condition
(H: p =.655), Mg_p = —0.24 95%HDI[-0.43,-.04]. While
the probability fell in-between both in the medium condi-
tion (M: p = .456), the evidence for its difference to the easy
and hard condition was inconclusive, with Mg_j; = —0.041
95%HDI[-0.24,.16] and My = —0.20 95%HDI[-0.40,.01],
respectively. Note, if increased difficulty had led to a stronger
shift of the peak towards the end-point of the dimension, this
could increase the likelihood of Sigmoid classifications, be-
cause near the end-point a Gaussian downward trend is im-
possible. However, this would result in differences in the
Sigmoid gradients between the three conditions (i.e., more
gradual/less steep slopes in the hard compared to the other
conditions), which was not the case (see Figure 3B).

Figure 3A shows the Bayesian posteriors for the boundary
estimates. As can be seen, they are orderly and correspond to
the difficulty manipulation, with Mgy = —.38, My, = —.27,
and My = —.18. There was evidence for a difference in
all three comparisons, Mg_y = —0.109 95%HDI[-0.20,-.02],
Mg_g = —0.201 95%HDI[-0.29,-.11], and My, = —0.092
95%HDI[-0.19,0]. These estimates reflect boundary shifts
aggregated over strategy (Sigmoid and Gaussian). Thus, re-
gardless of strategy, moving the CS- away from the CS+ re-
sulted in proportional shifts of the gradient boundary.

Regarding the peak estimates in the Gaussian group, there
was an orderly shift between Mg = .084, My, = .058, to
My = —.045, with evidence for a difference between easy
and hard conditions, Mg_g = —0.143 95%HDI[-0.26,-.03].
Together with the previous result, this means that shock-
expectancy narrowed around the CS+ in the hard, com-
pared to the easy group (Figure 3C), which can also be
seen in the average Gaussian gradients (Figure 1). The
evidence for the other comparisons was inconclusive, with
Mg_y = —0.039 95%HDI[-0.15,.08], and My;_yg = —0.104
95%HDI[-0.22,.01].

Identification Phase Figure 3D shows the identification
gradients plotted by the previously assigned generalization
model (Sigmoid vs. Gaussian). Participants in the Sigmoid
cluster tended to show an area shift (more ‘same’ respond-
ing beyond the CS+), suggestive of a carry-over effect from
the previous generalization test (see Lovibond et al., 2020),
while the Gaussian cluster did not. Figures 3E & F, further
show that there was a tendency of a peak shift in the Sigmoid
group from the easy to medium and hard conditions, which
was not the case for the Gaussian group.

However, these average gradients hide the fact that the in-
dividual patterns were again the result of two distinct sub-
groups responding in different ways. Specifically, we found
that some participants responded with ‘different’ (0) for stim-
uli on the left of the CS+ but with ‘same’ (1) for those on
the right of the CS+ in a Step function, while other partic-
ipants responded with ‘same’ for about 2 to 6 stimuli near



the CS+ otherwise ‘different’, which we called Plateau re-
sponding. To analyze these subgroups, we used a similar
but non-hierarchical cluster analysis as before (there was only
one 0 or 1 response per stimulus and participant). Instead of
a Sigmoid, we defined a Step function estimating the stim-
ulus location 15 ~ Gaussian|_ 1)(0,1) below which ‘same’
responding was p = .05 and above which it was p = .95. In-
stead of augmenting a Gaussian, we defined a Plateau func-
tion estimating two locations I} ~ Gaussian|_; ;;(0,1) and
L~ Gaussian_ ; ;1(0,1), such that responding in-between
was set to p = .95, and outside to p = .05. Otherwise we
used the same classification method as in the Generalization
analysis, and estimated the three parameters for each diffi-
culty group by previously assigned model (Sigmoid vs. Gaus-
sian) separately, which converged on 5000 iterations on four
chains.
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Figure 4: Identification Patterns by Generalization Model and
Condition. See text for explanation.

Figure 4A shows that 26 participants were assigned to Step,
and 112 to the Plateau function. Although in the minority, it
appears that the Step cluster is responsible for the area shift
seen in Figure 3D, which can be seen as a carry-over effect
from the generalization test. Indeed, 18 of the 26 Step par-
ticipants were previously assigned to the Sigmoid function
(69%), supporting this suspicion. Figure 4B shows that the
probability of Plateau responding was highest (100%) when
assigned to the Gaussian in the hard condition, and this proba-
bility was lower in both medium and easy condition. Interest-
ingly, the reverse seemed to be the case when the previously
assigned model was the Sigmoid function. Still the evidence
for these effects was generally inconclusive in pairwise com-
parisons.

Focusing on the Plateau group, we found an interaction be-
tween previous Generalization assignment and group regard-
ing the estimated Plateau bounds /¥ (left-hand) and 1% (right-
hand). Only when participants were previously assigned to
the Sigmoid, did the 15 estimates in the easy My = .24,
medium My, = .41, and hard groups My = .40, differ between
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easy and medium, Mg_p = —0.166 95%HDI[-0.30,-0.04],
and easy and hard, Mg_y = —0.163 95%HDI[-0.29,-0.04].
This means that peak shift in CS+ identification depended
on the Generalization pattern (Sigmoid or Gaussian), seen in
Figure 4C.

In addition, the lfin the Sigmoid cluster, easy Mg = —.56,
medium My, = —.44, and hard groups My = —.40, showed an
additional area shift from the easy to hard condition, Mg_p =
—0.160 95%HDI[-0.285,-0.03], while all other comparisons
included zero in their HDI’s. Thus, there is evidence that if
participants responded in a rule-like fashion during general-
ization they also showed a peak shift in the identification task,
(a) in terms of a carry-over effect (Step function), but also (b)
when they later showed Plateau responding in terms of an
actual peak-shift. However, if participants in generalization
showed a Gaussian similarity-like gradient, there was hardly
any evidence of peak shift and CS+ identification was quite
accurate (Figure 4D).
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Figure 5: Response Times (RT) in Generalization and Iden-
tification. Y-axis represents RT(Stimulus) minus RT (CS+)
calculated on the log-scale (positive = slower than for CS+).
Error bars = +-1SE. Gray vertical line = CS+ location, gray
horizontal = zero difference reference point.

To gain deeper insight into the difference between Gaus-
sian and Sigmoid subgroups, we conducted an exploratory
analysis on the reaction times in both tests. Based on the
simple idea that identification RTs should become slower for
stimuli more similar to the CS+, we calculated a difference
score, subtracting the RT for the CS+ for each stimulus per
individual. Figure 5 shows these difference scores aggre-
gated across subgroups. RT’s for identification (Figure 5B)
were generally faster with increasing distance to the CS+ for
the Sigmoid subgroup. However, the Gaussian generaliza-
tion group responded more slowly to items close to the CS+
on the right side, i.e., in the region where one would usu-
ally expect a peak shift. Intriguingly, no such interactions
were present for RTs in the generalization test (Figure 5A).
Theoretically, this might suggest that the Gaussian subgroup
needed extra effort to suppress *same’ responding for stimuli
beyond the CS+ in order to avoid showing a peak shift in the
identification task. Further studies are needed to confirm our
speculations.



Discussion

In this study we tested the effect of discrimination difficulty
(easy vs. medium vs. hard) on stimulus generalization and
identification by manipulating the similarity of the S+ and S-
along a blue-green color dimension. Harder discriminations
are known to generate more shift in the peak of the general-
ization gradient in animals, but results are more mixed in hu-
mans. One explanation for this discrepancy is that previous
studies have shown that humans show mixtures of similarity-
and relational rule learning (J. C. Lee et al., 2018), and thus
we also tested the effect of discrimination difficulty on rules
using a mixture model. Our classification of participants
into Sigmoid or Gaussian subgroups showed good correspon-
dence with verbal report of Similarity and Relational rules
used in previous studies (J. C. Lee et al., 2018).

At the aggregate level, we found that: 1) in contrast to stud-
ies on animals, the gradients showed more peak shift with
easier discriminations, and 2) more difficult discriminations
resulted in more participants classified as Sigmoid (i.e., us-
ing relational rules). These effects were most apparent when
comparing groups Easy and Hard. Increased relational rule
use in the Hard condition makes sense if we assume that more
attention to the relational features of the stimuli is needed in
order to discriminate between the stimuli. More attention to
relational features during training might then mean that par-
ticipants generalize on the basis of these features at test. If
we assume that relational and physical features compete for
attention, this might also explain why identification perfor-
mance was poorer for the S+ in the hard group.

Turning to the effects of discrimination difficulty on the
generalization subgroups (Sigmoid vs. Gaussian), we found
that: 1) easier discriminations pulled the boundary of the Sig-
moid toward the CS- but did not affect the slope, and 2) eas-
ier discriminations resulted in the peak of the Gaussian be-
ing further away from the CS- but did not affect the other
Gaussian parameters. These results support the observation
of greater peak shift with easier discriminations apparent in
the aggregate gradients, but allows us to isolate this finding
to the Gaussian subgroup (who generalized according to sim-
ilarity).

Interestingly, consistent with the pigeon data reported by
Thomas (1962), we also found narrower generalization gra-
dients with harder discriminations, but only for participants
classified as Gaussian. Another interesting observation is
that for the Sigmoid participants, there was little evidence of
group differences beyond the CS+ and CS-. In other words,
manipulating discrimination difficulty seems to affect inter-
polation (responding between the known CS+ and CS-) but
not extrapolation (responding beyond known stimuli).

The fact that the aggregate results were driven by the Gaus-
sian subgroup has important theoretical implications. If the
Gaussian subgroup had shown results consistent with ani-
mals, this would suggest that humans are capable of learning
and generalizing associatively, but this behavior is obscured
by sigmoidal gradients exhibited by other participants who
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learn about rules/relations. Instead, we found the opposite
result to animals, with larger peak shifts with easier discrim-
inations in the Gaussian subgroup. At present, we can only
speculate about the reason for this result. The relational re-
sponse strategy (Thomas, 1993) discussed earlier could ex-
plain the peak shift results since there is a larger shift in adap-
tation level over the course of testing (S8 to S11) for eas-
ier discriminations. This account does not however, explain
why the gradients gets sharper as the discrimination becomes
harder. Differences in perception are highly unlikely since
there were no corresponding group differences in identifica-
tion gradients. Further studies are needed to understand why
both animals and humans show sharper gradients after hard
discriminations, but the opposite pattern with regards to the
relationship between peak shift and discrimination difficulty.

A novel result in our study was that we found a similar
mixture of response patterns (Step vs. Plateau) in the identi-
fication test, with partial overlap between the subgroups clas-
sified from the generalization test (Sigmoid vs. Gaussian). It
appears that carry-over effects from generalization to identi-
fication tests reported by Lovibond et al. (2020) are primarily
driven by relational rule participants (Sigmoid) who continue
to respond similarly in the identification test. This finding
has implications for interpreting human studies purporting to
demonstrate peak shift using an identification task where par-
ticipants are instructed to make a response to a target stim-
ulus. If a minority of participants misinterpret their task or
inappropriately apply a relational rule, then the overall gradi-
ent may become peak-shifted. Our results suggest that when
participants do the identification task properly (i.e., if we ex-
clude Step participants), there is no area or peak shift in iden-
tification gradients. Thus, any peak shift displayed in an iden-
tification task may be explainable by individual differences in
rules or response strategy, the same explanation proposed by
J. C. Lee et al. (2018) to explain peak shift in generalization.

A potential limitation of the study was that a much larger
proportion of participants were excluded in the Hard group
compared to the Easy and Medium groups. While the train-
ing criterion was necessary to ensure that we excluded non-
learners from all three groups, it may have resulted in a se-
lection bias in the final sample, whereby the Hard group con-
sisted of more attentive learners. However, the shape of the
gradients did not change when we examined the full sample.

In conclusion, peak shift in humans does not conform to
the predictions of associative models regarding the effect
of discrimination difficulty. In contrast to animals, humans
tend to display more peak shift with easier discriminations.
We found that discrimination difficulty affects generaliza-
tion strategy (more rule responders), as well as peak loca-
tion for those classified as similarity responders (less peak
shift). We have also shown for the first time, that this mixture
of response strategies also applies to identification gradients.
Thus, the evidence for peak shift in humans as conceptualized
by associative models, may be more elusive than originally
thought.
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