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Global stability of steady states
in the classical Stefan problem
for general boundary shapes
Mahir Hadžić1 and Steve Shkoller2

1Department of Mathematics, King’s College London, London, UK
2Department of Mathematics, University of California, Davis,
CA 95616, USA

The classical one-phase Stefan problem (without
surface tension) allows for a continuum of steady-
state solutions, given by an arbitrary (but sufficiently
smooth) domain together with zero temperature. We
prove global-in-time stability of such steady states,
assuming a sufficient degree of smoothness on the
initial domain, but without any a priori restriction
on the convexity properties of the initial shape. This
is an extension of our previous result (Hadžić &
Shkoller 2014 Commun. Pure Appl. Math. 68, 689–757
(doi:10.1002/cpa.21522)) in which we studied nearly
spherical shapes.

1. Introduction

(a) The problem formulation
We consider the problem of global existence and
asymptotic stability of classical solutions to the classical
Stefan problem, which models the evolution of the time-
dependent phase boundary between liquid and solid
phases. The temperature p(t, x) of the liquid and the a
priori unknown moving phase boundary Γ (t) must satisfy
the following system of equations:

pt −�p = 0 in Ω(t), (1.1a)

V(Γ (t)) = −∂np on Γ (t), (1.1b)

p = 0 on Γ (t) (1.1c)

and p(0, ·) = p0, Ω(0) =Ω . (1.1d)

For each instant of time t ∈ [0, T], Ω(t) is a time-

dependent open subset ofRd with d ≥ 2, and Γ (t) def= ∂Ω(t)
denotes the moving, time-dependent free boundary.

2015 The Author(s) Published by the Royal Society. All rights reserved.
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The heat equation (1.1a) models thermal diffusion in the bulk Ω(t) with thermal diffusivity
set to 1. The boundary transport equation (1.1b) states that each point on the moving boundary
is transported with normal velocity equal to −∂np = −∇p · n, the normal derivative of p on
Γ (t). Here, n(t, ·) denotes the outward pointing unit normal to Γ (t), and V(Γ (t)) denotes the
speed or the normal velocity of the hypersurface Γ (t). The homogeneous Dirichlet boundary
condition (1.1c) is termed the classical Stefan condition and problem (1.1) is called the classical
Stefan problem. It implies that the freezing of the liquid occurs at a constant temperature p = 0.
Finally, in (1.1d) we specify the initial temperature distribution p0 :Ω →R, as well as the initial
geometryΩ . The initial domainΩ is assumed to be bounded and to contain the origin 0. Because
the liquid phaseΩ(t) is characterized by the set {x ∈Rd : p(x, t)> 0}, we shall consider initial data
p0 > 0 inΩ . Thanks to (1.1a), the parabolic Hopf lemma implies that ∂np(t)< 0 on Γ (t) for t> 0, so
we impose the non-degeneracy condition (also known as the Rayleigh–Taylor sign condition in fluid
mechanics [1–6]):

− ∂np0 ≥ λ> 0 on Γ (0) (1.2)

on our initial temperature distribution. Under the above assumptions, we proved in [7] that (1.1)
is locally well-posed.

Steady states (ū, Γ̄ ) of (1.1) consist of arbitrary domains with Γ̄ ∈ C1 and with temperature
ū ≡ 0. The main goal of this paper is to prove global-in-time stability of such steady states,
independent of any convexity assumptions. Our analysis employs high-order energy spaces,
which are weighted by the normal derivative of the temperature along the moving boundary;
we create a hybridized energy method, combining integrated quantities with pointwise methods via
the Pucci extremal operators, which allow us to track the time-decay properties of the normal
derivative of the temperature. Pointwise estimates via a maximum principle in conjunction with
Sobolev-type energy estimates have previously been used in a related context of free boundary
problems such as the Hele–Shaw and the Muskat problem (e.g. [8–10]). Our hybrid approach,
employing nonlinear Pucci operators, appears to be new and is a natural extension of our previous
work [11], which necessitated perturbations of spherical initial domains.

(b) Notation
For any s ≥ 0 and given functions f :Ω →R, ϕ : Γ →R, we set

‖f‖s
def= ‖f‖Hs(Ω) and |ϕ|s def= ‖ϕ‖Hs(Γ ).

If i = 1, . . . , d then f ,i
def= ∂xi f is the partial derivative of f with respect to xi. Similarly, f ,ij

def= ∂xi∂xj f ,

etc. For time-differentiation, ft
def= ∂tf . Furthermore, for a function f (t, x), we shall often write f (t)

for f (t, ·), and f (0) to mean f (0, x). The space of continuous functions on Ω is denoted by C0(Ω).
For any given multi-index α= (α1, . . . ,αd), we set

∂α = ∂
α1
1 . . . ∂

αd
d .

We also define the tangential gradient ∂̄ by ∂̄f def= ∇f − ∂NfN, where N stands for the outward-
pointing unit normal onto ∂Ω and ∂Nf = N · ∇f is the normal derivative of f . By extending
N smoothly into a neighbourhood of Γ inside the interior of Ω we can define ∂̄ on that
neighbourhood in the same way. We employ the following notational convention:

∂̄f = (∂̄1f , . . . , ∂̄df ) and ∂̄α f def= (∂̄α1
1 f , . . . , ∂̄αd

d f ),

where α = (α1, . . . ,αd) denotes a multi-index. The identity map onΩ is denoted by e(x) = x, while
the identity matrix is denoted by Id. We use C to denote a universal (or generic) constant that
may change from inequality to inequality. We write X � Y to denote X ≤ CY. We use the notation
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P(s) to denote a generic non-zero real polynomial function of s1/2 with non-negative coefficients
of order at least 3:

P(s) =
m∑

i=0

cis
(3+i)/2, ci ≥ 0, m ∈N0. (1.3)

The Einstein summation convention is employed, indicating summation over repeated indices.

(c) The initial domainΩ and the harmonic gauge
For our initial domainΩ , we choose a simply connected domainΩ ⊂Rd, where the boundary ∂Ω
will be denoted by Γ . We further assume, without loss of generality, that the origin is contained
in Ω , i.e. 0 ∈Ω . We transform the Stefan problem (1.1) set on the moving domain Ω(t) to an
equivalent problem on the fixed domainΩ ; to do so, we use a system of harmonic coordinates, also
known as the harmonic gauge or arbitrary Lagrangian Eulerian coordinates in fluid mechanics.

The moving domain Ω(t) will be represented as the image of a time-dependent family of
diffeomorphisms Ψ (t) :Ω 
→Ω(t). Let N represent the outward pointing unit normal to Γ and
let Γ (t) be given by

Γ (t) = {x | x = x0 + h(t, x0)N, x0 ∈ Γ }.

Assuming that the signed height function h(t, ·) is sufficiently regular and Γ (t) remains a small
graph over Γ , we can define a diffeomorphism Ψ :Ω →Ω(t) as the elliptic extension of the
boundary diffeomorphism x0 
→ x0 + h(t, x0)N, by solving the following Dirichlet problem:

�Ψ = 0 in Ω

and Ψ (t, x) = x + h(t, x)N(x) x ∈ Γ .

}
(1.4)

We introduce the following new variables set on the fixed domain Ω :

q = p ◦ Ψ (temperature),

v = −∇p ◦ Ψ (‘velocity’),

A = [DΨ ]−1 (inverse of the deformation tensor),

J = det DΨ (Jacobian determinant).

We now pull back the Stefan problem (1.1) from Ω(t) onto the fixed domain Ω . If we let g denote
the Jacobian of the transformation Ψ (t, ·)|Γ : Γ → Γ (t), and let n(t, ·) denote the outward-pointing
unit normal vector to the moving surface Γ (t), then the following relationship holds [12]:

J−1√gni ◦ Ψ (t, x) = Ak
i (t, x)Nk(x).

It thus follows that the outward-pointing unit normal vector n(t, ·) to the moving surface Γ (t) can
be written as (n ◦ Ψ )(t, x) = ATN/|ATN|. We shall henceforth drop the explicit composition with
the diffeomorphism Ψ , and simply write

n(t, x) = ATN
|ATN|

for the unit normal to the moving boundary at the point Ψ (t, x) ∈ Γ (t).
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The classical Stefan problem on the fixed domain Ω is written as [7,11]

qt − Aj
i(A

k
i q,k ),j = −v · Ψt in [0, T) ×Ω , (1.5a)

vi + Ak
i q,k = 0 in [0, T) ×Ω , (1.5b)

q = 0 on [0, T) × Γ , (1.5c)

ht = v · ATN
N · ATN

on [0, T) × Γ , (1.5d)

�Ψ = 0 on [0, T) ×Ω , (1.5e)

Ψ = e + hN on [0, T) × Γ , (1.5f )

q = q0 > 0 on {t = 0} ×Ω (1.5g)

and h = 0 on {t = 0} × Γ . (1.5h)

Problem (1.5) is a reformulation of problem (1.1). Observe that the boundary condition (1.5d)
is equivalent to

Ψt · n(t) = v · n(t) on [0, T) × Γ so that Ψ (t)(Γ ) = Γ (t), (1.6)

which is but a restatement of the Stefan condition (1.1b). Since the factor N · ATN will show up
repeatedly in various calculations, it is useful to introduce the abbreviation

Λ
def= N · ATN. (1.7)

Note that initially Λ= 1 and it will remain close to 1, since for small h the transition matrix A
remains close to the identity matrix.

Since the identity map e :Ω →Ω is harmonic in Ω and Ψ − e = hN on Γ , standard elliptic
regularity theory for solutions to (1.4) shows that for t ∈ [0, T),

‖Ψ (t, ·) − e‖s ≤ C|h(t, ·)|s−0.5, s> 0.5,

so that for h sufficiently small and s large enough, the Sobolev embedding theorem shows that
∇Ψ is close to Id, and by the inverse function theorem, Ψ is a diffeomorphism.

(i) The high-order energy and the high-order norm

We will specialize to the case d = 2 for the remainder of this paper. The case d = 3 requires only our
norms to contain one more degree of differentiability, while the rest of the argument is entirely
analogous.

To define the natural energies associated with the main problem, we must employ tangential
derivatives in a neighbourhood which is sufficiently close to the boundary Γ . Near Γ = ∂Ω , it
is convenient to use tangential derivatives ∂̄α , while away from the boundary, Cartesian partial
derivatives ∂xi are natural. For this reason, we introduce a non-negative C∞ cut-off function μ :
Ω̄ →R+ with the property

μ(x) ≡ 0 if |x| ≤ ρ; μ(x) ≡ 1 if dist(x,Γ ) ≤ σ .

Here ρ, σ ∈R+ are chosen in such a way that Bρ (0) �Ω and {x| dist(x,Γ ) ≤ σ } ∈Ω \ Bρ (0).
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Definition 1.1 (higher order energies). The following high-order energy and dissipation
functionals are fundamental to our analysis:

E(t) = E(q, h)(t) def= 1
2

∑
|α|+2b≤5

‖μ1/2∂̄α∂b
t v‖2

L2
x
+ 1

2

∑
|α|+2b≤6

|(−∂Nq)1/2Λ∂̄α∂b
t Ψ |2L2

x

+ 1
2

∑
|α|+2b≤6

‖μ1/2(∂̄α∂b
t q + ∂̄α∂b

t Ψ · v)‖2
L2

x

∑
|α|+2b≤5

‖(1 − μ)1/2∂α∂b
t v‖2

L2
x

+ 1
2

∑
|α|+2b≤6

‖(1 − μ)1/2(∂α∂b
t q + ∂α∂b

t Ψ · v)‖2
L2

x

and

D(t) =D(q, h)(t) def=
∑

|α|+2b≤6

‖μ1/2∂̄α∂b
t v‖2

L2
x
+

∑
|α|+2b≤5

|(−∂Nq)1/2Λ∂̄α∂b
t Ψt|2L2

x

+
∑

|α|+2b≤5

‖μ1/2(∂̄α∂b
t qt + ∂̄α∂b

t Ψt · v)‖2
L2

x

+
∑

|α|+2b≤6

‖(1 − μ)1/2∂α∂b
t v‖2

L2
x
+

∑
|α|+2b≤5

‖(1 − μ)1/2(∂α∂b
t qt + ∂α∂b

t Ψt · v)‖2
L2

x
,

where we recall the definition of Λ given in (1.7). Finally, we introduce the total energy E(t):

E(t) def= sup
0≤s≤t

E(τ ) +
∫ t

0
D(τ ) dτ . (1.8)

Note that the boundary norms of the gauge function Ψ are weighted by
√−∂Nq. We thus

introduce the time-dependent function

χ (t) def= inf
x∈Γ

(−∂Nq)(t, x)> 0,

which will be used to track the weighted behaviour of h. It is important to note that, due to the
smoothness assumption on Γ , it is easy to see that for any local coordinate chart (∂s1 , . . . , ∂sd−1 ) for
Γ we have the equivalence∑

|α|+2b≤6

|(−∂Nq)1/2Λ∂̄α∂b
t Ψ |2L2

x
≈

∑
β=(β1,...,βd−1)

|β|+2b≤6

|(−∂Nq)1/2∂
β1
s1 . . . ∂

βd−1
sd−1 h|2L2(Γ ), (1.9)

where X ≈ Y means that there exist positive constants C1 and C2 such that C1Y ≤ X ≤ C2Y. In our
case, the two constants depend on the choice of the local chart.

Definition 1.2 (high-order norm). The following high-order norm is fundamental to our
analysis:

S(t) def=
3∑

l=0

‖∂ l
tq‖2

L∞H6−2l + ‖q‖2
L2H6.5 +

2∑
l=0

‖∂ l
tqt‖2

L2H5−2l + sup
0≤s≤t

eβs‖q(s, ·)‖2
H5

+
∑

|α|+2l≤6

‖∂̄α∂ l
tv‖2

L2L2 + χ (t)
3∑

l=0

|∂ l
th|2L∞H6−2l + χ (t)

2∑
l=0

|∂ l+1
t h|2L2H5−2l + |h|4L∞H4.5 . (1.10)

Here β = 2λ− η, where λ is the smallest eigenvalue of the Dirichlet–Laplacian on Ω and η > 0 is
a small but fixed number to be determined later.

Remark 1.3. A subtle feature of the above definition is the loss of a 1
2 -derivative phenomenon for

the temperature q. By the parabolic scaling (where one time derivative scales like two spatial
derivatives), one might expect q to belong to L2H7([0, T);Ω), since ∂ l+1

t q ∈ L2H5−2l([0, T);Ω),
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for l = 0, 1, 2. This is, however, not the case, as the height-evolution equation (1.5d) scales in a
hyperbolic fashion, and thus places a restriction on the top-order regularity of the unknown q,
allowing only for q ∈ L2H6.5([0, T);Ω).

(d) Steady states
Note that any C1 simply connected domain represents a steady state of (1.1). In other words,
for any simply connected domain Ω̄ ∈ C1, the pair (ū ≡ 0, Γ̄ = ∂Ω̄) forms a time-independent
solution to (1.1). In particular, it is challenging to determine which steady state a small perturbation
will decay to. Thus, the problem of asymptotic stability, rather than the optimal regularity of
weak/viscosity solutions, is one of the main motivating questions for this work. In particular, we
work with classical solutions with a high degree of differentiability on the initial data.

(e) Rayleigh–Taylor sign condition or non-degeneracy condition on q0
With respect to q0, condition (1.2) becomes

inf
x∈Γ

[−∂Nq0(x)] ≥ δ > 0 on Γ .

For initial temperature distributions that are not necessarily strictly positive in Ω , this condition
was shown to be sufficient for local well-posedness for (1.1) [7,13,14]. On the other hand, if we
require strict positivity of our initial temperature function,1

q0 > 0 in Ω , (1.11)

then the parabolic Hopf lemma (e.g. [15]) guarantees that −∂Nq(t, x)> 0 for 0< t< T on some a
priori (possibly small) time interval, which, in turn, shows that E and D are norms for t> 0, but
uniformity may be lost as t → 0. To ensure a uniform lower bound for −∂Nq(t) as t → 0, we impose
the Rayleigh–Taylor sign condition with the following lower bound:

− ∂Nq0 ≥ C∗
∫
Ω

q0ϕ1 dx. (1.12)

Here, ϕ1 is the positive first eigenfunction of the Dirichlet Laplacian −� onΩ , and C∗ > 0 denotes
a universal constant. The uniform lower bound in (1.12) thus ensures that our solutions are
continuous in time; moreover, (1.12) allows us to establish a time-dependent optimal lower bound
for the quantity χ (t) = infx∈Γ (−∂Nq)(t, x)> 0 for all time t ≥ 0, which is crucial for our analysis.

(f) Main result
Our main result is a global-in-time stability theorem for solutions of the classical Stefan problem
for surfaces which are assumed to be close to a given sufficiently smooth domain Ω and for
temperature fields close to zero. The notions of near and close are measured by our energy norms
as well as the dimensionless quantity

K def= ‖q0‖4

‖q0‖0
, (1.13)

as expressed in the following.

Theorem 1.4. Let (q0, h0) satisfy the Rayleigh–Taylor sign condition (1.12), the strict positivity
assumption (1.11), and suitable compatibility conditions. Let K be defined as in (1.13). Then there exists an
ε0 > 0 and a monotonically increasing function F : (1, ∞) →R+, such that if

S(0)<
ε0

F(K)
, (1.14)

1Condition (1.11) is natural, since it determines the phase: Ω(t) = {q(t)> 0}.
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then there exist unique solutions (q, h) to problem (1.5) satisfying

S(t)<Cε0, t ∈ [0, ∞),

for some universal constant C> 0. Moreover, the temperature q(t) → 0 as t → ∞ with bound

‖q(t, ·)‖2
H4(Ω) ≤ C e−βt,

where β = 2λ− O(ε0) and λ is the smallest eigenvalue of the Dirichlet–Laplacian on Ω . The moving
boundary Γ (t) settles asymptotically to some nearby steady surface Γ̄ and we have the uniform-in-
time estimate

sup
0≤t<∞

|h(t, ·) − h0|4.5 � √
ε0.

Remark 1.5. The increasing function F(K) given in (1.14) has an explicit form. For universal
constants C̄, C> 1 chosen in §4,

F(K) def= max{8K2CC̄K2
, C̄10(ln K)10K20C̄λ}. (1.15)

Remark 1.6. The use of the constant K in our smallness assumption (1.14) allows us to
determine a time T = TK when the dynamics of the Stefan problem become strongly dominated by
the projection of q onto the first eigenfunction ϕ1 of the Dirichlet–Laplacian. Explicit knowledge
of the K-dependence in the smallness assumption (1.14) permits the use of energy estimates to
show that solutions exist in our energy space on the time interval [0, TK]. For t ≥ TK, certain error
terms (that cannot be controlled by our norms for large t) become sign-definite with a good sign.

Remark 1.7. An analogous theorem was stated in [11], for perturbations of steady surfaces
initially close to a sphere. Therefore, this work generalizes that result. Moreover, our methods
are general enough to apply to other geometries as well. An example is that of a free boundary
parametrized as a graph over a periodic flat interface.

Remark 1.8 (on compatibility conditions). The first compatibility condition on the initial
temperature q0 is

q0|Γ = 0.

The second condition arises by restricting the parabolic equation (1.5a) to the boundary Γ and
using the boundary conditions (1.5c) and (1.6). It gives

∂NNq0 + (d − 1)κΓ ∂Nq0 + (∂Nq0)2 = 0 on Γ .

Here κΓ stands for the mean curvature of Γ . Higher order compatibility conditions arise by taking
time derivatives of (1.5a), re-expressing them in terms of purely spatial derivatives via (1.5a) and
restricting the resulting equation to the boundary Γ at time t = 0.

Remark 1.9. Theorem 1.4 requires high Sobolev regularity for the initial data, which may
appear artificial in light of the existing literature on instant regularization of solutions for times
t> 0 (e.g. [14,16,17]); however, to perform a stability analysis we must ensure that we uniformly
control suitable Hs-norms of our solutions by the corresponding norms at time t = 0, which is only
possible by imposing the same high-order Sobolev-class regularity on both the initial temperature
and the initial geometry. Note that (topological) singularities are a generic phenomenon in the
Stefan problem [16,18]. In particular, without uniform bounds on the geometry ofΩ(t) in terms of
the initial data, it is, in principle, not possible to preclude the finite-time formation of singularities,
even though the solution can be C∞ up to that time.

Remark 1.10. An interesting problem is to determine the asymptotic attractor—the steady
state Γ̄ just from the initial data (u0,Γ0). This is strongly connected to the so-called momentum
problem, which is a problem of determining the domain Ω from the knowledge of its
harmonic momenta cφ = ∫

Ω φ dx, φ :Rd →R, �φ = 0. A related question arises in the Hele–Shaw
problem [19].
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(g) Local well-posedness theories
In [7], we established the local-in-time existence, uniqueness and regularity for the classical Stefan
problem in L2-based Sobolev spaces, without derivative loss, using the functional framework
given by definition 1.1. This framework is natural, and relies on the geometric control of the
free boundary, analogous to that used in the analysis of the free-boundary incompressible Euler
equations in [4,12]; the second-fundamental form is controlled by a natural coercive quadratic
form, generated from the inner product of the tangential derivative of the cofactor matrix JA, and
the tangential derivative of the velocity of the moving boundary, and yields control of the norm∫
Γ (−∂Nq(t))|∂̄kh|2 dx′ for any k ≥ 3. The Hopf lemma ensures positivity of −∂Nq(t) and the Taylor

sign condition on q0 ensures a uniform lower bound as t → 0.
The first local existence results of classical solutions for the classical Stefan problem were

established by Meirmanov (see [13] and references therein) and Hanzawa [20]. Meirmanov
regularized the problem by adding artificial viscosity to (1.1b) and fixed the moving domain by
switching to the so-called von Mises variables, obtaining solutions with less Sobolev regularity
than the initial data. Similarly, Hanzawa used Nash–Moser iteration to construct a local-in-time
solution, but again, with derivative loss. A local-in-time existence result for the one-phase multi-
dimensional Stefan problem was proved in [21], using Lp-type Sobolev spaces. For the two-phase
Stefan problem, a local-in-time existence result for classical solutions was established in [14] in
the framework of Lp-maximal regularity theory.

(h) Prior work
There is a large amount of literature on the classical one-phase Stefan problem. For an overview,
we refer the reader to [13,22,23] as well as the introduction to [11]. First, weak solutions were
defined in [18,24,25]. For the one-phase problem studied herein, a variational formulation was
introduced in [26], wherein additional regularity results for the free surface were obtained. In [27],
it was shown that in some space–time neighbourhood of points x0 on the free boundary that
have Lebesgue density, the boundary is C1 in both space and time, and second derivatives of
temperature are continuous up to the boundary. Under some regularity assumptions on the
temperature, Lipschitz regularity of the free boundary was shown in [28]. In related works [29,30],
it was shown that the free boundary is analytic in space and of second Gevrey class in time,
under the a priori assumption that the free boundary is C1 with certain assumptions on the
temperature function. In [31], the continuity of the temperature was proved in d dimensions.
As for the two-phase classical Stefan problem, the continuity of the temperature in d dimensions
for weak solutions was shown in [32].

Since the Stefan problem satisfies a maximum principle, its analysis is ideally suited to
another type of weak solution called the viscosity solution. Regularity of viscosity solutions for
the two-phase Stefan problem was established in a series of seminal papers [33,34]. Existence and
uniqueness of viscosity solutions for the one-phase problem was established in [35], and for the
two-phase problem in [36]. A local-in-time regularity result was established in [37], where it was
shown that initially Lipschitz free boundaries become C1 over a possibly smaller spatial region.
For an exhaustive overview and introduction to the regularity theory of viscosity solutions we
refer the reader to [16]. In [17], the author showed by the use of von Mises variables and harmonic
analysis, that an a priori C1 free boundary in the two-phase problem becomes smooth.

In order to understand the asymptotic behaviour of the classical Stefan problem on external
domains, in [38] the authors proved that on a complement of a given bounded domain G,
with non-zero boundary conditions on the fixed boundary ∂G, the solution to the classical
Stefan problem converges, in a suitable sense, to the corresponding solution of the Hele–Shaw
problem and sharp global-in-time expansion rates for the expanding liquid blob are obtained.
Moreover, the blob asymptotically has the geometry of a ball. Note that the non-zero boundary
conditions act as an effective forcing which is absent from our problem and the techniques of
Quirós & Vázquez [38] do not directly apply. Since the corresponding Hele–Shaw problem (in
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the absence of surface tension and forcing) is not a dynamic problem, possessing only time-
independent solutions, we are not able to use the Hele–Shaw solution as a comparison problem
for our problem.

A global stability result for the two-phase classical Stefan problem in a smooth functional
framework was also established in [13] for a specific (and somewhat restrictive) perturbation
of a flat interface, wherein the initial geometry is a strip with imposed Dirichlet temperature
conditions on the fixed top and bottom boundaries, allowing for only one equilibrium solution. A
global existence result for smooth solutions was given in [39] under the log-concavity assumption
on the initial temperature function, which in the light of the level-set reformulation of the Stefan
problem, requires convexity of the initial domain (a property that is preserved by the dynamics).

Remark 1.11. We remark that global stability of solutions in the presence of surface tension
does not require the use of function framework with a decaying weight, such as −∂Nq(t). In this
regard, the surface tension problem is simpler for two important reasons: first, the surface tension
contributes a positive-definite energy contribution that is uniform-in-time and provides better
regularity of the free boundary (by one spatial derivative), and second, the space of equilibria is
finite-dimensional and thus it is easier to understand the degrees of freedom that determine the
asymptotic state of the system.

(i) Methodology
Broadly speaking, our methods combine high-order energy estimates with maximum principle
techniques. Once the problem is formulated on the fixed domain with the help of the harmonic
gauge explained above, we note that the natural quadratic energy quantities that track the
regularity behaviour of the moving boundary come weighted with the normal derivative of
the temperature. This weight is a time-dependent quantity and its evolution is tied to the free
boundary itself. This coupling is nonlinear and it is one of the central difficulties in closing
our estimates.

Our strategy is based on [11] and it contains three basic steps. We first show that under the
assumption of smallness on the norm S(t) over some time interval [0, T], the energy E and the
norm S are equivalent, i.e.

S(t) � E(t) � S(t), t ∈ [0, T]. (1.16)

Our second step is to establish the key energy inequality in the form

E(t) ≤ C0 + 1
2

∑
|α|+2l≤6

∫ t

0

∫
Γ

(∂Nqt)|∂̄α∂ l
th|2 dS(Γ ) + P(S(t)), (1.17)

where P is a cubic polynomial (see (1.3)) and C0 is a small quantity depending only on the initial
data. Combining (1.16) and (1.17), we infer that

S(t) ≤ C̃0 + C
∑

|α|+2l≤6

∫ t

0

∫
Γ

(∂Nqt)|∂̄α∂ l
th|2 dS(Γ )

︸ ︷︷ ︸
dangerous term

+P(S(t)) (1.18)

on the time interval of existence. If it were not for the sum on the right-hand side above, a simple
continuity argument would yield a global existence result for small initial data. However, the sum
appearing on the right-hand side of (1.18), while seemingly cubic, cannot be bounded by P(S(t)).
Instead, in the third step we show that after a certain, precisely quantified amount of time, this
‘dangerous term’ becomes negative and can thus be trivially bounded from above by zero.

The key novelty with respect to [11] is a new quantitative lower bound on the weight −∂Nq
which appears in our definition of the energy E(t). Note that this quantity is expected to converge
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exponentially fast to 0 as the unknowns settle to an asymptotic equilibrium. We employ the theory
of ‘half-eigenvalues’ associated with the Bellman–Pucci-type operators to generate a comparison
function, which then allows us to use the maximum principle and get a nearly sharp lower bound:

−∂Nq � e(−λ+O(ε))t,

where λ denotes the first Dirichlet eigenvalue associated with the domain Ω . In our previous
work [11], we relied on rather explicit Bessel-type comparison functions used by Oddson [40],
which in particular, required that we work in a nearly spherical domain. The above lower bound
is much more flexible and it is explained carefully in §3.

The presentation in the paper is considerably simplified with respect to [11] and we believe
that our energy method in conjunction with maximum principles can be useful for the stability
analysis in other free boundary problems in absence of surface tension.

(j) Plan of the paper
In §2, we introduce the bootstrap assumptions and formulate the equivalence relationship
between the energy and the norm. In §3, we provide a dynamic lower bound estimate on χ (t).
This is the main new ingredient with respect to [11] and we use the theory of half-eigenvalues
for the Pucci operators. Finally, in §4, we give the proof of theorem 1.4, thereby explaining our
continuity method as well as a comparison argument used to show the sign-definiteness of the
‘dangerous linear terms’ described above.

2. Bootstrap assumptions and norm–energy equivalence

(a) The bootstrap assumptions
Let [0, T) be a given time interval of existence of solutions to (1.5). We assume that the following
two assumptions hold:

S(t) ≤ ε, t ∈ [0, T) (2.1)

and

χ (t) � c1e−(λ+η/2)t, t ∈ [0, T), (2.2)

where ε and η are to be chosen sufficiently small later and λ stands for the first Dirichlet
eigenvalue associated with the domain Ω .

(b) Norm S and total energy E are equivalent
Recall the notation ‘≈’ introduced in (1.9).

Proposition 2.1. There exists a sufficiently small ε′ such that if S(t) ≤ ε′ on a time interval [0, T] then

S(t) ≈ E(t), ∀ t ∈ [0, T].

Proof. The proof of this fact is one of the pillars of our strategy. It has been presented in detail
in §§2.1–2.5 and 4.2 of [11] and, therefore, we omit it here. We note that the direction S(t) � E(t) is
obviously harder to prove, as the energy function E(t) a priori controls only tangential derivatives
of the temperature q. In [11], we use a version of the elliptic regularity statement for equations
with Sobolev-class coefficients to obtain control of normal derivatives [41]. �
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3. Lower bound onχ (t) and improvement of the second bootstrap assumption
The heat equation (1.5a) for q can be written in non-divergence form as

qt − akjq,kj −bkq,k = 0 in Ω , (3.1a)

q = 0 on Γ (3.1b)

and q(0, ·) = q0 > 0 in Ω , (3.1c)

where the coefficient matrix a = (akj)k,j=1,2 and the vector b = (b1, b2) are explicitly given by

akj
def= Ak

i Aj
i and bk

def= Ak
i,jA

j
i + Ak

iΨ
i
t . (3.2)

By the bootstrap assumption (2.1) and definition (1.10) of S(t), we have that |h|4.5 � √
ε on [0, T),

and therefore by the Sobolev embedding H1(Γ ) ↪→ L∞(Γ ), we infer that |h|W3,∞ � √
ε. From this

observation, (3.2), and the definition of the transition matrix A, we infer that

|akj − δkj| �
√
ε, (k, j = 1, 2),

|bi| �
√
ε, (i = 1, 2).

Therefore, there exists a constant K> 0 such that the ellipticity constants associated with the
matrix (aij)i,j=1,2 are between the values μ′

1 = 1 − (K/2)
√
ε and μ′

2 = 1 + (K/2)
√
ε uniformly

over [0, T).
Before we proceed with calculating a lower bound for χ (t), we briefly explain the Bellman

operators [42–46] which are closely connected to the well-known extremal Pucci operators. They
will allow us to formulate a nonlinear analogue of the ‘first’ eigenvalue for the elliptic part of the
operator defined in (3.1a).

Let Ω be an arbitrary simply connected C1-domain. We define the extremal Pucci operator
M−

μ1,μ2
[43,45] with parameters 0<μ1 ≤μ2 by

M−
μ1,μ2

ϕ(x) def= inf
L∈Kμ1,μ2

Lϕ(x). (3.3)

Here Kμ1,μ2 denotes the set of all linear second-order elliptic operators, whose ellipticity constant
is between μ1 and μ2, i.e.

Kμ1,μ2
def={L|L = aij∂ij + bi∂i + c, aij, bi, c ∈ C0(Ω),μ1|ξ |2 ≤ aijξiξj ≤μ2|ξ |2, ξ ∈Rd}. (3.4)

It is well known that the operators M−
μ1,μ2

are, in general, fully nonlinear second-order elliptic
operators, positive and homogeneous of order one. The latter property allows us to formulate an
associated ‘eigenvalue’ problem, looking for the solutions of

−M−
μ1,μ2

u = λu in Ω

and u = 0 on ∂Ω .

⎫⎬
⎭ (3.5)

We next state some of the results from [46] that will play an important role in this paper (for
further references on the so-called half-eigenvalues associated with positive homogeneous fully
nonlinear operators we refer the reader, for example, to [42–44]):

— There exist two positive constants λ1 and λ2 called the first half-eigenvalues and two
functions �1, �2 ∈ C2(Ω) ∩ C(Ω̄) such that (λ1, �1) and (λ2, �2) solve (3.5), and �1 > 0, �2 < 0
in Ω .

— The first two half-eigenvalues are simple, i.e. all positive solutions to (3.5) are of the form
(λ1,α�1) with α > 0 and, analogously, all negative solutions are of the form (λ2,α�2), α > 0.
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— Finally, the first two half-eigenvalues are characterized in the following manner:

λ1 = sup
A∈Kμ1,μ2

μ(A) and λ2 = inf
A∈Kμ1,μ2

μ(A), (3.6)

where μ(A) stands for the smallest Dirichlet eigenvalue associated with the second-order
linear elliptic operator A.

(a) Lower bound onχ (t) and the improvement of (2.2)
The key ingredient to the proofs of propositions 2.1 and 4.1 is a quantitative lower bound on the
weight χ (t). This is achieved by using the maximum principle and constructing an appropriate
comparison function.

Lemma 3.1. Under the bootstrap assumptions (2.1) and (2.2) with ε sufficiently small, the following
inequality holds:

χ (t) � c1 e−(λ+λ̃(t))t,

where c1 = ∫
Ω q0ϕ1 dx is the first coefficient in the eigenfunction expansion of the initial datum q0 with

respect to the L2 orthonormal basis {ϕ1,ϕ2, . . .} of the eigenvectors of the operator −� on Ω , i.e. q0 =
c1ϕ1 + c2ϕ2 + · · · . Moreover, λ stands for the smallest Dirichlet eigenvalue associated with the domain Ω
and λ̃(t) satisfies the estimate

|λ̃(t)| ≤ C
√
ε.

In particular, with ε > 0 sufficiently small so that C
√
ε < η/4, we obtain the improvement of the bootstrap

bound (2.2) given by χ (t) � c1 e−(λ1+η/4)t.

Proof. Let us choose μ1
def= 1 − K

√
ε and μ2

def= 1 + K
√
ε. Recall that K was defined in the

paragraph after (3.2). It follows that L ∈Kμ1,μ2 . We let �1 be the first half-eigenvector associated
with M−

μ1,μ2
as above. Consider the following comparison function:

v(t, x) def= e−λ1t�1.

Note that v vanishes on ∂Ω = Γ . A straightforward calculation together with the definition of
M−

μ1,μ2
shows that

(∂t − L)v = −λ1v − e−λ−
1 tL�1

≤ −λ1v − e−λ1tM−
μ1,μ2

�1

= −λ1v + e−λ1tλ1�1

= 0.

Therefore, v is a subsolution to the parabolic problem (3.1). The next key observation is that
the eigenfunction �1(x) behaves like a constant multiple of the distance function dist(x,Γ ) as x
approaches the boundary Γ . Namely, since the operator M− is concave, the solution is C2,α [47,48]
and the Hopf lemma −∂N�1 > 0 holds (e.g. lemma 2.1 in [43]). Therefore, function v behaves like
c dist(x,Γ ) e−λ−

1 t as x approaches the boundary Γ for some constant c. Here dist(x,Γ ) denotes the
distance function to the boundary Γ . We first want to show that for any arbitrarily small time
σ > 0, there exists a strictly positive constant δ(σ )> 0 such that q − δv is a positive supersolution
to the parabolic problem (3.1) on the time interval [σ , T).

Since v is a subsolution and q is a solution, it follows that for any δ > 0, q − δv is a supersolution.
The positivity of q − δv at t = σ follows from the parabolic Hopf lemma, from which we infer the
existence of a constant δ(σ ) such that q/v > δ(σ ) uniformly over Ω̄ . Note that we have used the
fact that v(σ , x) behaves like c × dist(x) near the boundary Γ for some positive constant c. Thus
by the maximum principle, q − δ(σ )v ≥ 0 on [σ , T). This implies

q(t, x) ≥ δ(σ )v(t, x) ≥ Cδ(σ ) dist(x,Γ ) e−λ1t, t ∈ [σ , T),
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which yields

−∂q(t, x)
∂N

≥ Cδ(σ ) e−λ1t, t ∈ [σ , T).

The above estimate is however not yet satisfactory, as the constant δ(σ ) may degenerate as σ goes
to zero.

We now revisit our usage of the parabolic Hopf lemma above. For small t> 0, let

Ωt = {x ∈Ω | dist(x,Γ ) ≥ t}, t> 0.

Note that Ωt is a compact proper subset of Ω . From the proof of the parabolic Hopf lemma
(e.g. theorem 3.14 in [15]), the value −∂q/∂N|t=σ is proportional to the minimal value of
the temperature q on a space–time region strictly contained in the space–time slab Kt :=Ωt ×
[t/2, 3t/2]�Ω × [0, 2t] divided by t (which is proportional to the distance of Kt from the
parabolic boundary of Ω × [0, 2t]). Note that, as t approaches 0, we may lose uniformity-in-
time in our constants. This is however not the case since ∂Nq is continuous at t = 0 and by the
assumption (1.12)

− ∂Nq0 = −∂Nq0

c1
c1 ≥ C∗c1. (3.7)

Assumption (1.12) is used only in (3.7) to ensure that there exists a universal constant C∗
independent of c1 such that L = (−∂Nq0)/c1 >C∗. The quantity L is dimensionless, and the
assumption L>C∗ is not a restriction on the initial data. In other words, if we had not
assumed (1.12), the only modification in the statement of the main theorem would be that the
smallness assumption on initial data (1.14) is additionally expressed in terms of L as well.

As to the bound on λ̃, note that by (3.6), the exponent λ1 is characterized by the condition

λ1 = sup
A∈Kμ1,μ2

μ(A).

Since |μi − 1| � √
ε, i = 1, 2, it follows that for any matrix A ∈Kμ1,μ2 the estimate |A − Id| � √

ε

holds. Since the function μ(·) is a continuous function from the space of 2 × 2 matrices into R, it
thus follows that

|λ̃| = |λ1 − μ(Id)| =
∣∣∣∣∣ sup
A∈Kμ1,μ2

μ(A) − μ(Id)

∣∣∣∣∣ �
√
ε.

�

4. Energy estimates and improvement of the first bootstrap assumption
Proposition 4.1. Assuming the bootstrap assumption (2.1) and with ε > 0 chosen sufficiently small,

E(t) ≤ C0 + 1
2

∑
|α|+2l≤6

∫ t

0

∫
Γ

(−∂Nqt)|∂̄α∂ l
tΨ |2 dS(Γ ) + CP(S(t)), (4.1)

where C0 depends only on the initial data, C> 0 is a generic positive constant depending only on the
dimension d, and P denotes an order-r polynomial with r ≥ 3 of the form (1.3).

Proof. The proof of the proposition is entirely analogous to the proof of proposition 3.4
from [11]. �

Proposition 4.2. Let the solution (q, h) to the Stefan problem (1.5) exist on a given maximal interval of
existence [0,T ) on which the bootstrap assumptions (2.1) and (2.2) are satisfied.
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(a) There exists a universal constant C̄ such that if the smallness assumption (1.14) for the initial data

holds and if T ≥ TK
def= C̄ ln K, then

−qt(TK, x)>Cc1 e−λ1TKϕ1(x), x ∈Ω ,

where ϕ1 is the first eigenfunction of the Dirichlet–Laplacian on Ω and c1 = ∫
Ω q0ϕ1 dx. As a

consequence,

inf
x∈Γ

∂Nqt(TK, x)> 0.

(b) With the smallness assumption (1.14), we indeed have the bound T ≥ C̄ ln K.
(c) Moreover, under the same assumption as in part (b), the following lower bound on ∂Nq(t, x) holds:

inf
x∈Γ

∂Nq(t, x)> 0, t ∈ [TK,T ). (4.2)

Proof. The proof of part (a) is the same as the proof of lemma 4.2 in [7].
As to the proof of part (b), we start by making the claim that the dangerous term from the

inequality (4.1) satisfies the bound

∣∣∣∣∣∣
∑

|α|+2l≤6

∫ t

0

∫
Γ

(−∂Nqt)|∂̄α∂ l
tΨ |2 dS(Γ )

∣∣∣∣∣∣ ≤ CK2
∫ t

0
eητS(τ ) dτ . (4.3)

Note, that if |α| + 2l ≤ 6, then

∣∣∣∣
∫ t

0

∫
Γ

(−∂Nqt)|∂̄α∂ l
tΨ |2 dS dτ

∣∣∣∣ =
∣∣∣∣
∫ t

0

∫
Γ

−∂Nqt

−∂Nq
(−∂Nq)|∂̄α∂ l

tΨ |2
∣∣∣∣ dS dτ ≤ C

∫ t

0

∣∣∣∣∂Nqt

∂Nq

∣∣∣∣
L∞

S(τ ) dτ .

In order to bound the term |∂Nqt/∂Nq|, we need a decay estimate for the numerator |∂Nqt|. The
Sobolev embedding theory would yield the bound |∂Nqt|L∞ � ‖qt‖2+δ for δ > 0, but by definition
of the norm S, it is only the H2(Ω)-norm of qt for which we have the desired decay. We obtain the
decay estimate for qt from appendix B of [11]:

|∂Nqt|L∞ � K2c1 e−βt/2. (4.4)

It then follows from the bootstrap assumption (2.2) that

∣∣∣∣∂Nqt(τ )
∂Nq(τ )

∣∣∣∣
L∞

≤ CK2c1 e−(λ1−η/2)τ

c1 e−(λ1+η/2)τ
≤ CK2 eητ , (4.5)

which, in turn, establishes (4.3). In conjunction with proposition 4.1, this yields the bound

E(t) ≤ E(0) + CK2
∫ t

0
eητS(τ ) dτ + CεS(t). (4.6)

By proposition 2.1, with ε sufficiently small, we conclude that

E(t) ≤ 2E(0) + CK2
∫ t

0
eητE(τ ) dτ , t ∈ [0,T ], (4.7)

where T is the maximal interval of existence on which the bootstrap assumptions (2.1) and (2.2)
hold (with ε sufficiently small). A straightforward Gronwall-type argument based on (4.7),
identical to step 1 of the proof of theorem 1.2 in [7], implies that as long as the η from the
bootstrap assumption (2.2) is smaller than C̄ ln K, the maximal interval of existence [0,T ), on
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which both the bootstrap assumptions (2.1) and (2.2) are valid, satisfies T > C̄ ln K, and the
following exponentially growing bound holds:

E(t) ≤ 2E(0) eCK2t, t ∈ [0,T ). (4.8)

To prove part (c), we resort to maximum principle techniques once again. To this end, we
define a barrier function ψ to be the solution of the following elliptic problem:

�ψ = −1 in Ω

and ψ = 0 on Γ .

}
(4.9)

We then define the comparison function F : [0,T ) ×Ω →R via

F (t, x) = κ1 e−(3/2)λt(ϕ1(x) − κ2ψ), (4.10)

with positive constants κ1, κ2 to be specified later. A straightforward calculation shows that

(∂t − aij∂ij − bi∂i)F

= κ1 e−(3/2)λt[− 1
2λϕ1 − κ2 + 3

2λκ2ψ − (aij − δij)(ϕ1 − κ2ψ) − b · (∇ϕ1 − κ2∇ψ)]. (4.11)

Note that the first and the second terms in the square brackets on the right-hand side of (4.11) are
negative, while the fourth and the fifth terms are small, being of order ε. If x is close to Γ , then the
second term dominates the third term and if x is away from the boundary Γ , then one can choose
κ2 > 0 so that the first term dominates the third term. Thereby we use the fact that both ϕ1 and ψ
vanish at Γ , they are both non-negative (by the maximum principle), and both satisfy the Hopf
lemma (since they are both supersolutions). It follows, then, that there exists a κ2 > 0 and some
constant C1 such that

(∂t − aij∂ij − bi∂i)F <−C1κ1 e−(3/2)λt. (4.12)

It then follows from (4.12) and (3.2) that

(∂t − aij∂ij − bi∂i)(−qt − F )>−(∂taijq,ij +∂tbiqi + ∂tAk
,iq,k wi + Ak

i q,k wi
t) + C1κ1 e−(3/2)λt. (4.13)

Note, however, that the term in parentheses on the right-hand side above is a quadratic
nonlinearity and as such decays at least as fast as e−βt:

‖∂taijq,ij +∂tbiqi + ∂tAk
,iq,k wi + Ak

i q,k wi
t‖L∞ ≤ C2c1ε e−βt.

Now, using (4.13) and the above bound, we note that by choosing the constant κ1
def= (C2/C1)c1ε,

we have that

(∂t − aij∂ij − bi∂i)(−qt − F )>C2c1ε e−(3/2)λt − C2c1ε e−βt > 0,

since β = 2λ− η > 3
2λ. The previous bound implies that −qt − F is a supersolution for the

operator ∂t − aij∂ij − bi∂i. Moreover, by the construction of F , we have −qt − F = 0 on Γ .
Furthermore, at time TK = C̄ ln K, we have by part (b) of the proposition and (4.10) that

(−qt − F )|T=C̄ ln K >Cc1 e−λTϕ1(x) − Cc1ε e−(3/2)λTϕ1(x) + Cc1εκ2 e−(3/2)λTψ(x)> 0

for ε sufficiently small. Thus, as in the proof of lemma 3.1, there exists a constant m> 0 such that

−qt(t, x) − F (t, x) ≥ m dist(x,Γ ) e−(λ+O(ε))t, t> TK,

or, in other words,

−qt(t, x) ≥ m dist(x,Γ ) e−(λ+O(ε))t + Cc1ε dist(x,Γ ) e−(3/2)λt
(

ϕ1(x)
dist(x,Γ )

− κ2
ψ(x)

dist(x,Γ )

)

= dist(x,Γ ) e−(λ+O(ε))t
(

m + Cc1ε e(−(1/2)λt−O(ε))t
(

ϕ1(x)
dist(x,Γ )

− κ2
ψ(x)

dist(x,Γ )

))
,
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which readily gives the positivity of ∂Nqt on the time interval [TK,T [ since ϕ1(x)/dist(x,Γ ) −
κ2(ψ(x)/dist(x,Γ ))> 0 by our choice of κ2 above. We conclude that the positivity of −qt at
time TK = C̄ ln K is a property preserved by our bootstrap regime and, moreover, we obtain a
quantitative lower bound on ∂Nqt on the time interval [TK,T [. �

Remark 4.3. In the proof of part (b) of proposition 4.2, we made a rather crude use of the energy
estimate given by proposition 4.1. In particular, we cannot use this argument to prove global
existence, as the constants grow in time; however, in part (c) of the proposition, we have used a
more sophisticated argument based on the maximum principle to infer the sign-definiteness of
the term ∂Nqt after a fixed amount of time has passed.

Proof of theorem 1.4. Assume for contradiction that T <∞. For any t ∈ [TK,T [, the energy
identity takes the form

E(t) + 1
2

∑ ∫ t

TK

∫
Γ

∂Nqt|∂̄α∂ l
tΨ |2 dS ≤ E(TK) + P(S(t)) ≤ E(TK) + O(ε)E(t).

Note here the absence of the exponentially growing term in the above bound as compared to
inequality (4.8). This is due to the fact that terms

∫t
TK

∫
Γ ∂Nqt|∂̄α∂ l

tΨ |2 dx, |α| + 2l ≤ 6, are positive
and no longer treated as error terms. By absorbing the small multiple of E(t) into the left-hand
side, and using the positivity of ∂Nqt from step 2, we obtain that

E(t) ≤ 2E(TK) ≤ 8E(0) e2CK2TK , t ∈ [TK,T ), (4.14)

by (4.8). Finally, we choose ε0 in the statement of theorem 1.4 so that ε0 < ε/2. The bound (4.14)
and the condition E(0) � ε0/F(K) (with F(K) given as in (1.15)) imply

E(t) ≤ ε

2
, t ∈ [TK,T ).

Together with lemma 3.1, we infer that the bootstrap assumptions (2.1) and (2.2) are improved.
Since E(·) is continuous in time, we can extend the solution by the local well-posedness theory to
an interval [0,T + T∗] for some small positive time T∗. This however contradicts the maximality
of T if T were finite and hence T = ∞. This concludes the proof of the main theorem. �
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