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A Harmonic Extension Approach for Collaborative Ranking

Da Kuang∗ Zuoqiang Shi† Stanley Osher∗ Andrea Bertozzi∗

Abstract

We present a new perspective on graph-based methods for collaborative ranking for recom-
mender systems. Unlike user-based or item-based methods that compute a weighted average of
ratings given by the nearest neighbors, or low-rank approximation methods using convex opti-
mization and the nuclear norm, we formulate matrix completion as a series of semi-supervised
learning problems, and propagate the known ratings to the missing ones on the user-user or
item-item graph globally. The semi-supervised learning problems are expressed as Laplace-
Beltrami equations on a manifold, or namely, harmonic extension, and can be discretized by
a point integral method. We show that our approach does not impose a low-rank Euclidean
subspace on the data points, but instead minimizes the dimension of the underlying manifold.
Our method, named LDM (low dimensional manifold), turns out to be particularly effective
in generating rankings of items, showing decent computational efficiency and robust ranking
quality compared to state-of-the-art methods.

1 Introduction

Recommender systems are crucial components in contemporary e-commerce platforms (Amazon,
eBay, Netflix, etc.), and were popularized by the Netflix challenge. Detailed surveys of this field can
be found in [11, 13]. Recommendation algorithms are commonly based on collaborative filtering,
or “crowd of wisdom”, and can be categorized into memory-based and model-based approaches.
Memory-based approaches include user-based and item-based recommendation [18]. For example,
for a user u, we retrieve the highly-rated items from the nearest neighbors of u, and recommend
those items that have not been consumed by u. Memory-based methods are actually based on
a graph, where a user-user or item-item similarity matrix defines the nearest neighbors of each
user or item. In contrast, model-based methods are formulated as matrix completion problems
which assume that the entire user-by-item rating matrix is low-rank [3], and the goal is to predict
the missing ratings given the observed ratings. While memory-based methods are typically more
computationally efficient, model-based methods can achieve much higher quality for collaborative
filtering.

Popular model-based methods such as regularized SVD [3] minimize the sum-of-squares error
over all the observed ratings. When evaluating the predictive accuracy of these algorithms, we
often divide the whole data set into a training set and a test set. After obtaining a model on the
training set, we evaluate the accuracy of the model’s prediction on the test set in order to see
how well it generalizes to unseen data. However, the measure for evaluating success in a practical
recommender system is very different. What we care more about is whether the top recommended
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items for a user u will actually be “liked” by u. In an experimental setting, the evaluation measure
for success in this context is the resemblance between the ranked list of top recommended items and
the ranked list of observed ratings in the test set. Thus, this measure that compares two rankings
is more relevant to the performance in real scenarios. The problem that places priority on the top
recommended items rather than the absolute accuracy of predicted ratings is referred to as top-N
recommendation [5], or more recently collaborative ranking [9, 17], and is our focus in this paper.

We start with the matrix completion problem and formulate it as a series of semi-supervised
learning problems, or in particular, harmonic extension problems on a manifold that can be solved
by label propagation [24, 20]. For each item, we want to know the ratings by all the users, and
the goal of the semi-supervised learning problem is to propagate the known labels for this item
(observed ratings) to the unknown labels on the user-user graph; and reversely, for each user, to
propagate the known labels given by this user to the unknown labels on the item-item graph.

Without loss of generality, we assume that there exists a user manifold, denoted as M, which
consists of an infinite number of users. In a user-by-item rating system with n items, each user
is identified by an n-dimensional vector that consists of the ratings to n items. Thus, the user
manifold M is a submanifold embedded in Rn. For the i-th item, we define the rating function
fi :M→ R that maps a user into the rating of this item.

One basic observation is that for a fixed item, similar users should give similar ratings. This
implies that the function fi, 1 ≤ i ≤ n is a smooth function on M. Therefore, it is natural to find
the rating function fi by minimizing the following energy functional:

E(f) =

∫
M
‖∇Mf(u)‖2du, (1)

where ∇Mf(u) is the gradient at u defined on the manifold M. Using standard variational ap-
proaches, minimizing the above functional (1) is reduced to solving the Laplace-Beltrami equation
on the user manifold M. Then the Laplace-Beltrami equation can be solved by a novel point
integral method [20].

For the harmonic extension model, we also have an interpretation based on the low dimension-
ality of the user manifold, after which we call our method LDM. The user manifold is a manifold
embedded in Rn, and n is usually a large number. Compared to n, the intrinsic dimension of
the user manifold is typically much smaller. Based on this observation, we use the dimension of
the user manifold as a regularization to recover the rating matrix. This idea implies the following
optimization problem:

min
X∈Rm×n,
M⊂Rn

dim(M), (2)

subject to: PΩ(X) = PΩ(A), U(X) ⊂M,

where dim(M) is the dimension of the manifoldM, and U(X) is the user set corresponding to the
rows of X. Ω = {(i, j) : user i rated item j} is the index set of the observed ratings, and PΩ is the
projection operator to Ω,

PΩ(X) =

{
xij , (i, j) ∈ Ω,
0, (i, j) /∈ Ω.

By referring to the theory in differential geometry, this optimization problem is reduced to the same
formulation as that in harmonic extension (1) which gives our model a geometric interpretation.

Another important aspect of our proposed method is the weight matrix that defines the user-
user or item-item graph. Because the information given in the rating matrix is incomplete, we can
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only assume that the weight matrix used in harmonic extension is a good guess. We will propose
an efficient way to construct the weight matrix based on incomplete data.

Our main contribution is summarized as follows:

• We propose an algorithm that exploits manifold structures to solve the harmonic extension
problem for collaborative ranking, representing a new perspective on graph-based methods
for recommender systems.

• On real data sets, our method achieves robust ranking quality with reasonable run-time,
compared to state-of-the-art methods for large-scale recommender systems.

The rest of this paper is organized as follows. In Section 2, we formulate the matrix completion
problem as harmonic extension. In Section 3, we describe the point integral method to rigorously
solve the discretized harmonic extension problem. In Section 4, we show that our approach seeks
to minimize the dimension of the underlying manifold. In Section 5, we describe our more efficient
way to compute the similarity matrix. In Section 6, we empirically demonstrate the efficiency and
ranking quality of our method. In Section 7, we explain the connection and difference between our
method and previous work. In Section 8, we discuss our proposed method and its implication on
other methods.

Here are some notations we will use. For a vector x = [x1, · · · , xm]T , we call y = [xi1 , xi2 , · · · , xir ]T

a subvector of length r by extracting the elements of x in the index set {i1, · · · , ir}, where i1 <
i2 < · · · < ir. For a matrix M , a vector x, integers i, j, and sets of row and column indices S, S′,
we use Mi,j ,MS,S′ ,M:,j ,MS,j , xS to denote an entry of M , a submatrix of M , the j-th column of
M , a subvector of the j-th column of M , and a subvector of x, respectively.

2 Harmonic Extension Formulation

Consider a user-by-item rating matrix A = (aij) ∈ Rm×n, where rows correspond to m users,
and columns correspond to n items. The observed ratings are indexed by the set Ω = {(i, j) :
user i rated item j}. Let Ωi = {1 ≤ j ≤ m : (i, j) ∈ Ω}, 1 ≤ i ≤ n. Suppose there exists a
“true” rating matrix A∗ given by an oracle with no missing entries, which is not known to us, and
A|Ω = A∗|Ω.

As mentioned in the introduction, we formulate matrix completion as a harmonic extension
problem on a manifold. Recall the user manifold in Section 1, denoted as M, which is embedded
in Rn. The set of m users in our user-by-item rating system is represented as U = {uj , 1 ≤ j ≤ m}
where uj is the j-th row of A∗ and U ⊂ M is a sample of M. Let Ui = {uj ∈ U : j ∈ Ωi} be the
collection of users who rate the i-th item.

Then we compute the rating function fi for all the users by minimizing the energy functional
in (1):

min
fi∈H1(M)

E(fi) subject to: fi(uj)|Ui = aij , (3)

where H1 is the Sobolev space. Hence, we need to solve the following type of optimization problem
for n times.

min
f∈H1(M)

E(f) subject to: f(u)|Λ = g(u), (4)

where Λ ⊂M is a point set.
To solve the above optimization problem, we first use the Bregman iteration to enforce the

constraint [15].
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Algorithm 1 Algorithm for solving (3)

1: repeat
2: Get estimate for ∆M based on f1, f2, · · · , fn
3: for i = 1 to n do
4: Solve (6) to obtain fi
5: end for
6: until some stopping criterion is satisfied

• Solve
fk+1 = arg min

f
E(f) + µ‖f − g + dk‖2L2(Λ), (5)

where ‖f‖2L2(Λ) =
∑

u∈Λ |f(u)|2, dn is a function defined on Λ.

• Update dk,
dk+1(u) = dk(u) + fk+1(u)− g(u), ∀u ∈ Λ.

• Repeat above process until convergence.

Using a standard variational approach, the solution to (5) can be reduced to the following
Laplace-Beltrami equation:

∆Mf(x)− µ
∑
y∈Λ

δ(x− y)(f(y)− h(y)) = 0, x ∈M,

∂f

∂n
(x) = 0, x ∈ ∂M,

(6)

where δ is the Dirac-δ function inM, h = g−dn is a given function on Λ, and n is the outer normal
vector. That is to say, the function f that minimizes (4) is a harmonic function on M\∂M, and
(6) is called the harmonic extension problem in the continuous setting.

If the underlying manifold M (the true rating matrix A∗ in the discrete setting) were known,
the n problems in (3) would be independent with each other and could be solved individually by
(6). However,M is not known, and therefore we have to get a good estimate for the operator ∆M
based on fj ’s. Our algorithm for solving (3) is described on a high level in Algorithm 1, where we
iteratively update fj ’s and our estimate for ∆M.

In the next section, we use the point integral method (PIM) to solve the Laplace-Beltrami
equation (6).

Remark. The update of fj ’s in Algorithm 1 follows the “Jacobi” scheme. We could also use
the “Gauss-Seidel” scheme, i.e. re-estimate ∆M after the update of each fj , but that would be
much slower.
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3 Point Integral Method (PIM)

Integral Equation: The key observation in PIM is that the Laplace-Beltrami operator has the
following integral approximation: ∫

M
wt(x,y)∆Mf(y)dy

≈− 1

t

∫
M

(f(x)− f(y))wt(x,y)dy

+ 2

∫
∂M

∂f(y)

∂n
wt(x,y)dτy, (7)

where wt(x,y) = exp(− |x−y|
2

4t ). The following theorem gives the accuracy of the integral approxi-
mation.

Theorem 3.1. [19] If f ∈ C3(M) is a smooth function on M, then for any x ∈M,

‖r(f)‖L2(M) = O(t1/4), (8)

where

r(f) =

∫
M
wt(x,y)∆Mf(y)dy

+
1

t

∫
M

(f(x)− f(y))wt(x,y)dy

− 2

∫
∂M

∂f(y)

∂n
wt(x,y)dτy.

Applying the integral approximation (7) to the Laplace-Beltrami equation (6), we get an integral
equation

1

t

∫
M

(f(x)− f(y))wt(x,y)dy

+ µ
∑
y∈Λ

wt(x,y)(f(y)− h(y)) = 0, (9)

In this integral equation, there are no derivatives, and therefore it is easy to discretize over the
point cloud.

Discretization: We notice that the closed form of the user manifold M is not known, and we
only have a sample of M, i.e. U . Next, we discretize the integral equation (7) over the point set
U .

Assume that the point set U is uniformly distributed over M. The integral equation can be
discretized easily, as follows:

|M|
m

m∑
j=1

wt(xi,xj)(f(xi)− f(xj))+

µt
∑
y∈Λ

wt(xi,y)(f(y)− h(y)) = 0 (10)
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Algorithm 2 Harmonic Extension

Input: Initial rating matrix A.
Output: Rating matrix R.
1: Set R = A.
2: repeat
3: Estimate the weight matrix W = (wij) from the user set U (Algorithm 3).
4: Compute the graph Laplacian matrix: L = D −W
5: for i = 1 to n do
6: repeat
7: Solve the following linear systems

Lfi + µ̄W:,Ui(fi)Ui = µ̄W:,UihUi ,

where h = gi − dk.
8: Update dk,

dk+1 = dk + fk+1 − gi

9: until some stopping criterion for the Bregman iterations is satisfied
10: end for
11: rij = fi(uj) and R = (rij).
12: until some stopping criterion is satisfied

where |M| is the volume of the manifold M.
We can rewrite (10) in the matrix form.

Lf + µ̄W:,ΛfΛ = µ̄W:,Λh. (11)

where h = (h1, · · · , hm) and µ̄ = µtm
|M| . L is a m×m matrix which is given as

L = D −W (12)

where W = (wij), i, j = 1, · · · ,m is the weight matrix and D = diag(di) with di =
∑m

j=1wij .
Remark. In the harmonic extension approach, we use a continuous formulation based on the

underlying user manifold. And the point integral method is used to solve the Laplace-Beltrami
equation on the manifold. If a graph model were used at the beginning, the natural choice for
harmonic extension would be the graph Laplacian. However, it has been observed that the graph
Laplacian is not consisitent in solving the harmonic extension problem [20, 16], and PIM gives
much better results.

Remark. The optimization problem we defined in (1) can be viewed as a continuous analog of
the discrete harmonic extension problem [24], which we write in our notations:

min
fi

n∑
j,j′=1

wjj′
(
(fi)j − (fi)j′

)2
subject to: (fi)Ui = AUi,i. (13)

The formulation (13) in the context of collaborative ranking can be seen as minimizing the weighted
sum of squared error in pairwise ranking. This form of loss function considers all the possible
pairwise rankings of items, which is different from the loss function in previous work on collaborative
ranking [9, 17]: ∑

j,j′∈Ui

L
(
[aji − aj′i]− [(fi)j − (fi)j′ ]

)
, (14)
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where L is a loss function such as hinge loss and exponential loss. Only the pairwise rankings of
items in the training set are considered in (14).

4 Low Dimensional Manifold (LDM) Interpretation

In this section, we emphasize the other interpretation of our method based on the low dimensionality
of the user manifold. In the user-by-item rating system, a user is represented by an n-dimensional
vector that consists of the ratings to n items, and the user manifold is a manifold embedded in
Rn. Usually, n, the number of items, is a large number in the order of 103 ∼ 106. The intrinsic
dimension of the user manifold is much less than n. Based on this observation, it is natural to
recover the rating matrix by looking for the user manifold with the lowest dimension, which implies
the optimization problem in (2):

min
X∈Rm×n,
M⊂Rn

dim(M),

subject to: PΩ(X) = PΩ(A), U(X) ⊂M.

where dim(M) is the dimension of the manifoldM, and U(X) is the user set corresponding to the
rows of X.

Next, we need to give a mathematical expression to compute dim(M). Here we assume M is
a smooth manifold embedded in Rn. Let αi, i = 1, · · · , d be the coordinate functions on M, i.e.

αi(x) = xi, ∀x = (x1, · · · , xn) ∈M (15)

Using differential geometry, we have the following formula [16].

Proposition 4.1. Let M be a smooth submanifold isometrically embedded in Rn. For any x ∈M,

dim(M) =
n∑
i=1

‖∇Mαi(x)‖2

where ∇M is the gradient in the manifold M.

We can clearly see that αi corresponds to the rating function fi. Using the above proposition,
the manifold dimension minimization problem (2) can be rewritten as

min
X∈Rm×n,

M⊂Rd

d∑
i=1

‖∇Mfi‖2L2(M), (16)

subject to: fi(xj)|Ui = aij , U(X) ⊂M,

where

‖∇Mfi‖L2(M) =

(∫
M
‖∇Mfi(x)‖2dx

)1/2

. (17)

This is the same optimization problem we solved in Section 2 and Section 3.
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5 Weight Matrix

The weight matrix W plays an important role in our algorithm as well as other graph-based
approaches [24, 18, 10, 7]. We employ the typical user-user or item-item graph with cosine similarity
used in existing memory-based approaches for recommendation [18]. However, we have made
substantial changes to make the procedure efficient for large sparse rating matrices. Our algorithm
for building the weight matrix is described in detail in Algorithm 3. Again, we consider the user-user
graph without loss of generality.

First, as usual, we can only afford to compute and store a sparse nearest-neighbor weight matrix.
To get the K nearest neighbors for a target user u, traditional algorithms in memory-based methods
require computing the distances between u and every other user, and selecting the K closest ones,
where most of the computation is wasted if K << m. In our algorithm, we first identify the nearest
neighbors approximately, without computing the actual distances or similarities, and then compute
the similarities between u and its nearest neighbors only. We use a binary rating matrix RB that
records “rated or not-rated” information (Algorithm 3, line 1-2), and determine the K nearest
neighbors using an kd-tree based approximate nearest neighbor algorithm (line 3, line 5) [12]. That
is to say, two users who have rated similar sets of movies are more likely to be considered to be
in each other’s neighborhood, regardless of their numeric ratings for those movies. Neither of the
ways to build the kd-tree and to find nearest neighbors based on the tree are as precise as a näıve
search; however, empirical results in the next section have shown that our approximate strategy
does not compromise the quality.

Second, we extended the VLFeat package [21] to enable building a kd-tree from a sparse data
matrix (in our case, RB) and querying the tree with sparse vectors. kd-tree uses a space partitioning
scheme for efficient neighbor search [2]. For high-dimensional data, we employ the greedy way that
chooses the most varying dimension for space partitioning at each step of building the tree [12],
and the procedure terminates when each leaf partition has one data point. Thus, the complexity
of building the tree is not exponential, contrary to common understanding; and the practical
performance of kd-tree can be very efficient and better than that of locality sensitive hashing
[1, 14]. For example, in our case with m data points in n dimensions, the complexity of building
the tree is O(m), rather than O(2n). In addition, when querying the tree, we put an upper
bound D on the maximum number of distance comparisons, and therefore the overall complexity
of finding K nearest neighbors for all the m data points is O(Dm logK) (the logK factor comes
from maintaining a heap data structure for the K nearest neighbors).

Note that the resulting graph is not symmetric. Also the cosine similarity for two data points
with incomplete information is defined by using the co-rated items only (Algorithm 3, line 8-9) [18].

6 Experiments

In this section, we evaluate our proposed method LDM in terms of both run-time and ranking
quality. Since the volume of literature on recommender systems, collaborative filtering, and matrix
completion is huge, we select only a few existing methods to compare with. All the experiments
are run on a Linux laptop with one Intel i7-5600U CPU (4 physical threads) and 8 GB memory.
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Algorithm 3 Building weight matrix from incomplete rating data

Input: Incomplete rating matrix R ∈ Rm×n, number of nearest neighbors K
1: Generate binary rating matrix RB ∈ Rm×n:

(RB)j,j′ =

{
1, Rj,j′ is not missing

0, Rj,j′ is missing

2: Normalize each row of RB such that ‖(RB)j,:‖2 = 1, ∀j, 1 ≤ j ≤ m
3: Build a kd-tree on the data points (rows) in RB
4: Initialize a sparse matrix W ← 0m×m

5: for j = 1 to m do
6: NB ← The set of K approximate nearest neighbors of (RB)j,:, found by querying the kd-tree
7: for j′ ∈ NB (j′ 6= j) do
8: Set of co-rated items C ←

{i : Rj,i is not missing, and Rj′,i is not missing}
9: Wj,j′ ← cosine(Rj,C , Rj′,C)

10: end for
11: end for
Output: Sparse weight matrix W ∈ Rm×m

Table 1: Statistics of the data sets in our experiments. N is the number of ratings in the training
set for each user. The total number of ratings in the training set is N×(# users).

Data set # users # items # ratings

MovieLens-100k
N = 10 943 1,682 100,000
N = 20 744 1,682 95,269

MovieLens-1m
N = 10 6,040 3,706 1,000,209
N = 20 5,289 3,701 982,040
N = 50 3,938 3,677 924,053

MovieLens-10m

N = 10 69,878 10,677 10,000,054
N = 20 57,534 10,675 9,704,223
N = 50 38,604 10,672 8,897,688
N = 100 24,328 10,666 7,730,011

6.1 Data Sets

We use three MovieLens1 data sets in our experiments: MovieLens-100k, MovieLens-1m, and
MovieLens-10m. In each of the data sets, each user has at least 20 ratings. Following the conven-
tion in previous work on collaborative ranking, we randomly select N ratings for each user as the
training set, and the other ratings were used for testing. To keep at least 10 ratings in the testing
set for each user, we remove the users with fewer than N + 10 ratings. After this preprocessing, we
can generate several versions of these data sets with different N ’s, whose information is summarized
in Table 1.

1http://grouplens.org/datasets/movielens/
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6.2 Methods for Comparison

We compare our LDM method with singular value decomposition (SVD) as a baseline, and two
state-of-the-art methods that are designed specifically for collaborative ranking. All the three meth-
ods for comparison optimize a pairwise ranking loss function. We do not perform hyperparameter
selection on a separate validation set because it is time-consuming, but we investigate the effect
of the hyperparameters in Section 6.4; and in Section 6.5, we use a fixed set of hyperparameters
that can achieve a good balance between run-time and ranking quality, which are found empirically
across several data sets. We list these methods below (their program options that will be used in
Section 6.5 is in the footnote):

• SVD: We use the Java implementation of ranking-based SVD in the PREA toolkit2,3. This
version uses gradient descent to optimize the ranking-based loss function (14), as opposed to
the squared loss function in regularized SVD.

• LCR: Local collaborative ranking [9], as implemented in the PREA toolkit4.

• AltSVM: Alternating support vector machine [17], as implemented in the collranking pack-
age5. We employ the default configurations.

Lastly, our proposed method LDM (Algorithm 2) is implemented in Matlab, and the construc-
tion and querying of the kd-tree (Algorithm 3) is implemented in C, for which we extended the
VLFeat6 package to build a kd-tree with a sparse input matrix efficiently. In Algorithm 2, we set
µ = 1 and run one inner iteration and one outer iteration only, since we empirically found that the
weight matrix constructed from the incomplete input ratings by Algorithm 3 is often good enough
for the algorithm to converge in one iteration. Algorithm 2 typically accounts for most (∼ 95%) of
the run-time in our method.

All the programs except SVD use 4 threads in our experiments, and are applied to the same
training and testing random splits.

6.3 Evaluation Measure

We evaluate the ranking quality by normalized discounted cumulative gain (NDCG) @K [6], aver-
aged over all the users. Given a ranked list of t items i1, · · · , it and their ground-truth relevance
score ri1 , · · · , rit , the DCG@K score (K ≤ t) is computed as

DCG@K(i1, · · · , it) =
K∑
j=1

2rij − 1

log2(j + 1)
. (18)

Then, we sort the list of items in the decreasing order of the relevance score and obtain the list
i∗1, · · · , i∗t , where ri∗1 ≥ · · · ≥ ri∗t , and this sorted list achieves the maximum DCG@K score over all
the possible permutations. The NDCG score is defined as the normalized version of (18):

NDCG@K(i1, · · · , it) =
DCG@K(i1, · · · , it)
DCG@K(i∗1, · · · , i∗t )

. (19)

2http://prea.gatech.edu
3The command-line options for SVD is -a ranksvd exp add 5 5 25.
4The command-line options for LCR is -a pgllorma exp add 5 5 13.
5https://github.com/dhpark22/collranking
6http://www.vlfeat.org/
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Figure 1: Ranking quality NDCG@10 (Section 6.3) as a function of the number of nearest neighbors
(k) when constructing the kd-tree and the maximum number of comparisons (D) when querying
the kd-tree. k must not be larger than D.
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Figure 2: Ranking quality NDCG@10 (Section 6.3) vs. run-time under various hyperparameters
for each of the methods compared. LCR and SVD are time-consuming and therefore their results
with multiple sets of hyperparameters are not available on MovieLens-1m.

We only evaluate NDCG@10 due to limited space. Note that for a user u, the list of items that is
provided to compute (19) is all the items with observed ratings given by u in the test set, not only
the highest-ranking ones.

In contrast to previous work on top-N recommender systems [8, 5], we discourage the use of
Precision@K in the context of collaborative ranking for recommender systems, which measures the
proportion of actually rated items out of the top K items in the ranked list of all the items in the
data set. Contemporary recommender systems typically use numeric ratings rather than binary
ratings. In a 1-to-5 rating system, for example, a 1-star item should be less favorable than an
unrated item with an expected 3-star rating. However, a recommender system that ranks 1-star
items at the top positions would get a higher Precision@K score than one that ranks unrated items
at the top positions. Thus, Precision@K is not a valid measure for collaborative ranking with a
non-binary rating system.

6.4 Effect of Parameter Selection

First, we examine the influence of the kd-tree parameters on the performance of LDM, namely
the number of nearest neighbors k and the maximum number of distance comparisons D. Fig. 1
shows the change in NDCG@10 when varying k and D on several small data sets (due to time
constraints). In general, the ranking quality is much better with moderately large k,D values
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Table 2: Benchmarking results of ranking quality NDCG@10 (Section 6.3) and run-time for all the
compared methods. N is the number of ratings in the training set for each user.

NDCG@10 Time (seconds)
SVD LCR AltSVM LDM SVD LCR AltSVM LDM

MovieLens-1m, N = 10 0.6836 0.7447 0.6680 0.7295 844.4 254.2 3.6 61.1
MovieLens-1m, N = 20 0.6758 0.7428 0.6879 0.7404 843.3 437.3 6.8 52.3
MovieLens-1m, N = 50 0.6178 0.7470 0.7730 0.7527 730.5 1168.8 53.0 37.0
MovieLens-10m, N = 10 0.6291 0.6866 0.6536 0.7077 24913.4 4544.4 61.2 1496.3
MovieLens-10m, N = 20 0.6201 0.6899 0.7208 0.7213 14778.5 6823.5 275.4 1653.1
MovieLens-10m, N = 50 0.5731 0.6830 0.7507 0.7286 10899.1 14668.5 648.4 1295.0
MovieLens-10m, N = 100 0.5328 0.7125 0.7719 0.7349 14648.5 4289.1 1411.2 832.0

than with very small k,D values, but does not improve much when further increasing k and D.
Therefore, we can use sufficiently large k,D values to get good ranking quality, but not too large to
be computationally efficient. In the experimental comparison in Section 6.5, we fix the parameters
to k = 64 and D = 256.

Next, we vary the hyperparameters in each of the four methods, and compare simultaneously
the ranking quality and run-time under different hyperparameters. Ideally, a good performance of
a collaborative ranking method means producing higher NDCG@10 scores in less time. Fig. 2 plots
NDCG@10 against the run-time for several small data sets (due to time constraints). LDM achieves
the highest NDCG@10 in a reasonable amount of time compared to the other methods. AltSVM is
efficient but produces unsatisfactory ranking quality, which is also sensitive to its hyperparameters.
For LCR, the ranking quality is acceptable but it takes considerably longer time, especially when
the size of training set increases. On MovieLens-100k (N = 20), SVD and LDM achieve similar
NDCG@10 scores but LDM costs much shorter run-time.

6.5 Results

Now we fix the hyperparameters as described in Section 6.2. Table 2 reports the run-time and
NDCG@10 scores for all the compared methods on the larger data sets. LDM does not achieve the
highest NDCG@10 scores in every case, but produces robust ranking quality with decent run-time
(except MovieLens-10m, N = 50). For LCR and SVD, the time cost increases dramatically on
larger data sets. AltSVM achieves superior ranking quality when the number of training ratings
N is large, but its performance is sensitive to the number of iterations, which in turn depends on
the data set and the given tolerance parameter. We conclude that LDM is an overall competitive
method that is efficient and robust to hyperparameters and the underlying data sets. Also, LDM
has particular advantages when the available information is relatively few, i.e. when N is small,
which we consider is a more difficult problem than the cases with richer training information.

We can clearly see that the run-time of LDM increases with the number of users (due to the
reliance on the user-user similarity matrix, as expected), while the run-time of AltSVM increases
with the number of ratings in the training set. Further optimizing the code for LDM is an important
direction in our future work to make it efficient for large-scale data sets.

We note that our method predicts all the missing ratings in the label propagation process, which
is included in the timing of LDM, and therefore our methods takes a negligible amount of time for
testing, especially in the real scenario where a recommendation algorithm would have to predict
the ratings for all the items and return the top-rated ones to the user.
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7 Related Work

Both user-based and item-based collaborative filtering [4, 18] can be considered as graph-based local
label propagation methods. The idea of discrete harmonic extension for semi-supervised learning in
general was originally proposed in [24]. Graph-based methods were recently considered for matrix
completion [7] and top-N recommendation [23] as well. Given all the existing work, what we have
presented is a continuous harmonic extension formulation for label propagation and a rigorous
manifold learning algorithm for collaborative ranking.

8 Conclusion and Discussion

In this paper, we have proposed a novel perspective on graph-based methods for matrix completion
and collaborative ranking. For each item, we view the user-user graph as a partially labeled data
set (or vice versa), and our method propagates the known labels to the unlabeled graph nodes
through the graph edges. The continuous harmonic extension problem associated with the above
semi-supervised learning problem is defined on a user or item manifold solved by a point integral
method. Our formulation can be seen as minimizing the dimension of the user or item manifold, and
thus builds a smooth model for the users or items but with higher complexity than low-rank matrix
approximation. Also, our method can be fully parallelized on distributed machines, since the linear
systems that need to be solved for all the items are independent with one another. Experimental
results have shown that our method has particular strength when the number of available ratings
in the training set is small, which makes it promising when combined with other state-of-the-art
methods like AltSVM. Our formulation for harmonic extension in the context of matrix completion
can be extended to include other constraints or regularization terms and side information as well.
An important direction is to further improve the efficiency of the algorithm to be comparable with
recent large-scale matrix completion methods [22, 25].
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