
UC Irvine
ICS Technical Reports

Title
SRAM vs. data cache : the memory data partitioning problem in embedded systems

Permalink
https://escholarship.org/uc/item/4bt5d24g

Authors
Panda, Preeti Ranjan
Dutt, Nikil
Nicolau, Alexandru

Publication Date
1996

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4bt5d24g
https://escholarship.org
http://www.cdlib.org/

Notice; This Material
may be protected
by Copyright Law
(TitlelZU.S.C.)

SRAM vs. Data Cache:

The Memory Data Partitioning

Problem in Embedded Systems

Preeti Ranjan Panda
Nikil Dutt

Alexandru Nicolau

Technical Report #96-42
September 1996

University of California, Irvine
Irvine, OA 92697-3425

(714) 824-8059

iSL feAlR.

Abstract

Efficient utilization of on-chip memory space is extremely important in modern embedded system
applications based on microprocessor cores. In addition to a data cache that interfaces with slower off-
chip memory, a fast on-chip SRAM, calledScratch-Pad memory, is often used in several applications.
We present a technique for efficiently exploiting on-chip Scratch-Pad memory by partitioning the ap
plication's scalar and arrayed variables into off-chip DRAM and on-chip Scratch-Pad SRAM, with the
goal of minimizing the total execution time of embedded applications. Our experiments on code kernels
from typical applications show that our technique results in significant performance improvements.

Contents

1 Introduction X

2 Related Work 1

3 Problem Description 2

4 The Partitioning Strategy 4
4.1 Features Affecting Partitioning 4

4.1.1 Scalar Variables and Constants 5
4.1.2 Size of Arrays 5
4.1.3 Life-Times of Variables 5
4.1.4 Access Frequency of Variables 6
4.1.5 Conflicts in Loops 7

4.2 The Partitioning Algorithm 8

5 Experiments XO

6 Conclusions and Future Work X3

7 Acknowledgment X3

8 References X3

List of Figures

(a) Block Diagram of Typical Embedded Processor Configuration (b) Division of Data Address
Space between SRAM and DRAM 2
Example Life-Time Distribution 6
(a) Example Loop (b) Loop Conflict Graph 7
Algorithm for mapping variables into SRAM and DRAM 9
Memory Access Details for Beamformer Example 11
Performance Comparison of Configurations A, B, C, and D 12

1 Introduction

Complex embedded system applications typically use heterogeneous chips consisting of microprocessor

cores, along with on-chip memory and co-processors. Flexibility and short design time considerations

drive the use of CPU cores as instantiable modules in system designs [6]. The integration of processor

cores and memory in the same chip effects a reduction in the chip count, leading to cost-effective

solutions. Examples of commercial microprocessor cores commonly used in system design are LSI

Logic's CW33000 series [3] and the ARM series from Advanced RISC Machines [13]. Typical examples

of optional modules integrated with the processor on the same chip are: Instruction Cache, Data

Cache, and on-chip SRAM. The instruction and data cache are fast local memory serving an interface

between the processor and the off-chip memory. The on-chip SRAM, termed Scratch-Pad memory,

is a small, high-speed data memory that is mapped into an address space disjoint from the off-chip

memory, but connected to the same address and data buses. Both the cache and Scratch-Pad SRAM

have a single processor cycle access latency, whereas an access to the off-chip memory (usually DRAM)

takes several (typically 10-20) processor cycles. The main difference between the Scratch-Pad SRAM

and data cache is that, the SRAM guarantees a single-cycle access time, whereas an access to cache

is subject to compulsory, capacity, and conflict misses [9].

When an embedded application is compiled, the accessed data can now be stored either in the

Scratch-Pad memory or in off-chip memory. In the second case, it is accessed by the processor

through the cache. We present a technique for minimizing the total execution time of an embedded

application by a careful partitioning of scalar and array variables used in the application into off-chip

DRAM (accessed through data cache) and Scratch-Pad SRAM.

2 Related Work

The problem of partitioning data into different memory banks to facilitate parallel access has been

addressed before. A technique to partition variables for simultaneous access into two memory banks of

the Motorola 56000 DSP processor was reported in [12]. However, parallel access is not the objective

of our partitioning problem we are addressing - we wish to maximize performance in the sequential

access scenario.

Optimization techniques for improving the data cache performance of programs have been reported

[4, 8, 11]. The analysis in [11] is limited to scalars, and hence, not generally applicable. Iteration space

blocking for improving data locality is studied in [4]. This technique is also limited to the type of code

that yields naturally to blocking. In [8], a data layout strategy for avoiding cache conflicts is presented.

However, in many cases, the array access patterns are too complex to be statically analyzable using this

method. The availability ofan on-chip SR.AM with guaranteed fast access time creates an opportunity
for overcoming some ofthe conflict problems (Section 3). The problem ofpartitioning datainto SR.AM
and cache with the objective of maximizing performance, which we address in this paper, has, to our

knowledge, not been attempted before.

3 Problem Description

Figure 1(a) shows thearchitectural block diagram ofan application employing a typical embedded core

processor where the parts enclosed in the dotted rectangle are implemented in one chip, and which

interfaces with an off-chip memory, usually realized with DRAM. The address and data buses from

the CPU core connect to the Data Cache, Scratch-Pad memory, and the External Memory Interface
(EMI) blocks. On a memory access request from the CPU, the data cache indicates a cache hit to the

EMI block through the C_HIT signal. Similarly, if the SRAM interface circuitry in the Scratch-Pad

memory determines that the referenced memory address maps into the on-chip SRAM, it assumes

control of the data bus and indicates this status to the EMI through signal S_HIT. If both the cache

and SRAM report misses, the EMI transfers a block ofdata ofthe appropriate size (equal to the cache

line size) between the cache and the DRAM.

MUl

Figure li (a) Block Diagram ofTypical Embedded Processor Configuration (b) Division ofData Address Space
between SRAM and DRAM

The data address space mapping is shown in Figure 1(b), for a sample addressable memory ofsize

N data words. Memory addresses 0.. .P - 1 map into the Scratch-Pad memory, and have a single
processor cycle access time. Thus, in Figure 1(a), S-HIT would be asserted whenever the processor

^For example, the LSI Logic CW33000 RISC Microprocessor core[3]

attempts to access any address in the range 0... P —1. Memory addresses P... iV —1 map into the

off-chip DRAM, and are accessed by the CPU through the data cache. A cache hit for an address

in the range P.. .N —1 results in a single-cycle delay, whereas a cache miss, which leads to a block

transfer between off-chip and cache memory, results in a delay of 10-20 processor cycles.

In this memory partitioning work, we assume that register allocation, the task that assigns fre

quently accessed program variables such as loop indices to processor registers, has already been per

formed. Given the embedded application code, (currently restricted to a single program sub-routine)

the goal of our approach is to determine the mapping of each scalar and arrayed program variable into

local Scratch-Pad SRAM or off-chip DRAM, while maximizing the application's performance.

The sizes of the data cache and the Scratch-Pad SRAM are limited by the total area available

on-chip, as weU as by the single cycle access time constraint. Hence, we must first justify the need for

both the data cache and SRAM. Suppose the embedded core processor in Figure 1 can support a total

of 2 KBytes for the data cache and the SRAM. We can analyze the pros and cons of four extreme

configurations of the cache and SRAM are possible:

(1) No local memory: In this case,wehavethe CPU accessing off-chip memory directly, and spend

ing 10-20 processor cycles on every access. Data locality is not exploited and the performance

is clearly inferior in most cases.

(2) Scratch-Pad memory of size 2K: In this case, we have an on-chip SRAM of larger size, but

no cache. The CPU has an interface both to the SRAM and the off-chip memory. First, the

larger SRAM slows down the processor cycle speed Further, when large arrays that do not

fit into the SRAM are present, the direct interface to external memory has to be used, thereby

degrading performance.

(3) Data cache of size 2K: Here, we have a larger data cache, but no separate local SRAM. As

observed in (2) above, this could also lead to a longer processor cycle time because of the

longer cache access time. An advantage of the Scratch-Pad memory over data cache is that, for

the variables mapped to the Scratch-Pad memory, we avoid the overhead of stalled CPU cycles

during cache misses. Moreover, in many cases, having only a cache results in certain unavoidable

cache misses that degrade performance. A simple example is the loop shown below:

loop i = 1 to N
read A[i] /* Array Variable */
read x /* Scalar Variable */

write ACi] /* Array Variable */
end loop

^Note that in Figure 1(a), the address decoding for cache and SRAM is done in parallel.

Only memory accesses in the loop are shown. If we assume that a direct-mapped cache of size
C (C < iV), with line size L is used, then there are L cache misses due to conflicts in every C
accesses to array A, arising from a block ofthe array and variable x mapping to the same cache

line.

(4) IK Data cache + IK Scratch-Pad SRAM: In the architecture of Figure 1, using a IK data
cache and IK SRAM, the problem incurred in (3) above could be elegantly solved by assigning
Xto the SRAM, thereby avoiding all conflicts. Note that we assume the register allocation

phase precedes the memory assignment phase. The simple problem above could be solved by
assigning a; to a register. However, in general, the types of conflicts noted above cannot all be

solved by register allocation because registers are limited resources. Examples of such cases are

loops involving too many scalar variables, or multiple conflicting arrays. The same argument
of guaranteed single-cycle access and avoiding possible conflicts makes the architecture with a

combination of cache and Scratch-Pad memory superior to a single associative cache in these

circumstances.

From the above, it is clear that both the SRAM and data cache are desirable. Note that there

could be applications where the Scratch-Pad SRAM offers no particular advantage over a single cache.
Examples are: when no scalars are involved and all arrays are too big to fit into SRAM; or there
is little temporal reuse among the arrays so that the cache conflicts do not cause any performance
penalty. However, we noticed in our experiments that the SRAM improves performance in most

typical applications.

In this work, we present a strategy for partitioning scalar and arrayed variables in an application
code into Scratch-Pad memory and off-chip DRAM accessed through data cache, to maximize the

performance by selectively mapping to the SRAM those variables that are estimated to cause the

maximum number of conflicts in the data cache.

4 The Partitioning Strategy

The overall approach in partitioning program variables into Scratch-Pad memory and DRAM is to

minimize the cross-interference between different variables in the data cache. We first outline the

different features of the code affecting the partitioning, and then present a partitioning strategy based
on these features.

4.1 Features Affecting Partitioning

The partitioning of variables is governed by the following factors:

• Scalars variables and constants

• Size of arrays

• Life-times of variables

• Access frequency of variables

• Conflicts in loops

We describe below each of the above factors and how our partitioning strategy address the features.

4.1.1 Scalar Variables and Constants

In order to prevent interference with arrays in the data cache, we map all scalar variables and constants

to the Scratch-Pad memory. This assignment helps avoid the kind of conflicts mentioned in Section 3.

If scalars are mapped to the DRAM, (and, consequently, accessed through the cache), it may be

impossible to avoid cache conflicts with arrays, because arrays are assigned to contiguous blocks of

memory, parts of which wiU map into the same cache line as the scalars, causing conflict misses.

It is possible to do a more sophisticated analysis of the most frequently accessed scalars to the

SRAM, but our decision to map all scalars to the SRAM is based on our observation that for most

applications, the memory space attributable to scalars is negligible compared to that occupied by

arrays.

4.1.2 Size of Arrays

We map arrays that are larger than the SRAM into ofl'-chip memory, so that these arrays are accessed

through the data cache. Mapping large arrays to the cache is the natural choice, as it simplifies

the array addressing. If a part of the array were to map into the SRAM, the compiler would have

to generate book-keeping code that keeps track of which region of the array is addressed, thereby

making the code inefficient. Further, since most loops access array elements more or less uniformly,

there is little or no motivation to map different parts of the same array to memories with different

characteristics.

4.1.3 Life-Times of Variables

The life-timeof a variable, defined as the period between its definitionand last use [1], is an important

metric affecting register allocation. Variables with disjoint lifetimes can be stored in the same processor

register. The same analysis, when applied to arrays, allows different arrays to share the same memory

space.

The life-time information can also be used to avoid possible conflicts among arrays, ^^e perform
the lifetime analysis on the topmost block of a function in the program. To simplify the conflict-

analysis, we assume that a variable accessed inside a loop is alive throughout the loop. Similarly, we
also assume that a variable that is alive in one branch of a conditional statement, is also alive in all

other branches. We define a measure Intersecting Life Times, ILT{u), which indicates the number of

program variables having a non-null intersection of life-times with u.

- -i l-b

nc::

Figure 2: Example Life-Time Distribution

Figure 2shows an example lifetime distribution offour variables, a, 6, c, and d. We have ILT{a) = 2,
since itslifetime intersects thatof 2other variables, band d. Similarly, we have ILT{b) = 2; ILT{c) = 1;
and ILT{d) - 3. The ILT value of each variable gives an indication of the number of other arrays that
it could possibly interfere with, in the cache. Consequently, we could map the arrays with the highest
ILT values into the SRAM, thereby eliminating a large number of potential conflicts. We refine this

measure in the next section.

4.1.4 Access Frequency of Variables

The ILT measure defined earlier gives an indication of the possibility of cache conflicts, but not the

extent. To obtain a more accurate picture ofthe extent ofconflicts, we have to consider the frequency
of accesses. For example, in Figure 2, if the number of accesses to d is relatively small, it is worth

considering the other arrays first for inclusion in SRAM, because d does not play a significant part
in cache conflicts in spite of the high ILT value. For each variable u, we define the Variable Access

Count, VAC(u), to be the number of accesses to elements of u during its lifetime.

Similarly, the number ofaccesses to other variables during the lifetime ofa variable, is an equally
important determinant of cache conflicts. The ILT{u) figure, which gives the number of arrays alive

during the lifetime of u, has to be suitably modified to account for the number of accesses. For each

variable u, we define the Interference Access Count, IAC{u), to be the number of accesses to other

variables during the lifetime of u.

We note that each of the factors discussed above, VAC{u) and IAC(u), taken individually, could

give a misleading idea about the possible conflicts involving variable u. Clearly, the conflicts are

determined jointly by the two factors considered together. A good indicator of the conflicts involving

array u is given by the product of the two metrics. We define the Interference Factor, IF, of a variable

u as: IF{u) = VAC{u)x IAC(u). A high IF value for u indicates that u is likely to be involved in a

large number of cache conflicts if mapped to DRAM. Hence, we choose to map variables with high IF

values into the SRAM.

4.1.5 Conflicts in Loops

In the previous section, we assumed different arrays accessed in the same period (e.g., in the same

loop) had an equal probability of conflicting in the cache. However, it is possible to make a finer

distinction based on the array access patterns. Consider a section of a code in which three arrays a, 6,

and c are accessed, as shown in Figure 3(a).

for i=0 to N-1 ^
access a[i] (®) C^)
access b [i] \ /
access c [2 i]

access c [2 i+ 1] f
end for VZx

Figure 3: (a) Example Loop (b) Loop Conflict Graph

We notice that arrays a and 6 have an identical access pattern, which is different from that of c.

Data placement techniques [8] can be used to avoid data cache conflicts between a and b. However,

when the access patterns are different, cache conflicts are unavoidable (e.g., between a and c). In such

circumstances, conflicts can be minimized by mapping one of the conflicting arrays to the SRAM. For

instance, conflicts can be eliminated in the example above, by mapping a and b to the DRAM/cache,

and c to the Scratch-Pad memory.

To accomplish this, we first build a Loop Conflict Graph, LOG with one node for each array, and

edge weight e(u, u) being computed as e{u, u) = ^3^=1 where thesummation isover all loops (1.. .p)

in which u and v are both accessed, and ki is the total number of accesses to u and v in loop i. In the

example above, where we have only one loop (p = 1), the graph in Figure 3(b) is generated. We have

one access to a and two to c in one iteration of the loop. Total number of accesses to a and c combined

is: (1 -t- 2) XiV = 3iV. Thus, we have e(a,c) = 37V". Similaxly, e(6,c) = 37V. We have e(a,b) = 0, since

the access patterns to a and b are compatible

We now use the graph LCG to define the Loop Conflict Factor, LCFfoi a variable u as: LCF{u) =

T.v£LCG-{u} lCF{u) is the sum ofincident edge weights to node u. This gives us a metric
to compare the criticality of loop conflicts for all the arrays. In general, the higher the iCF number,

the more conflicts are likely for an array, and hence, the more desirable it is to map the array to the

Scratch-Pad memory.

4.2 The Partitioning Algorithm

We now outline an algorithm that determines the mapping decision of each (scalar and arrayed)
program variable to SRAM or DRAM/cache by using the factors mentioned in Section 4.1. The input
to algorithm AssignMemoryType (Figure 4) is the SRAM size and the application code, which, in this

work, is assumed to consist ofonly a single function or procedure. The output is the assignment of

each variable to Scratch-Pad memory or DRAM.

The algorithm first assigns the scalar constants and variables to the SRAM, and the arrays that are

larger than the Scratch-Pad memory, to the DRAM. Procedure AssignSRAMupdates a data structure

that keeps track ofthe assignments ofdifferent arrays to the SRAM, as well as the free space currently

available in the SRAM (tracked by variable FreeSRAMSpace). Similarly, procedure AssignDRAM

performs the book-keeping related to assigning the array to DRAM.

For the remaining n arrays (all ofwhich are small enough to fit into the SRAM), we first compute

the LCF and /F values (Section 4.1), and generate the life-time intervals. We sort the 2n interval

end-points thus generated, and traverse them in increasing order. Each point could represent either

the beginning, or ending of a life-time interval.

If theend-point encountered {tj) is a beginning ofinterval ofarray u, we have to make themapping
decision of u into SRAM or DRAM. We first check if there is sufficient space in the SRAM for u and

the set (5(u)) of the other unmapped arrays intersecting its lifetime. If the space is sufficient, then we

set flag Cs indicating that u can map to the SRAM, because there is no contention for SRAM space

throughout u's life-time We then examine the criticality of the Loop Conflict Factor, LCF{u). If

there is sufficient SRAM space for u and all arrays with life-times intersecting LT(u) (the life-time

interval of u), with more critical LCFnumbers (this is set G{u)), we consider u to be critical enough,

in terms of LCF, and set flag Cg. We do a similar check for IF{u) toset flag Ch- Ifany oiCs.Cg, or Ch
is TRUE, we map u to the SRAM, otherwise, to the DRAM. Note that, in practice, the computation

^We call two expressions g and h compatible ifg- h ~ constant, i.e., g- k is independent of the loop indices.
*Note that this is a greedy algorithm. The memory assignment problem, as formulated here, can be easily seen to be

NP-hard because it reduces to the register allocation problem when all the arrays cire reduced to a single element.

Algorithm AssignMemoryType
Input: Application code with Register-allocated variables marked;
SRAM-Size: Size of Scratch-Pad SRAM

Output; Assignment of each program variable to SRAM or DRAM
FreeSRAMSpace — SRAMSize
for all variables v

if v is a scalar variable or constant

AssignSRAM(v)
else

ifsize(t;) > SRAMSize
AssignDRAM(v)

LI: for all arrays i not yet mapped (i = 1... n)
Compute LCF(i) values
Compute IFfi) values
Generate life-time intervals LT(i) = (t'l, 12), where ii corresponds to
its definition, and 1*2 corresponds to its last use

Sort the 2n end-points of intervals (2 for each interval) in increasing order: <1 .. .t2n
L2: for j = \ . .In (i.e., for each interval end-point in increasing order)

if tj corresponds to the beginning of life-time interval of array u
Set Conditions Cg^Cg, and Ch = FALSE
Let S{u) = {s|(s is unmapped) and {LT{s) DLT{u) ^ 0)}

5(u) is the set of all unmapped arrays whose life-times intersect LT{u)
if size({u} US(ti)) < FreeSRAMSpace — No contention with u for SRAM space

C, = TRUE
Let G{u) —{s|(s is unmapped) and {LT{s) n LT{u) ^ 0) and {LCF{s) > LCF{u))]
— G is the set of unmapped arrays with life-time
— intersecting LT(u), with more critical iCF numbers
if size({ti} U G(t/)) < FreeSRAMSpace

Gg = TRUE
Let/f(u) = {s|(s is unmapped) and {LT{s)f\LT{u) 4) and {IF{s) > IF{u))}
— H is the set of unmapped arrays with life-time
— intersecting LT(u), with more critical /F numbers
if size({u} U/f(u)) < FreeSRAMSpace

Cg = TRUE
if (C, = TRUE) or {Cg = TRUE) or {Ch = TRUE)

AssijynSFAM(u)
else

AssignDRAM(u)
Remove u from list of unassigned arrays

else tj corresponds to end of life-time interval of array u
if u was mapped to SRAM

UnAssignSRA M(u)
else

UnAssignDRAM(u)
end Algorithm

Figure 4: Algorithm for mapping variables into SRAM and DRAM

of all three sets S{u),G{u), and H{u) might not be necessary. Forinstance, if condition Cg is satisfied,

we can directly assign u to SRAM, and need not compute (j(u) and H{u). The algorithm, as outlined

in Figure 4, is shown only for simplicity, and in practice, we evaluate Cs,Cg, and C^, in that order,

stopping computation when any of them becomes TRUE. Having made the memory assignment, we

remove u from the list of unmapped arrays.

If the end-point identified by tj corresponds to the end of a life-time interval of u, we invoke

procedures UnAssignSRAM and UnAssignDRAM to de-allocate it from the data structure keeping

track of array assignments to SRAM/DRAM.

To analyze the complexity of algorithm AssignMemoryType, we observe that the computation of

LCF and IF values takes 0{n) time for each array, where n is the number of arrays. Generation of

life-time intervals takes time linear in the code size of the application. Hence, loop LI takes O(n^)
time. Sorting the 2n interval end-points takes O(nlogn) time. The computation of S(u),G(u), and
JI{u) takes 0{n) time. Since the code in loop L2 is executed 2n times, the algorithm has an overall

complexity of O(n^).

5 Experiments

We performed simulation experiments on several benchmark examples that frequently occur as code

kernels inseveral embedded applications [7], toevaluate theefficacy ofourScratch-Pad memory/DRAM

data partitioning algorithm. We used an example Scratch-Pad SRAM and a direct-mapped, write-back

data cache size of1KByte each. In order to demonstrate the soundness ofour technique, we compared

the performance (measured in totalnumber ofprocessor cycles required to access the data during ex
ecution of the example) of the following architecture and algorithm configurations: (A) Data cache

of size 2K: in this case, there is no SRAM in the architecture; (B) Scratch-Pad memory of size 2K:

in this case, there is no data cache in the architecture, and we use a simple algorithm that maps

all scalars, and as many arrays as wiU fit into the SRAM, and the rest to the off-chip memory; (C)
Random Partitioning: in this case, we used a IK SRAM and IK Data cache, and a random data

partitioning technique^; and (D) Our Technique: here we used a IK SRAM and IK data cache, and

algorithm AssignMemoryType for data partitioning. The size 2K was chosen in A and B, because

the area occupied by the SRAM/cache would be roughly the same as that occupied by IK SRAM +

IK cache, to a degree of approximation, ignoring the control circuitry. We use a direct-mapped data

cache with line size = 4 words, and the following access times:

Time to access one word from Scratch-Pad SRAM = 1 cycle.

^Variables were considered in the order they appeared in the code, and mapped into SRAM if there was sufficient
space.

Time to access one word from off-chip memory (when there is no cache) = 10 cycles.

Time to access a word from data cache, on cache hit = 1 cycle.

Time to access a block of memory from off-chip DRAM into cache =
10 cycles -fix Cache Line Size = 10-f 1 x 4 = 14 cycles. This is the time required to
access the first word -f time to access the remaining (contiguous) words

A - SRAMOnly (2K)
B - DCache Only (2K)
C - Random (IK SRAM + 1K DCache)
D • Our Technique (IK SRAM♦ IK DCache)

SRAM
Accesses

DRAM Total
Accesses # Cycles (x10)

Figure 5: Memory Access Details for 5eam/ormcr Example

Figure 5 shows the details of the memory accesses for the Beamformer benchmark example. The

Beamformer, a DSP application, represents anoperation involving temporal alignment and summation

of digitized signals from an A-element antenna array. We note that configuration A has the largest

number of SRAM Accesses, because the large SRAM (2K) allows more variables to be mapped into

the Scratch-Pad memory. Configuration B has zero SRAM accesses, since there is no SRAM in

that configuration. Also, our technique (D) results in far more SRAM accesses than the random

partitioning technique, because the random technique disregards the behavior when it assigns precious

SRAM space. Similarly, Cache Hits are the highest for B, and zero for A. Our technique results in

fewer cache hits than C, because many memory elements accessed through the cache in C, map into

the SRAM in our technique. Configuration A has a high DRAM Access count because the absence of

the cache causes every memory access not mapping into the SRAM, to result in an expensive DRAM

access. As a result, we observe that the total number of processor cycles required to access all the

data is highest for A. Configuration D results in the fastest access time, due to the judicious mapping
of the most frequently accessed, and conflict-prone elements into Scratch-Pad memory

Figure 6 presents a comparison of the performance for the four configurations A, B, C, and D

mentioned earlier, on code kernels extracted from seven benchmark embedded applications. Dequant

is the de-quantization routine in the MPEG decoder application[5]. IDCT \% the Inverse Discrete

Cosine Transform, also used in theMPEG decoder. SOR is the successive Over-Relaxation algorithm,

®This is a popular model for cache/off-chip memory traffic [9].
^Figure 5 shows the total number ofcycles scaled down by a factor of 10

A - SRAM Only (2K)
B • DCache Only (2K)
C • Random (1K SRAM + 1 K DCache)
D • Our Technique (IK SRAM + 1K DCache)

Beamformer Dequant FFT IDCT MatrixMult SOR DHRC

Figure 6: Performance Comparison of Configurations A, B, C, and D

frequently used in scientific computing [10]. MatrixMult is the matrix multiplication operation, opti

mized for maximizing spatial and temporal locality by reordering the loops. FFT is the Fast Fourier

Transform application. DHRC encodes the Differential Heat Release Computation algorithm that

models the heat release within a combustion engine [2].

The number ofcycles for each application is normalized to 100 in Figure 6. In the Dequant example,

A slightly outperforms D, because all the data used in the application fits into the 2K SRAM used in

A, so that an off-chip access is never necessary, resulting in the fastest possible performance. However,

the data size is bigger than the IK SRAM used in D, where the compulsory cache misses cause a

slight degradation of performance. The results of FFT and MatrixMult^ both highly computation-

intensive applications, show that A is an inferior configuration for highly compute-oriented applications

amenable to exploitation of locality of reference. Cache conflicts degrade performance of B and C in

SORand DHRC, causing worse performance than A (where there is no cache), and D (where conflicts

are minimized by algorithm AssignMemoryType). Our technique resulted in an average improvement

of 31.4% over A, 30.0% over B, and 33.1% over C.

In summary, our experiments on code kernels from typical embedded system applications show the

usefulness of on-chip Scratch-Pad memory in addition to a data cache, as well the effectiveness of our

data partitioning strategy.

6 Conclusions and Future Work

Modern embedded system applications use microprocessor cores along with memory and other co

processor hardwareon the same chip. Since the CPU now forms only a part of the die, it is important

to make optimal use ofon-chip die area. In order to effectively use on-chip memory, we need to leverage

the advantages of both data cache (simple addressing) and on-chip Scratch-Pad SRAM (guaranteed

low access time) by including both types of memory modules in the same chip, with the data memory

space being disjointly divided between the two.

We presented a strategy for partitioning variables (scalars and arrays) in embedded code into

Scratch-Pad SRAM and data cache, that attempts to minimize data cache conflicts. Our experiments

on code kernels from typical applications show a significant performance improvements (29 - 33%)

over architectures of comparable area and random partitioning strategies.

Currently, our analysis is limited to individual sub-routines in the code. The optimal partitioning

ofglobal variables could change when all sub-routines are examined together. In the future, we plan

to extend the analysis to embedded code with multiple sub-routines, and also develop techniques for

addressing the problem of the relative sizing of SRAM and data cache.

7 Acknowledgment

This work was partially supported by grants from NSF(CDA-9422095) and ONR(N00014-93-l-1348).

8 References

[1] A. V. Aho, R. Sethi and J. D. Ullman, "Compilers - Principles, Techniques and Tools," Addison-

Wesley, 1986.

[2] F. Catthoor and L. Svensson, "Application-Driven Architecture Synthesis," Kluwer Academic

Publishers, 1993.

[3] LSI Logic Corporation, "CW33000 MIPS Embedded Processor User's Manual," 1992.

[4] M. Lam, E. Rothberg, and M. E. Wolf, "The cache performance and optimizations of blocked

algorithms," Proceedings of the Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems, April 1991.

[5] D. Le Gall, "MPEG: A Video Compression Standard for Multimedia Applications," Communi-

catins of the ACM, Vol. 34, No. 4, pp 46-58, April 1991.

[6] P. Marwedel and G. Goosens, "Code Generation for Embedded Processors," Kluwer Academic

Publ, 1995.

[7] P. R. Panda and N. D. Dutt, "1995 High Level Synthesis Design Repository," Intl. Symp. on

System Synthesis^ Cannes, September 1995.

[8] P. R. Panda, N. D. Dutt, and A. Nicolau, "Memory Organization for Improved Data Cache

Performance in Embedded Processors," International Symposium on System Synthesis, La JoUa,

CA, November 1996.

[9] D. A. Patterson and J. L. Hennessy, "Computer Organization k Design - The Hard

ware/Software Interface," Morgan Kaufman, 1994.

[10] W. H. Press, et. al., "Numerical Recipes in C; The Art of Scientific Computing," Cambridge
University Press, 1992.

[11] J. Rawat, "Static analysis of cache performance for real-time programming," Masters thesis,

Iowa State University, May 1993.

[12] A. Sudarsanam and S. Malik, "Memory Bank and Register Allocation in software Synthesis for

ASIPs," Proceedings, lEEE/ACM International Conference on Computer Aided Design, Nov

5-9, 1995.

[13] James L. Turley, "New Processor Families Join Embedded Fray," Microprocessor Report, Vol.

8, No. 17, 26 December 1994.

